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Abstract

In this work we study a set of related problems in the theory of ballistic spin transport. We

draw special attention to the phenomenon of exchange coupling, which is interesting both from

the theoretical point of view, and the possible applications in spintronics. For the calculations

we employ the Landauer transfer matrix formalism, testing its assumptions, extending it to

new models and establishing links with other branches of physics.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The present study deals with a class of problems in an area of electronic transport known as

spintronics. This is a relatively recent field of research and an engineering discipline that was

brought about towards the end of the 20th century through the advances in material science and

measurement techniques. Its subsequent development was accelerated by the rapid adoption

of the early discoveries by electronic device manufacturers, predominantly in the sector of

information storage and retrieval. Tremendous progress in nano-fabrication technology allowed

researchers to study certain phenomena which would have previously been impossible to observe

experimentally because they would be disturbed or destroyed by the effects of impurities in the

sample. Novel phenomena, such as spin current and spin torque, became of central importance,

as the physical processes underlying a new generation of electronic circuits. Furthermore, as

the observations shifted towards the mesoscopic and nanoscale ranges, some of the well known

concepts, such as electrical conductance and resistance, had to be redefined because their

macroscopic interpretations no longer made sense for structures comprised of a small number

of atomic layers. Mathematical model of spin current, which will be the main focus of this

research, is an interesting concept in itself too. Much of the intuition about the generation,

conservation and symmetries of the more familiar charge current does not necessarily apply to

3



4 Chapter 1. Introduction

spin-polarised transport. Some of the known facts and prior results obtained for charge transfer

often inform the problems formulated for its spin counterpart throughout this work, only to

lead to the realisation of how different the behaviour may be in the latter case.

A common scheme of reasoning applied to problems in solid state theory is the following one.

Firstly, idealised model calculations are performed to extract certain qualitative features, for

example the existence and number of oscillation periods observed under variation of the pa-

rameters. This is often followed by reformulating the problem for a more realistic model (e.g.

tight-binding or ab initio) and repeating the calculations to determine if the features predicted

in the previous step still manifest themselves. Finally, the conclusions may be validated against

the available experimental data. Our study is mathematically oriented, therefore we focus on

the study of a model system which is, in some circumstances, exactly solvable. In practice, how-

ever, the exact solution may not be particularly illuminating with respect to reasoning about

the system behaviour. Hence, we discuss and extend a formalism that encapsulates most of the

complexity and retains the physical intuition throughout the manipulation. Furthermore, the

results obtained within this formalism can be often almost directly translated into the language

of the more realistic models. These results will be of the strictly qualitative nature. Neverthe-

less, our choice of computational framework, and the way we apply it, opens the possibility –

in the future research – to validate these results by transcribing them into a form suitable for

realistic numerical simulations.

In Chapter 2, following an overview of the background material about the history of spintronics

and the physics of spin, we describe a non-relativistic spin-resolved Hamiltonian. We gradually

enhance it to cover the presence of exchange splitting and in-plane rotation of the magnetisation.

We then depart from this particular form of the Hamiltonian for a while, and introduce the

Landauer method for calculating conductance in terms of the transmission probability. We

discuss the various extensions of the formalism to the case of the spin degree of freedom,

multiple scatterers and, ultimately, many terminals (Landauer-Büttiker method). Two ideas

must be emphasised here. Firstly, when discussing transmission in multilayer structures we

recognise the role of successive reflections that electrons undergo between the interfaces. It will

become clear in the subsequent chapters that only if we account for all possible reflections can
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certain types of symmetries exhibited by the spin current components be rigorously proved and

physically explained. Since it is usually rather tedious to calculate analytically the transmission

across more than two interfaces, while summing over all reflections, this is often omitted in the

literature, and approximations in one reflection are considered instead. Secondly, we make

a clear separation between the general formalism of the transmission and reflection matrices,

and its particular application to the problem described earlier. In this case the coefficients

can be exactly calculated based on the continuity equations for the wave functions at the

interfaces. However, we note that the values could in fact be set based on phenomenological

considerations or fitted from experimental data instead. The chapter culminates with the

introduction of spin current. We define it in terms of the transmission formalism, and treat the

charge and spin components as constituents of a general mathematical object of a quaternionic

structure (although we do not make use of any further algebraic properties of quaternions in

what follows). We comment on the distinction between the exchange and transport parts of the

current, which sets up the exposition of their various properties in the following two chapters.

Chapter 3 contains an extensive investigation of the mechanism through which spin current

arises in ballistic multilayers, and the various symmetries it exhibits. The aim is to provide

a clear demonstration of how the qualitatively new features arise, as we include successive

reflections between the interfaces. Particular attention is paid to the properties of the out-

of-plane component of spin current which plays an important role in the transfer of torque,

and may therefore be crucial for applications. It is shown that under certain assumptions

about the device symmetry current components may vanish identically. This is an important

observation because such assumptions are often made in model calculations in order to simplify

the analytical derivations. Here we see that certain qualitative information may be lost in

the process, leading to potentially incorrect conclusions about the behaviour of spin current.

The contents of Section 2.5.2 and the entire Chapter 3 comprise an extended version of the

discussion presented in the paper [1] co-written by the author. Section 3.6 is fully contributed

by the author.

An investigation of the asymptotic properties of current oscillations is provided at the end of

the chapter. It is motivated by the earlier work of other authors [2] on an similar problem
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for charge conductance. It also serves to demonstrate the convenience of working with the

transfer matrix formalism, and the physical clarity of the results obtained via the low-reflection

approximation.

In Chapter 4 we point out the deep analogies that exist between the multilayer problems in

linear optics and electron transport, which often look very similar from the transfer matrix

method point of view [3]. Beyond the immediate similarities, we note that there are some

established methods of calculating the polarisation properties of the optical multilayers which

admit a straightforward interpretation in the context of spin current, however, they do not seem

to have been widely adopted within the spintronics community. The particular techniques that

we discuss are the Iwasawa decomposition and the Müller-Jones calculus. While a deeper

investigation of both of these methods is tangential to the main theme of our study and is

therefore deferred to future research, we outline the main points of interest and indicate the

possible further areas of study.

In Chapter 5 we apply the Landauer formalism to the study of interlayer exchange coupling

(IEC), a form of electromagnetic interaction between ferromagnets by means of itinerant con-

duction electrons. This effect is of great interest because it provides one possible path towards

generating large spin currents with very low charge transfer. For applications this means

greater energy efficiency and further miniaturisation of the devices. The theoretical study here,

however, starts with the observation that IEC is closely related to one of the spin current

components, and that it can exist in a system completely isolated from the environment. This

represents a novel use case of the Landauer formalism, which traditionally contains the assump-

tion that a conducting material is coupled to phase-randomising macroscopic reservoirs. We

construct a model where the device is gradually isolated from the outside world and interpret

the resulting solution, both physically and mathematically. Studying such systems, which we

refer to as closed, is particularly interesting because it clearly demonstrates the stark differences

in the behaviour of the charge current and the components of the spin current. While the charge

current vanishes in an isolated system, following the classical intuition, the same is not true

for the out-of-plane component of the spin current. To support the argument, we complement

the proof with an equivalent derivation based on the spectral density formalism. We largely
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follow the quantum-well theory of IEC, as set out in [4] and [5], which again demonstrates the

fundamental role of reflections in generating the total phase shift of the electrons in the spacer.

That phase shift gives rise to the transfer of torque to a ferromagnetic layer.

Finally, Chapter 6 deals with the problem of spin transport in geometries with more than

two terminals. Besides the motivation from device engineering, this provides an example of

generalising the Landauer transfer matrix method to a model that, to the authors’ knowledge,

has not been considered before. Spin-resolved transmission across multi-terminal junctions has

been studied for the case of a diffusive central region [6] and for some very specific geometries

[7], [8]. Reduction to the ballistic regime is discussed in [6], however, it is done with some drastic

simplifications, without accounting for successive reflections between the segments adjacent to

the junction. The discussion in [8] also incorporates spin-orbit interaction which complicates

the results but does not necessarily add much insight into the flow of amplitude across the

central region of the structure. In keeping with the overall approach of this study, we take the

existing results for charge transport, based on the work of Büttiker [9], [10], as the starting

point, and generalise them to the spin degree of freedom. We go beyond the assumption of a

single thin scatterer given in the example in [10] and introduce the structure which is similar

to that studied in [6], however, in this case the transport is ballistic, and all reflections are

accounted for.

1.2 On the Use of Notation

In this work we find ourselves having to deal with a wide range of mathematical objects. While

we strive to adhere to the established conventions, certain trade-offs are deemed necessary

in order to maintain the overall consistency and clarity. Thus we use over-bar notation, for

example k̄‖, M̄ , to denote 2- and 3-dimensional vector quantities. 4-dimensional vectors make

the occasional appearance and will be denoted by double over-bar, for example ¯̄s, to make

the distinction clearer. Small boldface Latin letters stand for 2 × 2 matrices, such as r and

t, whereas Greek letters denote spinors, for instance ψ, α, unless otherwise indicated. One
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exception is made for the Pauli matrices, which follow the standard convention σν . Vector and

matrix notation may be composed, whereby σ̄, ¯̄j denote 3- and 4-component vectors of matrices,

respectively. Capital boldface letters are used for 4× 4 matrices, such as T, S. A 6× 6 matrix

makes a single entry in Chapter 5 and is distinguished using the check mark Š. Quantum-

mechanical operators, without reference to a representation, are customarily decorated with

hats, for example, Ĥ, ŝ. Certain higher-dimensional objects, whose scope is limited to the

second half of Chapter 4, are denoted by Fraktur script J, M, in order to emphasize certain

similarities between the formalisms under discussion there. Greek indices, such as ν, run over

the set of spatial indices {x, y, z}, and the “timelike” 0 component (where applicable), while

Latin indices, such as i are usually reserved for indexing in multilayers. We use 0 and 1

to denote the zero and identity matrices, respectively. For brevity we do not specify their

dimensions explicitly, which can always be inferred from the context. Finally, in order to

prevent it being conflated with the running index, an augmented notation i is employed for the

imaginary unit.



Chapter 2

Background Theory

2.1 Overview of Spintronics

Traditional electronics is based largely on the methods of controlling the flow and accumulation

of charge carried by electrons in conductive media. Storage and retrieval of digital information

in volatile memory, such as dynamic random access memory (DRAM), is widely implemented

by means of detecting the presence or absence of accumulated charge in capacitors. Logic circuit

designs rely on the properties of certain semi-conducting materials that allow switching current

on and off along parts of the contour. Although charge plays a crucial role in the processes

underlying the electronic devices, it is not the only property of the carriers that can be useful

for applications. Electrons also possesses an intrinsic angular momentum, called spin, that is

observed by the way it interacts with external magnetic fields, orbital momenta and other spins.

Under certain conditions it is possible to generate the flow of spin through material. This flow

is called spin current and it will be central to our studies. Unlike charge current, which is a

scalar quantity, spin current has three spatial components, and those can exhibit very different

behaviour from each other under variation of the material parameters. Furthermore, spin is an

essentially quantum-mechanical property of a particle. It has no classical analogue, therefore,

certain effects related to it cannot be observed at macroscopic scales. This is why the models

we study describe nanoscale structures, measuring a small number of atomic layers across.

9



10 Chapter 2. Background Theory

The idea to use the flow of spin, in a controlled way, in electronic devices gave rise to spintronics,

as a branch of research and an engineering discipline. It dates back to the work by Leo Esaki

and his group at IBM in 1960s on the magnetoresistance of antiferromagnetic EuSe placed

between metal electrodes [11]. The crucial observation is that spin polarisation of conducting

electrons affects their transmission and scattering rates in certain materials. Consequently, it is

possible to engineer structures that exhibit noticeable differences in conductance, depending on

the polarisation of current passing through them. This in turn, paves the way to novel methods

of reading and storing information.

Before discussing specific examples in detail we shall give a broad classification of the spintronics-

based devices (according to [12]). From the point of view of the physical mechanism used to

encode and read information spintronics-based technologies can be roughly split into mono-

lithic and hybrid. In the former case the spin state is used directly for storing information. A

monolithic spin device can be realised, for example, as an array of quantum dots each trapping

a single electron in bistable spin polarisation. The initial orientations of spins therefore corre-

spond to the input bits. An extreme example of this approach was introduced in 1994 and is

referred to as single spin logic (SSL). In hybrid spintronics, on the other hand, spin degree of

freedom is only used as a proxy for processing information. One such proxy is the connection

between the polarisation state of the device and its electrical resistance. Depending on whether

or not the flow of carriers is actively modulated by an externally applied field devices may be

described as active or passive, respectively. Active devices are characterised by the capability

to amplify an input signal. Historically, the first example of an active device utilising the spin

degree of freedom to control the carrier flow to be proposed is the Datta-Das spin-field effect

transistor (SPINFET) [13]. Examples of passive devices include sensors, read heads and mag-

netic memory cells. In order to avoid conflating the topic with the field of quantum computing,

we note that the distinction between quantum and classical spintronics is made solely on the

basis of the type of information processed using a given device. However, it is more common for

the quantum computations using spin to be discussed in the context of monolithic spintronics,

specifically SSL. Our discussion here will be focused on the models of hybrid passive classical

devices. We shall now give a brief overview of some types of these devices and the physical
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phenomena enabling their operation.

In 1988 the discovery of the giant magnetoresistance (GMR) in Fe/Cr structures not only stim-

ulated further research, but, within the space of less than 10 years led to the first spintronics-

based devices becoming commercially available, specifically in the form of magnetic read heads

[14]. In 1994 a magnetic read sensor became the first commercial GMR-based product [15].

Shortly after that, in 1997, IBM released the first GMR read head for magnetic hard disks [16].

In the same year Honeywell presented the first MRAM module utilising GMR [12]. MRAM is

a type of non-volatile memory that is expected to achieve new levels of endurance, power effi-

ciency and miniaturisation. GMR read heads have found widespread use in personal computers

and media storage devices, such as Apple iPods.

While GMR is realised in metallic structures, tunnelling magnetoresistance (TMR) [17], [18],

another phenomenon important in applications, arises in multilayer structures with insulators,

for example CoFeB-MgO interfaces. GMR is the principal mechanism underlying the design of

the SV type of magnetic components that find use in read sensors. TMR motivates the design

of MTJ which have been the basis of read heads in all hard drives past 2008, and also form the

building blocks of the next generation of spintronics-based devices. A common trait to both

GMR and TMR is the influence that the relative orientation of magnetic moments in the layers

has on the overall electrical resistance of the device. Depending on whether the magnetisation

of the layers is aligned in the parallel (ferromagnetic, FM) or anti-parallel (anti-ferromagnetic,

AF) direction, the overall channel resistance will vary between R↑↑ and R↑↓. This has to do with

the fact that ferromagnets exhibit an imbalance of the up- (majority) and down-spin (minority)

populations characterised by the respective densities of states N↑ and N↓, as depicted in Figure

2.1. Roughly speaking, in the AF configuration the majority electrons do not have as many

available states to propagate into on the right-hand side. The magnetoresistive effect δ can

then be expressed as follows

δ =
R↑↓ −R↑↑

R↑↑
(2.1)

For GMR δ can achieve values in the range 0.4 − 1.1 at room temperature, whereas for TMR

it can be as high as 10. This effect is the principal mechanism for implementing the processes
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Figure 2.1: Illustration of the origin of spin-dependent conductance in the ferromagnetic (FM) and anti-
ferromagnetic (AF) configurations.

of reading data from memory cells. Instead of the presence or absence of electric charge, the 1

and 0 bit states correspond to the high and low resistance measured across the device.

A typical structure of the so-called nanopillar used in the magnetisation switching experiments

is shown in Figure 2.2. It is usually given an elliptic or a rectangular form measuring approx-

imately 200 nm×100 nm. It consists of a relatively thick magnetic reference layer (RL), an

intermediate layer (IL) and a free layer (FL). The RL acts as a polariser for the injected charge

current IC, since its magnetisation M̄1 is fixed via interaction with a large antiferromagnet,

such as PtMn (not shown). The polarised current emerging from RL interacts with the spins in

the FL and exerts a torque, known as STT, which, if strong enough, is capable of reversing the

magnetisation M̄2. The intermediate layer (IL) can be a normal metal (Cu, Cr) or an insulator

(AlO, MgO), depending on which the nanopillar belongs to the SV (GMR) or MTJ (TMR)

type. We note that the real fabrications usually consist of many more layers (for chemical

stability, heat absorption etc) than the simplified schematic shown here.

Depending on the direction of the current passing through the structure two principal geometries

of multilayers are distinguished, namely the CIP and CPP, as shown in Figure 2.3. The “plane”

here is that of the interface between the layers. Most of the early applications of GMR, such as

read heads and MRAM sense lines, were based on the CIP geometry. However, CPP elements

based on MTJ, such as spin-transfer torque STT-MRAM (Figure 2.4), have displaced GMR

in applications. These structures can exhibit high room-temperature TMR, greater thermal
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Figure 2.2: Schematic structure of a magnetic nanopillar consisting of the magnetic reference (RL) and free
(switching) (FL) layers and the interlayer (IL). The latter could be a conductor or an insulator turning the device
into a SV or a MTJ, respectively. Magnetisation of the RL M̄1 is fixed along the long axis of the ellipse. When
charge current IC passes across the structure the magnetisation of the FL M̄2 can be excited into precession or
reversed.

N N

(a) (b)

Figure 2.3: Typical device geometries in spintronics models: (a) current in plane (CIP), (b) current perpen-
dicular to plane (CPP). Arrow shows the direction of current flow.
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Bit Line

Word Line

Source Line

MTJ

Figure 2.4: Simplified view of a STT-MRAM cell with an access transistor. The source line is connected to
the source of the transistor. The word line is connected to the gate and is used to activate the cell for memory
operations. Current going through the bit line is used to read and write bits by switching the free layer of the
MTJ.

stability and allow for energy-efficient magnetisation switching [19]. Another advantage of

the CPP STT-based switching over the older MRAM designs, where switching was driven by

magnetic fields, is greater accuracy and less write disturbing of adjacent memory cells. However,

although the CPP spintronic effects are superior to those of CIP, in order to observe them the

junctions must be of much higher quality, with fewer impurities and near-perfect interfaces. We

note that the injection of spin-polarised current is not the only switching mechanism available.

Optically induced spin current [20], spin pumping [21], [22] and thermally-assisted switching

(TAS) [23], [24] are seen as viable alternatives being actively researched.

Switching and detection of the magnetisation typically require currents of different magnitude.

Therefore, it makes sense, from the point of view of device durability and efficiency, to separate

the read and write contours. This results in the design of three-terminal memory devices.

Such structures help overcome correlations between read and write voltages and reduce energy

consumption. One of the schemes used for the writing paths is based on effect of spin-orbit

interaction (SOI). Fundamentally, SOI is a relativistic effect arising as a higher-order term in

the expansion of the Dirac equation at low energies [12]. However, it can be greatly amplified in

solid crystals, for example in heavy metals (Au, Pt) or III-IV semiconductor heterostructures

in the presence of structural and bulk inversion asymmetry, as well as external electric fields.

SOI underlies a family of phenomena known as SHE. In particular, the SHE gives rise to the

pure spin current IS from charge current IC, flowing in the transverse direction, as depicted in

Figure 2.5.
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MTJ

Figure 2.5: Schematic of a 3-terminal SOT RAM device. Due to spin-orbit interaction charge current IC gives
rise to transverse spin current IS by means of the SHE.

Since this study is focussed on ballistic transport, we shall now put it in the context of the

other possible regimes and the corresponding ranges of scales. We shall also explain how

certain features of the modern fabrication techniques are related to the assumptions made in

our models. Many practical difficulties associated with observing and manipulating the useful

spin-related processes have at their core the requirement for the conservation of spin states.

Inelastic scattering by lattice vibrations and magnetic impurities in samples lead to rapid

relaxation. Overcoming this problem requires, on the one hand, materials to be extremely pure

and, on the other hand, the samples to be relatively small in size (≤ 1µm). For example [25], at

room temperature the characteristic inelastic scattering time satisfies τin ≈ ~/kBT ≈ 10−13 s.

At Fermi velocity vF ≈ 108 cm/s = 1016 Å/s the inelastic scattering mean free path lin =

vFτin ≈ 103 Å. The typical elastic mean free path at which the phase information is conserved

is only of the order of 102 Å. However, the progress made in nano-fabrication of extremely pure

nanomaterials in the recent decades has made it possible to study spin currents experimentally.

Techniques such as sputtering, molecular beam epitaxy (MBE) and optical and electron-beam

lithography allow fabricating superlattices that are nanosize in one direction, referred to as

multilayers. At temperatures T < 1 K, coherent lengths of the waves will be larger than the

characteristic sample size. To put into perspective the class of models studied here, we mention

the main transport regimes typically distinguished [25]. Consider a number of characteristic

lengths, such as the elastic mean free path l, the length L and width W of the sample and

localization length ξ. The case where W,L < l < ξ is referred to as ballistic regime, where
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impurity scattering is ignored, and all scattering happens at the interfaces. The second case,

where W < l < L < ξ, and impurity and interfacial scattering are equally important, is called

the quasi-ballistic regime. The third possibility is the diffusive regime where l < W,L < ξ

and a significant amount of impurities or structural disorder is present. Finally the strongly

localised case occurs when L > ξ. We will be working within the ballistic regime, studying

scattering at the interfaces in multilayer nanoscale devices. In doing so, we will assume the

interfaces “perfect” in the sense that there are no defects affecting the scattering process. A

valid question to ask here is how adequate this assumption is with respect to the experimental

scenarios. The answer is that due to the nature of the fabrication process, when individual layers

of atoms are deposited atop of one another, and crystals are grown epitaxially the interfaces

are indeed close to being perfect. A common type of defect that may occur is a step-like change

in thickness, which can be neglected, assuming a sufficiently small cross-section of the sample

under consideration.

Spintronics is a large and rapidly developing field. We finish this introduction by highlighting

some of its currently active and emerging strands of research. SOI continues to attract a lot of

attention. It is closely related to the family of spin Hall effects (anomalous, inverse, injection,

quantum) which play an important role in the design of three-terminal switching devices, as

we saw earlier. The study of SHE is further linked to the concept of topological insulators [26],

[27], [28]. These are the materials that exhibit different electrical properties in bulk (insulating)

and on the surface (conducting), where the surface states are topologically protected, i.e. are

stable under minor variations of the material parameters. Combining thermal effects with spin

transport gives rise to the field of spin caloritronics [29], [30], [31]. It deals, in particular, with

the thermoelectric properties of magnetic multilayers and thermal spin transfer torque, which

find applications in TAS-MRAM devices. Spin-rotation coupling, which has its roots in the

gyromagnetic effects first discovered in 1915 (Barnett effect, Einstein-de Haas effect), can be

used for mechanical generation of spin current and manipulating electron spins in paramagnetic

states. The new experiments demonstrating spin current generated by the motion of rigid and

elastic bodies and fluids opened up a new area of research known as spin mechatronics [32].

spinmotive force (SMF) [33], [34] is another emerging concept that can be utilised to generate
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spin current in magnetic conductors. It is similar, in the underlying physics, to STT. However,

while STT characterises angular momentum transfer from electron spins to the magnet, SMF

is responsible for energy transfer. SMF enables efficient energy conversion between magnetic

and electric systems and paves the way to the designs of active devices with zero stand-by

power (“normally off”). Finally, a topic that has created a lot of interest recently is that

concerning the dynamics of magnetic vortices and magnetic solitons, or skyrmions [35], [36].

These are the curled in-plane spin configurations that arise at particular ranges of scales in

cylindrical and other regularly-shaped magnetic elements. Characterised by their “topological

charges” – chirality and polarity – these arrangements open new possibilities for encoding bits

of information and building high-density magnetic storage media.

It is not our intention, within the scope of this work, to provide an overview of the topics

comprising the modern spintronics that would be anywhere near a complete one. Nevertheless,

the above survey, hopefully, provides enough motivation for the interest in the subject. We

now move on to the mathematical study of a number of problems about ballistic spin-resolved

transport in magnetic multilayers.

2.2 Physics and Formalism of Spin

In this section we shall summarise some of the standard results of the quantum mechanics

of spin that will be required for further discussion [12]. Since spin is discovered through its

contribution to the total angular momentum of the electron, its mathematical representation

is modelled on that of the orbital angular momentum l̂. Components of l̂ satisfy the following

commutation relations [̂
lλ, l̂µ

]
= i~ελµν l̂ν ,

where ελµν is the Levi-Civita symbol. Consequently, following Pauli, similar relations are

postulated for the spin operator ŝ

[ŝλ, ŝµ] = i~ελµν ŝν
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Since the early experiments (Stern-Gerlach [37]) it has been observed that spin projection takes

one of two values, regardless of the chosen spatial axis of reference. These values must be the

eigenvalues of the projections of ŝν and are shown to be ±~/2. It follows that ŝν must be

represented by 2× 2 traceless Hermitian matrices σν

ŝν =
~
2
σν .

Although multiple choices are possible, historically the following canonical Pauli matrices are

used to represent spin operator components

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 ,
collectively denoted by the Pauli vector σ̄ = (σx,σy,σz) leading to the compact notation

ŝ =
~
2
σ̄.

Consider the eigenvalues of the operator ŝ · b̄, where ā, b̄ are arbitrary vectors and n̄ is a unit

vector in R3. Applying the standard formula

(ā · σ̄)
(
b̄ · σ̄

)
=
(
ā · b̄

)
1 + i

(
ā× b̄

)
· σ̄,

where 1 is the unit 2× 2 matrix, we obtain

(σ̄ · n̄)2 = 1.

