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ABSRACT

2’,3’,5’‒Tri‒O‒acetyl‒6,8‒dithioguanosine (taDTGuo) is an analog of nucleoside and 

currently under investigation as a potential agent for photodynamic therapy (PDT). Excitation 

by simultaneous two‒photon absorption of visible or near‒infrared light would provide an 

efficient PDT for deep‒seated tumors. The two‒photon absorption spectrum of taDTGuo was 

obtained by optical‒probing photoacoustic spectroscopy (OPPAS). A two‒photon absorption 

band corresponding to the S5←S0 transition was observed at 556 nm, and the two‒photon 

absorption cross section 𝜎(2) was determined to be 26±3 GM, which was much larger than 

those of other nucleobases and nucleosides. Quantum chemical calculations suggested that the 

large 𝜎(2) value of taDTGuo was responsible for large transition dipole moments and small 

detuning energy resulting from the thiocarbonyl group at 6‒ and 8‒positions. This is the first 
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report on two‒photon absorption spectra and cross sections of thionucleoside analogs, which 

could be used to develop a more specific PDT for cancers in deep region. 
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Thio‒substituted nucleoside, Thioguanosine, Two‒photon absorption spectrum, Photoacoustic 

spectroscopy, Two‒photon absorption cross section, photodynamic therapy
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 INTRODUCTION

6‒Thioguanine (6TG) is widely prescribed as an anticancer drug and immunosuppressive
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agent.1 Through cellular metabolism,2,3 6TG can be converted into its nucleoside, 

6‒thioguanosine [2‒amino‒9‒(β‒D‒ribofuranosyl)purine‒6‒thiol] (6TGuo), which can be 

readily incorporated into cellular RNA and DNA.4‒7 6TGuo localizing in tumor cell was 

reported to generate singlet molecular oxygen (1O2
*) when exposed to UVA light, thus 

inducing cellular apoptosis.2,3 Photo-induced therapeutic effect of 6TG and its nucleoside is 

based on its dominant relaxation pathway of intersystem crossing and the sequent 

energy transfer to molecular oxygen (3O2).8 Thus, 6TG would be an effective anti‒

cancer agent via its biochemical activity and photo-induced therapeutic effect. 

Recently, we synthesized tri‒acetyl‒protected thioguanosine derivatives: 

2’,3’,5’‒tri‒O‒acetyl‒6‒thioguanosine (ta6TGuo), 2’,3’,5’‒tri‒O‒acetyl‒8‒thioguanosine 

(ta8TGuo), and 2’,3’,5’‒tri‒O‒acetyl‒6,8‒dithioguanosine (taDTGuo) (Chart 1) and explored 

their photochemical and photophysical properties.9‒12 These three thioguanosine derivatives 

can absorb UVA light and generate 1O2
* through energy transfer to 3O2. taDTGuo is of 

particular interest because it has the longest wavelength for absorption maximum and the 

highest value in terms of molar absorption coefficient among all of the thiobases and 

thionucleosides so far reported in the literature.9,12,13 It also generates 1O2
* under low‒pH10 and 

low oxygen concentration11 conditions like a tumor microenvironment. Therefore, these 

acetylated thio‒guanosines, especially taDTGuo, are potential agents for light‒induced 

therapies. 

Since the penetration depth of UVA light into biological tissues is shallow, UVA light is not 

used to target deep‒seated cancerous cells. The penetration depth is wavelength‒dependent, 

thus, the disadvantage by UVA should be overcome by using the light with longer wavelengths 

such as visible or near‒infrared light.14 One potential solution to deep‒seated tumors is to 
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exploit simultaneous two‒photon excitation of thioguanosine derivatives in photodynamic 

therapy (PDT). For non‒centrosymmetric molecules like thioguanosine derivatives, 

two‒photon absorption is a way of accessing a given excited state by using photons with half 

the energy of the corresponding one‒photon transition. Since two‒photon absorption involve 

the simultaneous interaction of two photons, it increases with the square of the light intensity. 