This means that σ̄ ·n̄ has eigenvalues ±1, therefore ŝ·n̄ has eigenvalues ±~/2. This is consistent

with the fact that measurement of spin projection along any axis always yields ±~/2.
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2.3 Pauli Equation

In order to perform calculations over the spin-resolved states Schrödinger equation must be

extended to take spin degree of freedom into account. In the general case we would be led to

considering the relativistic Dirac equation. However, if the relativistic effects are not important,

an appropriate approximation is given by the so-called Pauli equation [12]

(
Ĥ +

~
i

∂

∂t
1

)
ψ = 0, (2.2)

where Ĥ is represented by a 2× 2 matrix, 1 and 0 are the unit and zero matrix, respectively,

and

ψ =

ψ↑
ψ↓


is a spin-1

2
wave function. For the rest of the discussion we will work with the time-independent

version of (2.2). The Hamiltonian Ĥ will typically consist of the following terms

Ĥ = Ĥ0 + ĤZ + ĤSO, (2.3)

where Ĥ0 is the spin-independent part which is typically the free-particle Hamiltonian − ~2
2m
∇2

multiplied by the unit 2× 2 matrix. ĤZ is the Zeeman interaction term that takes into account

the interaction of the carrier spin with external magnetic fields. ĤSO is the spin-orbit interaction

term describing the coupling of spin to kinetic momentum. Although ĤSO is important in many

applications when doing calculations in crystalline structures with high atomic numbers, for the

purposes of our investigation it will be disregarded. The energy of interaction of the electron’s

magnetic moment µ̄e with an external field of flux density B̄ is

EB = −µ̄e · B̄,
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Figure 2.6: Dispersion relation in the Stoner-Wohlfarth model of a ferromagnet.

where µ̄e is related to spin angular momentum via the gyromagnetic Landé factor g ≈ 2.

Therefore, ĤZ is found to have the following form

ĤZ = −gµB
2
B̄ · σ̄, (2.4)

where µB is the Bohr magneton. If we assume the magnetic field to be directed along the z-axis,

then (2.4) takes the form

ĤZ =

∆Z

2
0

0 −∆Z

2

 ,
where ∆Z = −gµBBz is the Zeeman splitting term. The key point here is that electrons

experience different electrostatic potential depending on their spin polarisation. Later, when

we consider current passing through ferromagnetic materials we shall adopt a similar model

based on the concept of exchange splitting energy ∆ separating the majority and minority spin

bands. This corresponds to the Stoner-Wohlfarth model of the band structure in a ferromagnet

where two parabolic bands, for the majority and minority spin population, respectively, are

displaced by the exchange splitting energy, as illustrated in Figure 2.6. Separating the transport

according to the majority and minority carrier populations is the main idea behind the so-called

two-current model proposed by Mott [38]. The assumption is that at temperatures sufficiently

below Curie temperature most scattering mechanisms will not cause spin flip or spin relaxation.

As the result, we can think about the spin-polarised current as two independent current flows.

The resulting Schrödinger equation, assuming the effective magnetic field is aligned with the z
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axis, then has the following form

− ~2

2m
∇2ψ + v(0)ψ = Eψ, (2.5)

where

v(0) =

(
v01 +

∆

2
σz

)
, (2.6)

and v0 is the spin-independent potential. However, in the present work we will consider situa-

tions where magnetisation of a ferromagnetic layer is rotated in the xz plane by an arbitrary

angle θ with respect to the spin polarisation axis of the incoming electrons. In this case the

potential acquires dependency on the polarisation angle

− ~2

2m
∇2ψ + v(θ)ψ = Eψ, (2.7)

where

v(θ) = s(−θ)v(0)s(θ), (2.8)

and s(θ) is the spin rotation matrix

s(θ) = exp (−iθσy/2) =

 cos
(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
cos
(
θ
2

)
 . (2.9)

This is where the model departs from the simple two-current picture because of the combined

effect of the precession of the majority and minority spins interacting with the field of the

ferromagnet has on the total spin transfer. The following discussion will be based on the model

in which electrons are free to move in the xz-plane, referred to as in-plane directions, but ex-

perience confining potential in the y direction, known as the out-of-plane one. In particular,

components of the momentum k⊥ = ky and k̄‖ = (kx, kz) will play distinct roles in the sub-

sequent calculations, as illustrated in Figure 2.7, which also indicates that we will generally

assume rotational in-plane symmetry. With this structure in mind we can look solutions of

(2.7) of the form

ψ =
1√
A
eik̄‖·r̄χ(y), (2.10)
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Figure 2.7: In-plane k̄‖ = (kx, kz) and out-of-plane k⊥ components of the wave vector.

where r̄ = (x, z) is the in-plane radius-vector and A is the cross-section area. Substituting

(2.10) into (2.7) leads to the following equation for χ

− ~2

2m

d2

dy2
χ+ v(θ)χ = Eχ. (2.11)

Finally, we make the change χ = s(−θ)φ which leads to the following solution for the case of

a constant potential

φ =

α↑eik↑⊥y

α↓eik↓⊥y

+

β↑e−ik↑⊥y

β↓e−ik↓⊥y

 , (2.12)

where

k↑,↓⊥ =

√
2m

~2

(
E − v0 ∓

∆

2

)
−
∥∥k̄‖∥∥2

. (2.13)

The negative and positive signs in (2.13) correspond to the up (↑) and down-polarised (↓) case,

respectively. In a non-magnetic medium, where ∆ = 0 and k↑,↓⊥ = k⊥ the solution reduces to

φ = αeik⊥y + βe−ik⊥y, (2.14)

where α = [α↑ α↓]T , β = [β↑ β↓]T . From now on we will drop the ⊥ subscript, understanding

k > 0 to mean the out-of-plane component, unless otherwise specified.
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2.4 Larmor Precession

Understanding how moving spins interact with the magnetisation of a medium is crucial to

reasoning about the origin and properties of spin current. Here we derive a standard result

that will be used further to interpret the calculations of spin current based on the solutions of

(2.11). This result is known as the Larmor’s theorem. It is used to characterise the motion of

spins in an external magnetic field. Using the Heisenberg equation for the spin operator and

Hamiltonian Ĥ = Ĥ0 + ĤZ, as defined in (2.3), we obtain

dŝ

dt
=

i

~

[
Ĥ, ŝ

]
=

i

~

[
ĤZ, ŝ

]
, (2.15)

since Ĥ0 is spin-independent and therefore commutes with ŝ. Writing (2.15) in components we

obtain

dŝλ
dt

= − igµB

2
(Bµ (σµσλ − σλσµ) +Bν (σνσλ − σλσν)) , (2.16)

where (λ, µ, ν) run over permutations of (x, y, z). Using the commutation relations for Pauli

matrices we deduce
dŝλ
dt

= −gµB

2
(Bµσν −Bνσµ) ,

dŝλ
dt

= −gµB

~
(
B̄ × ŝ

)
λ
.

Therefore,

dŝ

dt
= Ω̄× ŝ, (2.17)

where Ω̄ = −gµB
~ B̄. Equation (2.17) describes the precession of spin around the magnetisation

axis, as illustrated schematically in Figure 2.8. In reality damping terms will be added to the

right-hand side of (2.17) which will cause the spin to relax eventually and align (or anti-align)

itself with the precession axis. However, we need not be concerned with relaxation at present.

Instead we will demonstrate later in Chapter 3 how precession terms, with additional phase

shifts acquired after multiple scatterings, contribute to spin current.
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Figure 2.8: Schematic depiction of the spin axis kinematics as given by the Larmor theorem.

2.5 Landauer Formalism

2.5.1 Introduction

In this section we introduce the Landauer model of conductance in nano-scale structures. We

briefly summarise the development of the Landauer formula (not necessarily in the exact chrono-

logical order), starting from a single-moded perfect conductor and building up to multi-moded

transport with scattering and, ultimately, to multi-terminal devices. A fully rigorous discussion

using the methods of linear response theory can be found in the article by S.D. Douglas and A.

Szafer [39] and is beyond the scope of the current study. Instead we present some important

intermediate steps motivating the final result and linking it to the material of the following

sections.

Before the 1980’s origins of electrical resistance were mainly studied in the context of irreversibil-

ity and dissipation phenomena, resulting from various forms of interactions (electron-electron,

electron-phonon, electron-impurity). The role of contacts in experimental settings was viewed

as a minor perturbation. However, with new experiments conducted at mesoscopic scales [40],

[41] the effect of coupling a sample to the contacts was appreciated, and a different model of

conductance was introduced by Landauer [42]. That model identified conductance with the

probability that electrons are transmitted across the sample. The Landauer picture introduces

a conceptual separation where all dissipation and phase randomising arises in large reservoirs
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to which the sample is attached via reflectionless contacts. The sample itself is free from inter-

actions and can be treated from the point of view of the ballistic transport. Electrons arrive

into the sample from the reservoirs at all allowed energies up to the Fermi level, all possible

distributions of momenta components and all spin orientations.

We will be using the Landauer formalism to calculate spin current. Combined with the transfer

matrix method discussed later in this section, it provides a computational framework that

transparently maps onto the underlying physics. With certain simplifications, it will also be

possible to obtain closed-form expressions in some cases. Such results often retain the essential

phenomenology and allow us to draw broadly valid qualitative conclusions. For the sake of

clarity, we will temporarily revert to the spin-degenerate case and discuss the basic formulae,

as they apply to charge transport. We will then bring spin back into the picture, as an extension

of the original method. Ultimately, we will consider the case of multiple scattering interfaces.

The Landauer approach evolves from the idea of identifying conductance with transmission, in

other words, treating it within the setting of a scattering problem. When we study the flow of

current through solids at mesoscopic scales the classical Ohmic conductance

G =
ρS

L
,

where ρ is the density, S the cross-section area and L the length of the sample, would ap-

pear to grow indefinitely, as L gets smaller. However, there are experimental results clearly

demonstrating that at nano-scale levels conductance approaches a certain limiting value [41]

and varies in discrete steps proportionate to that value. It can be shown that this value is

e2

~ , per spin channel, and is known as the quantum of conductance [43]. This leads to the

conclusion, which at first seems counter-intuitive, that a perfect single-moded conductor must

have non-zero resistance of about 12.9 kΩ. In order to explain this fact it is necessary to

consider the effects of coupling to the sources and sinks of current. The model assumes that

the sample is connected, via perfectly conducting leads, to macroscopic reservoirs characterised

by well-defined electrochemical potentials. Electrons can escape into reservoirs via the leads

without undergoing any reflections. However, when going in the other direction, there occurs
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a redistribution of carriers between a large number of available states in the reservoirs and

only a few of them in the conductor which gives rise to non-zero resistance. Under the above

assumptions and, bearing in mind the quasi-one-dimensional structure of the model described

at the end of Section 2.3, we can derive the Landauer formula by considering electrons moving

from one reservoir across the system. Firstly, note that the in-plane confinement will give rise

to quantised modes (2.10) with energies

E = En +
~k2
⊥

2m
,

where En is the cut-off energy below which a mode cannot propagate. Now consider a single

conducting mode at zero temperature and recall that the one-dimensional density of states

D(E) is given by

D(E) =
4L

hv(E)
, (2.18)

where E > En and v is the group velocity, L is the length of the sample, and the factor of 4

accounts for carriers moving in both directions and both spin bands. If µ1, µ2 are the chemical

potentials in the reservoirs then under the applied bias µ1−µ2 = −eV the left-to-right electron

density will be half the total (2.18), and the current is calculated as follows [44] (Ch.18)

I =
D(E)eV

2L
ev =

2

hv
ve2V =

2e2

h
V.

Hence, G = I/V = 2e2/h which is precisely the quantum of conductance, with the factor of 2

for spin degeneracy. Accounting for the number of transverse modes M is done by summation,

as follows [10]

M(E) =
∑
n

ϑ(E − En),

where ϑ(t) = 1 if t > 0 and ϑ(t) = 0 otherwise. If M is constant for energies between µ1 and

µ2 then it acts as a multiplier for conductance

G =
2e2

h
M. (2.19)
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Figure 2.9: Ballistic conductor with M transverse conducting modes attached, via reflectionless leads, to large
contacts with N modes each and with chemical potentials set at µ1 and µ2, respectively.

If the conductor is not perfect transmission of an electron emerging from one of the leads will

only occur with some average probability T with the remaining probability R = 1−T of being

reflected back. Therefore, (2.19) gets an extra factor of T

G =
2e2

h
MT. (2.20)

Formula (2.20) may be viewed as the mesoscopic analogue to Einstein’s relation for conductivity

in diffusive transport

σ = e2NsD, (2.21)

where σ is the conductivity, Ns is the density of states and D is the diffusion constant. There is

an important conceptual difference between (2.20) and (2.21). Namely, conductivity is a local

quantity that relates current density to an external electric field. Conductance, on the other

hand, is a global quantity that connects current to voltage.

The assumption about the reservoirs having infinite number of modes is essential for the rest of

the discussion. Consider the system shown in Figure 2.9 where a conductor with M modes is

connected to reservoirs R1 and R2, each containing N modes, via reflectionless leads L1 and L2,

respectively. As demonstrated in [42], when the numbers of modes M and N are comparable

we get the following expression for conductance

G =
2e2

πh
M

N

N − (2/π)Mv−1
F

, (2.22)

where vF is the carrier velocity at the Fermi level. Evidently, as N → ∞ in (2.22), (2.20) is
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recovered. We can also rewrite (2.20) as follows

G−1 =
h

2e2M

1

T
=

h

2e2M
+

h

2e2M

1− T
T

=
h

2e2M
+

h

2e2M

R

T

= G−1
C +G−1

A .

where GC is the contact resistance and GA is the “actual” resistance of the ballistic conductor.

The latter becomes 0 for a perfect conductor, where no resistance occurs. The former is precisely

the quantised resistance due to coupling to the contacts. Although (2.20) is important from

the conceptual point of view, this is not exactly how accounting for multiple current-carrying

channels is done in practical calculations. This is because (2.20) does not describe interference

between the modes. Instead, transmission between M the incoming and the outgoing modes

is described by an M ×M matrix t, where each component tij is the transmission probability

amplitude between modes i and j, and the following result for conductance is derived rigorously

using linear response theory [45], [39]

G =
e2

h
tr{tt†}. (2.23)

Being able to express the conductance across a series of layers in a multilayer structure in terms

of transmission (and reflection) matrices will be the goal of the final section of this chapter. We

will not be considering multiple transverse modes arising from confinement. In our model the

multi-moded transport will be represented by the up- and down-spin channels, in the spirit of

the Mott two-current theory, but with additional effects arising from non-collinear polarisation.

For more realistic calculations of transmission yet another generalisation is required that does

not only take into account multiple conducting modes, but also multiple terminals. In a typical

experimental schematic, besides current-carrying leads, there will also be two or more voltage

probes attached to the sample, see Figure 2.10. At mesoscopic and nano-scales, these probes

typically cannot be assumed non-invasive, in the sense that they can significantly affect the

flow of carriers. Following Büttiker [46], all terminals are treated in a uniform way, that is,

without any inherent distinction between the “leads” and the “probes”, leading to a symmetric
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Figure 2.10: Multi-terminal structure with transmission and reflection between the contacts.

formula for electric current Im in a given lead (probe) m

Im =

NL∑
n=1

GmnVn


Gmn =

e2

h
tr{t†mntmn}, m 6= n,

Gnn =
e2

h
tr{r†nnrnn − 1}.

(2.24)

where m and n are indices of various leads whose total number is NL, Vn are electrostatic

potentials in the leads, Im is the charge current in lead m and tmn, rmn are transmission and

reflection matrices, respectively, between leads m and n. We will now proceed to describe an

extension of the Landauer method to systems with multiple scattering interfaces. We will also

derive specific expressions for the transmission and reflection matrices, as those feature in (2.23)

and (2.24), and build up a framework for calculations over multilayer structures.

2.5.2 Systems with Multiple Scatterers

In this section we present a detailed discussion of the ballistic scattering model and introduce

the important transfer matrix formalism. Used in conjunction with the Landauer theory dis-

cussed in Section 2.5.1 it will allow us to study conductance and, subsequently, spin current in

multilayer structures.
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When studying transport phenomena it is neither very useful nor interesting to consider just one

electromagnetically uniform piece of conducting material. We mostly deal with heterostructures

consisting of layers having different electrochemical and magnetic properties. We are looking

for a method of reasoning about transmission of electrons from the macroscopic reservoirs into

an arbitrary layer of such structures. Building blocks for most of our subsequent calculations

will be provided by reflection and transmission coefficients that we referred to in the discussion

of the Landauer formula in Section 2.5.1. These coefficients can be determined analytically

from the Schrödinger’s equation, by matching wave functions at the interface, under the usual

requirement of continuity of the wave-function itself and its velocity flow. In this case they will

be functions of the wave vector and will depend on the electrostatic potential profiles in the

neighbouring layers. On the other hand, they can also be fitted from ab initio calculations or

experimental data.

We now introduce some notational conventions by considering a single scattering event at the

interface of two layers. Firstly, we consider the case of a single spin channel. If a wave of

unit amplitude hits an interface (Figure 2.12) it will be partially reflected with amplitude r and

transmitted with amplitude t. We will need to distinguish the waves arriving from the left (−∞)

and the right (+∞) direction, and will therefore denote the transmitted and reflected amplitudes

of the right-moving states t′ and r′, respectively. Subscripts will be used to signify the layers

between which transmission and reflection happen, for example t′mn, denoting transmission

from layer m to n where m < n. When we consider transmission across multiple interfaces,

left-to-right for the sake of argument, the transmitted amplitude t′ will serve as the “incoming”

wave for the next interface.

When both spin channels are taken into account the transmission and reflection amplitudes

become 2 × 2 complex matrices r, t, r′ and t′, respectively. These matrices are taken to be

diagonal, because we disregard spin-dependent scattering, for example

t =

t↑ 0

0 t↓

 , r =

r↑ 0

0 r↓

 .
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In a typical calculation we will want to know the transmitted and reflected amplitudes within a

given layer of the heterostructure, under certain boundary conditions. This can be done directly

by solving Schrödinger’s equation in each layer and matching wave functions at the interfaces.

However, that method has some drawbacks. It requires solving systems of linear equations

where algebraic complexity increases rapidly with the number of steps, to the point when it

becomes difficult to reason about the results qualitatively. It is also not particularly amenable

to generalisation to arbitrary potential profiles and effects such as spin-dependent scattering.

It turns out, that there exists a composition law that allows us to express amplitudes in a

layer recursively in terms of the those in the preceding layers. This law can be obtained in a

very general manner without any dependence on a particular analytic (or numeric) form of the

coefficients. We find these useful properties in the so-called transfer matrix or T-matrix. The

4× 4 T-matrix connects amplitudes on the left of the interface to those on the right. If αj, βj

are the amplitudes of the right- and left-moving waves to the left of the scatterer, respectively,

and αj+1, βj+1 are the amplitudes to the right (see Figure 2.11), the transfer matrix establishes

the following relation

αj

βj

αj+1

βj+1

Figure 2.11: Incoming and outgoing waves near a scattering interface.

 αj
βj

 = Tj j+1

 αj+1

βj+1

 . (2.25)

The form of T in terms of transmission and reflection amplitudes can be established by consid-

ering boundary conditions at the left and right lead, corresponding to waves of unit amplitude

arriving from infinity, as illustrated in Figure 2.12. Writing T in the block form where hij are

complex 2× 2 submatrices we obtain the following equations
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1

r

t′

t

1

r′

(a) (b)

Figure 2.12: Incident and reflected waves near a scattering interface: (a) left-incident unit wave, (b) right-
incident unit wave.

 1

r

 =

 h11 h12

h21 h22


 t′

0

 ,
 0

t

 =

 h11 h12

h21 h22


 r′

1

 .
(2.26)

Solving the four equations of (2.26) for hij we obtain

Tj j+1 =

 t′−1 −t′−1r′

rt′−1 t− rt′−1r′

 . (2.27)

Applying (2.25) recursively we can obtain a general relation for the amplitudes in two layers

indexed m and n  αm
βm

 = Tmn

 αn
βn

 . (2.28)

where

Tmn = Tm m+1Tm+1 m+2 . . .Tn−1 n (2.29)

The composition rule (2.29) means that the form of T in terms of transmission and reflection

matrices is preserved and gives a method of calculating amplitudes across several interfaces.

Suppose we are given Tmn and Tnp, where m < n < p. Then using (2.27) and (2.29) we can
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calculate the transmission from n to p as follows

 t′−1
mp −t′−1

mpr
′
mp

rmpt
′−1
mp tmp − rmpt

′−1
mpr

′
mp

 =

 t′−1
mn −t′−1

mnr
′
mn

rmnt
′−1
mn tmn − rmnt

′−1
mnr

′
mn


 t′−1

np −t′−1
np r′np

rnpt
′−1
np tnp − rnpt

′−1
np r′np

 .
(2.30)

Performing multiplication on the right-hand side and comparing both sides block-wise we obtain

t′mp = t′np(1− r′mnrnp)
−1t′mn, (2.31a)

r′mp = r′np + t′np(1− r′mnrnp)
−1r′mntnp, (2.31b)

tmp = tmn(1− rnpr
′
mn)−1tnp, (2.31c)

rmp = rmn + tmnrnp(1− r′mnrnp)
−1t′mn. (2.31d)

The following factors appearing throughout (2.31) deserve special notation

−→r n ≡ (1− r′mnrnp)
−1
, ←−r n ≡ (1− rnpr

′
mn)

−1
, (2.32)

where −→r n,←−r n, as will now be shown, stand for the sums of consecutive reflections within layer

n contributed by electrons moving in the left-to-right and right-to-left directions, respectively.

Defining the strength of confinement in layer n through expression ‖r′mnrnp‖F (where ‖.‖F is

the Frobenius norm, defined for matrix A as ‖A‖F =
√

tr (AA†), we can expand (2.32) for

‖r′mnrnp‖F < 1 as follows [47]:

−→r n = 1 + r′mnrnp + r′mnrnpr
′
mnrnp + . . . ,

←−r n = 1 + rnpr
′
mn + rnpr

′
mnrnpr

′
mn + . . . .

(2.33)

The physical meaning of (2.33) is the summation over consecutive reflections undergone by

electrons between layersm and p. This process can be interpreted as summing over the Feynman

paths [10], as shown schematically in Figure 2.13. In the following chapters we will be dealing

with multilayer structures with layers numbered from 1 through to N . The layers may be of

non-magnetic (NM) or ferromagnetic (FM) nature, and will typically appear in the interleaving
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= + + + ...

r'mnrnp1(1-r'mnrnp)
-1 r'mnrnpr'mnrnp

Figure 2.13: Summing over consecutive reflections within a layer.

1 2 3 4 n N-1N-2N-3 N

... ...FM NM FM FM FMNM NM NMNM

Figure 2.14: Schematic of a general multilayer CPP structure with alternating non-magnetic (NM) ferro-
magnetic (FM) layers. Layers labelled 1 and N represent the left and right semi-infinite non-magnetic leads,
respectively.

order, as shown in Figure 2.14. Layers 1 and N correspond to the left and right semi-infinite

NM leads, respectively. We will be interested in what happens in some NM layer indexed n,

1 < n < N . When counting reflection in layer n we will need to account for electrons escaping

into both of the neighbouring layers, undergoing multiple reflections there and coming back.

The recursive property of the transfer matrix method suggests that in this case we must replace

reflection matrices between adjacent layers with those calculated across all layers up until the

leads. Thus, the summation goes as follows

−→r n = 1 + r′1nrnN + r′1nrnNr′1nrnN + · · · = (1− r′1nrnN)
−1
, (2.34a)

←−r n = 1 + rnNr′1n + rnNr′1nrnNr′1n + · · · = (1− rnNr′1n)
−1
. (2.34b)

We can derive (2.34) in a more systematic way, using the transfer matrix composition law.

Indeed, consider T1N containing the information about transmission across the entire structure.

By (2.29) we can write

T1N = T1nTnN . (2.35)
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From (2.31a) we find the left-to-right transmission across the entire system

t′1N = t′nN (1− r′1nrnN)
−1

t′1n. (2.36)

Now t′nN describes the transmission from layer n through to N , whereas (1− r′1nrnN)−1 t′1n

accounts for the total transmitted amplitude of right-moving electrons into layer n. We denote

this part of transmission, due to the left-incident electrons, −→a n. According to (2.14), wave

function in the layer consists of the right-moving and the left-moving parts. Having accounted

for the right-moving amplitude through −→a n we find the left-moving part denoted
−→
b n simply

factoring in one more reflection rnN off the part of the structure to the right of layer n. Finally,

we obtain

−→a n = (1− r′1nrnN)
−1

t′1n,
−→
b n = rnN

−→a n. (2.37)

Thus if an electron incident from the left has amplitude −→α 0 then after scattering the total right-

and left-propagating states in the non-magnetic layer n are related to −→α 0 as follows

−→αn = −→a n
−→α 0

−→
βn =

−→
b n
−→α 0 (2.38)

A similar argument, using (2.34b), leads us to defining←−a n and
←−
b n, representing the total left-

and right-moving waves contributed by the right-incident electrons.

←−
b n = (1− rnNr′1n)

−1
tnN ,

←−a n = r′1n
←−
b n. (2.39)

This concludes the discussion of the general transfer matrix formalism. We have already found,

based on the example of counting reflections in a multilayer, that it provides a convenient

framework for computations while keeping the apparent connection to the underlying physics.

In the following section we will finally introduce spin current, before proceeding to apply the

transfer matrix to study its properties within the setting of a particular device geometry.
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2.6 Spin Current

In this section we define spin current that will take the central role in later chapters. We

describe some of its important mathematical properties and connect the definition with the

transfer matrix method introduced the previous section.

Spin current characterises the flow of spin in a medium. Since electrons carry spin in the same

sense as they carry charge, a flow of electrons necessarily creates a flow of spin. Motivation

for the definition of spin current comes from generalisation of the more familiar charge current,

which is especially clear in the context of charge and spin conservation, respectively. Classically,

the flow of charge is described by the following equation

∫
V

∂ρ

∂t
dr̄ = −

∫
∂V

j̄0 · ds̄, (2.40)

Where ρ is the charge density, j̄0 is the charge current density (in 3D), for some charge contained

in a closed region of space V with surface ∂V . Applying the divergence theorem to (2.40) we

obtain

∂ρ

∂t
+∇j̄0 = 0. (2.41)

Spin current density j̄ν where ν = {x, y, z} can be introduced via an equation analogous

to (2.41). For clarity, since we are temporarily considering the 3-dimensional case, we will

conduct the argument in components in the spin projection index ν. Recall that the spin

density operator in the single-particle case is defined as follows

ρ̂(s)
ν =

~
2
ψ†σνψ (2.42)

Differentiating ρ̂
(s)
ν with respect to time and using the Pauli equation (2.2) with Ĥ = Ĥ0 + ĤZ,

as defined in (2.3), (2.4) we obtain

∂

∂t
ρ̂(s)
ν = − ~2

4mi

(
ψ†σν∇2ψ −∇2ψ†σνψ

)
+

1

2i
ψ† [σν ,v]ψ

= − ~2

4mi
∇
(
ψ†σν∇ψ −∇ψ†σνψ

)
+

1

2i
ψ† [σν ,v]ψ

(2.43)
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In a non-magnetic medium in the absence of exchange splitting potential v, as defined in (2.6),

has the form diag[V, V ], and the second term on the right in (2.43) vanishes. We thus obtain a

continuity equation

∂

∂t
ρ̂(s)
ν +∇j̄ν = 0 (2.44)

where

j̄ν =
~2

4mi

(
ψ†σν∇ψ −∇ψ†σνψ

)
(2.45)

is the sought expression for spin current density. Equations (2.44) and (2.45) represent the

only point in the scope of this work where we use vector notation for spin current density to

mean the dependence on 3 dimensions in the real space. From this point on, following the

discussion in Section 2.3, we only work with the part of the wave function dependent on one

spatial dimension. Therefore j̄ shall always mean a vector whose components correspond to

the 3 spatial projections of spin. By (2.14) wave function has the form ψ = αeiky + βe−iky.

Assuming k ∈ R+ (conducting medium), equation (2.45) can then be written in terms of

amplitudes

j̄ = k
(
α†σ̄α− β†σ̄β

)
. (2.46)

In order to apply the transfer matrix to spin current we would like to switch from amplitudes

to the language of transmission matrices developed in Section 2.5.1. In order to do that we

shall distinguish, in addition to the left- and right-propagating waves, contributions from the

up- and down-polarised electrons. Let |↑〉 = [1 0]T be the up-spin polarised state incident

from the left. Then from (2.38) and (2.45) we deduce that

|α〉 = −→a |↑〉 |β〉 =
−→
b |↑〉 .

Therefore the contribution to current density from this state
−→̄
j ↑ is expressed as follows

−→̄
j ↑ =

〈
↑
∣∣ j̄ ∣∣ ↑〉 = k

(
〈↑|−→a †σ̄−→a |↑〉 − 〈↑|

−→
b †σ̄
−→
b |↑〉

)
. (2.47)

Starting from the down-spin polarised state |↓〉 = [0 1]T we can obtain a similar expression

for the corresponding contribution
−→̄
j ↑ =

〈
↑
∣∣ j̄ ∣∣ ↑〉. Now adding both contributions, denoting
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−→̄
j =

−→̄
j ↑ +

−→̄
j ↓, we find

−→̄
j = k

(
〈↑|−→a †σ̄−→a |↑〉+ 〈↓|−→a †σ̄−→a |↓〉

)
− k

(
〈↑|
−→
b †σ̄
−→
b |↑〉+ 〈↓|

−→
b †σ̄
−→
b |↓〉

)
(2.48)

Using the fact that 〈↑ | z | ↑〉+ 〈↓ | z | ↓〉 = tr {z} for an arbitrary 2× 2 matrix z, summing over

the up- and down-polarised states can be expressed as taking the trace

−→̄
j = k tr

{−→a †σ̄−→a −−→b †σ̄−→b}, (2.49)

where the difference under the trace is between the terms representing the right- and left-moving

current, respectively. Using the circular property of the trace we can write (2.49) as follows

−→̄
j = k tr

{(−→a−→a † −−→b−→b †) σ̄}. (2.50)

Denoting

−→m = −→a−→a † −
−→
b
−→
b † (2.51)

we can write (2.50) in a more compact form

−→̄
j = k tr

{−→mσ̄} (2.52)

Finally, adding contribution from the right-incident electrons
←−̄
j obtained in a similar way,

denoting j̄ =
−→̄
j +
←−̄
j and introducing the total transmission m = −→m +←−m we can write

j̄ = k tr {mσ̄}. (2.53)

We have derived the expression for spin current density up to (2.44) exploiting the analogy

with charge current. Furthermore, if we define σ0 = 2e
~ 1 and write ¯̄σ = (σ0, σ̄) for a 4-tuple of

σ0 and the components of σ̄ we can have charge current included as a special case and write

the 4-component current density ¯̄j as follows

¯̄j = k tr {m′ ¯̄σ}, (2.54)
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where the prime signifies that we include the transmission matrix of the charge current com-

ponent. Some general conclusions can be immediately drawn from (2.53). Based on the fact

that any complex 2× 2 matrix admits a unique expansion in terms of the identity matrix and

the Pauli matrices [48] we can write

m′ =
∑

ν∈{0,x,y,z}

uνσν , (2.55)

where the expansion coefficients are found from the relation

uν =
1

2
tr {m′σν} (2.56)

Therefore, current density components up to a factor of 1
2k

, are the expansion coefficients of

the transmission matrix in (2.55). Of particular interest here is the out-of-plane component

ν = y. Since only σy is pure imaginary, we deduce that m cannot be purely real for the out-

of-plane component to exist (expansion coefficients (2.56) are in general complex, but current

components are real). Another observation we can make is that current density does not depend

on the direction of polarisation of incident electrons. Indeed, if we replace |σ〉, where σ =↑, ↓

with s(θ) |σ〉 where s(θ) is the spin rotation matrix (2.9), then following (2.49) and, noting that

〈σ| is replaced with 〈σ| s(−θ), we see that the rotation gets cancelled by virtue of the circular

property of the trace.

Our discussion so far has been centred on current density. We shall now introduce the physically

significant concept of current. In order to understand how current is obtained from density,

note that in the calculations leading up to (2.46) and (2.53) we implicitly assumed that the

wave functions are evaluated at a particular point in momentum space. More specifically,

in order to evaluate the current density we must pick the values of the in-plane momentum

k̄‖ = (kx, kz). Now recall that in the Landauer model we assume that electrons arrive from

macroscopic reservoirs at all possible in-plane momenta and energies up to the Fermi level EF.

Electron distribution in the reservoirs, given the electrostatic potential µ and temperature T ,
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are characterised by the Fermi function

f(E, µ, T ) =
1

e(E−µ)/kBT + 1
. (2.57)

where kB is the Boltzmann’s constant. Let µL and µR be the chemical potentials in the left

and right reservoirs, respectively, and denote fL ≡ f(E − µL) and fR ≡ f(E − µR). We

further assume that µL and µR are displaced by an infinitesimal bias µL − µR = eVb. This

assumption has to do with the fact that we will be dealing with conducting systems. It is

practically challenging to maintain a finite bias across a nano-scale conductor. Since the bias is

infinitesimal, it will also be ignored when calculating one-electron states from the Schrödinger

equation. Finally, the incident electrons arrive at either of the possible spin projection with

respect to the chosen spin quantisation axis. Note that, as demonstrated in the previous

paragraph, the result does not depend on the choice of the axis. It follows that the value of

current is found by adding the contributions from all (equally) possible electron states arriving

into the system, that is integrating over in-plane momentum and energy, and summing over

spin projections

Jν =

∫
BZ1

dk̄‖

∫ +∞

−∞
dED(E)

(
fL
−→
j ν + fR

←−
j ν

)
, (2.58)

where D(E) is the density of states, the integration is, in general, carried out over the first

Brillouin zone BZ1. In the parabolic band this will mean integrating over 0 ≤ |k̄‖| ≤ kF where

kF =
√

2mEF/~ is the Fermi wave vector. In the analytic calculations we will additionally

assume in-plane rotational symmetry, so that the integral can be done in polar coordinates.

From (2.58), after symmetrising over the Fermi functions, we can extract two important con-

stituents of spin current. These are the the “static” or exchange current Jex
ν and the bias-driven

transport current J tr
ν defined as follows

Jν = Jex
ν + J tr

ν

Jex
ν =

1

2

∫
BZ1

dk̄‖

∫ −∞
−∞

dED(E)
[(
fL + fR

)(−→
j ν +

←−
j ν

)]

J tr
ν =

1

2

∫
BZ1

dk̄‖

∫ −∞
−∞

dED(E)
[(
fL − fR

)(−→
j ν −

←−
j ν

)]
.

(2.59)
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An important feature of Jex
ν is that it can exist in the absence of any bias. It contributes to

interlayer exchange coupling discussed in Chapter 5. In fact, we will be able show using the

Landauer method that
−→
j ν = −←−j ν for ν = 0, x, z, so Jex

ν is comprised only of the out-of-plane

component. On the other hand, J tr
ν , in the case of an infinitesimal bias fL−fR ∼ −eVbδ(E−µ),

is proportional to Vb. It represents the net flow as the difference between the left- and right-

propagating currents. Lastly, we remark that in this study we do not consider the temperature

dependence explicitly, hence all the calculations are performed assuming T = 0.

This chapter concludes the introductory material required for the main discussion of this work.

Equipped with the Landauer formalism and, having introduced spin current, we will now pro-

ceed to examine the properties of the latter in the setting of a particular device geometry.



Chapter 3

Symmetries and Oscillations of Spin

Current

3.1 Spin Current in a Magnetic Multilayer

3.1.1 Introduction

In Chapter 2 we developed a general framework of the transfer matrix method without relying

on a particular expression for the wave function. Here we will provide an implementation

based on the solutions of (2.11) for a specific device model. Namely, we introduce the CPP-

type (recall Figure 2.3) layered structure of the so-called switching geometry. It consists of a

conducting non-magnetic slab, referred to as the spacer (S) placed between two ferromagnetic

layers, as shown in Figure 3.1. The magnets to the left and right of the spacer are labelled

as the polarising (PM) and the switching (SM) one, respectively. The system is connected to

semi-infinite non-magnetic leads. The coordinate system is introduced in such a way that the

y axis runs perpendicularly to the layer interfaces (out-of-plane direction), while the xz plane

is parallel to the interfaces (in-plane). Magnetic moment of the PM is tilted in-plane at an

angle to the z axis, and magnetisation of the SM is aligned with the z axis. Finally, we take

the in-plane dimensions of the system to be much smaller than the out-of-plane ones. In other

42
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θ

Figure 3.1: Schematic of the multilayer structure consisting of a non-magnetic spacer (S), sandwiched between
polarising (PM) and switching (SM) magnets and connected to semi-infinite non-magnetic leads (L1, L2).
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Figure 3.2: Potential profile of a multilayer in the presence of exchange splitting ∆: (a) double well and (b)
double barrier. EF shows the relative position of the Fermi level.

words, the structure is treated as a quasi-one-dimensional one. The motivation to study models

such as this one stems from the discovery of current-induced excitation and even reversal (or

switching) of magnetisation of magnetic layers separated by the spacer. This phenomenon was

first predicted by Berger and Slonczewski [49], [50], and subsequently received experimental

confirmation [51], [52]. When unpolarised electrons are injected into the left lead and pass

through the PM their spins begin to precess around its magnetisation axis (recall the Larmor’s

theorem (2.17)). As will be seen later, this precession will give rise to spin polarisation and,

consequently, spin current in the spacer. Absorption of the transverse component of this spin

current by the SM is equivalent to the torque applied to its magnetic moment, and is what

ultimately causes the switching. We will now derive the transfer matrix (2.27) explicitly by

solving the Schrödinger’s equation (2.11). For simplicity we assume that electrostatic potentials

in the leads and the spacer are equal and set to 0, and denote the out-of-plane components of

the wave vectors in those layers k1 = k3 = k. Further, without significant loss of generality,
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we may assume that potentials and exchange splitting in both magnets are equal too, hence

k↑,↓2 = k↑,↓4 = k↑,↓. Let yn,n+1 be the longitudinal coordinates of the interfaces between layers n

and n + 1 and set the origin at the first interface, so that y1,2 = 0. Note that the thicknesses

of the PM, S and SM are generally taken to be different from each other. Figure 3.2 shows

two typical examples of the potential profile we will be using in our model. We denote the

the angle that the magnetic moment in layer n makes with z axis when rotated in xz plane θ.

For non-magnetic layers we set θn = 0 by convention. Matching the wave functions and their

derivatives at the interfaces we obtain the following equations

χn(yn,n+1) = χn+1(yn,n+1),
d

dy
χn(yn,n+1) =

d

dy
χn+1(yn,n+1). (3.1)

Writing (3.1) explicitly in terms of (2.12) we find

s−1(θn)

α↑neik↑nyn,n+1

α↓ne
ik↓nyn,n+1

+ s−1(θn)

β↑ne−ik↑nyn,n+1

β↓ne
−ik↓nyn,n+1

 (3.2a)

= s−1(θn+1)

α↑n+1e
ik↑n+1yn,n+1

α↓n+1e
ik↓n+1yn,n+1

+ s−1(θn+1)

β↑n+1e
−ik↑n+1yn,n+1

β↓n+1e
−ik↓n+1yn,n+1


s−1(θn)

ik↑nα
↑
ne

ik↑nyn,n+1

ik↓nα
↓
ne

ik↓nyn,n+1

+ s−1(θn)

−ik↑nβ
↑
ne
−ik↑nyn,n+1

−ik↓nβ
↓
ne
−ik↓nyn,n+1


= s−1(θn+1)

ik↑n+1α
↑
n+1e

ik↑n+1yn,n+1

ik↓n+1α
↓
n+1e

ik↓n+1yn,n+1

+ s−1(θn+1)

−ik↑n+1β
↑
n+1e

−ik↑n+1yn,n+1

−ik↓n+1β
↓
n+1e

−ik↓n+1yn,n+1

 . (3.2b)
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The structure of (3.2) will become clearer if we factor out the coefficients

s−1(θn)


eik↑nyn,n+1 0

0 eik↓nyn,n+1


α↑n
α↓n

+

e−ik↑nyn,n+1 0

0 e−ik↓nyn,n+1


β↑n
β↓n


 (3.3a)

= s−1(θn+1)


eik↑n+1yn,n+1 0

0 eik↓n+1yn,n+1


α↑n+1

α↓n+1

+

e−ik↑n+1yn,n+1 0

0 e−ik↓n+1yn,n+1


β↑n+1

β↓n+1




s−1(θn)


ik↑ne

ik↑nyn,n+1 0

0 ik↓ne
ik↓nyn,n+1


α↑n
α↓n

 (3.3b)

+

−ik↑ne
−ik↑nyn,n+1 0

0 −ik↓ne
−ik↓nyn,n+1


β↑n
β↓n




= s−1(θn+1)


ik↑n+1e

ik↑n+1yn,n+1 0

0 ik↓n+1e
ik↓n+1yn,n+1


α↑n+1

α↓n+1


+

−ik↑n+1e
−ik↑n+1yn,n+1 0

0 −ik↓n+1e
−ik↓n+1yn,n+1


β↑n+1

β↓n+1


 .

Now introducing the following notation

Ψ = [α↑n, α
↓
n, β

↑
n, β

↓
n]T , S(θ) =

s(θ) 0

0 s(θ)

 , (3.4)

we can write (3.3) in a compact form

S(−θn)X(k↑,↓n , yn,n+1)Ψn = S(−θn+1)X(k↑,↓n+1, yn,n+1)Ψn+1, (3.5)

where

X(k↑,↓, y) =



eik↑y 0 e−ik↑y 0

0 eik↓y 0 e−ik↓y

ik↑eik↑y 0 −ik↑e−ik↑y 0

0 ik↓eik↓y 0 −ik↓e−ik↓y


. (3.6)
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Note that (3.6) can be factorised as follows

X =

 e e−1

ike −ike−1

 =

1 1

ik −ik


e 0

0 e−1

 , (3.7)

where

e
(
k↑,↓, y

)
=

eik↑y 0

0 eik↓y

 k
(
k↑,↓
)

=

k↑ 0

0 k↓

 ,
which is similar to the notation used by P. Bruno in [5], for the spinless case. Multiplying (3.5)

on the right by X−1(k↑,↓n , yn,n+1)S(θn) we obtain

Ψn = X−1(k↑,↓n , yn,n+1)S(θn − θn+1)X(k↑,↓n+1, yn,n+1)Ψn+1. (3.8)

We now define the transfer matrix Tn,n+1 between two neighbouring layers as follows

Tn,n+1 = X−1(k↑,↓n , yn,n+1)S(θn − θn+1)X(k↑,↓n+1, yn,n+1), (3.9)

so that the amplitude vectors in the neighbouring layers are related by a concise equation

Ψn = Tn,n+1Ψn+1, (3.10)

or, more generally and in accordance with (2.28), (2.29)

Ψm = Tm,nΨn, (3.11)

for arbitrary layers 1 ≤ m < n ≤ N , where N is the total number of layers (N = 5 in our case).

We will now derive the expressions for transmission and reflection matrices (2.27) from (3.9).

Inverting (3.7) we obtain

X−1(k↑,↓, y) =
1

2

e−1 −ie−1k−1

e iek−1

 . (3.12)
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In the following calculation we set θn = θn+1 for clarity, and discuss the dependence on polari-

sation later. We also suppress the explicit dependence on yn,n+1. With the above considerations

in mind we obtain

Tn,n+1 = X−1(k↑,↓n )X(k↑,↓n+1) =


1
2
e−1(k↑,↓n ) − i

2
e−1(k↑,↓n )k−1(k↑,↓n )

1
2
e(k↑,↓n ) − i

2
e(k↑,↓n )k(k↑,↓n )−1



×

 e(k↑,↓n+1) e−1(k↑,↓n+1)

ik(k↑,↓n+1)e(k↑,↓n+1) −ik(k↑,↓n+1)e−1(k↑,↓n+1)



=


1
2
k
(
k↑,↓n+1+k↑,↓n

k↑,↓n

)
e(k↑,↓n+1 − k↑,↓n ) 1

2
k
(
−k↑,↓n+1+k↑,↓n

k↑,↓n

)
e(−k↑,↓n+1 − k↑,↓n )

1
2
k
(
−k↑,↓n+1+k↑,↓n

k↑,↓n

)
e(k↑,↓n+1 + k↑,↓n ) 1

2
k
(
k↑,↓n+1+k↑,↓n

k↑,↓n

)
e(−k↑,↓n+1 + k↑,↓n )

 . (3.13)

Comparing (3.13) with (2.27) we can get the following expressions

t′n,n+1 = 2k

(
k↑,↓n

k↑,↓n+1 + k↑,↓n

)
e−1(k↑,↓n+1 − k↑,↓n ), (3.14a)

tn,n+1 = 2k

(
k↑,↓n

k↑,↓n+1 + k↑,↓n

)
e−1(k↑,↓n+1 − k↑,↓n ), (3.14b)

r′n,n+1 = −k

(
k↑,↓n − k

↑,↓
n+1

k↑,↓n + k↑,↓n+1

)
e−1(2k↑,↓n+1), (3.14c)

rn,n+1 = k

(
k↑,↓n − k

↑,↓
n+1

k↑,↓n + k↑,↓n+1

)
e(2k↑,↓n ). (3.14d)

We will now show how the angular dependence is taken into account when magnetic and non-

magnetic layers are interleaved. The crucial observation here is that for non-magnetic layers all

matrices in (3.14) are proportional to identity, and therefore commute with the rotation matrix.

In particular, consider transmission from the left lead to the spacer (layer 1 to 3). From (2.29)

we obtain

T13 = T12T23. (3.15)



48 Chapter 3. Symmetries and Oscillations of Spin Current

Let θ2 = θ. Bearing in mind that the lead and the spacer are non-magnetic (θ1 = θ3 = 0), and

using (3.9) we find

T12 = X−1(k, y12)S(0− θ)X(k↑,↓2 , y12) = S(−θ)X−1(k, y12)X(k↑,↓2 , y12),

T23 = X−1(k↑,↓2 , y23)S(θ − 0)X(k, y23) = X−1(k↑,↓2 , y23)X(k, y23)S(θ).

(3.16)

Therefore, the angular dependence of T13 is expressed as follows

T13(θ) = S(−θ)T13(0)S(θ). (3.17)

By means of block multiplication, it can be shown that similar relations hold for transmission

and reflection submatrices, in particular

t′13(θ) = s(−θ)t′13(0)s(θ). (3.18)

We finish this section by establishing some important algebraic relations between the transmis-

sion and reflection matrices following from conservation of the charge current. This time we

consider the general case, and do not make any assumptions about whether the layers spanned

are magnetic or not, nor about the polarisation angles. Hence, in general none of t′, t, r′, r

commute. The requirement that the charge current between two conducting layers m and n is

conserved can be stated in terms of amplitudes as follows

∑
ν=↑,↓

kνm(|ανm|2 − |βνm|2) =
∑
ν=↑,↓

kνn(|ανn|2 − |βνn|2). (3.19)

Defining K = diag [k↑, k↓,−k↑,−k↓] and recalling the notation of (3.4) we can write (3.19) in

a compact form

Ψ†mKmΨm = Ψ†nKnΨn. (3.20)

Now using (3.11) we obtain

Ψ†nT
†
mnKmTmnΨn = Ψ†nKnΨn. (3.21)
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Since Ψn is chosen arbitrarily, we deduce

T†mnKmTmn = Kn. (3.22)

Taking the Hermitian conjugate of (2.27) we obtain

T† =

 t′†
−1

mn t′†
−1

mnr
†
mn

−r′†mnt
′†−1

mn t†mn − r′†mnt
′†−1

mnr
†
mn

 . (3.23)

Substituting (3.23) into (3.22) we find

 t′†
−1

mn t′†
−1

mnr
†
mn

−r′†mnt
′†−1

mn t†mn − r′†mnt
′†−1

mnr
†
mn


kn 0

0 −kn


 t′−1

mn −t′−1
mnr

′
mn

rmnt
′−1
mn tmn − rmnt

′−1
mnr

′
mn

 =

km 0

0 −km

 .
(3.24)

Multiplying through on the left and comparing both sides block-wise leads to the the following

equations

t′
†
mnknt

′
mn + r†mnkmrmn = km, (3.25a)

t†mnkmtmn + r′
†
mnknr

′
mn = kn, (3.25b)

tmnk
−1
n t†mn + rmnk

−1
m r†mn = k−1

m , (3.25c)

t′mnk
−1
m t′

†
mn + r′mnk

−1
n r′

−1
mn = k−1

n . (3.25d)

Without any further assumptions there are no simplifications to be attained in (3.25), however,

as will be shown later, certain symmetries of the matrices can be exploited when both m and

n are non-magnetic. For the sake of completeness we mention that another common way to

express the transfer matrix is that in terms of currents, as opposed to wave function amplitudes

(see for example, the exposition in Appendix H of [53]). The passage to the current picture

is done by rescaling Ψ̃ = ΞΨ where Ξ = diag
[√

k↑,
√
k↓,
√
k↑,
√
k↓
]
. Our transfer matrix

is related to the new one by T̃mn = ΞmTmnΞ
−1
n . Assuming for a moment that all matrices
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involved are diagonal we find that this is equivalent to the following rescaling:

r̃mn = rmn, t̃mn =

√
kn
km

tmn, r̃′mn = r′mn, t̃′mn =

√
kn
km

t′mn. (3.26)

Substituting (3.26) into (3.25) we can derive the more familiar-looking conservation equations

r̃†mnr̃mn + t̃†mnt̃mn = 1, r̃′
†
mnr̃

′
mn + t̃′

†
mnt̃

′
mn = 1, r̃†mnr̃mn = r̃′

†
mnr̃

′
mn, t̃†mnt̃mn = t̃′

†
mnt̃

′
mn.

(3.27)

We will, however, continue performing our calculations in the amplitude picture. This will make

the algebra more straightforward when we have to deal both with conductors, and insulators (k

is real or imaginary, respectively). We now have everything we need to begin calculating spin

current components in the spacer. Investigating the various properties of these components

with the aid if the transmission formalism will occupy the remainder of this chapter.

3.1.2 Approximation without Reflections in the Spacer

In this section we calculate the in-plane and out-of-plane components of spin current in the

spacer, investigate their origin, and demonstrate the role of successive reflection in the layers

as contributing factors to the out-of plane spin current.