Therefore, high spatial‒selective treatments are also achieved by two‒photon induced PDT. 

Two‒photon absorption properties, such as the absorption wavelength and the cross section 

of thioguanosine derivatives are essential for the two‒photon induced PDT. The study of 

two‒photon absorption has been mostly based on the observation of direct absorption and 

radiative transitions, that is, open‒aperture Z‒scan and two‒photon excited fluorescence. 

Generally, any molecules with the extended π‒conjugated system would have large two‒photon 

absorption cross section.15 However, taDTGuo has a small π‒conjugated system, thus, its 

two‒photon absorption cross‒section is likely to be small. Moreover, taDTGuo is less 

fluorescent, so conventional techniques for the two‒photon absorption measurement are not 

applicable to this molecular system. From the above reasons, we applied photoacoustic 

spectroscopy (PAS), a highly sensitive photothermal calorimetric technique, for the 

measurement of two‒photon absorption spectrum of taDTGuo. 

In this article, we investigated the two‒photon excitation wavelength and the two‒photon 

absorption cross section of taDTGuo by optical‒probing photoacoustic spectroscopy 𝜎(2)

(OPPAS),16‒18 a PAS technique detecting a transient angular deflection of the probe beam. We 

also simulated two‒photon absorption spectra of thioguanine derivatives by using the quantum 

chemical calculation to better understand the nature of higher two‒photon absorption cross 

sections for thioguanosines. 

 EXPERIMENTAL 
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2’,3’,5’‒Tri‒O‒acetyl‒6,8‒dithioguanosine (taDTGuo) was prepared as described in the 

previous report.9 One‒photon absorption spectra were measured by a UV/Vis 

spectrophotometer (Shimadzu, UV‒3100). 

The experimental setup for OPPAS measurement has been described elsewhere.17,18 An 

optical parametric oscillator (OPO) laser (Continuum, Panther EX OPO; linearly polarized, 

pulse width 3‒5 ns, line width < 6 cm‒1) pumped by third harmonic of a Nd3+:YAG laser 

(Continuum, Surelite Ⅱ; pulse width 4‒6 ns, repetition rate 10 Hz) and a He‒Ne laser (LASOS, 

LGK 7634; ≥ 2 mW, cw 632.8 nm) were used as the excitation and the probe sources, 

respectively. The excitation laser power was attenuated with a variable neutral density filter to 

obtain the incident laser power dependence on the OPPAS signal. The intensity of the excitation 

laser, split by a beam sampler, was monitored with a thermopile sensor (Ophir, 3A‒P). Both 

the excitation and the probe lights were focused into a quartz glass cell (optical path length 10 

mm) with 150 mm focal lenses and settled in parallel. An acoustic wave resulting from

absorption was detected as a transient angular deflection of the probe beam. The temporal 

intensity profile of the probe light through a 100 μm pinhole and a laser line filter was detected 

by a photomultiplier tube (Hamamatsu Photonics, R928). The signals from the photomultiplier 

tube and the thermopile sensor were averaged by a digital oscilloscope (Tektronix, 

DPO4104B‒L), and the waveform was transferred to a personal computer. A differential 

amplifier (NF, 5307) was used to amplify the OPPAS signal. The sample solutions were 

deaerated with N2 gas for 15 minutes prior to the measurements and flowed into the cell to 

avoid the contamination of photoproducts. The flow rate controlled by a syringe pump (YMC, 

YSP‒101) was 2.0 mL/hour. 