We begin by making an approximation where we ignore any reflections that happen to the right

of the PM|S interface (see Figure 3.3). This amounts to disregarding any effect the SM has on

transmission, which we will be including back later. The amplitudes of an electron injected in

the left lead −→α 1 and transmitted into the spacer −→α 3 are related as follows

−→α 3 = t′13
−→α 1. (3.28)

Since the magnetisation direction in the PM is rotated in-plane by angle θ, t
′
13 actually depends
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L1 PM S

t'12 t'23

Figure 3.3: Transmission from the left lead into the spacer without accounting for reflections.

on θ, as shown in (3.18). Denote the entries of t
′
13 at θ = 0 as follows

t′13(0) =

t↑ 0

0 t↓

 . (3.29)

Then, for an arbitrary θ we have

t′13(θ) =

t↑ cos2
(

1
2
θ
)

+ t↓ sin2
(

1
2
θ
)

(t↑ − t↓) sin
(

1
2
θ
)

cos
(

1
2
θ
)

(t↑ − t↓) sin
(

1
2
θ
)

cos
(

1
2
θ
)

t↑ sin2
(

1
2
θ
)

+ t↓ cos2
(

1
2
θ
)
 (3.30)

In order to simplify the algebra further, we also neglect the repeated reflections within the

polarising magnet. This corresponds to the lowest order in the geometric expansion of (2.31a)

t′13 = t′23(1− r′12r23)−1t′12 ≈ t′23t
′
12. (3.31)

We now need to impose boundary conditions by way of choosing a particular value for −→α 1,

that is, fixing the amplitude and polarisation of an incident electron. We do this by considering

separately the up- and down-polarised electrons with respect to z axis. From the discussion

in Section 2.6 we know that the current density does not depend on the overall rotation angle

when summed over spin projections. Taking the up-spin case first, we set

−→α 1 =

1

0

 . (3.32)
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Inserting (3.32) in (2.46) we obtain the up-spin components of the current density in the spacer

−→
j ↑x = k−→α †3σx

−→α 3 = 2k<{[t′13(θ)]∗11[t′13(θ)]12}, (3.33)

−→
j ↑y = k−→α †3σy

−→α 3 = 2k={[t′13(θ)]∗11[t′13(θ)]12}. (3.34)

After some straightforward algebra we obtain

[t′13(θ)]∗11[t′13(θ)]12 =
1

2
sin θ

((
|t↑|2 cos2

(
1
2
θ
)
− |t↓|2 sin2

(
1
2
θ
))

−
(
t↑∗t↓ − 2<

{
t↑∗t↓

}
sin2

(
1
2
θ
)))

, (3.35)

Where |tσ|2 = tσ∗tσ, σ =↑, ↓. Inserting (3.35) in (3.34) we can write

−→
j ↑x = k

(
sin θ

(
|t↑|2 cos2

(
1
2
θ
)
− |t↓|2 sin2

(
1
2
θ
))
− 1

2
sin (2θ)<

{
t↑∗t↓

})
, (3.36a)

−→
j ↑y = k sin θ=

{
t↓∗t↑

}
, (3.36b)

or, written out explicitly

−→
j ↑x = 16 sin θk3

(
k↑

2

(k + k↑)4
cos2

(
1
2
θ
)
− k↓

2

(k + k↓)4
sin2

(
1
2
θ
))

(3.37a)

− 8k3k↑k↓ sin (2θ) cos ((k↑ − k↓)LPM)

(k + k↑)2(k + k↓)2
,

−→
j ↑y =

8k3k↑k↓ sin θ sin ((k↑ − k↓)LPM)

(k + k↑)2(k + k↓)2
, (3.37b)

where LPM = y2,3 − y1,2 is the thickness of the PM. For incident down-spin electrons we set

−→α 1 =

0

1

 . (3.38)
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The current density components are, therefore, found as follows

−→
j ↓x = k−→α †3σx

−→α 3 = 2k<{[t′13(θ)]∗22[t′13(θ)]12}, (3.39)

−→
j ↓y = k−→α †3σy

−→α 3 = 2k={[t′13(θ)]∗22[t′13(θ)]12}. (3.40)

Similarly to (3.35) and (3.36) we obtain

[t′13(θ)]∗22[t′13(θ)]12 =
1

2
sin θ

((
|t↑|2 sin2

(
1
2
θ
)
− |t↓|2 cos2

(
1
2
θ
))

+
(
t↓∗t↑ − 2<

{
t↓∗t↑

}
sin2

(
1
2
θ
)))

, (3.41)

and

−→
j ↓x = k

(
sin θ

(
|t↑|2 cos2

(
1
2
θ
)
− |t↓|2 sin2

(
1
2
θ
))

+
1

2
sin (2θ)<

{
t↑∗t↓

})
, (3.42a)

−→
j ↓y = −k sin θ=

{
t↓∗t↑

}
. (3.42b)

Again, written explicitly

−→
j ↓x = 16 sin θk3

(
k↑

2

(k + k↑)4
sin2

(
1
2
θ
)
− k↓

2

(k + k↓)4
cos2

(
1
2
θ
))

+
8k3k↑k↓ sin (2θ) cos ((k↑ − k↓)LPM)

(k + k↑)2(k + k↓)2
, (3.43a)

−→
j ↓y = −−→j ↑y. (3.43b)

Thus we have calculated the in-plane and out-of-plane spin current density components in the

spacer, disregarding any reflections in the spacer and the polarising magnet. Note that we do

not examine the second in-plane component jz here. The reason for that is that we assume

the system to possess in-plane axisymmetry. Therefore, jz behaves exactly the same way as jx,

up to an in-plane rotation. A few important observations follow from this calculation. Firstly,

consider the in-plane component
−→
j σx. From (3.37a) and (3.43a) it is clear that it consists of two

terms, one of which is independent of LPM and another one which oscillates in LPM. The first
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Figure 3.4: Transmission from the left lead into the spacer, including a pair of reflections in the polarising
magnet.

term is due to wave function matching at the interface. It vanishes when θ = 0, that is when

the magnetisation of the PM is parallel or anti-parallel to the spin orientation of the incident

electrons. The second term is due to Larmor precession (2.17), as electrons pass through the

PM. It vanishes when θ = 0, π corresponding to the absence of precession, and when θ = π/2

corresponding to pure out-of-plane precession.
−→
j σy , in turn, consists only of a precessional term

which vanishes when θ = 0 or θ = π, that is, when there is no precession. Adding the respective

equations in (3.37) and (3.43) we find the total current density
−→
j ν

−→
j x =

−→
j ↑x +

−→
j ↓x = k sin θ

(
|t
′↑
13(0)|2 − |t

′↓
13(0)|2

)
= k sin θ tr

{
t′13(0)t′

†
13(0)σz

}
, (3.44a)

−→
j y =

−→
j ↑y +

−→
j ↓y = 0. (3.44b)

We can interpret (3.44) by saying that the effect of the PM is to rotate in-plane the incident

electrons polarised with respect to z axis by angle θ and give them different weights of |t′σ13(0)|2

depending on the wave function matching in the respective spin bands. It also causes spin

precession, however, that effect turns out to be exactly equal and opposite for the up- and down-

polarised electron. Therefore, the out-of-plane component, which is purely due to precession

(disregarding the effect of the SM), vanishes identically. Adding reflections within the PM does

not change the qualitative picture in this case. For example, if we retain one pair of reflections

in expansion (3.31), as illustrated by Figure 3.4, we obtain

t
′

13 = t′23(1− r′12r23)−1t′12 ≈ t′23t
′
12 + t′23r

′
12r23t

′
12, (3.45)
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In order to calculate the current density from (3.45) we can use equations (3.36) and (3.42),

except that the components tσ of t′13(0) in (3.29) are given as follows

tσ =
4kkσ

k + kσ
ei(k−kσ)LPM

(
1 +

(
k − kσ

k + kσ

)2

e2ikσLPM

)
. (3.46)

From (3.46) we find

|tσ|2 =
16kkσ2

(k + kσ)4

(
1 +

(
k − kσ

k + kσ

)4

+ 2 cos (2kσLPM)

(
k − kσ

k + kσ

)2
)
, (3.47)

t↑∗t↓ =
16k2k↑k↓

(k + k↑)2(k + k↓)2

(
ei(k↑−k↓) +

(
(k − k↑)(k − k↓)
(k + k↑)(k + k↓)

)2

e−i(k↑−k↓)LPM

+

(
k − k↑

k + k↑

)2

e−i(k+k↑)LPM +

(
k − k↓

k + k↓

)2

ei(k+k↓)LPM

)
. (3.48)

From (3.47), (3.48) and (3.36), (3.42) it is clear that the interpretation given above still holds, in

the sense that
−→
j x consists of a wave function term and a precessional term, while

−→
j y is purely

precessional and vanishes when summed over the spin projections. Including more reflections

within the PM simply adds the terms with angular frequencies 2LPMk
↑, 2LPMk

↓, 2LPM(k↑−k↓),

2LPM(k↑ − k↓) and higher harmonics to the precessional term.

3.1.3 Reflections in the Spacer

We shall now improve on the approximation made in Section 3.1.2 by including reflections in the

spacer, and examine the effect of that on spin current density components. We begin by adding

a single reflection inside the spacer resulting from the transmitted wave with amplitude −→α 3,

as defined in (3.28), being reflected back into the spacer from the interface with the switching

magnet, as depicted in Figure 3.5. We are looking for the contribution to the current density

by the left-moving states in the spacer, generated by the electrons injected in the left lead. We

denote this part of current density by
−→
j R1
ν , emphasising the fact that we only account for one

reflection in the spacer. To calculate the relevant amplitude we take the right-moving wave
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Figure 3.5: Transmission from the left lead into the spacer, including one reflection in the spacer.

(3.28) and reflect it from the S|SM interface through multiplying on the left by r34

−→
β 3 = r34

−→α 3 = r34t
′
13
−→α 1. (3.49)

It is this last term that we shall now examine because the transmitted right-moving part −→α 3 has

already been discussed in the previous section. In the notation of (2.38) we have −→a 3 = t′†13,

−→
b 3 = r34t

′†
13. Current density from the left-moving electrons can therefore be found using

(2.51), (2.52), where we set

−→mR1 =
−→
b †3
−→
b 3 = r34t

′
13(θ)t′

†
13(θ)r†34 = r34s(−θ)t′13(0)t′

†
13(0)s(θ)r†34, (3.50)

and

−→
j R1
ν = k tr

{−→mR1σν
}
.

Now from (3.14d) we have

r34 = k

(
k − k↑,↓4

k + k↑,↓4

)
e (2k, y3) .

From (2.55) we recall that for
−→
j y not to vanish identically −→mR1 must not be real. Since

e (2k, y3) is diagonal, it commutes with the other factors comprising −→mR1 and cancels out with

its Hermitian conjugate. Therefore, the only possibility that remains is that at least one of k↑4

or k↓4 be pure imaginary. Physically, this means that the SM must be either a half-metallic

ferromagnet (which acts as an insulator for one of the spin bands) or a magnetic insulator.
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Figure 3.6: Transmission from the left lead into the spacer, including one reflection in the spacer and one
reflection within the switching magnet.

Evaluating (3.50) in components we obtain

−→mR1 = r34s(−θ)t′13(0)t′
†
13(0)s(θ)r†34

=

f ↑f ∗↑ (|t′↑|2 cos2
(

1
2
θ
)

+ |t′↓|2 sin2
(

1
2
θ
))

f ↑f ∗↓
(
|t′↓|2 − |t′↑|2

)
sin
(

1
2
θ
)

cos
(

1
2
θ
)

f ↓f ∗↑
(
|t′↓|2 − |t′↑|2

)
sin
(

1
2
θ
)

cos
(

1
2
θ
)

f ↓f ∗↓
(
|t′↓|2 cos2

(
1
2
θ
)

+ |t′↑|2 sin2
(

1
2
θ
))
,



where f ↑,↓ =
k−k↑,↓4

k+k↑,↓4

. This gives the following expressions for the current density

−→
j R1
x = k tr(−→mR1σx) = k sin θ

(
|t′↑|2 − |t′↓|2

)
<
{
f ↑f ∗↓

}
, (3.51)

−→
j R1
y = k tr(−→mR1σy) = k sin θ

(
|t′↑|2 − |t′↓|2

)
=
{
f ↑f ∗↓

}
. (3.52)

When the SM is a metallic ferromagnet
−→
j R1
y = 0, and we need to consider contribution from

the second-order reflection
−→
j R2
y . This is given by electrons that escape into the SM, reflect off

the interface with the right lead and transmit back into the spacer, as shown in Figure 3.6.

Expanding (2.31d) we obtain

r35 = r34 + t34r45(1− r′34r45)−1t′34 ≈ r34 + t34r45t
′
34. (3.53)

We focus here on the second term in (3.53) (denote it rR2
35 ) which is given in components as

follows

rR2σ
35 =

4kkσ4
(kσ4 + k)3

e2ik(LPM+LS)+2ikσ4LSM , (3.54)
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where LS = y3,4 − y2,3 LSM = y4,5 − y3,4 are the thicknesses of the spacer and the switching

magnet, respectively. From (3.54) it is clear that rR2σ
35 cannot be real due to the presence of a

complex exponential factor. Transmission matrix −→mR2 in this case has the form

−→mR2 = r35s(−θ)t′13(0)t′
†
13(0)s(θ)r†35, (3.55)

Calculations similar to those preformed in (3.51) and (3.52) yield

−→
j R2
y = k sin θ

(
|t′↑|2 − |t′↓|2

)
c↑c↓ sin (LSM(k↑4 − k

↓
4)), (3.56)

where cσ = −4kkσ4 (k − kσ4 )/(k + kσ4 )3. From the above analysis we conclude that the spin

current generated by the left-incident electrons, as they pass through the PM into the spacer

only has an in-plane component. The out-of-plane component arises if we take into account

the precession these electrons undergo in the SM, as they are reflected back into the spacer.

3.2 Symmetry Under Exact Matching

In calculations of spin-related effects some authors have found it convenient to assume that

electrons in one of the spin bands experience equal potentials across all layers of the system

(see for example [4], [49] or [54]). This is known as exact matching and is done for demonstration

purposes, because the resulting expressions become much simpler. However, as will be shown

in this section, this assumption turns out to correspond to a rather special case because the

out-of-plane spin current vanishes under such assumption.

Suppose that we have exact matching in the up-spin band, so that k1 = k↑2 = k3 = k↑4 = k5 = k.

Then from (3.14c), (3.14d) we see that at θ = 0

r′n,n+1 =

0 0

0 r
′↓
n,n+1

 , rn,n+1 =

0 0

0 r↓n,n+1

 , (3.57)
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where r
′↓
n,n+1 = −k↓n−k↓n+1

k↓n+k↓n+1

e−2ikn+1yn,n+1 , r↓n,n+1 =
k↓n−k↓n+1

k↓n+k↓n+1

e2iknyn,n+1 and n = 1, 3. Expressions

(3.57) can be written more compactly as r′n,n+1 = r
′↓
n,n+1p

↓, rn,n+1 = r↓n,n+1p
↓ where p↓ = [ 0 0

0 1 ]

is the down-spin projection operator. Furthermore, since

r′n,n+2 = r′n+1,n+2 + t′n+1,n+2

(
1− r′n,n+1rn+1,n+2

)−1
r′n,n+1tn+1,n+2,

rn,n+2 = rn,n+1 + tn,n+1rn+1,n+2(1− r′n,n+1rn+1,n+2)−1t′n,n+1.

we also have r′n,n+2, rn,n+2 ∝ p↓ at θ = 0. These conclusions are intuitively clear because the up-

spin electrons do not experience any reflections under exact matching. Another simplification

we can exploit that is not specific to exact matching, but rather follows from the interleaving

of magnetic and non-magnetic layers in our model, is the commutativity of some of the trans-

mission and reflection matrices. Generally, in the presence of exchange splitting and in-plane

polarisation, none of them commute. However, in the particular case where the leads and the

spacer are non-magnetic, we obtain factorisations of the form r′n,n+2(θ) = s(−θ) r′n,n+2(0) s(θ),

t′n,n+2(θ) = s(−θ) t′n,n+2(0) s(θ), and similarly for rn,n+2 and tn,n+2 (n = 1, 3), as was shown in

(3.18). Therefore, since t′(0), t(0), r′(0) and r(0) are diagonal, all transmission and reflection

matrices across layers 1-3 and 3-5 commute, and so do their Hermitian conjugates. Hence from

(3.25), since k1 = k3, we deduce that

r†n,n+2rn,n+2 + t†n,n+2tn,n+2 = 1, r′
†
n,n+2r

′
n,n+2 + t′

†
n,n+2t

′
n,n+2 = 1,

r†n,n+2rn,n+2 = r′
†
n,n+2r

′
n,n+2, t†n,n+2tn,n+2 = t′

†
n,n+2t

′
n,n+2,

(3.58)

where n = 1, 3. Now, from (2.49) we find that the right-moving current density contributed by

the electrons incident from the left lead is proportional to

tr
{−→a †3σν−→a 3

}
= tr

{
(1− r†35r

′†
13)−1σν(1− r′13r35)−1t′13t

′†
13

}
. (3.59)

Using commutativity of t13 and t′†13, and the identity t′†13t
†
13 = 1−r′†13r

†
13 from (3.58) we deduce

tr
{−→a †3σν−→a 3

}
= tr

{
(1− r†35r

′†
13)−1σν(1− r′13r35)−1

}
− tr

{
(1− r′

†
13r
†
35)−1(r′

†
13σνr

′
13)(1− r35r

′
13)−1

}
.
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For the out-of-plane component, we notice that the second term vanishes because r′†13σyr
′
13 =

s(−θ)r′†13(0) s(θ)σy s(−θ)r′13(0) s(θ) ∝ s(−θ)p↓ σy p↓ s(θ) = 0. Hence

tr
{−→a †3σy−→a 3

}
= tr

{
(1− r†35r

′†
13)−1σy(1− r′13r35)−1

}
. (3.60)

Likewise, for the left-moving current

tr
{−→

b †3σy
−→
b 3

}
= tr

{−→a †3r†35σyr35
−→a 3

}
= 0. (3.61)

A similar argument, when applied to the right-incident current, gives the results

tr
{←−a †3σy←−a 3

}
= 0, (3.62)

tr
{←−

b †3σy
←−
b 3

}
= tr

{
(1− r′

†
13r
†
35)−1σy(1− r35r

′
13)−1

}
. (3.63)

But sT = s−1, so that r35(θ) and r′13(θ) are symmetric, whereas σy is antisymmetric. Hence

[
(1− r′

†
13r
†
35)−1σy(1− r35r

′
13)−1

]T
= −

[
(1− r′13r35)−1σy(1− r†35r

′†
13)−1

]
, (3.64)

so that taking the trace of both sides of (3.64) and comparing with (3.60) we deduce that

tr
{←−

b †3σy
←−
b 3

}
= − tr

{−→a †3σy−→a 3

}
.

Hence the total out-of-plane transport spin current in the spacer vanishes

jtr
y =
−→
j y −

←−
j y = 0. (3.65)

We shall now try to understand from the physics point of view how the assumption of the

exact matching leads to (3.65). First of all, because r35(0) ∼ r′35(0) ∝ p↓ and r13(θ) ∼

r′13(θ) ∝ s−1(θ)p↓s−1(θ), then any state reflected off the SM or PM is projected onto the

down state along the same quantisation axis as the magnetisation. So it is not surprising that

all states in the spacer, reflected off the PM or SM, have zero out-of-plane spin component:
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〈r35(0)α′3|σy |r35(0)α3〉 = 〈r13(θ)β′3|σy |r13(θ)β3〉 = 0. This explains (3.61) and (3.62), and in

the spacer we only have to consider right moving states originating from the left lead (−→a 3) and

left moving states originating from the right lead (
←−
b 3). Comparing (3.60) and (3.59) we note

that, as far as the out-of-plane spin current is concerned, electrons emitted from the left lead

pass through the polarising magnet, as if it had unit transmission matrix. The same holds for

electrons from the right lead passing through the switching magnet, by virtue of (3.63). Since

the contribution to the out-of-plane spin current from left and right only involves reflections off

the polarising and switching magnet interfaces, we might reasonably expect
−→
j y = ±←−j y. Now

exact matching should not lead to vanishing of the exchange coupling, since, as is discussed at

length in Chapter 5, the latter is determined by the magnetic configuration of the system and

does not require any external supply of electrons. Therefore, we must have
−→
j y =

←−
j y.

3.3 Symmetry Under Reversal of Polarisation

We now come back to the case of a general potential profile, without the assumption about

exact matching. In Section 2.6 we saw that the overall in-plane rotation of the system leaves

the spin current invariant. We now examine the symmetry of the spin current with respect to

reversal of the magnetisation angle θ in the PM. We note the following identity

s(−θ) = σzs(θ)σz,

so that r13(−θ) = s(θ)r13(0) s(−θ) = σz r13(θ)σz, and similarly for the other (1, 3) reflection

and transmission matrices. Hence from (2.37), for a system with PM magnetisation θ2 = −θ

−→a 3(−θ) =
(
1− r′13(−θ)r35(0)

)−1

t′13(−θ)

=
(
1− σzr′13(θ)σzr35(0)

)−1

σzt
′
13(θ)σz

= σz

(
1− r′13(θ)σzr35(0)σz

)−1

t′13(θ)σz

= σz

(
1− r′13(θ)r35(0)

)−1

t′13(θ)σz

= σz
−→a 3(θ)σz.

(3.66)
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and similarly for ←−a 3,
−→
b 3 and

←−
b 3. Hence

tr{←→a †3(−θ)σν←→a 3(−θ)} = tr{←→a †3(θ)σzσνσz
←→a 3(θ)},

tr{
←→
b †3(−θ)σν

←→
b 3(−θ)} = tr{

←→
b †3(θ)σzσνσz

←→
b 3(θ)}.

(3.67)

However,

σzσνσz = ηνσν , where ηx = ηy = −1 and ηz = 1.

Hence we deduce that

jx(−θ) = −jx(θ), jy(−θ) = −jy(θ), jz(−θ) = jz(θ). (3.68)

in the spacer. Now for spin current in the leads the argument is very similar. For example, in

the right lead −→α5 = −→a 5
−→α1, however −→a 5(θ) = t′35(0)−→a 3(θ). Analogously to (3.67) we obtain

tr{−→a †5(−θ)σν−→a 5(−θ)} = tr{−→a †3(θ)σzt
′†
35σνt

′
35σz
−→a 3(θ)}. (3.69)

Since t′35 is diagonal, it is easily checked that σzt
′†
35σνt

′
35σz = ηνt

′†
35σνt

′
35, and the relations

(3.68) hold for the right lead too. Finally, in the left lead
←−
β1 =

←−
b 1

←−
β5 and

←−
b 1(θ) = t13(θ)

←−
b 3(0),

hence

←−
b 1(−θ) = σzt13(θ)σz

←−
b 3(0),

and, similarly to (3.69) we obtain

tr{
←−
b †1(−θ)σν

←−
b 1(−θ)} = tr{

←−
b †3(0)σzt

†
13(θ)σzσνσzt13(θ)σz

←−
b 3(0)}

= tr{σz
←−
b 3(0)

←−
b †3(0)σzt

†
13(θ)σzσνσzt13(θ)}

= ην tr{
←−
b 3(0)

←−
b †3(0)t†13(θ)σνt13(θ)}

= ην tr{
←−
b †3(0)t†13(θ)σνt13(θ)

←−
b 3(0)}. (3.70)

Therefore, the symmetry (3.68) holds in the leads too.
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3.4 Reflection Symmetry

Now let us consider a system in which potentials in the leads are the same k1 = k5, and those

in the PM and SM are the same k↑,↓2 = k↑,↓4 , and also the thicknesses of the PM and SM

are the same. We say that such a system possesses reflection symmetry in the sense that the

transmission and reflection coefficient for the left- and right-moving electrons are the same, up

to a phase. Indeed, when θ2 = θ4 = 0 we obtain from (3.14a)-(3.14d):

t′13 = ei(k1−k3)φt35, (3.71a)

t13 = ei(k1−k3)φt′35, (3.71b)

r′13 = e−2ik3φr35, (3.71c)

r13 = e2ik1φr′35, (3.71d)

where φ = y23 +y34. However, as r(θ) = s(−θ)r(0) s(θ) etc, then they also hold for any θ2 = θ4.

We might also expect that electrons incident from the left on the SM, shall be equivalent to

electrons incident from the right on the PM i.e. −→α 3 ∼
←−
β 3. This is proved as follows. From

(2.37) and (3.71a)–(3.71d)

←−
b 3(θ) =

(
1− r35(0)r′13(θ)

)−1

t35(0)

=
(
1− r′13(0)s(−θ)r35(0)s(θ)

)−1

t35(0)

= e−i(k1−k3)φs(−θ)
(
1− s(θ)r′13(0)s(−θ)r35(0)

)−1

s(θ)t′13(0)

= e−i(k1−k3)φs(−θ)
(
1− r′13(−θ)r35(0)

)−1

t′13(−θ)s(θ)

= e−i(k1−k3)φs(−θ)−→a 3(−θ)s(θ),

(3.72)

where −→a 3(−θ) corresponds to a system with θ2 = −θ. Further from (3.66)

←−
b 3(θ) = e−i(k1−k3)φs(−θ)σz−→a 3(θ)σzs(θ). (3.73)
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Likewise from (2.37)

←−a 3(θ) = r′13(θ)
←−
b 3(θ)

= e−i(k1−k3)φs(−θ)r′13(0)σz
−→a 3(θ)σzs(θ)

= e−i(k1+k3)φs(−θ)σzr35(0)−→a 3(θ)σzs(θ)

= e−i(k1+k3)φs(−θ)σz
−→
b 3(θ)σzs(θ).

(3.74)

From (2.49) we deduce

tr{
←−
b †3(θ)σν

←−
b 3(θ)} = tr{−→a †3(θ)σz s(θ)σν s(−θ)σz−→a 3(θ)},

tr{←−a †3(θ)σν
←−a 3(θ)} = tr{

−→
b †3(θ)σz s(θ)σν s(−θ)σz

−→
b 3(θ)},

which for σi = σy reduces to

tr{
←−
b †3(θ)σy

←−
b 3(θ)} = − tr{−→a †3(θ)σy

−→a 3(θ)},

tr{←−a †3(θ)σy
←−a 3(θ)} = − tr{

−→
b †3(θ)σy

−→
b 3(θ)}.

Hence the total out-of-plane transport spin current in the spacer vanishes for a symmetric

system

jtr
y =
−→
j y −

←−
j y = 0.