A mixed solvent of water and acetonitrile (Aldrich, >99%) [7:3 (v:v)] was used in order to 

prepare highly concentrated (10 mM) solution of taDTGuo. All of the measurements were 

carried out at ambient temperature. 
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To save calculation costs, calculations were performed without sugar moieties. Since the 

calculated vertical transition energies and oscillator strengths for singlet excited states of 

thioguanines were well reproduced the one‒photon absorption spectra of corresponding 

tri‒acetyl‒protected thioguanosines,9 this kind of simplification is considered to give little 

influence on the calculation results of optical properties. Ground‒ and excited‒state calculations 

for purine bases [6,8‒dithioguanine (DTG), 8‒thioguanine (8TG), and 8‒oxoguanine (8OG)] 

were performed using the Gaussian 09W program package.19 Geometry optimization and 

vibrational frequency analysis in the ground state were performed at the B3LYP/6‒311+G(d,p) 

level with the polarizable continuum model (PCM) in water. The vertical transition energies, 

the transition dipole moments to the excited singlet states, the transition dipole moments 

between excited states, and the permanent dipole moments of the ground and excited states 

necessary for the spectral simulation of two‒photon absorption were estimated by the 

time‒dependent DFT (TD‒DFT) with Tamm‒Dancoff approximation (TDA)20 at the 

B3LYP/6‒311+G(d,p) level. Simulation of the two‒photon absorption spectra were performed 

using sum‒over state (SOS) formalism21 summing all intermediate and final states considered 

in the calculation (20 excited states). The dumping constant of the Lorenzian linewidth function 

was taken to be 0.25 eV. 

 RESULTS AND DISCUSSION

1 Two‒photon absorption spectrum of taDTGuo. The one‒photon absorption spectrum of 

taDTGuo in water/acetonitrile is illustrated in Figure 1. taDTGuo has an absorption maximum 

in the UVA region; =3.76×104 M‒1 cm‒1 at =377 nm. Our previous article10 reported 𝜀max 𝜆max

that taDTGuo in the phosphate buffer solution was held in sequential acid dissociation 

equilibria among the neutral form, 1‒imide anionic form, and 1,7‒di‒imide anionic form, and 

the equilibrium constants were determined to be 7.02±0.01 and 9.79±0.01, respectively. Since 
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the one‒photon absorption spectrum in water/acetonitrile well agreed to that of the neutral 

form,10 the neutral form should mainly exist in this solution. 

Figure 2(a) shows the typical OPPAS signal of taDTGuo in water/acetonitrile following 

excitation at 556 nm. The OPPAS signal was observed at 1.7 s after the irradiation of visible μ

light. The prompt photoacoustic signal amplitude, U, is proportional to the total quantity of heat 

released from excited molecules into the medium. Because taDTGuo has no significant 

absorption of a single photon at 556 nm (Figure S1(a) in Supporting Information), the observed 

signal should be responsible for multi‒photon absorption of taDTGuo. 

The heat action spectrum of taDTGuo was measured by plotting the amplitude U against 

excitation wavelength (Figure 1 and Figure S2 in Supporting Information). The incident laser 

power, I, was kept constant in the range from 428 to 632 nm, though it decreased due to the 

limitation of the light source for the wavelength longer than 632 nm. An intense band at 556 

nm and a weak absorption to the red of the band were observed. Background signal resulting 

from the solvent was negligible under the experimental condition applied. 

Figure 2(b) shows the log‒log plots of the OPPAS signal intensity against the incident laser 

power. The signal intensity increased nonlinearly with the incident laser power, indicating that 

multi‒photon absorption occurs. For a simplified n‒photon absorption process, the OPPAS 

signal intensity is proportional to the n‒th power of the incident laser power. The slopes of the 

solid lines in Figure 2(b), which were the best‒fitting curves obtained by the least‒square’s 

method, were estimated to be 1.98 (460 nm), 2.16 (556 nm), and 2.35 (584 nm). This reveals 

that the nonlinear absorption is attributed to the simultaneous two‒photon absorption process. 