The physical reason behind the vanishing of the out-of-plane spin current for a symmetric system

can be inferred from the preceding equations. Firstly, from (3.72) (and its equivalent for←−a 3) we

deduce that sending electrons from the left, polarised in the z-direction through the PM with

magnetisation in the −θ direction, is equivalent to sending electrons from the right, polarised

in the θ-direction through the SM. In particular −→α 3(−θ) ∼
←−
β 3(θ) and

−→
β 3(−θ) ∼ ←−α 3(θ) up to

a phase and an in-plane rotation of the entire system by θ. However, because the out-of-plane

component of spin current
←→
j y(θ) is invariant under in-plane rotations of the entire system,

and is an odd function of θ, then
←−
j y(θ) and

−→
j y(θ) cancel in the transport spin current. In

fact we recall that we are free to choose the quantisation axis of electrons emitted from the

left and the right lead independently. Hence choosing the left lead to be aligned with the PM

and the right to be aligned with the SM, it is clear that in the spacer
−→
j ν = ±←−j ν . We do



3.5. Flow Reversal Symmetry 65

not expect the exchange coupling to vanish for a symmetric system because it arises from the

relative alignment of the magnetisations in PM and SM, which is not changed by the symmetry.

Therefore, we must have
−→
j y =

←−
j y. Furthermore, in the next section we show that if ν = 0, x, z

then
−→
j ν = −←−j ν , in any non-magnetic layer of any multilayer system. The symmetric system

considered here may seem somewhat artificial. However, it is the vanishing of the out-of-plane

transport spin current for this special case, which has been verified previously by numerical

calculations on realistic systems [55], [56], that led the authors of [57] to conclude that the

out-of-plane transport-spin current was a quadratic function of the applied bias. Instead, the

vanishing of the linear bias dependence of the transport current was an artefact of the reflection

symmetry in the ferromagnetic configuration of the system, that is when the moments of the two

magnets separated (in case of [57]) by an insulating spacer were aligned in the same direction.

3.5 Flow Reversal Symmetry

In this section we examine the symmetry of the spin current density with respect to the reversal

of the flow direction, in other words, exchanging the contributions from the left- and right-

incident electrons. Consider a general multilayer, composed of N non-magnetic (NM) and

ferromagnetic (FM) layers, sandwiched consecutively so that each FM layer has NM layers

either side of it, as shown in Figure 2.14. The exchange field in each FM layer is at an arbitrary

angle θ to the z-axis in the xz-plane, and the potentials in each layer are arbitrary except that

the potentials in the two NM leads (NM1 and NMN) are assumed to be equal. Here we employ

the notation j
(n)
ν to indicate that we are dealing with current components in layer n. Under

these assumptions we are going to prove that all current density components, except the out-of-

plane one, change sign under flow reversal, but have equal absolute values. This demonstrates

that only the out-of-plane component contributes to the exchange current(see (2.59)).

In the left lead (layer 1), we have for the current density due to the left-incident electrons

−→
j (1)
ν = tr{σν − r†1Nσνr1N} = tr{σν(1− r1Nr†1N)} = tr{σνt1Nt†1N},



66 Chapter 3. Symmetries and Oscillations of Spin Current

where we have used (3.58), t1Nt†1N + r1Nr†1N = 1. Clearly then

←−
j (1)
ν = −−→j (1)

ν = − tr(t†1Nσνt1N).

In exactly the same way, we see that

←−
j (N)
ν = tr(r′

†
1Nσνr

′
1N − σν) = − tr(σνt

′
1Nt′

†
1N) = −−→j (N)

ν .

We deduce that there are no components of the exchange current in the leads

−→
j (1)
ν +

←−
j (1)
ν =

−→
j (N)
ν +

←−
j (N)
ν = 0.

To deduce the relationship between
−→
j and

←−
j in a general non-magnetic layer we need to set

the boundary conditions first. We impose those by defining the states in the right lead that

arise due to the left- and right-incident electrons, respectively. Thus, for the electrons incident

from the left lead their resulting contribution will be characterised only by the right-moving

amplitude due to the transmission across the entire system with the transmission coefficient

t′1N . In the 4-component notation of (3.4) we can write

−→
Ψσ

N =

t′1Nα
σ
1

0

 , where α↑1 =

1

0

 , α↓1 =

0

1

 . (3.75)

Similarly, for electrons incident from the right lead the state in the right lead will consist of an

unit wave coming in from infinity and the reflected wave with the reflection matrix

←−
Ψσ

N =

r′1Nα
σ
N

ασN

 , where α↑N =

1

0

 , α↓N =

0

1

 . (3.76)

In any conducting non-magnetic layer n, where k↑n = k↓n = kn, the spin current from electrons

of spin orientation σ =↑, ↓ incident on the left lead is given by (2.46) and (3.11)

−→
j (n)σ
ν = kn

−→
Ψσ†

n Σν

−→
Ψσ

n = kn
−→
Ψσ†

N T†nNΣνTnN

−→
Ψσ

N ,
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where

Σν = σz ⊗ σν =

σν 0

0 −σν

 .
The total spin current

−→
j

(n)
ν =

−→
j

(n)↑
ν +

−→
j

(n)↓
ν incident from the left is given by

−→
j (n)
ν = kn tr


[
t′†1N 0

]
T†nNΣνTnN

t′1N

0


 . (3.77)

Likewise, for electrons of spin σ =↑, ↓ incident from the right, the spin current in layer n is

←−
j (n)σ
ν = kn

←−
Ψσ†

n Σν

←−
Ψσ

n = kn
←−
Ψσ†

N T†nNΣνTnN

←−
Ψσ

N .

Now, the total spin current
←−
j

(n)
ν =

←−
j

(n)↑
ν +

←−
j

(n)↓
ν incident from the right is

←−
j (n)
ν = kn tr


[
r′†1N 1

]
T†nNΣνTnN

r′1N

1


 . (3.78)

Using the relation t′1,Nt′†1,N + r′1,Nr′†1,N = 1 from (3.58), (3.78) can be transformed as follows

←−
j (n)
ν = kn tr


r′1N

1

[r′†1N 1

]
T†nNΣνTnN


= kn tr


r′1Nr′†1N r′1N

r′†1N 1

T†nNΣνTnN


= kn tr

−
t′†1Nt′1N 0

0 0

+

 1 r′1N

r′†1N 1

T†nNΣνTnN


= kn tr

−
[
t′†1N 0

]t′1N

0

+

 1 r′1N

r′†1N 1

T†nNΣνTnN

 . (3.79)

Comparing (3.79) with (3.77) we obtain

←−
j (n)
ν = −−→j (n)

ν + kn tr{WLi}
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where

W =

 1 r′1N

r′†1N 1

 , Lν = T†nNΣνTnN .

In the case of charge current, ν = 0 and so by (3.22), L0 = kNk
−1
n Σ0. It follows that

tr{WL0} = tr


 1 r′1N

r′†1N 1


σ0 0

0 −σ0


 = tr


 1 r′1N

r′†1N −1


 = 0,

hence for charge current
←−
j

(n)
0 = −−→j (n)

0 . For spin current, we proceed as follows. Clearly, both

Lν and W are Hermitian. Further, from Equation (A.4), if ν = x or z then

L∗ν = −ILνI, where I =

0 1

1 0

 .
Further, because r′ is symmetric (A.2), then W∗ = IWI. So on the one hand, taking the

complex conjugate, we get

(tr{WLν})∗ = tr{(WLν)
†} = tr{L†νW†} = tr{WLν},

whilst on the other hand we get

(tr{WLν})∗ = tr{W∗L∗ν} = − tr{IWIILνI} = − tr{WLν}.

So for ν = x or z we conclude that tr{WLν} = 0, and therefore

←−
j (n)
ν = −−→j (n)

ν , ν ∈ {0, x, z} . (3.80)

Hence the out-of-plane component is the only contributor to exchange coupling.
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3.6 Asymptotic Behaviour

In the previous sections we were dealing exclusively with spin current density which, as noted in

Section 2.6, is evaluated at some value of in-plane momentum k̄‖ = (kx, kz). Recall that in the

Landauer model electrons arrive in the system at all possible momenta with equal probability.

In this section we examine some properties pertaining to spin current, which is obtained by

adding contributions of all those electron states, or more precisely, by integrating over in-plane

momentum (see equation (2.58)). Of specific interest to us will be the oscillatory behaviour

of the exchange spin current, as the thickness of the spacer L is increased. Motivation to

study these oscillations stems from the fact that absorption of the out-of-plane component of

spin current by the switching magnet exerts torque capable of changing the direction of the

magnetisation. In order to achieve better switching efficiency it is desirable to fabricate the

device so that a maximum of spin current is positioned near the S|SM interface. The relation

between spin current and torque will be discussed in more detail in Chapter 5.

A similar calculation was previously performed for the electrical conductance G in a parabolic

band [2]. It was shown that when all contributions to transmission are included, by integrating

over the in-plane momenta, the resulting expression oscillates as a function of spacer thickness L

with the amplitude decreasing as 1/
√
L. Furthermore, when the potential profile is a rectangular

well, with the Fermi energy level near the top, two distinct oscillation periods are observed.

The first period is RKKY-like (from the Ruderman–Kittel–Kasuya–Yosida (RKKY), or indirect

exchange interaction mediated by conduction electrons [25]) and arises from near those k̄‖-

points where the spacer Fermi surface has extrema in the growth direction (k̄‖ = 0̄). The

second period arises from the boundary effects, near the top of the well, where transmission

vanishes non-analytically. Here we perform a similar analysis for all components of the spin

current, considering the cases where potential profile of the multilayer is a double barrier or

a double well, that is, where potentials in the magnets are greater or less than those in the

leads and the spacer, respectively. In each case we find only the RKKY type periods. This

is because (after switching to polar coordinates) the integrand of the conductance has leading

order G ∼ O(k−1/2) while the integrand of spin current components is jν ∼ O(k1/2), where k
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is the the out-of-plane wave vector. So the spin current density tends to zero in a smooth way

near the zone boundary and the total spin current does not exhibit the non-RKKY-like period.

Following the discussion in Section 2.6, spin current components in the spacer are obtained by

integrating spin current density over the permissible values of k̄‖. For the parabolic model we

assume the system having rotational symmetry in momentum space. We can therefore, switch

to polar coordinates in xz-plane whereby the total current is given by the following formula

Jν(L) = 2π

∫ kF

0

jν(k‖, L)k‖dk‖, (3.81)

where kF =
√

2m(EF − V )/~, V = V1 = V3 = V5 is the potential in the spacer and the leads,

and k‖ = |k̄‖|. The double barrier or well profile is therefore characterised by the conditions

Vi−∆/2 > V and Vi+∆/2 < V , respectively, where i = 2, 4 (recall Figure 3.2). Assuming that

reflections off the magnets are not too strong (||r′13r35||F � 1) we retain only the first-order

reflections in the series expansion of the amplitude. Here we denote k ≡ k3 for the out-of-plane

wave-vector in the spacer, and also suppress the layer index jν because we are only interested

in the spacer current (layer 3)at the current density in this section. For the current density

generated by electrons incident from the left using (2.49) we obtain

−→
j ν = k tr

{(−→a−→a † −−→b−→b †)σν},
where

−→a = (1− r′13r35)
−1

t′13,
−→
b = r35

−→a . (3.82)

Now expanding −→a in a geometric series and retaining one reflection term we find

−→a ≈ t′13 + r′13r35t
′
13.

We are interested in the terms that are periodic in the spacer thickness L. Using (2.31) and

(3.14) it is not hard to calculate the components of t′13, r′13 and r35 (at θ = 0 for clarity)
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explicitly

t′13(0) =

t′↑13 0

0 t
′↓
13

 , r′13(0) =

r′↑13 0

0 r
′↓
13

 , r35(0) =

r↑35 0

0 r↓35

 , (3.83)

where

t′
σ
13 =

2kkσ2
2kkσ2 cos(kσ2LPM)− i(k2 + kσ2

2 ) sin(kσ2LPM)
e−ikLPM , (3.84a)

r′
σ
13 = − i(k2 − kσ2

2 ) sin(kσ2LPM)

2kkσ2 cos(kσ2LPM)− i(k2 + kσ2
2 ) sin(kσ2LPM)

e−2ikLPM , (3.84b)

rσ35 = − i(k2 − kσ2
4 ) sin(kσ4LSM)

2kkσ4 cos(kσ4LSM)− i(k2 + kσ2
4 ) sin(kσ4LSM)

e2ik(LPM+L), (3.84c)

σ =↑, ↓ and LPM, LSM are the thicknesses of the PM and the SM, respectively. From (3.84) it

is clear that the periodicity in L is contained only in r35 via the factor of e2ikL. Expanding the

current density we group the terms as follows

−→
j ν/k = tr

{−→a †σν−→a } ≈ tr
{

(t′13 + r′13r35t
′
13)†σν [t

′
13 + r′13r35t

′
13]
}

= tr
{

t′
†
13σνt

′
13

}
+ tr

{
t′
†
13r
†
35r
′†
13σνr

′
13r35t

′
13

}
+ tr

{
t′
†
13r
†
35r
′†
13σνt

′
13

}
+ tr

{
t′
†
13σνr

′
13r35t

′
13

}
= tr

{(
t′13t

′†
13 + r′13r35t

′
13t
′†
13r
†
35r
′†
13

)
σν

}
+ tr

{(
t′13t

′†
13r
†
35r
′†
13 + r′13r35t

′
13t
′†
13

)
σν

}
. (3.85)

The first term under trace in the last equality in (3.85) represents the constant (with respect

to L) background because every factor is multiplied by its Hermitian conjugate, wherefore

the factors of e2ikL cancel out. The last term constitutes the oscillatory part. From (3.82) it

follows that the expansion of the left-moving current is obtained by conjugating (3.85) with

r35. Therefore, introducing the following notation

−→q ∼ = r′13r35t
′
13t
′†
13,

−→p ∼ = −→q ∼ − r35
−→q ∼r†35, (3.86)
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we can write the oscillatory part of current density due to left-incident electrons
−→
j ∼ν in a concise

manner

−→
j ∼ν = k tr

{(−→p ∼ +−→p ∼†
)
σν
}

= 2k<tr
{−→p ∼σν}. (3.87)

Note that since we are specifically interested in the oscillatory term in the low reflection ap-

proximation, we do not have to disregard higher order terms of the constant background part

of the current. In fact for the purposes of plotting the approximation against the result of the

exact calculation it may be desirable to retain more terms to achieve the correct shift of the

plot along the energy axis. Therefore, we can preform the following re-summation of (3.82).

Denoting

u = t′13t
′†
13, c = r′13r35, (3.88)

we find that, since all terms in the constant part must involve equal number of factors of c and

their conjugates, the total background contribution from the right-moving electrons −→q − has

the following form

−→q − = u + cuc† + ccuc†c† + . . . , (3.89)

while including the right-moving electrons is done similarly to (3.86)

−→p − = −→q − − r35
−→q −r†35,

giving the total constant background current density due to the left-incident electrons
−→
j −i

−→
j −ν = 2k< tr

{−→p −σν}.
In summary, we have separated current density in the spacer into the oscillatory and constant

parts

−→
j ν =

−→
j ∼ν +

−→
j −ν , (3.90)

where in the oscillatory part
−→
j ∼ν we have retained one reflection term in the spacer. For

electrons incident from the right lead the analysis is performed in a similar way starting from
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the expression for the current density

←−
j i = k tr

{(
r′13

←−
b
←−
b †r′

†
13 −
←−
b
←−
b †
)
σi

}
,

and expanding
←−
b

←−
b ≈ t35 + r35r

′
13t35.

Now, looking at (3.84) and (3.86) we see that the oscillatory factor is exactly e2ikL. We can,

therefore, write

←→p ∼ =←→% e2ikL,

where matrix ←→% does not depend on L, and define the amplitude factors

←→
A ν = k tr

{←→% σν}. (3.91)

Since we are interested in the behaviour of the static (exchange) current, we define the total

amplitude Aν by adding the contributions from the left- and right incident electrons.

Aν =
−→
A ν +

←−
A ν . (3.92)

Now we can write down the expression for spin current density in the form suitable for further

analysis

j∼ν (k‖, L) = <
{
Aν(k‖)e

2ik(k‖)L
}
. (3.93)

We are ready at this point to use (3.81) to calculate the total current and investigate its

asymptotic properties for large values of L. Since the current density in our case vanishes at

the edge of the band k‖ = kF, we can extend the upper limit of integration to ∞.

J∼ν (L) = 2π<
∫ ∞

0

A(k‖)e
2ik(k‖)Lk‖dk‖. (3.94)

Integral (3.94) can be treated using the stationary phase approximation. In the parabolic model

k(k‖) has a stationary point at k‖ = 0 (known as Γ-point in the band structure theory), as seen
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from (2.13). Expanding k near 0 and adding an infinitesimal imaginary part iδ, δ > 0 to the

exponent to ensure convergence we obtain

J∼ν (L) = 2πA(0)<e2ik(0)LS

∫ ∞
0

ei(k′′(0)+iδ)LSk
2
‖k‖dk‖ +O

(
1

L2
S

)
, (3.95)

where we have replaced A(k‖) with its value at the stationary point, because that is the only

one that will contribute to the value of the integral as L→∞. The integral in (3.95) is readily

evaluated, whereby upon letting δ → 0 we find

J∼ν (L) = −< πA(0)

ik′′(0)LS

e2ik(0)LS +O

(
1

L2
S

)
= <πA(0)k(0)

iLS

e2ik(0)LS +O

(
1

L2
S

)
, (3.96)

where we have used the fact that k′′(0) = −1/k(0). Finally, taking the real part, obtain the

asymptotic formula for the oscillatory current in the spacer

J∼ν (L) =
πAν(0)k(0)

L
sin (2k(0)L) +O

(
1

L2

)
. (3.97)

For a numerical demonstration we consider a model with relatively shallow potentials, so that

confinement is not too strong, and the single-reflection approximation holds well. Here the

V ∆ θ yn+1 − yn
L1 0.0 0.0 0.0 -
PM ±0.5 0.05 0.6 7.0
S 0.0 0.0 0.0 20.0

SM ±0.5 0.05 0.0 3.0
L2 0.0 0.0 0.0 -

Table 3.1: Device parameters used to obtain figures 3.7-3.10.

positive and negative potentials in the magnets correspond to the double barrier and double well

profile, respectively. We also set the Fermi level at EF = 0.4. In Figures 3.7, 3.8 we demonstrate

the characteristic behaviour of the current density in momentum space as a function of k‖. All

components exhibit slow variation near the Γ-point (k‖ = 0) and a number of peaks (resonances)

near the edge of the band. The number of peaks increases with the thickness of the spacer.

When integrated over momentum, the peaks largely cancel each other, which is an illustration of

why the stationary phase method works in this case. We also observe current density approach
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Figure 3.7: Current density components in momentum space, calculated adding all reflections (solid line) and
one reflection (dashed line) for a double barrier potential.

Figure 3.8: Current density components in momentum space, calculated adding all reflections (solid line) and
one reflection (dashed line) for a double well potential.
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Figure 3.9: Oscillations of the total (integrated) current as a function of spacer thickness (solid line) and the
asymptotic approximation (dashed line) for double barrier potential.

Figure 3.10: Oscillations of the total (integrated) current as a function of spacer thickness (solid line) and
the asymptotic approximation (dashed line) for double well potential.
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zero smoothly in each case. In Figures 3.9, 3.10 we plot the integrated current (3.81) as a

function of the spacer thickness and compare it with the asymptotic approximation derived

in (3.97). As remarked in the beginning of the section, we only observe one oscillation period

determined by the value of the wave vector at the Γ-point, that is k(0), as follows from (3.97).

We have thus provided an example of applying the transmission formalism developed in this

chapter to extracting approximations and asymptotic behaviour of spin current in a multi-

layer. This is a generalisation of the approach previously employed to study charge current and

transmission, specifically in [2], where the potential profile was a single barrier (well). Trans-

mission and reflection matrices allow us to perform calculations for arbitrary multilayers in a

straightforward and concise manner.



Chapter 4

Optical Analogies

This chapter constitutes a brief digression from the main narrative of this work, in order to put

the transfer matrix in a wider mathematical context. Here we describe some results from linear

optics and show how they may be borrowed and generalised by spintronics. We also indicate a

number of possible future extensions of this research.

4.1 Iwasawa Decomposition

In the previous sections we concerned ourselves with various symmetries of the spin current and

the corresponding transfer matrix. Here we give an outline of another type of symmetry that

enables the application of a powerful and intuitive formalism leading to deeper understanding

of the action of the transfer matrix. This approach can take advantage of a rich set of results

and techniques primarily applied in the field of geometric optics, but hardly explored in the

context of spintronics. We will confine ourselves to the proof of applicability of the method and

some numeric illustrations, deferring a more detailed analytic treatment to future research.

The problem of classification of multilayers by their overall action on the properties of the

incoming waves has been considered in linear optics [58], [59], as well as from the general

viewpoint of the transfer matrix method [3]. Deep connections to hyperbolic geometry and

78
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relativistic formalism space-time have been investigated. The idea of the geometric and, more

generally, group-theoretic approach to the theory of reflection is to reduce the complicated

processes inside the multilayer to a small number of parameters which are easily interpreted.

In particular, illustrating the action of the transfer matrix by means of tracing out trajectories

on the unit disk under the corresponding Möbius transforms [3] can be useful for understanding

the structure of the transformation. In fact, Möbius transforms can describe transmission so

conveniently that they have even been successfully extended to the matrix-valued [60] case

and applied in the tight-binding setting. In order to extract the parameters providing the

geometrical intuition for the transfer matrix, one particular factorisation has proved useful,

namely, the Iwasawa decomposition [61]. It arises in the theory of Lie groups and reflects the

statement that an element of a non-compact semi-simple Lie group factorises into an ordered

product of the elements of a maximal compact subgroup, a maximal Abelian subgroup, and

a maximal nilpotent subgroup (one of each). Further in this chapter we will give a detailed

characterisation of these group elements. We will introduce the decomposition first in the

spinless case, as it is used in geometric optics. There a lossless (where depolarisation does not

occur) multilayer transfer matrix τ has the form

τ =

1
t

r∗

t∗

r
t

1
t∗

 =

 α β

β∗ α∗

 .
Assuming we work in the current, rather than amplitude, picture the conservation equation

|r|2 + |t|2 = 1 is satisfied, which implies det |τ | = +1. This means that τ belongs to SU(1, 1).

It is then established that the following factorisation holds [62], [63]

τ = k(φ)a(ξ)n(ν), (4.1)
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where

k(φ) =

exp(iφ/2) 0

0 exp(−iφ/2)

 ,

a(ξ) =

 cosh(ξ/2) i sinh(ξ/2)

−i sinh(ξ/2) cosh(ξ/2)

 ,

n(ν) =

1− iν/2 ν/2

ν/2 1 + iν/2

 .
The parameters −2π ≤ φ ≤ 2π, and ξ, ν ∈ R can be expressed in terms of the transfer matrix

components as follows

φ/2 = arg (α + iβ), ξ/2 = ln (1/|α + iβ|), ν/2 = <(αβ∗)/|α + iβ|2.

In some cases it is convenient to conjugate τ with the unitary matrix u = 1√
2

[ 1 i
i 1 ],

τ → uτu†,

which sends τ to an element in SL(2,R). The Iwasawa decomposition then takes the following

form

k(φ) =

 cos(φ/2) − sin(φ/2)

− sin(φ/2) cos(φ/2)

 ,

a(ξ) =

exp(ξ/2) 0

0 exp(−ξ/2)

 ,

n(ν) =

1 0

ν 1

 .
In this representation the factors have intuitive physical interpretations in geometric optics.
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k(φ) represents a rotation in the phase space, a(ξ) is the magnifier that scales up by the factor

of exp(ξ/2) in real space and down by the same factor in momentum space, and n(ν) acts

as the ray transfer matrix of a lens of power ν (or focal length 1/ν). Thus the geometry of

the Iwasawa decomposition for transfer matrices in SL(2,R) is well understood, and is used to

explain certain phenomena, for example, the origin of the Thomas rotation [59].

We shall now establish the conditions under which the Landauer transfer matrix (2.27) acting

on spin-resolved wave functions, which we have been studying here, can be factorised in a

similar way. To this end, we will invoke a generalisation of the Iwasawa decomposition to the

group of 2n × 2n complex symplectic matrices Spn(C) and an explicit calculation algorithm

[64], [65]. Precisely, following the exposition in [64], we consider the complex symplectic group

Spn(C) =
{
G ∈ SL2n(C) : GTΩ2nG = Ω2n

}
,

where Ω2n =
[

0 1
−1 0

]
. Then the subgroups K, A and N corresponding to the Iwasawa factors

are characterised as follows. K consists of 2n× 2n unitary matrices that also belong to Spn(C)

and can be shown to have the form

K =

C =

a −b∗

b a∗

 : C ∈ U(2n)

 = U(2n) ∩ Spn(C).

A consists of positive diagonal matrices of the following form

A =
{

diag
[
a1, . . . , an, a

−1
1 , . . . , a−1

n

]
: a1, . . . , an > 0

}
.

Finally, N consists of unit upper-block-triangular matrices

N =


a b

0 (a−1)T

 : a unit upper triangular, abT = baT

 .

Now consider Tmn, as given by (2.27) where layers m and n are non-magnetic. Taking the

transpose and making use of the symmetry of the submatrices under transposition, as shown
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in (A.2), (A.3), we obtain

TT
mn =

km
kn

 t−1
mn t−1

mnrmn

−r′mnt
−1
mn t′mn − r′mnt

−1
mnrmn

 . (4.2)

Now assuming that the potentials in layers m and n are the same, that is km = kn, we find,

after some straightforward block multiplication, that indeed

TTΩ4T = Ω4. (4.3)

Another way of proving (4.3) is to use the general block-wise form of T derived in Appendix

A.2. Therefore, the transfer matrix is symplectic if it corresponds to the transmission between

two non-magnetic layers with equal electrostatic potentials. We have thus established the

conditions for applicability of the Iwasawa formalism to the spin-resolved transfer matrix. Its

utility for the classification of magnetic multilayers, in the presence of in-plane and out-of-plane

polarisation is an interesting problem to address, even if the increased dimensionality may not

allow for a straightforward geometrical interpretation. With this we conclude the overview of

the generalised Iwasawa decomposition within the context of this study.

4.2 Spin Müller-Jones Formalism

4.2.1 Müller-Jones Calculus

The transfer matrix method that we have been using so far does not originate in spintronics. Its

variants are widely used in optics to study propagation of electromagnetic waves through layered

media. In particular, certain analogies between the problems of optics and topics in electronic

transport were outlined by Datta [10], however, in that discussion spin is explicitly omitted.

An extensive study of reflection of electromagnetic and particle waves is contained in [66] that

again is mostly concerned with non-magnetic media. We would like to highlight another matrix

formalism that can be borrowed from optics, where it is a very commonly used technique, and
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give an interpretation of that in the context of spin transfer, namely the Müller-Jones (MJ)

calculus. In order to distinguish it from the standard MJ method, as it is known in optics, we

will refer to the adaptation as the Spin Müller-Jones (MJ) formalism. To our knowledge, the

apparatus of the MJ calculus has not been, to this day, systematically applied in spintronics.

Some studies of spin current-induced torques [67] consider certain novel decompositions of the

transfer matrix which may be connected to the MJ constructions. Derivation of the conductivity

tensors in [68] involves formulae that have the form of those, which will appear below in the

expressions of the Müller matrix components. However, the point of view of the MJ method

is not directly adopted in either of those studies. The material of this chapter is largely

exploratory, and is presented with a view of being further investigated and refined in the future

research.

The Jones calculus was introduced by R.C. Jones in 1941 in a series of papers beginning with

[69], and is used to study propagation of fully polarised light across linear optical elements.

Important results from the group-theoretic point of view were obtained by R. Cloude [70]. The

literature covering the formalism is extensive, and the list of references in [71] can be consulted

for an overview. It is still an active area of research, and the recent developments, for example

[72], [73] continue to define new representations and decompositions for advanced polarimetry

studies. Here we present a short summary and a selection of definitions and results that present

immediate interest from the perspective of spin transport.

Polarisation of light is described by the Jones vector, and the elements of the optical multilayer

are described by their Jones matrices. The resulting mathematical framework is very similar to

that of the transfer matrix method, in that the propagation across successive layers is described

by the action of the product of their Jones matrices on the incident Jones vector. Electric field

in a monochromatic plane wave is described by two complex numbers E1 and E2 representing

the transverse components [74], [75]. These numbers can be combined into a spinor

ξ =

E1

E2

 ξ† =

[
E∗1 E∗2

]
, (4.4)
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The product c = ξξ† is called the coherency matrix. Since c is Hermitian, it can be expanded

in the basis of Pauli matrices

c =
1

2

∑
ν

sνσν , (4.5)

where the expansion coefficients sν = tr(cσν) are called the Stokes parameters. Suppose that

in a different layer of an optical multilayer the transverse wave is described by spinor ξ′. The

2× 2 matrix a taking ξ to ξ′ by means of

ξ′ = aξ (4.6)

is the Jones matrix. We can find the transformation law of the Stokes coefficients

s′ν = tr{c′σν} = tr{aca†σν} =
1

2

∑
µ

tr{aσµa†σν}sµ =
∑
µ

Mµνsµ, (4.7)

where M = [Mµν ] is the Müller-Jones matrix. The Müller-Jones matrix satisfies the following

identity [75]

M∗LM = (det M)
1
2 L,

where L = diag [1,−1,−1,−1] is the Lorentz metric. Combining the Stokes parameters into a

4-vector denoted ¯̄s (4.7) can be written as follows

¯̄s′ = M¯̄s (4.8)

In other words, the Müller-Jones matrix describes the propagation of the Stokes vector through

the system. Geometrically, (4.8) can be interpreted as the rotation of the Stokes vector on

the Poincaré (Bloch) sphere [75], [12]. It is important to note that components of M in (4.8)

may be obtained from experimental data, including the situations where the optical medium

in question is a depolarizing one. In such cases M is referred to as the Müller matrix which in

general cannot be expressed in terms of a Jones matrix. Furthermore, not every 4 × 4 matrix

can even be a physically realisable Müller matrix. The necessary conditions for that and the

relation between the Müller and Müller-Jones matrices are discussed at length in [76] and [77].
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We will not go any further in to those at present, but just remark that any Müller matrix can

be expressed as a convex sum of at most 4 Müller-Jones matrices.

4.2.2 Interpretation for Spin Transport

By direct analogy with of polarised light, we can substitute spinor wave-functions for the electric

fields in the previous section and calculate the spin equivalents of the Jones and Müller-Jones

matrices. Recall that, by virtue of (2.38), the spin-resolved wave function amplitude in layer n

is related to that in layer 0 by

αn = anα0.

Therefore, the transmission coefficient an assumes the role of the Jones matrix, and αnα
†
n

corresponds to the coherency matrix. Furthermore, as was suggested by the form of (2.56) spin

current components are indeed the Stokes coefficients in the expansion in Pauli matrices (with

identity, for charge current). Note that in optics the expansion basis is often taken in a different

order, corresponding to {σ0,σz,σy,σx}. However, we shall follow the “natural” order adopted

in quantum mechanics, which also follows the exposition of the formalism in [75]. Taking into

account the factor of k in the definition of spin current, relation (4.7) can then be rewritten as

follows as follows

j′ν =
1

2

k′

k

∑
µ

(
tr{σµaσνa†} − tr{σµbσνb†}

)
jµ (4.9)

Defining matrix components

(Ma)µν =
1

2
tr{σµaσνa†}, (Mb)µν =

1

2
tr{σµbσνb†},

we can write (4.9) as follows

¯̄j′ =
k′

k
(Ma −Mb)

¯̄j, (4.10)

where ¯̄j stands for the 4-component current vector. Using (4.9) we can directly relate the

current components between two non-magnetic layers of the system. Since we are primarily

interested in calculating current in conducting layers, we have so far limited the discussion to
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the form of the expression (2.46). However, if the layer in question is an insulator with kn = iκn

where κn > 0, we obtain instead a generalised notion of current for the case of an insulating

spacer

¯̄j = iκ tr
{
α¯̄σβ† − β ¯̄σα†

}
. (4.11)

Now note that the net current in the conducting case can be written in the following form

(suppressing the wave vector multiplier)

¯̄j = tr


[
a† b†

]
(σz ⊗ σν)

a

b


 ,

extends the notation employed in (3.77). Furthermore, the insulating case can be expressed

similarly

¯̄j = tr


[
a† b†

]
(σy ⊗ σν)

a

b


 .

This leads one to consider the following generalisation. Denote a = [ ab ]. Then the matrix

Jµν = tr
{
a† (σµ ⊗ σν) a

}
= tr

{
aa† (σµ ⊗ σν)

}
(4.12)

contains information both about the conducting (Jzν), and insulating (Jyν) case. Here a gen-

eralises the concept of the Jones matrix to the net spin current case. Consequently, it makes

sense to define the counterpart of the Müller-Jones matrix as follows

Mλρµν =
1

2
tr
{
a (σλ ⊗ σρ) a† (σµ ⊗ σν)

}
(4.13)

Group-theoretic analysis of (4.12) and (4.13), and the symmetries they satisfy could be an

interesting line of research providing more direct proofs of certain symmetries of spin current

in multilayers. These matrices could also be employed for the task of classification of magnetic

multilayers, and the conditions under which various spin current components arise or vanish.

Another potential advantage of the Müller formalism for spin current has to do with the fact

that a general Müller matrix can describe depolarising media in optics. This means that its
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analogue in spin transport could be used in calculations in the presence of spin relaxation in

the multilayer. These topics, however, lie outside of the scope of the present work, and we defer

further investigation to the future studies. We now return to the main theme of this thesis,

and consider further applications and development of the Landauer formalism.



Chapter 5

Interlayer Exchange Coupling

In this chapter we define open and closed systems for the purposes of electron transport in

multilayers and extend the Landauer method to the closed case. We study the behaviour of

spin current components, as a system transitions from the open to the closed regime, and

obtain an exact expression for the strength of the interlayer exchange coupling in terms of the

out-of-plane spin current component, calculated using the Landauer method.

5.1 Introduction

Since the introduction of the Landauer formalism in Section 2.5.1 and throughout the subse-

quent discussion we have emphasised the importance of the assumption that the multilayer

system is connected to large phase-randomising reservoirs. Those act as sources of electrons

arriving at all permitted momenta, energies and spin projections, and also as sinks where the

electrons escape to and, having undergone phase relaxation, no longer influence scattering pro-

cesses in the layers. In the calculations of spin current this assumption manifested itself in two

ways. Firstly, it led us to impose boundary conditions of the form (3.32), (3.38) or (3.75), (3.76)

representing the states arriving into the system. Secondly, when calculating the total current

we had to integrate over the in-plane momentum, energy and sum over the spin projections,

as it was done in (2.58), in order to account for contributions of all possible states emitted

88
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from the reservoirs. For the purposes of this study we shall refer to systems coupled to the

environment, in this case in the form of the macroscopic reservoirs, as open. In this chapter we

shall extend the Landauer method to a different class of models that do not require a supply of

carriers, and can be considered completely isolated from the environment. We shall label these

latter systems closed.

The particular physical phenomenon that we will be dealing with here is called interlayer ex-

change coupling (IEC). This is a form of interaction between magnetic materials that tends

to align their magnetic moments parallel or anti-parallel to each other. There are five known

mechanisms of exchange interaction (direct exchange, double exchange, superexchange, RKKY

interaction and exchange via itinerant electrons) that apply depending on the degree of local-

isation of magnetic moments and whether the materials in question are metals or non-metals

[25]. We shall assume the itinerant electron model, which commonly applies to the case of

transition metals (Fe, Co, Ni), whereby the exchange interaction is mediated by electrons in

the metallic spacer.

At its most fundamental, exchange interaction arises from the indistinguishability of particles

and the Pauli exclusion principle. For example, a system of two electrons can be in a state with

total spin S = 0 if the spins are aligned anti-parallel to each other, or S = 1 if they are parallel.

It can then be shown [78] (§62) that these states correspond, respectively, to wave functions φ

given by symmetrised and anti-symmetrised products of the individual electron wave functions

φ1 and φ2

φ =
1√
2

[φ1(r̄1)φ2(r̄2)± φ1(r̄2)φ2(r̄1)] .

In particular, when r̄1 = r̄2 the antisymmetric solution vanishes because two electrons with

parallel spins cannot be found in the same position, in a manifestation of the Pauli principle.

The expectation of the interaction energy Û(r̄2 − r̄1) is given by A± J , where

A =

∫∫
Û |φ1(r̄1)|2 |φ2(r̄2)|2 dV1dV2,

J =

∫∫
Ûφ1(r̄1)φ∗1(r̄2)φ2(r̄2)φ∗2(r̄1)dV1dV2,
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where A is the background (direct) term, and J is the exchange integral. The electrostatic

interaction energy is given by the Heisenberg Hamiltonian

Û = −2J ŝ1ŝ2.

Thus the total spin of the system determines the possible values of energy. In solid crystals this

quantum-mechanical exchange is often represented by an effective exchange field, also referred

to as the molecular, or Weiss, field [44], derived within the mean field approximation. In our

model this is taken into account via the exchange splitting terms.

When it comes to calculating the strength of IEC, there are two common approaches available.

Those are the energy method and the torque method. The energy-based calculation implements

the most intuitive approach, that is obtaining the total thermodynamic energy of the system

when the magnetic moments are aligned in parallel and anti-parallel directions, respectively,

and subtracting one from the other. This can be performed realistically, either within the tight-

binding models with parameters fitted from experimental data, or using ab initio methods. The

main practical disadvantage of the energy method stems from the fact that the total energy

is usually rather large, while the difference can be very small (of the order of 1meV), leading

to poor convergence. The torque method, on the other hand, is based on the observation that

the coupling energy per unit angle is characterised by the torque exerted by one magnet on the

other. That torque is related to the out-of-plane component of the spin current absorbed by

the magnet at the interface. This method was first applied in [79] by Slonczewski to the case of

an insulating spacer, and in [80] by Erickson et al., to the case of a metallic spacer. We will be

using the results developed in Chapters 2 and 3 to obtain a closed-form expression for the out-

of-plane spin current and use that in the torque calculation of the exchange coupling. We will

check it against the equivalent energy-based calculation using the spectral density formalism.

Since the IEC does not require external supply of electrons, we will provide an interpretation

of the result in the light of the Landauer formalism extended to the closed systems.

Lastly, we remark that IEC is a promising phenomenon for applications. The tendency for

magnets to align in the parallel and anti-parallel configuration might be used as a mecha-
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nism of switching the magnetisation direction for writing data to non-volatile magnetoresistive

memory cells [81]. Since the interaction itself exists without any external supply of carriers and

can be modulated by controlling the out-of-plane spin current in the spacer (which itself can

be achieved with or without sending charge current through), the resulting devices could, in

principle, be operated with extremely low power consumption.

5.2 Torque Method

This approach to calculating the IEC is based on the fact that the torque exerted on the

switching magnet is due to the out-of-plane spin current in the spacer. Before discussing it

we will require a certain result that expresses the out-of-plane spin current density as an exact

derivative with respect to the magnetisation direction.

5.2.1 Spin Current As an Exact Derivative

We shall now prove that the out-of-plane current density is an exact derivative with respect to

the polarisation angle. Since we are interested in the exchange part of the current, as defined in

(2.59), we must add the left- and right-moving parts of both the left- and right-incident current

in the layer of interest. We derive the general result for an n-th (non-magnetic) segment of

an N -layer system, of the type depicted in Figure 2.14. For simplicity we assume that only

the magnetisation of the layer adjacent to the spacer on the left is set at an angle of θn−1 = θ

in-plane, and θk = 0, k 6= n − 1. Calculating the out-of-plane spin current due to electrons

emerging from the left reservoir we obtain

1

kn

−→
j y = tr

{−→a †σy−→a −−→b †σy−→b}
= tr

{
t′
†
1n
−→r †nσy

−→r nt
′
1n

}
− tr

{
t′
†
1n
−→r †nr

†
nNσyrnN

−→r nt
′
1n

}
,

(5.1)
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where −→r n,
←−r n are defined as in (2.34). Using the cyclic property of trace and the relations

−→r nr
′
1n = (1− r′1nrnN)

−1
r′1n = r′1n (1− rnNr′1n)

−1
= r′1n

←−r n,

rnN
−→r n = rnN (1− r′1nrnN)

−1
= (1− rnNr′1n)

−1
rnN =←−r nrnN ,

we can transform the right-hand side as follows

1

kn

−→
j y = tr

{−→r nt
′
1nt
′†
1n
−→r †nσy

}
− tr

{←−r nrnNt′1nt
′†
1nr
†
nN
←−r †nσy

}
. (5.3)

We can now use (3.25d) to eliminate transmission matrices from (5.3) and work only with

reflection coefficients thereafter. Taking advantage of the fact that the spacer and the leads are

non-magnetic we obtain

t′1nt
′†
1n = k1k

−1
n

(
1− r′1nr

′†
1n

)
.

With that in mind, (5.3) is written as follows

1

k1

−→
j y = tr

{−→r n
−→r †nσy

}
− tr

{−→r nr
′
1nr
′†
1n
−→r †nσy

}
− tr

{←−r nrnNr†nN
←−r †nσy

}
+ tr

{←−r nrnNr′1nr
′†
1nr
†
nN
←−r †nσy

}
.

(5.4)

Following similar steps for the left-moving current and noting that

tnNt†nN = kNk−1
n

(
1− rnNr†nN

)
,

which follows from (3.25c) we obtain

1

kN

←−
j y = tr

{−→r nr
′
1nr
′†
1n
−→r †nσy

}
− tr

{−→r nr
′
1nrnNr†nNr′

†
1n
−→r †nσy

}
− tr

{←−r n
←−r †nσy

}
+ tr

{←−r nrnNr†nN
←−r †nσy

}
.

(5.5)
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Since we assume k1 = kN = k throughout, adding (5.4) and (5.5) we can calculate the total

exchange current density

1

k
jy =

1

k

(−→
j y +

←−
j y

)
= tr

{−→r n

(
1− r′1nrnNr†nNr′

†
1n

)−→r †nσy}
− tr

{←−r n

(
1− rnNr′1nr

′†
1nr
†
nN

)←−r †nσy}
= tr

{(−→r n −←−r n

)
σy + h.c.

}
= tr

{
(1− rnNr′1n)

−1
rnN [σy, r

′
1n] + h.c.

}
= −2i tr

{
(1− rnNr′1n)

−1
rnN

(
i

2
[σy, r

′
1n]

)
− h.c.

}
,

(5.6)

where h.c. stands for the Hermitian conjugate of the preceding term and [, ] is the standard

commutator. Only reflections from the left represented by the factor r′1n accrue polarisation,

and the angular dependence is given by the following formula

r′1n(θ) = e−
iσyθ

2 r′1n(0)e
iσyθ

2 . (5.7)

Differentiating (5.7) with respect to θ we can write

d

dθ
r′1n(θ) = − i

2
[σy, r

′
1n] . (5.8)

Substituting (5.8) into (5.6) and using the chain rule we obtain

jy = −2ik
d

dθ
tr {ln (1− rnNr′1n)− h.c.} . (5.9)

Rewriting (5.9) in terms of taking the imaginary part we finally arrive at the desired result

jy = 4k= d

dθ
ln det (1− rnNr′1n), (5.10)

in the form of an exact derivative with respect to the magnetisation direction.
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5.2.2 Description of the Method

We can now proceed to describe and apply the torque method. If we consider the thermody-

namic potential as a function of the polarization angle, Ω(θ) the parallel (P) and anti-parallel

(AP) configurations will correspond to the values Ω(0) and Ω(π), respectively. We can therefore

express the exchange energy U as follows

U = Ω(0)− Ω(π) = −
∫ π

0

dΩ

dθ
dθ. (5.11)

Here the integrand is the torque exerted on one magnetic moment by the other. As argued

in [82], the torque on the switching magnet is determined by the total rate of change of the

out-of-plane angular momentum absorbed by it which, by continuity, equates to the net spin

current absorbed by the magnet. It is, therefore, found as the difference between the total

spin current in the spacer J
(S)
ν and the right lead J

(L2)
ν . Contribution to the torque per spin

component dΩν
dθ

is thus found as follows

dΩν

dθ
= J (S)

ν − J (L2)
ν , (5.12)

We will suppress the layer label (S) for the spacer spin current in what follows. Unlike transport

current that is carried by electrons at EF, exchange current is contributed to by carriers at all

energies up to EF, as well as all possible values of in-plane momenta. This leads to the following

expression for the total exchange spin current

Jν =

∫
BZ1

dk̄‖

∫ +∞

−∞
dED(E)

(
fL
−→
j ν(k̄‖, E) + fR

←−
j ν(k̄‖, E)

)
,

where

D(E) =
1

π

dk

dE
=

1

2πk

is the density of states in the lead per unit length and spin channel. The Fermi functions

fL ≡ f(E − µL) and fR ≡ f(E − µR) characterise electron distributions of the left and right

reservoirs with chemical potentials µL and µR, respectively. In 3.5 it was shown that
←−
j ν = −−→j ν
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for both in-plane components ν = x, z. Hence, when the system is in equilibrium, µL = µR = µ,

only the out-of-plane component (ν = y) survives. Furthermore, since there can be no out-of-

plane spin current in the leads, we find that (5.12) reduces to the following

dΩ

dθ
=

dΩy

dθ
= Jy =

∫
BZ1

dk̄‖

∫ +∞

−∞
dED(E)f(E − µ)

(−→
j y +

←−
j y

)
. (5.13)

In Section 5.2.1 we showed that the current density can be expressed in terms of reflection

matrices, as an exact derivative with respect to the polarization angle

−→
j y +

←−
j y = 4k= d

dθ
ln det (1− rnNr′1n). (5.14)

From (5.13) and (5.14), after inserting a factor of 1
2
, since we are considering the torque trans-

ferred to one of the magnets only, we then obtain the following form of the total out-of-plane

spin current

Jy =
1

π
=
∫

BZ1

dk̄‖

∫ +∞

−∞
dE f (E − µ)

d

dθ
ln det

(
1− rnNr′1n

)
. (5.15)

Using (5.11) and (5.12) we obtain the exchange energy U after integrating over θ

U = − 1

π
=
∫

BZ1

dk̄‖

∫ +∞

−∞
dE f(E − µ) tr ln (1− r′1n(θ)rnN)

∣∣∣π
0
. (5.16)

5.3 Energy Method

In this section we calculate exchange coupling using the energy method, loosely adapting the

argument given in [5] where it is done for the multi-orbital case. We do not need the full

generality here. Instead we make the proof compatible with the transmission formalism in

order to compare the result with that obtained using the torque method.

We begin by considering a system with two magnets separated by a non-magnetic conducting

spacer. The essence of the energy method is in calculating the difference between the ther-
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modynamic potentials in the magnets, expressed in terms of the local density of states. This

allows one to resolve the total energy in the up- and down-spin population which is required

to calculate the coupling. We thus define the difference in thermodynamic potentials of the

system U when the magnetisations of the magnets are in the P and AP alignment, respectively

U = Ω↑P + Ω↓P − Ω↑AP − Ω↓AP. (5.17)

Here Ωσ
P/AP is the thermodynamic potential for electrons of spin orientation σ in a system where

the magnetization is the P or AP state, and at finite temperature is given by the following

formula [5]:

Ωσ
P|AP =

∫ +∞

−∞
dE F (E)ρσP|AP(E), (5.18)

where

F (E) = −kBT ln
[
1 + exp

(
µ−E
kBT

)]
is the anti-derivative of the Fermi distribution function and ρσ(E) is the spin-resolved local

density of states in the spacer, given in terms of the one-particle Green’s function:

ρσ(E,L) = − 1

π
= tr gσLR(E + i0+), (5.19)

where gσLR is the part of the spacer Green’s function accounting for the interaction of the

magnets via conduction electrons in the spacer, and L is the spacer thickness. Precisely, this

means the following. Let gS be the Green’s function in the spacer of the original multilayer.

Let gL, gR be the Green’s functions in the spacer calculated in the presence of only one of the

magnets (to the left or to the right, respectively), as if the other one did not exist. Then gLR

is found from the following expansion

gS = g0 + gL + gR + gLR,

where g0 is the free-particle Green’s function. As a side note, we mention that Green’s function

in a multilayer can be easily expressed in terms of the reflection amplitudes given by the transfer
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matrix method. In the single-band case it is given by the following formula

gn(y, y′;E) =


m

i~2kn

(
e−ikny

′
+ r′1ne

ikny′
)(
eikny + rnNe

−ikny
)

1− rnNr′1n
, y > y′

m

i~2kn

(
eikny

′
+ rnNe

−ikny′
)(
e−ikny + r′1ne

ikny
)

1− r′1nrnN
, y < y′

, (5.20)

which is a generalisation of some results obtained in [83], [84] for single square-step potentials.

In Appendix B we give a proof of (5.20), as well as the explicit formula for ρ, as given in [4].

Returning to the main proof we find that the exchange energy is expressed as follows

U =
∑
σ=↑,↓

∫ +∞

−∞
dE F (E) [ρσP(E)− ρσAP(E)] , (5.21)

where P and AP signify that the density of states is calculated separately for each alignment

of the magnets in the system, respectively. Expressing the sum over the spin states as taking

a trace

ρ(E, l) =
∑
σ=↑,↓

ρσ(E,L) = − 1

π
= tr gLR(E + i0+),

we use the following result featured in [5] and [85]

tr gLR =
d

dE
tr ln (1− g0τ Lg0τR), (5.22)

where

τ i = vi (1− g0vi)
−1 ,

known as the T -matrix (not the same as the T transfer matrix). Using the following relations

[53]

r = 〈y |g0 | y〉 〈−k | τ | k〉 , (5.23a)

〈−k | τ | k〉 =

∫
ei(x′+x′′) 〈x′′ | τ |x′〉 dx′dx′′, (5.23b)

inserting the resolution of identity and integrating, we can express (5.22) in terms of the reflec-
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Figure 5.1: Model of a closed system consisting of a conducting layer placed between two insulators.

tion matrices

tr gLR =
d

dE
tr ln (1− r′1nrnN), (5.24)

which is equivalent to equation (5.16) in [5]. In this form it is clear that the P and AP alignments

correspond to setting θ = 0 and θ = π in r′1n(θ), respectively. Substituting (5.24) into (5.21)

and integrating by parts we finally obtain

U = − 1

π
=
∫

BZ1

dk̄‖

∫ +∞

−∞
dE f(E − µ) tr ln (1− r′1n(θ)rnN)

∣∣∣π
0
, (5.25)

which matches exactly the result (5.16) obtained earlier using the torque method.

5.4 Landauer Method for Closed Systems

We noted in the introduction to this chapter that IEC can exist in closed systems. The energy

method of calculation in Section 5.3 is based on the spectral density formalism, and does not

place any restrictions on what happens at the edges of the device. In other words, it works

both in the open, and closed case. However, at the core of the torque calculation there are

expressions for the spacer spin current that were earlier derived with the use of the Landauer

method. More specifically, we have been applying boundary conditions of the form (3.32),

(3.38) representing waves of unit amplitudes arriving from infinity. Now turning to the case

of a closed system we note that while the transfer matrix formalism should still apply, new
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boundary conditions must be specified to reflect the physical picture.