The slope for 584 nm exceeds 2, implying that additional one‒photon absorption following the 

two‒photon absorption, called as excited‒state absorption, would slightly contribute to the 

OPPAS signal. 
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(1)𝑈(2) = 𝐾(2) 𝜎(2)𝐶 𝛼(2) 𝑏 𝐼2

where  is the instrumental function,  is the two‒photon absorption cross section,  𝐾(2) 𝜎(2) 𝐶

is the concentration of the solution,  is the coefficient that reflects thermoelastic properties 𝑏

of the solvent, and I is the incident laser power.  is the heat conversion efficiency for 𝛼(2)

two‒photon absorption, namely the ratio of the energy released as heat into the medium against 

the absorbed energy. The  of taDTGuo can be determined by the following equation with 𝜎(2)

a reference of 1,4‒bis(2‒methylstyryl)benzene (Bis‒MSB; =68 GM at 556 nm22),  𝜎(2)
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2 Comparison of one‒ and two‒photon absorption spectra. The two‒photon absorption 

spectrum of taDTGuo is compared with the one‒photon absorption spectrum (Figure 1). The 

observed spectral profile was quite similar with that of the one‒photon absorption, revealing 

that the excited states are the same for the one‒ and two‒photon absorption. This is consistent 

with the fact that the exclusive selection rule on one‒ and two‒photon absorption should be 

inappropriate to non‒centrosymmetric molecules like taDTGuo. Our previous work 

documented that taDTGuo generates singlet molecular oxygen by one‒photon excitation of 

UVA light. Since the excited state following the one‒photon absorption was the same as that 

following the two‒photon absorption, taDTGuo excited by the two‒photon absorption of 

visible light is also expected to generate singlet molecular oxygen.

3 Estimation of two‒photon absorption cross section 𝝈(𝟐). The two‒photon absorption cross 

section of taDTGuo was estimated. The OPPAS signal intensity resulting from the two‒photon 

absorption process U (2) is described as
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(2)𝜎(2)
sam =  

𝑈(2)
sam

𝐼2
sam

𝑈(2)
ref

𝐼2
ref

 ×
𝐶ref

𝐶sam
×

𝛼(2)
ref  𝑏ref  

𝛼(2)
sam 𝑏sam

× 𝜎(2)
ref

where the subscripts of sam and ref represent the parameters of sample (taDTGuo) and 

reference (Bis‒MSB), respectively. Since Bis‒MSB is insoluble in water/acetonitrile, the 

measurements for Bis‒MSB were performed in 1,4‒dioxane. The ratio of  for the 𝑏ref 𝑏sam

mixed solvent water/acetonitrile and 1,4‒dioxane was estimated by comparing the signal 

intensity of a calorimetric standard 2‒hydroxybenzophenone (2HBP) with the 355 nm light 

(  = 1.0 23). Assuming that the heat conversion efficiency for two‒photon absorption, , 𝛼(1)
355 𝛼(2)

was identical to that for one‒photon absorption at 355 nm, , the heat conversion 𝛼(1)
355

efficiencies for the two‒photon absorption of taDTGuo and Bis‒MSB were determined to be 

0.60±0.02 and 0.18±0.02, respectively. The detailed procedure for the measurements is 

described in Supporting Information (Figures S3 and S4), and the key results are summarized 

in Table 1. 

The OPPAS signal intensity of taDTGuo and Bis‒MSB against the incident laser power at 

556 nm is presented in Figure 3. By analyzing the plots with the polynomial function, the U (2) 

/ I 2 value was obtained (Table 1). Substituting these values into eq. (2), the  value for 𝜎(2)

taDTGuo was successfully determined to be 26±3 GM at 556 nm. Some researchers reported 

two‒photon absorption cross sections of purine derivatives in water; 0.7 GM (532 nm) for 

guanosine 5’‒monophosphate,24 0.1 GM (612 nm) for 2‒aminopurine,25 and 1.8 GM (560 nm) 

for 7‒methylguanosine.26 It was obviously demonstrated that taDTGuo has much larger  𝜎(2)

value than other purine derivatives. 