Consider a system consisting of a conducting spacer embedded in between the infinitely high

insulating barriers, as shown in Figure 5.1. We will drop the overhead arrows indicating the

spatial direction on the amplitudes, because there will be no ambiguity with respect to the

direction of the flow in this example. There will be no electrons coming in from infinity on

either side (a1 = b3 = 0). Instead there will be evanescent states present in the semi-infinite

layers, and propagating states - in the conductor - whose amplitudes are related to each other

as follows

a2 = r′12b2,

b2 = t−1
12 b1,

a2 = t′
−1
23 a3,

b2 = r23a2,

(5.26)

Eliminating a2 and b2 from (5.26) we obtain

(1− r′12r23) t′
−1
23 a3 = 0.

The sufficient condition for non-trivial solutions in the spacer to exist is therefore given by the

equation

det (1− r′12r23) = 0, (5.27)

and the requirement that t′−1
23 a3 belongs to the null-space of 1 − r23r

′
12. Now (5.27) is a

transcendental equation in energy. Its real solutions must correspond to the permitted energies

of the states in the conducting spacer, that is the energy eigenvalues of the system. The result

(5.27) readily generalises to the N -layer case if more layers are present between the spacer and

the barriers, in which case we, as usual, label the spacer with index n. We will now show how

the existence of these solutions is consistent with the calculation of the exchange energy in the

spacer performed in earlier sections.

For the sake of clarity we will switch to the point of view of a single point in k-space and

consider the exchange energy density denoted u given by the integral over energy in (5.25).



100 Chapter 5. Interlayer Exchange Coupling

Integrating by parts we obtain

u = − 1

π
=
∫ +∞

−∞
dE F (E)

d

dE
ln det

(
1− r′1n(θ)rnN

)∣∣∣∣θ=π
θ=0

. (5.28)

The boundary terms vanish at E = +∞ suppressed by the factor of F (E), and at E = −∞

due to the cut off at the edge of the conducting band. Now defining

w(E, θ) = det
(
1− rnN(E, θ)r′1n(E)

)
,

we note that (5.28) has the following form

u = − 1

π
=
∫ +∞

−∞
dE F (E)

d
dE
w(E, θ)

w(E, θ)

∣∣∣∣∣
θ=π

θ=0

. (5.29)

Integrals of the type (5.29) can be evaluated in terms of the logarithmic residues of w, as shown

in [86] (Ch.5 §5.2). Going over to the complex plane and choosing the contour C as shown in

Figure we find 5.2

C

=E

<E0

Ej + iη

Figure 5.2: Integration contour going along a segment of the real axis and closed by a semi-circular arc in the
upper half plane. The dots show the positions of the roots Ej + iη of w(E), displaced by a positive infinitesimal
imaginary part.

∫
C
F (z)

w′(z)

w(z)
dz = 2πi

∑
j

n(C, Ej)F (Ej), (5.30)

where Ej are the roots of w (the discrete energy eigenvalues) and n(C, Ej) are the winding
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numbers of w with respect to C at Ej. At zero temperature

lim
T→0+

F (E) =


E − EF, forE < EF,

0, forE ≥ EF,

and, in the simplest case when all roots are non-degenerate, we obtain

u = 2

 ∑
Ej<EF

Ej(0)−
∑
Ej<EF

Ej(π)

 , (5.31)

In other words, exchange energy in a closed system expressed in terms of the sum over the roots

of equation (5.27) is none other than the difference in energy between the parallel and anti-

parallel configurations. This confirms the equivalence of the spin current (torque) and energy

approaches. Note that for the contour integration to work we require w(E) to decay sufficiently

quickly as |E| approaches the large semi-circle. While in principle a detailed analysis can be

performed using the known general bounds on reflections coefficients [87], for the purposes of

this discussion we content ourselves with a numerical verification. In Figure 5.3 we plot the

values of |E2w(E)| for a double potential barrier, along various rays of constant arg(E) in the

upper half-plane. These demonstrate that w(E) decays faster than 1/|E|2, which is sufficient

to show that the integral over the semi-circle at infinity vanishes.

Let us summarise what we have done so far. We took the results derived within the Landauer

formalism for open systems as the starting point to calculate the exchange energy in (5.16).

We then imposed boundary conditions of the form (5.27) that represent a closed system and

determine the energy values for the allowed states. What we found is that (5.16) expands into

the sum over these permitted energies. The results are clear from the purely formal point of

view. In the next section we will will elucidate the physics behind the behaviour of the spin

current components, as system is gradually transformed form an open into a closed one.
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Figure 5.3: Numerical demonstration of the decay of w(E) along various rays in the upper half-plane.

5.5 Transition Between the Open and Closed Regimes

We now explore numerically the transitioning process where a multilayer is gradually isolated

from the leads. We start with the same 5-layer CPP structure considered in the previous

chapter (see Figure 3.1). We then insert a pair of extra barriers between the leads and the

magnets, as shown in Figure 5.4, with the parameters given in Table 5.1. We then increase

the potentials in the barriers, as illustrated in Figure 5.5, gradually isolating the system. We

show four stages of the transition process by varying the parameter

α =
V

EF

,

where V is the potential in the barriers and the energy scale is chosen so that EF > 0. In

the first configuration α = 0, that is the system is open, free from the influence of the extra
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Figure 5.4: CPP multilayer with extra layers B1 and B2 separating the magnetic junction from the leads.
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Figure 5.5: CPP multilayer with additional barriers gradually isolating it from the leads.

barriers. In the second one, 0 < α < 1, the height of the barriers is set between the level

of the leads/spacer and the Fermi energy level, the system is partially confined. Further, the

barrier height is set above the Fermi level, α > 1, and the system is isolated. Lastly, in order to

demonstrate the tendency in the current when the confinement is further increased, we produce

the plot with α� 1, where the system is strongly confined. In order to show the emergence of

bound states in the spacer we plot the following function (note that with the addition of the

barriers we now have a 7-layer system, that is N = 7, and the spacer index is n = 4)

δ(k̄‖) =
∣∣∣det

(
1− r47r

′
14

)∣∣∣ ,
as shown in Figure 5.6. We take the absolute value merely for illustrative purposes, which

does not alter the positions of the roots. We observe that as the barrier height is increased

δ(k̄‖) develops a sequence of roots at isolated values of k̄‖. These correspond to the positions

of energy eigenvalues of the closed system at EF.

We next look at the behaviour of the three spin current components in momentum space. In

Figure 5.7 we see that the charge current density j0 develops a series of sharp resonances that

precisely correspond to the positions of the bound states of the system. The height of these
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V ∆ θ yn+1 − yn
L1 0.0 0.0 0.0 -
B1 αEF 0.0 0.0 1.0
PM -0.1 0.05 0.6 7.0
S 0.0 0.0 0.0 20.0

SM -0.1 0.05 0.0 3.0
B2 αEF 0.0 0.0 1.0
L2 0.0 0.0 0.0 -

Table 5.1: Parameters of the model used to demonstrate the process of gradually turning an open system into
a closed one. Extra potential barriers B1 and B2 are added between the leads and the magnets. The barrier
height is then increased, which is controlled by parameter α = V

EF
,.

resonances gradually decreases at strong confinement. In agreement with that behaviour, the

total current J0 (integrated over the in-plane momentum) vanishes with the increasing barrier

height, Figure 5.8. This fully expected because charge current cannot flow in an isolated system.

Next, in Figure 5.9 we show the plot of the in-plane spin current density jx. Similarly to the

charge component, we observe resonances in k̄‖-space at the positions of the bound states that

decay with the increase of the barrier height. The total in-plane spin current Jx also vanishes

quickly after an initial increase, as shown in Figure 5.10. Lastly, in Figure 5.11 we display

the behaviour of the out-of-plane component jy. Here the situation is qualitatively different, as

the resonances provide non-vanishing contributions under increasing confinement, and the total

current therefore does not converge to zero, as seen in Figure 5.12. This is consistent with the

fact that IEC survives in a closed system. In order to illustrate the point further, we plot the

integrated values of all three components against the increasing barrier height, Figure 5.13. It

is clearly seen that the total out-of-plane diverges, while the other two components disappear,

as the system is isolated.

We now have an understanding of the behaviour of the spin current components as the mul-

tilayer system transitions from an open to a closed regime. As the states arriving from the

reservoirs get cut off by insulating barriers, bound states emerge in the spacer. These latter

ones cause the spin current components to develop resonances in momentum space. With in-

creasing confinement these resonances gradually decay in j0 and jx. In the case of jy, however,

they become a set of δ-like terms of finite measure, leading to a non-vanishing out-of-plane

current. This concludes our discussion of IEC and the extension of the Landauer formalism to
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Figure 5.6: δ(k̄‖) plotted for different values of α = V/EF. In the closed regime (α > 1) distinct roots occur
in momentum space.

closed systems. The subject, however, is far from being exhausted. Many more directions of

future study can be developed, including the problems of efficient modulation of IEC for the

purposes of switching, the effects of spin-orbit interaction, and IEC in multi-terminal geome-

tries.
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Figure 5.7: Charge current density in momentum space, plotted at different values of α = V/EF, as the
system is gradually turned to a closed one.

Figure 5.8: Charge current integrated over in-plane momentum, plotted as a function of the increasing
insulating potential barrier height.
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Figure 5.9: In-plane spin current density in momentum space, plotted at different values of α = V/EF, as the
system is gradually turned to a closed one.

Figure 5.10: In-plane spin current integrated over in-plane momentum, plotted as a function of the increasing
insulating potential barrier height.
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Figure 5.11: Out-of-plane spin current density in momentum space, plotted at different values of α = V/EF,
as the system is gradually turned to a closed one.

Figure 5.12: Out-of-plane spin current integrated over in-plane momentum, plotted as a function of the
increasing insulating potential barrier height.
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Figure 5.13: Current integrated over in-plane momentum, plotted as a function of the increasing insulating
potential barrier height. Extended range shows the slow divergence if the out-of plane component, contrasted
against the rapid vanishing of the other components.



Chapter 6

Multi-Terminal Devices

6.1 Introduction

The model considered in the previous chapters comprised a multilayer structure attached to two

semi-infinite leads, or terminals. Many of the formulae and notational elements were developed

bearing in mind the carriers incident from the “left” and the “right” side of the device. In

this chapter we consider a much wider class of problems concerning structures with 3 or more

terminals.

Part of the motivation to study multi-terminal structures comes from interpreting the mea-

surements of conductance at mesoscopic scales. In an experimental setting, even if we are only

interested in the conductance of a two-terminal device, it is still necessary to attach voltage

probes to measure the potential drop across the structure. However, in the mesoscopic and

nanoscale pictures the probes cannot be treated as small perturbations because they make

non-negligible contribution to scattering and are rarely identical. Furthermore, due to the

prominence of interference effects, positioning of the probes may affect the results of the mea-

surement. Theoretical significance of the multi-terminal model was put forward by Engquist

and Anderson [88] who pointed out that, given the current flow between two reservoirs, elec-

trochemical potentials are not well defined, and at least one extra pair of probes is needed to

define the reference potentials. This corresponds to a typical configuration known as the Hall

110
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bridge (see Figure 2.10). Since the probes contribute to scattering processes, in the light of

the Landauer theory they also affect conductance. Büttiker [46] proposed an approach where

leads and probes are treated equally. This results in a symmetric formula (2.24) that allows

one to apply, in the absence of external magnetic fields, Kirchhoff’s rules to calculating charge

currents in all leads.

Besides the measurement considerations, multi-terminal structures, specifically 3-terminal fab-

rications are important for practical realisations of non-volatile CMOS logic elements based on

magnetic tunnelling junctions (MTJ), see for example, Ohno et al.[89]. Separating read and

write paths improves the speed of bit operations. It also reduces device wear by making it

unnecessary to apply large bias across the MTJ during reads. A non-volatile two-transistor

memory cell design was proposed in [90] to implement this approach. Device structures have

been considered [91] that combine the operation of a spin-valve (SV) and MTJ providing ap-

proaches to manufacturing performant spin-torque MRAM. Multi-terminal structures allow

device engineers to take advantage of a variety of phenomena, such as spin diffusion, spin Hall

effect, domain wall motion, and magnetoelectric effect for efficient spin current generation. Ef-

ficiency in this case implies achieving large magnitude of spin current with very little movement

of charge through the conductor. This means less heat dissipation and further improvements

for memory cell density and durability.

Generalisation of the formalism we have been applying to the two-terminal structure to the

case of multiple terminals presents several difficulties. The notation was developed with a

distinction of the “left” and “right” parts of the system. This does not make sense in a 3-

way junction where all electrodes are treated equally. Furthermore, the transfer matrix, by

construction, relates amplitudes between exactly two neighbouring layers which does not make

it immediately applicable to the more general case where, for example three layers meet at a

central junction.

Multi-terminal spin-dependent transport has been studied using a number of approaches. Con-

structions have been proposed [7], [8] to calculate scattering amplitudes using the S-matrix

extended to three and four terminals, in the presence of Rashba spin-orbit coupling. However,
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in those examples the authors strongly rely on a particular geometry of the junction. We

aim to relax that last restriction and consider coherent transport of carriers across the system,

while taking account the successive reflections between the interfaces, similarly to the procedure

employed for the two-terminal CPP geometry in the previous chapters.

Other models cover diffusive and tunnelling regimes, as well as the ballistic one [6], [92]. In the

latter examples, although multi-moded transport is assumed, multiple reflections are again not

taken into account. The central normal metal node serving as the junction is considered large

and disordered, and its distribution function is taken to be isotropic. This reduces accounting

for contributions, in each lead, just to the two neighbouring nodes and applying Kirchhoff’s

rules to ensure the total current balance. As far as the ballistic regime is concerned, the authors

of [6] only consider a drastically simplified approach where transmission coefficients are assumed

to be either 0 or 1.

Our objective in this chapter would be to extend the transfer matrix formalism we have been

using for 2-terminal structures to ballistic multi-terminal devices, while including the effect of

multiple reflections between the interfaces. Only in this approach can one correctly account for

effects such as exchange coupling between magnetic elements of these devices.

6.2 Scattering Across a 3-Way Junction

6.2.1 Preliminary Considerations

As the simplest possible extension of a two-terminal geometry, we consider the schematic de-

picted in Figure 6.1 consisting of 3 wires, or branches, labelled α, β, γ, meeting at the central

junction. Since the new system does not have any preferred spatial ordering, and all branches

are treated equally, we will find it convenient to adopt a slightly different convention for the

transmission and reflection coefficients. In particular, we are going to reverse the meaning of

the subscript indices. Precisely, the first index will mean the branch the electron ends up in af-

ter scattering, whereas the second index will signify the branch it came out of. This mnemonic
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Figure 6.1: Transmission and reflection amplitudes of waves scattering across a 3-way junction.

could be illustrated by writing, for example, tβ←α for the amplitude of the wave transmitted

from α to β. For brevity we will drop ← in subscripts. The matrices describing reflection from

the central junction require a new convention too. In the introductory example depicted in Fig-

ure 6.1, where all branches are homogeneous we will denote the amplitude of a wave reflected

from the junction back into the branch it arrived from, say α, simply by rα. In the next section,

however, where we consider the case of multilayer branches, we will have to specify indices of

the layers in all branches the effect of which on scattering we take into account. In the example

shown in Figure 6.2 the unit wave incident in branch α can first transmit into either of the

branches β or γ, get reflected from the interfaces β1|β2 or γ1|γ2, respectively, and ultimately

reflect back into α. In this case we denote the resulting reflection amplitude by r
α1
β2
γ2

. Finally,

we will drop the primes in this convention because there is no universally defined notion of the

“left” and “right” side of an interface here.

Now each branch may constitute a multilayer CPP structure of the type studied in the previous

chapters. Therefore, for any branch taken in isolation we may apply the usual transfer matrix

formalism and the corresponding boundary conditions to calculate transmission in any given

layer. However, the same method does not work for transmission across the central junction.

This is because the transfer matrix is derived based on the boundary conditions at the interface

of precisely two neighbouring layers. We have to make use of the so-called S-matrix instead,
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Figure 6.2: Reflection from a 3-way junction taking into account scattering processes in the branches.

also known as the scattering matrix. Unlike the T-matrix that relates the amplitudes on the

left to the ones on the right, the S-matrix relates the incoming waves to the outgoing ones. In

the case of a single interface, similarly to Figure 2.11, we depict the incoming and outgoing

waves, as shown in Figure 6.3. Now by definition the S-matrix relates the amplitudes as follows

βj

αj

αj+1

βj+1

Figure 6.3: Incoming and outgoing waves near a scattering interface.

 βj

αj+1

 = S

 αj

βj+1

 . (6.1)

Again, denoting the 2× 2 blocks of S by hij, and considering unit waves incident from the left
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and the right we obtain, respectively

 r

t′

 =

 h11 h12

h21 h22


 1

0

 ,
 t

r′

 =

 h11 h12

h21 h22


 0

1

 .
(6.2)

Solving (6.2) for hij we get the general form of S

S =

r t

t′ r′

 . (6.3)

One often quoted property of S is the unitarity S†S = 1, following from the charge current

conservation. However, there is an important distinction to be made, depending on whether we

work in the amplitude or the current picture (recall (3.26)). If we are to keep the meanings of

the transmission and reflection matrices consistent with the two-terminal discussion, we must

use a rescaled scattering matrix. If m and n are the layer indices, and rmn, tmn, r′mn, t′mn are

taken in the amplitude picture then Smn has the form

Smn =

ξm 0

0 ξn


−1 rmn tmn

t′mn r′mn


ξm 0

0 ξn

 , (6.4)

where

ξi = diag

[√
k↑i ,

√
k↓i

]
. (6.5)

The conservation equations (3.25) are then recovered from the unitarity requirement of Smn,

as defined by (6.4). Now S readily generalises to an arbitrary number of terminals. With these

consideration in mind, and remembering the convention about the subscripts, we consider the
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following 6× 6 matrix to describe transmission across the junction in Figure 6.1

Š =


ξα 0 0

0 ξβ 0

0 0 ξγ


−1 

rα tαβ tαγ

tβα rβ tβγ

tγα tγβ rγ



ξα 0 0

0 ξβ 0

0 0 ξγ

 , (6.6)

where ξi is defined as in (6.5). Here we use the check ˇ sign to distinguish 6 × 6 from 4 × 4

matrices.

We will not be making any assumptions regarding the geometry or internal state of the junction,

except that scattering is coherent, and that when one of the leads is removed the rest of the

system reduces to the ordinary two-terminal device. Since the components of Š can no longer

be determined from wave-function matching we are going to assume they are given, either from

the microscopic calculation or fitted from experimental data, for a particular device geometry.

For the purposes of accounting for spin we, effectively, introduce a local coordinate system in

each branch similarly to the two terminal case, that is, with y-axis directed perpendicularly to

the interfaces, and z being the spin quantisation axis.

In order to study any interesting effects in 3-terminal structures the schematic shown in Fig-

ure 6.1 will certainly not be enough. We will have to introduce scattering layers (magnetic and

non-magnetic) with different electrostatic potentials, at least in some of the branches. Calcu-

lating transmission into a given branch will therefore involve combining the scattering matrices

describing interfaces of the layers, and the matrix of the central junction. As we are working

in the ballistic transport picture we would like to find a way to account for all the successive

reflections. This requires extending the procedure described in Subsection 2.5.2. However, in

this case we find that the final answer will not be given automatically by matrix multiplication.

6.2.2 Spinless Case

Before considering the spin-resolved calculation with magnetic scatterers we will work through

the steps of a simpler single-band calculation. This leads up to a result stated in [10] and based
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Figure 6.4: Calculating transmission into the probe with a scatterer in the conductor. Solid lines depict the
transmitted amplitudes, whereas dashed lines show the reflections.

on the work of Büttiker in [9]. Following Büttiker, we consider a probe weakly coupled to a

conductor at a certain position along its length, as depicted in Figure 6.4. The conductor is

not uniform, but includes a scatterer labelled T . In this example we disregard the thickness of

the scatterer and any reflections that occur inside it. Coupling of the probe to the conductor

is described phenomenologically by the parameter |tαβ| = |tαγ1| =
√
ε. Transmission between

β and γ occurs with amplitude |tβγ1| = |tγ1β| = b, and reflection amplitude is |rβ| = |rγ1| = a.

Finally, electrons emerging from α are reflected back with amplitude |rα| = c. This leads to

the following form of the scattering matrix

S =


a b

√
ε

b a
√
ε

√
ε
√
ε c

 . (6.7)

The unitarity requirement for S leads to the following relations

c = ±
√

1− 2ε, a = (1− c)/2, b = ∓(1 + c)/2. (6.8)

Note that in [9] ε is treated as a small parameter to reflect the role of α as a probe weakly

coupled to the conductor. For the purposes of this discussion, however, we do not require ε to
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be small, and will consider it over the entire range of permissible values. Note that (6.7) does

not include phase information, which we will be taking into account when summing reflections.

The scatterer T can be described by the matrix

S′ =

i
√

1− s
√
s

√
s i

√
1− s

 ,
where

√
s is the transmission amplitude, and the factor of i is added to satisfy the unitarity

requirement. Transmission from the conductor into the probe can be then be calculated by

counting reflections in the segments between the junction and the scatterer. Total transmission

is found as the sum of the contributions from electrons emerging from α and β, denoted tαβ

and tαγ, respectively. From β electrons can transmit directly into the probe α with amplitude

√
ε and phase shift eikLβ . Another possible path consists of transmission into γ with amplitude

b and reflection from the scatterer with amplitude i
√

1− s, acquiring a total phase shift of

eik(Lβ+2Lγ1 ). Finally, after reflection from the scatterer there can occur multiple successive

reflections from the central junction to the scatterer and back again. These are summed as in

Figure 2.10 and add multiples of ia
√

1− sei2kLγ1 on each round-trip. Adding it all together, we

obtain

tαβ =
√
εeikLβ +

√
ε

(
∞∑
k=0

(
ia
√

1− sei2kLγ1
)k) · (i√1− seikLγ1 ) · (beikLγ1 ) · (eikLβ)

=
√
εeikLβ

(
1 +

ib
√

1− sei2kLγ1

1− ia
√

1− sei2kLγ1

)
.

(6.9)

Following a similar process for electrons incident from γ we find

tαγ = (
√
εeikLγ1 ) ·

(
∞∑
k=0

(
ia
√

1− sei2kLγ1
)k) · (√seikLγ3 )

=

√
ε
√
seik(Lγ2+Lγ3 )

1− ia
√

1− sei2kLγ1

.

(6.10)
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The total transmission is then found as the sum of (6.9) and (6.10)

tα = tαβ + tαγ.

We can explore the model by plotting |tα|2 as a function of the model parameters, in particular,

the scattering parameter s in Figure 6.5, the coupling parameter ε in Figure 6.6 and, finally, the

thickness of the segment of the conductor between the central junction and the scatterer Lγ1 in

Figure 6.7. The latter is chosen because that is where the successive reflections happen. We set

Lβ = 1.0, Lγ1 = π and Lγ2 = 0.5, except where Lγ1 is varied. In Figure 6.7 k = 1.0. We note

in particular that the scattering parameter s is sensitive to the phase shift, as demonstrated by

varying k. Where the shift is close to causing destructive interference in the conductor there is

a pronounced minimum observed. This is explained by the fact that more amplitude escapes

via the scatterer into γ, until the effect is compensated by more amplitude arriving from γ. In

case of constructive interference and low coupling the dependence is almost linear. Dependence

on the coupling parameter is not so sensitive to the phase shift. When varying spacer thickness

we observe the expected anharmonic quasi-periodicity in the amplitude.

6.2.3 Spin-Resolved Case

We now proceed to calculate transmission in the spin-resolved case, in the presence of non-

collinear magnetisation. We consider the structure shown in Figure 6.8, where in the segment

between β and γ we introduce magnetic layers (α2, β2 and γ2) and set the polarisation direction

of γ2 rotated at an arbitrary angle in-plane. We are particularly interested in the spin current

incident on the magnet in α. Here we no longer ignore the thickness of the scatterers (magnets)

and account for all the successive reflections occurring inside them. Let us now calculate the

incoming transmission into α1. Following the approach taken in the previous section, we obtain

contributions from electrons incident in β and γ, as follows. Transmission from β3 (lead) to

β1 is described by tβ1β3 . This is followed by repeated reflections between the central junction

and the interface β2|β3, while also taking into account reflections within β2, given by the factor(
1− rβ1β3rβ1 γ3α3

)−1

. Putting it all together, and repeating the argument for branch γ as the



120 Chapter 6. Multi-Terminal Devices

Figure 6.5: Transmission into the probe as a function of the scattering parameter.

Figure 6.6: Transmission into the probe as a function of the coupling parameter.
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Figure 6.7: Transmission into the probe as a function of the spacer thickness Lγ1 .