4 Simulation of two‒photon absorption spectra. To obtain deeper insight of two‒photon 
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absorption properties of taDTGuo, the two‒photon absorption spectra of three guanine 

derivatives were simulated; dithioguanine (DTG), 8‒thioguanine (8TG), and 8‒oxoguanine 

(8OG) (Figure 4 and Table S2 in Supporting Information). All guanine derivatives have two 

types of absorption bands; (i) weak two‒photon absorption bands by the transition to the lowest 

two‒photon allowed excited state, and (ii) intense two‒photon absorption bands by the 

transition to the second and any higher two‒photon allowed excited states, designated by green 

arrows. The intense two‒photon absorption bands were assigned to the S5←S0 transition for 

DTG, the S8←S0 transition for 8TG, and the S12←S0 transition for 8OG (Figure 5 and Figure 

S5 in Supporting Information). The simulated two‒photon absorption spectrum of DTG (Figure 

4(a)) shows an intense two‒photon absorption band at 543 nm, which well agrees with the 

experimental result (556 nm). The  values of intense absorption bands, shown by green 𝜎(2)

arrows, are in the order of DTG > 8TG > 8OG, suggesting that the thiocarbonylation at 6‒ 

and/or 8‒positions should increase the  value. 𝜎(2)

The position effect of the thiocarbonyl group on the  values was analyzed. The  𝜎(2) 𝜎(2)

value of DTG (130 GM), 8TG thiocarbonylated at 6‒position, is 1.6 times larger than that of 

8TG (84 GM). On the other hand, the  value of 8TG (84 GM), 8OG thiocarbonylated at 𝜎(2)

8‒position, is 3.4 times larger than that of 8OG (25 GM). These results indicates that 

thiocarbonylation at 8‒position of guanine has a larger effect on increasing  value than 𝜎(2)

that at 6‒position. 

The two‒photon absorption cross section can be theoretically expressed as the sum of three 

terms; three‒state, dipolar, and cross terms.18 Simulated two‒photon absorption spectra 

decomposed into three terms (see Figure S6 in Supporting Information) revealed that 

three‒state term dominantly contributes to  and the contributions from dipolar and cross 𝜎(2)

terms are negligible for all guanine derivatives. Three‒state term, , is described as 𝑇three ― state

follows.18
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11

𝑇three ― state =  
4

15ℏ2∑
𝑘 ≠ 𝑔
𝑘 ≠ 𝑓

[(1 + 2 cos2𝜃𝑘)
|𝑴𝑔𝑘|2|𝑴𝑘𝑓|2

(𝜔𝑔𝑘 ― 𝜔)2 ] (3)

Here, M is the transition dipole moment between the states (g: ground state, k: intermediate 

state, f: final state), ℏ(ωgk ‒ ω) is the detuning energy (the difference between the vertical 

transition energy to the intermediate state and the photon energy of the incident light), ΔE , and 

θk is the angle between the two vectors of  and . We calculated the  term, 𝑴𝑔𝑘 𝑴𝑘𝑓 𝑇three ― state

with the 20 excited singlet states as an intermediate state and the 20 excited singlet states as a 

final state. The decomposed two‒photon absorption spectra via intermediate states are 

illustrated in Figure S7 in Supporting Information. The S1 state for DTG and 8TG, and the S1 

and S3 states for 8OG have the major contribution to the three‒state term.

The energy diagrams of guanine derivatives for the transition designated by green arrows are 

presented in Figure 5. DTG has larger transition dipole moments ( =7.94 D, =9.41  |𝑴𝑔𝑘| |𝑴𝑘𝑓|

D) and smaller detuning energy ( =1.09 eV) than other guanine derivatives. Since the ∆𝐸

three‒state term is proportional to  and inversely proportional to the square of |𝑴𝑔𝑘|2|𝑴𝑘𝑓|2

the detuning energy, both the large transition dipole moments and the small detuning energy 

would be responsible for the large two‒photon absorption cross‒section for taDTGuo (26 GM 

at 556 nm). From the electronic configuration of the excited states (Table S3 in Supporting 

Information), it was found that the S5←(S1)←S0 electronic transition should correspond to the 

LUMO←HOMO and HOMO←HOMO‒3 transitions for DTG, the S8←(S1)←S0 transition is 

the LUMO←HOMO and LUMO+3←LUMO transitions for 8TG, and the S12←(S3)←S0 

transition is the LUMO+1←HOMO and LUMO+8←LUMO+1 transitions for 8OG. The 

molecular orbitals related to these transitions are presented in Figure 6. Although the shapes of 

MOs for the guanine derivatives were almost the same, the electron density at the sulfur atom 
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was higher than that of oxygen atom, resulting in increase of the electron density at the 

peripheral groups by thiocarbonylation at 6‒ and/or 8‒position (for example see HOMOs of 

DTG, 8TG, and 8OG in Figure 6.). The larger difference of the electron density at the peripheral 

group between MOs relating to the transition for the thiolated guanosines would result in a 

larger transition dipole moment. The parameters involving three‒state terms of DTG, 8TG, and 

8OG are summarized in Tables S4 and S5 in Supporting Information. 

One‒photon absorption spectra of guanosine derivatives are shown in Figure S1(b) (see also 

Table S1).9,12 taDTGuo has an absorption maximum at 381 nm in acetonitrile, which is the most 

red‒shifted absorption band among thionucleosides so far reported9,12,13, while the absorption 

maxima of ta8TGuo and ta8OGuo, which significantly contributes to the two‒photon 

absorption as the intermediate states, were observed at 304 and 249 nm, respectively. As the 

photon energy of the incident light for two‒photon absorption is much smaller than the vertical 

excitation energy to the intermediate states, the detuning energy decreases by the existence of 

the excited states with low vertical transition energy which mainly contribute as the 

intermediate states. 

Among these thioguanine analogs, DTG was found to have the most red‒shifted band and 

the largest  value for the two‒photon absorption band designated by the green arrow. 𝜎(2)

Therefore, DTG would be the most promising agent for two‒photon induced PDT. 

5 Application of thioguanosine derivatives to two‒photon induced PDT. At present, 

one‒photon activated PDT using porphyrin compounds such as Photofrin, Laserphyrin, and 

Visudyne has been applied to the treatments of cancers,27 while two‒photon induced PDT is 

still under research and development stages. Any potential drugs for two‒photon induced PDT 

requires a large two‒photon absorption cross section  in the biological optical window and 𝜎(2)

also a large singlet molecular oxygen quantum yield . taDTGuo would be a good drug 𝛷Δ
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candidate for two‒photon induced PDT in terms of the singlet molecular oxygen quantum yield, 

the penetration depth into the biological tissues by the excitation light wavelength, and the 

two‒photon absorption cross section. 

As reported in our recent work,9‒11 taDTGuo can be excited by one‒photon absorption of 

UVA light and will generate 1O2
* under low‒pH and low‒oxygen conditions similar to the 

carcinoma cell microenvironment. The current paper demonstrated that taDTGuo is excited by 

two‒photon absorption of visible light. Since the excited state following the two‒photon 

absorption was the same as that following the one‒photon absorption, taDTGuo excited by 

the two‒photon absorption of visible light is expected to generate singlet molecular oxygen. 

The penetration depth of the excitation light for the two‒photon absorption (𝜆(2)=556 nm) is 

about 330 μm, which is 8 times as high as that for one‒photon absorption (40 μm at 𝜆(1)=381 

nm).28 Since the excitation wavelength for the two‒photon absorption of taDTGuo (556 nm) is 

shorter than that for the one‒photon absorption of Photofrin (630 nm), porphyrin compounds 

remain more favorable for the treatments of deep‒seated tumors. However, taDTGuo is a 

nucleoside analog which could be incorporated into target cellular DNA. Thus, the combination 

of thionucleoside and two‒photon absorption would certainly offer a more specific approach to 

targeting the DNA in deep‒seated tumors.

Taken together, these results indicate that two‒photon induced PDT would be possible by 

the enhancement of the 𝜎(2) value of the transition to any two‒photon allowed excited states 

and the red‒shift of the two‒photon absorption peak. Based on the results of our simulated 

two‒photon absorption spectra of guanine derivatives, the modification at 8‒position to 

increase the electron distribution should be effective to enhance the 𝜎(2) value.

In this study, we successfully obtained the two‒photon absorption spectrum and the 𝜎(2) 

value of taDTGuo. This is the first experimental report on the two‒photon absorption spectrum 

and cross section of a thionucleoside analog, and offers the possibility to develop a more 

13
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specific PDT for deep‒seated tumors by using nucleoside derivatives and simultaneous 

two‒photon absorption. 

 CONCLUSIONS

Two‒photon absorption properties such as excitation wavelength and two‒photon absorption 

cross section of taDTGuo were investigated by OPPAS and quantum chemical calculations. 

The two‒photon absorption band for the S5←S0 transition was observed at 556 nm. The 

two‒photon absorption cross section of taDTGuo was estimated to be 26±3 GM at 556 nm, 

which is much larger than those of other nucleobases and nucleoside derivatives reported so 

far. Simulation of the two‒photon absorption spectra explained that the large  value of 𝜎(2)

taDTGuo is responsible for large transition dipole moments and small detuning energy. 

Thionucleosides can be incorporated specifically into cancerous DNA, and longer 

wavelength light can substantially enhance the light penetration into the tissue. Using 

thionucleosides and two‒photon absorption would offer a more specific approach to targeting 

cancerous DNA than the current non‒nucleoside‒based PDT. 

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of cha f charge at

https://pubs.acs.org/doi/10.1021/.

A: One‒photon absorption spectra of taDTGuo, ta8TGuo, ta8OGuo, and ta6TGuo, B: 

Two‒photon absorption spectrum of taDTGuo and laser power, C: The procedure for 

determination of two‒photon absorption cross section, and D: Simulation of two‒photon 

absorption of guanine derivatives.
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Table 1.  Concentration, U (2) / I 2, the heat conversion efficiency at 355 nm, and two‒photon 

absorption cross section of taDTGuo and Bis‒MSB at 556 nm.

Sample C  / mM U (2) / I 2  / V‒1 𝛼(1)
355   / GM𝜎(2)

taDTGuo 10 0.45  0.01± 0.60  0.02± 26  3±

Bis‒MSB a 15 2.13  0.03± 0.18  0.02± 68 a

a Reference 22.
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Chart 1.  Structures of thioguanines and their nucleosides.
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Figure 1.  One‒ and two‒photon absorption spectra of taDTGuo in water/acetonitrile 

[7:3(v:v)] (one‒photon: black line, bottom and left axes and two‒photon: blue line and circles, 

top and right axes).
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(a)

(b)

Figure 2.  (a) Temporal profile of the OPPAS signal for taDTGuo (10 mM) in 

water/acetonitrile [7:3 (v:v)] excited at 556 nm, and (b) log‒log plots of the laser power 

dependence of the OPPAS signal intensity at 460, 556, and 584 nm. Solid lines denote the 

best‒fitting curves obtained by the least square’s method.
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Figure 3.  Plots of U (2) for taDTGuo (10 mM) in water/acetonitrile (blue) and Bis‒MSB (15 

mM) in 1,4‒dioxane (red) against the incident laser power at 556 nm.
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Figure 4.  Simulated two‒photon absorption spectra of (a) DTG, (b) 8TG, and (c) 8OG.
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Figure 5.  Energy diagrams for the intense two‒photon absorption bands of guanine 

derivatives.
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Figure 6.  Molecular orbitals and transition dipole moments related to (a) the transition from 

the intermediate to the final states of guanine derivatives, and (b) the transition from the ground 

to the intermediate states.
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