Figure 6.8: 3-terminal device with ferromagnetic layers and in-plane polarization.
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source, we obtain

tα1β3 = tα1β1

(
1− rβ1β3rβ1 α3

γ3

)−1

tβ1β3 , (6.11a)

tα1γ3 = tα1γ1

(
1− rγ1γ3rγ1

α3
β3

)−1

tγ1γ3 . (6.11b)

We now need to determine the structure of rβ1 α3
γ3

and r
γ1
α3
β3

. We shall do so by expressing

them in terms of the two-terminal matrices and rβ1 α1
γ1

and r
γ1
α1
β1

that are not reducible any

further within our formalism. We assume that those are given by the microscopic theory and

depend on a particular geometry of the junction. Separating in rβ1 α3
γ3

and r
γ1
α3
β3

from (6.11a)

the scattering within γ by using expansion of the form (2.31d) we obtain

rβ1 α3
γ3

= rβ1 α3
γ1

+ tβ1γ1

(
1− rγ1γ3rγ1

α3
β1

)−1

rγ1γ3tγ1β1 (6.12)

r
γ1
α3
β3

= r
γ1
α3
β1

+ tγ1β1

(
1− rβ1β3rβ1 α3

γ1

)−1

rβ1β3tβ1γ1 . (6.13)

Then we expand rβ1 α3
γ1

and r
γ1
α3
β1

until only the lowest-order reflection amplitudes (from the

junction) remain

rβ1 α3
γ1

= rβ1 α1
γ1

+ tβ1α1

(
1− rα1α3rα1

β1
γ1

)−1

rα1α3tα1β1 , (6.14)

r
γ1
α3
β1

= r
γ1
α1
β1

+ tγ1α1

(
1− rα1α3rα1

β1
γ1

)−1

rα1α3tα1γ1 . (6.15)

We can now obtain the total amplitudes of electrons going into the junction, and emerging from

the junction generalising those defined in (2.39) and (2.37) to the multi-terminal case. In order

to distinguish the direction of the flow we will write a�, b� and a⊗, b⊗ for the amplitudes going

into and out of the junction, respectively. In this notation we obtain for electrons incident from

the lead (going into the junction)

a�α =
(
1− rα1α3rα1

β3
γ3

)−1

tα1α3 , (6.16a)

b�α = r
α1
β3
γ3

a�α . (6.16b)
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Here r
α1
β3
γ3

is expanded similarly to (6.12) and (6.13)

r
γ1
α3
β3

= r
γ1
α3
β1

+ tγ1β1

(
1− rβ1β3rβ1 α3

γ1

)−1

rβ1β3tβ1γ1 .

For electrons emerging from the junction, using (6.11), we can write

b⊗α =
(
1− r

α1
β3
γ3

rα1α3

)−1(
tα1β3 + tα1γ3

)
, (6.17a)

a⊗α = rα1α3
b⊗α . (6.17b)

Equations (6.16), (6.17) enable us to calculate spin current in α1. It is easy to see that through

permuting the labels similar formulae can be derived for transmission into branches β and

γ. Equations (6.11), together with (6.16), (6.17) comprise the extension of the Landauer

formalism to 3-terminal devices. It is conceivable that the same approach could be carried over

to structures with more terminals.

For illustration purposes we provide the plots of the spin current density components in α1

(travelling into the junction), as functions of the coupling parameter ε (Figure 6.9) and the in-

plane polarisation angle in the magnet γ2 (Figure 6.10), respectively. We consider a symmetric

system with Lα1 = Lβ1 = Lγ1 = 1.0, Lα2 = Lβ2 = Lγ2 = 3.0, Fermi level EF = 0.4, potentials in

the magnets α2, β2 and γ2 set at V = 0.5, exchange splitting ∆ = 0.03, and all other potentials

set to 0. The central junction is described by matrix Š obtained from S given by (6.7) where each

component sij is replaced by matrix diag [sij, sij]. As expected, all spin and charge components

vanish at ε = 0, that is, when α gets disconnected from the system. When, on the other hand,

ε = 0.5 there is perfect transmission across the central junction. Furthermore, jx and jy vanish

at θ = 0 and θ = π.

6.2.4 Coupling Parameter

Expressions (6.7) and (6.8) describing scattering from the junction in terms of the coupling

parameter ε were originally proposed to model a probe (potentiometer) attached to a conduc-
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Figure 6.9: Current density components in layer α1 plotted as functions of the coupling strength.

Figure 6.10: Current density components in layer α1 plotted as functions of the polarisation angle in layer
γ2.
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tor. This formulation has the disadvantage that it gives one of the branches of a multi-terminal

structure a special role. In our model we would like to treat all branches equally. We will still not

be able to calculate reflection from the junction in terms of the transmission formalism. How-

ever, we can consider an alternative parametrisation scheme that separates a phenomenological

design parameter from the properties of the material in the layers meeting at the junction. We

will need to ensure that the resulting expressions satisfy the unitarity requirement, and behave

correctly in a number of limiting cases. For brevity we will write

˜̃a ≡ a†a

for all matrices involved. Assuming that the junction is non-magnetic we can write the current

conservation condition for electrons incident in lead α (see Figure 6.1)

kα
(
1− ˜̃rα

)
= kβ

˜̃tβα + kγ
˜̃tγα. (6.18)

We would like to approximate rα in terms of the respective 2-terminal reflection coefficients

that it would reduce to when either of the branches β or γ is detached. To this end, we

replace the transmission coefficients in (6.18) with their two-terminal versions given by the

expressions (3.14a)-(3.14d), which we denote t
(2)
βα, t

(2)
γα , r

(2)
αβ , r

(2)
αγ . However, in order to satisfy all

the limiting cases, we cannot assume transmission to be fully independent and have to postulate

an interaction term characterised by a phenomenological parameter δ to (6.18) as follows

kα
(
1− ˜̃rα

)
= kβ

˜̃t
(2)
βα + kγ

˜̃t(2)
γα + kα(1 + δ)(1− ˜̃r

(2)
αβ)(1− ˜̃r(2)

αγ ), (6.19)

where δ > 0. Now from (3.25a) we obtain

kβ
˜̃t

(2)
βα = kα

(
1− ˜̃r

(2)
αβ

)
, (6.20a)

kγ
˜̃t(2)
γα = kα

(
1− ˜̃r(2)

αγ

)
. (6.20b)
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Substituting (6.20) into (6.19) we find

˜̃rα = ˜̃r
(2)
αβ + ˜̃r(2)

αγ − (1 + δ)(1− ˜̃r
(2)
αβ)(1− ˜̃r(2)

αγ )− 1. (6.21)

Analysing expression (6.21) we see that when either of ˜̃r
(2)
αβ or ˜̃r

(2)
αγ tends to 1 ˜̃rα reduces to

the value of the other coefficient, hence the system correctly degenerates to a 2-terminal one.

When, say, ˜̃r
(2)
αβ → 0 we get that ˜̃rα → δ

(
1− ˜̃r

(2)
αγ

)
. Physically, this means that when there is

unimpeded transmission from α to β, a fraction of the electrons will still transmit into γ, and

this fraction will be characterised by the parameter δ. In other words, we can interpret ε = 1−δ

as a measure of the coupling strength, similarly to the Büttiker calculation in the spinless case.

In order to ensure the conservation law (6.18) is satisfied we must add the corresponding terms

to the transmission amplitudes if we are to use the same parametrisation scheme. Denoting

ρ(δ) = (1 + δ)(1− ˜̃r
(2)
αβ)(1− ˜̃r(2)

αγ ) + 1

we obtain

˜̃rα = ˜̃r
(2)
αβ + ˜̃r(2)

αγ − ρ(δ), (6.22a)

˜̃tαβ = ˜̃t
(2)
αβ +

kα
kβ + kγ

ρ(δ), (6.22b)

˜̃tαγ = ˜̃t(2)
αγ +

kα
kβ + kγ

ρ(δ), (6.22c)

The parametrisation described by (6.22) generalises (6.7) to the spin-resolved case with multiple

scatterers. It can be used to model spin transport across the junction into other parts of the

device with a single fitting parameter δ. With this we conclude the discussion of the Landauer

method for multi-terminal structures within the scope of this thesis. A more detailed analysis

and classification of the various regimes of the devices will be performed in the future studies.
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Conclusion

7.1 Summary of Thesis Achievements

In this thesis we have studied several related problems in ballistic spin-resolved transport across

a metallic magnetic multilayer of the CPP structure.

We have used the Landauer formalism as the computational framework. It has proven conve-

nient for reasoning about summing reflections, extracting approximations and deriving symme-

tries. We have employed several important extensions to the original Landauer formula. The

first one is the generalisation to the spin resolved transmission, which is actually a particular

case of the multi-moded transport. The other one is the non-collinear in-plane magnetisation

that adds rotation matrix factors. Finally, we use the recursive relations expressing transmis-

sion and reflection matrices across multiple layers in terms of transmission between adjacent

layers.

We have shown in detail how the in-plane and the out-of-plane components of spin current

arise in the central non-magnetic region of the multilayer. We demonstrated the importance

of taking into account the successive reflections and formulated the origins of spin current in

terms of wave function matching at the interfaces and precession in the layers. We investigated

several symmetry properties satisfied by the current and certain commonly made assumptions

127
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about the model that lead to exact vanishing of the out-of-plane current. Building on earlier

results obtained for charge current we demonstrated the effectiveness of the transfer matrix

approach for the asymptotic analysis of spin current.

We explored the connections between the transfer matrix formalism and the methods in the

study of the polarisation of light. At this stage we have drawn only some of the basic parallels

and proposed the idea of spin Müller-Jones calculus. Some of the deeper results from the classic

Müller-Jones calculus do not appear to feature in the spintronics-related literature and may be

the subjects of further investigation. Other well established methods, such as the (generalised)

Iwasawa decomposition do not seem to have been actively explored either. In any case, the

amount of research in the field of optics using those methods gives reasons to believe that a

number of techniques and results can be reinterpreted or generalised sufficiently to address

certain problems in spin transport.

We have examined the fundamental assumption of the Landauer model, namely, that the

carriers arrive into the mesoscopic junction from large phase-randomising reservoirs, at all

possible energies, momenta and spin orientations. We took that assumption to a limiting case

where the system was gradually isolated from the reservoirs (closed), until the external supply

of electrons was cut off. Formally applying the Landauer method to such process we calculated

the energy of interlayer exchange coupling between the two magnets. In the earlier sections

we showed that only the out-of-plane component of the current would contribute to exchange

coupling. In the context of a closed system we further obtained a physically and mathematically

appealing conclusion that spin current density in the momentum space reduces to a distinct

number of sharp peaks or resonances. Calculating total current and, consequently, the exchange

energy then corresponds to summing over residues evaluated precisely at the points where the

peaks occur. This is equivalent to the conventional sum over discrete eigenvalues.

We then took the transfer matrix approach in a yet another direction by applying it to spin-

resolved transport in multi-terminal structures. Generalising upon the canonical examples

by Büttiker derived for charge current, we constructed a model of a ballistic multi-terminal

device with multiple scatterers and calculated transmission between its terminals using the
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transmission and reflection matrices. Unlike some of the earlier work, our model both includes

all the reflections (and is therefore adequate for studying exchange coupling), and does not

make any assumptions about the properties of the central junction. The latter comes at a cost

of having to introduce a phenomenological coupling parameter.

7.2 Future Work

Throughout this work we have discarded the effects of spin-orbit interaction in the spacer

and magnets. However, this phenomenon is so important, both from the point of view of the

applications, and theoretically, that it must be taken into account in any further development of

this research. In the general case, including SOI makes the problem no longer exactly solvable,

which does not permit introducing the transfer matrix method the way we have done here.

Nevertheless, several researchers have studied ballistic transport in the presence of the Rashba-

type SOI under certain conditions where the Hamiltonian could still be diagonalised, and the

transmission formalism could be employed [8], [93], [94]. It has also been pointed out that,

in the presence of non-collinear polarisation, care must be taken when specifying boundary

conditions [95], which should be expressed in terms of the velocity operator. It would be an

interesting extension to combine these results with the potential profile chosen in our model,

and the in-plane (and even out-of-plane) polarisation direction in the magnets.

For the multi-terminal structures, the generalisation of the reflection-counting procedure we

obtained in Chapter 6 potentially allows us to study a whole new class of problems, motivated

by the results obtained earlier for the two-terminal case. For example, properly defining the

transport and exchange parts of the current and investigating which, if any, of the symmetry

properties studied in Chapter 5 hold. Once again, the model could be further enriched by

including the effect of SOI in the central junction.

Connections to the optical methods highlighted in Chapter 4 provide a link to a large body of

research applying geometric and group theoretic methods to the study of electromagnetic wave

propagation in multilayers, for example [58], [70], [71], [72], [73], [76] and [3]. In this context,
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a classification of magnetic multilayers and the way they give rise to spin current components

could be a valuable extension of the similar work done for optical multilayers.

Lastly, we remark that the models we have considered are discrete in their essence, that is

the devices are composed of a finite number of homogeneous layers. The study of continuous

systems, however, is an important subject too (magnetic textures, domain wall movement).

An interesting question to pose is to what extent the transfer matrix method can be applied

to the continuous case. Several variants of the method and their accuracy have been studied,

in the spinless case [96], [97]. Mathematically, the limiting process of calculating the transfer

matrix over a large number of thin layers could potentially be represented by the Volterra’s

multiplicative integral [98]. All these possibilities would be interesting ones to investigate in

the context of magnetic multilayers.



Appendix A

Symmetry Properties of the Transfer

Matrix

In this section we derive some of the symmetry properties satisfied by the transfer matrix and

the transmission and reflection submatrices under transposition and complex conjugation.

A.1 Symmetry of Reflection and Transmission Matrices

Under Transposition

First consider transmission matrix tn,n+1 at θn = θn+1 = 0. From (3.14a) and (3.14b), we get

tn,n+1| θn=0
θn+1=0

= kn+1k
−1
n t′n,n+1

∣∣∣ θn=0
θn+1=0

,

where kn = diag[k↑n, k
↓
n]. Now considering transmission between layers 1 and 3, and temporarily

setting θ2 = 0 we obtain

t13 = t12(1− r23r
′
12)−1t23,

t′13 = t′23(1− r′12r23)−1t′12,
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hence on taking the transpose we get

t′13(0)T = k1k
−1
3 t13(0)

because all the factors involved are diagonal. However, by (3.17) we can reintroduce the angular

dependence as follows

t′13(θ2) = s(−θ2)t′13(0)s(θ2),

whereby taking the transpose we deduce that

t′13(θ2)T = k1k
−1
3 t13(θ2).

More generally, considering a system where magnetic and non-magnetic are interleaved (Fig-

ure 2.14), we get

t′n,n+2(θn+1)T = knk
−1
n+2tn,n+2(θn+1), (A.1)

where a non-magnetic layer n+1 is sandwiched between magnetic layers n and n+2. By (3.17),

we also note that t′n,n+2, tn,n+2, r′n,n+2, and rn,n+2, are all symmetric. Now consider reflection

and transition matrices between layers 1 and 5, for arbitrary values of θ2 and θ4. We have

r15 = r13 + t13r35(1− r′13r35)−1t′13,

hence

rT15 = r13 + t′13(1− r35r
′
13)−1r35t13 = r15,

where we made use of (A.1). Returning to the general case, we deduce that

rTn,n+4 = rn,n+4, r′
T
n,n+4 = r′n,n+4,
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where layers n and n+ 4 are non-magnetic. For the transmission matrices we have

t′15 = t′35(1− r′13r35)−1t′13,

t15 = t13(1− r35r
′
13)−1t35,

so that

t′
T
15 = t′

T
13(1− r35r

′
13)−1t′

T
35 = k1k

−1
5 t15.

More generally, we obtain

t′
T
n,n+4 = knk

−1
n+4tn,n+4,

where layers n and n+ 4 are non-magnetic. Proceeding this way we can deduce that

r′
T
nm = r′nm, rTnm = rnm, (A.2)

t′
T
nm = knk

−1
m tnm. (A.3)

when n and m are arbitrary layers.

A.2 Symmetry of the Transfer Matrix Under Complex

Conjugation

If a given layer is a metallic ferromagnet, hence k↑ and k↓ are both real, then from (3.7) we

have

X(k↑,↓)∗ = X(k↑,↓)I where I =

0 1

1 0

 .
If, on the other hand, we have a magnetic insulator where k↑ and k↓ are both pure imaginary,

then X is real, and hence X(k↑,↓)∗ = X(k↑,↓). If one of k↑, k↓ is real and one is pure imaginary,

then since both e and k are diagonal we get a mixture of the above two cases, giving

X(k↑,↓)∗ = X(k↑,↓)J(k↑,↓) where J2 = 1,
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and J is explicitly given by

J(k↑,↓) =

1− j j

j 1− j

 ,
where j = diag[f(k↑), f(k↓)], and f(k) = <(k)/k = 1 or 0 if k is pure real or imaginary,

respectively. Hence the transfer matrix between adjacent layers satisfies

T∗n,n+1 = J(k↑,↓n )Tn,n+1J(k↑,↓n+1),

from which we deduce that the following holds for the transfer matrix between two general

layers

T∗n,m = J(k↑,↓n )Tn,mJ(k↑,↓m ).

In particular, if layers n and m are conducting, then

T∗n,m = I Tn,m I, (A.4)

so that T must have the block-diagonal form

Tn,m =

τ 11 τ 12

τ ∗12 τ ∗11

 , (A.5)

where τ ij are complex 2× 2 matrices.



Appendix B

Green’s Function and the Density of

States in the Spacer

We provide a proof of the explicit formula for the spectral density ρ(E,L) given in (5.19)

as part of the energy-based calculation of exchange coupling. In the process we derive an

expression of the Green’s function in the spacer in terms of the reflection coefficients from

the transfer matrix method. The formula for ρ(E,L) is stated in [4] where it differs slightly

from the result we are going to obtain. The difference, apparently, has to do with the fact

that the said paper is concerned with the asymptotic behaviour of spectral density where the

additional term we find becomes negligible. As for the formula for the Green’s function for

piecewise-constant potentials, this problem is certainly not new and has been discussed, for

example in, [84] and [83]. However, the cited papers focus on the results for step-potentials and

potential barriers/wells, essentially relying on wave-function matching to obtain the reflection

and transmission amplitudes. We show that by applying the transfer matrix formalism to this

problem it is possible to generalise the results to arbitrary multilayers in a straightforward way.

For the sake of clarity we confine the argument to a single spin band, so all the quantities

involved are scalars.
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We start with the defining equation of the Green’s function

(Ĥ − E)G(y, y′;E) = δ(y − y′),

where

Ĥ = − ~2

2m

d2

dx 2
+ V (y),

V (y) =


V0, y < 0, y > L

0, 0 ≤ y ≤ L

.

(B.1)

Consider the case where y′ < y < L. The solution consists of a right-moving wave and

a reflection off the right lead with coefficient r23. Since the equation is now homogeneous,

multiplying by a constant gives a family of solutions

G(y, y′;E) = A
(
eik2y + r23e

−ik2y
)
, (B.2)

where k2 =
√

2mE
~ . Now we turn to the case where 0 < y < y′. The solution consists of a

left-moving wave and a reflection from the left lead with coefficient r′12. Again, multiplying by

a constant we get another family of solutions

G(y, y′;E) = B
(
e−ik2y + r′12e

ik2y
)
. (B.3)

Constants A and B are eliminated from the defining matching equations of the Green’s function

G(y, y′;E)|y=y′+0 − G(y, y′;E)|y=y′−0 = 0,

d

dy
G(y, y′;E)

∣∣∣∣
y=y′+0

− d

dy
G(y, y′;E)

∣∣∣∣
y=y′−0

=
2m

~2
.

(B.4)

Using the results from (B.2) and (B.3) we obtain

G(y, y′;E) =


m

i~2k2

(
e−ik2y′ + r′12e

ik2y′
) (
eik2y + r23e

−ik2y
)

1− r23r
′
12

, y′ < y < L

m

i~2k2

(
eik2y′ + r23e

−ik2y′
) (
e−ik2y + r′12e

ik2y
)

1− r′12r23

, 0 < y < y′

. (B.5)
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Now instead of the original potential profile we consider an arbitrary N -layer (N ≥ 3) and the

problem of calculating the Green’s function in a given layer (1 < n < N) with wave-vector

kn. It is clear that all we need to do is replace r′12 and r23 with r′1n and rnN , respectively.

All the complexity introduced by the intermediate reflections in the neighbouring layers will

be encapsulated in the reflection coefficients by virtue of the recursive nature of the transfer

matrix formalism. The general result is therefore stated as follows

Gn(y, y′;E) =


m

i~2kn

(
e−ikny′ + r′1ne

ikny′
)(
eikny + rnNe

−ikny
)

1− rnNr′1n
, y′ < y < yn+1

m

i~2kn

(
eikny′ + rnNe

−ikny′
)(
e−ikny + r′1ne

ikny
)

1− r′1nrnN
, yn < y < y′

. (B.6)

We proceed to evaluate ρ(E,L) from (5.19). First we calculate r′12, r23

r′12 =
k2 − k1

k2 + k1

, r23 =
k2 − k1

k2 + k1

e2ik2L.

since k1 = k3 =

√
2m(E−V0)

~ , k2 =
√

2mE
~ , y12 = 0, y23 = L. The diagonal part of the Green’s

function is then found using (B.5)

G(y, y;E) =
m

i~2k2

1 + r′12r23 + r′12e
2ik2y + r23e

−2ik2y

1− r′12r23

=
m

i~2k2

(k2 + k1)2 + (k2 − k1)2e2ik2L + (k2
2 − k2

1)
(
e2ik2y + e2ik2(L−y)

)
(k2 + k1)2 − (k2 − k1)2e2ik2L

.

Here, following [4], we introduce the dimensionless energy parameter ε = E
V0

. Then, observing

that k2
2 − k2

1 = 2mV0
~2 , and dividing through by 2mV0

~2 we find

G(y, y;E) =
m

i~2k2

(
√
ε+
√
ε− 1)2 + (

√
ε−
√
ε− 1)2e2ik2L +

(
e2ik2y + e2ik2(L−y)

)
(
√
ε+
√
ε− 1)2 − (

√
ε+
√
ε− 1)2e2ik2L

.

Integrating over y we obtain

∫ L

0

G(y, y;E)dy =
mL

i~2k2

2(2ε− 1 + sin 2k2L
2k2L

)
√
ε(ε− 1) + i

(
sin k2L cos k2L− (2ε−1)

k2L
sin2 k2L

)
4ε(ε− 1) + sin2 k2L

.

(B.7)



138 Appendix B. Green’s Function and the Density of States in the Spacer

Taking the imaginary part we find

=
∫ L

0

G(y, y;E)dy = −2mL

~2k2

(
2ε− 1 + sin 2k2L

2k2L

)√
ε(ε− 1)

4ε(ε− 1) + sin2 k2L
. (B.8)

Now introducing the dimensionless spacer length parameter d =
√

2mV0
~ L and rewriting k2 in

terms of ε

k2 =

√
2mE

~
=

√
2mV0ε

~
,

we can express the factor 2mL
~2k2 in B.8 as follows

2m

~2

L

k2

=
2m

~2

~2d

2mV
√
ε

=
d

V0

1√
ε
.

We also find that k2L = d
√
ε. Hence

=
∫ l

0

G(y, y;E)dy = − 1

V0

d

(
2ε− 1 +

sin(2d
√
ε)

2d
√
ε

)√
ε− 1

4ε(ε− 1) + sin2 (d
√
ε)

.

Finally ρ is given by the following equation

ρ(ε, d) =
1

πV0

d

(
2ε− 1 +

sin(2d
√
ε)

2d
√
ε

)√
ε− 1

4ε(ε− 1) + sin2 (d
√
ε)

. (B.9)

Formula (B.9) differs from the corresponding result in [4] only in the term
sin(2d

√
ε)

2d
√
ε

which

obviously does not affect the result for sufficiently large values of d
√
ε.



Appendix C

Relation Between Green’s Function

and Transmission

In this section we give a variant of the proof of the relation between the transmission and

reflection coefficients, and the T -operator that features in the perturbation theory, particularly

in the statement of the Lippmann-Schwinger equation [53]. We make use of these relations in

(5.23) when calculating IEC via the energy method. The most general version of the proof in

the multi-band case is given in [5]. Reproducing that would take us too far beyond the scope

of the present discussion, therefore we confine ourselves to a single-band case, similarly to the

derivation in Appendix B. Consider the case where the one-particle Hamiltonian Ĥ can be

separated into an unperturbed part Ĥ0 and a perturbation V

Ĥ = Ĥ0 + V

The T -matrix is then defined by the operator equation

TG0 = V G,
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where G and G0 are the Green’s functions of Ĥ and Ĥ0, respectively. Using the definition of

the Green’s function T can be given by the following formula

T = V (E − V − Ĥ0)−1(E − Ĥ0) = V (1−G0V )−1

With the help of T Dyson’s equation

G = G0 +G0V G

can be written as follows

G = G0 +G0TG0 (C.1)

Now consider the case of two scattering potentials VL and VR

G =
(
E − Ĥ − VL − VR

)−1

,

where the Hamiltonian Ĥ can be taken to be the same as in (B.1). Using the reflection counting

argument it can be shown that

G = G0 +G0TLG0 +G0TRG0 +RL +RR,

where TR|L = VR|L
(
I −G0VR|L

)−1
and

RL = G0TLG0TRG0 +G0TLG0TRG0TLG0 + . . .

RR = G0TRG0TLG0 +G0TRG0TLG0TRG0 + . . .

Separating the terms with odd and even number of factors in RL and RR we find

RL = G0TL (I −G0TRG0TL)−1G0TR (I +G0TL)G0,

RR = G0TR (I −G0TLG0TR)−1G0TL (I +G0TR)G0.
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Now taking the trace and using the cyclical property we obtain

trRL = tr
(
(I −G0TLG0TR)−1 (I +G0TL)G2

0TLG0TR

)
,

trRR = tr
(
(I −G0TRG0TL)−1 (I +G0TR)G2

0TRG0TL

)
.

Using the identity

d

dE
G = −G2 (C.2)

we can rewrite the following factors

G2
0TLG0TR = −

(
d

dE
G0

)
TLG0TR,

G0TLG
2
0TR = −G0TL

(
d

dE
G0

)
TR.

We now need to calculate d
dE
T . To this end, we substitute (C.1) in (C.2). Upon cancellation

we obtain

G0

(
d

dE
T + TG2

0T

)
G0 = 0,

from which it follows that

d

dE
T = −TG2

0T.

Therefore

G0TLG
2
0TLG0TR = −G0

(
d

dE
TL

)
G0TR,

G0TLG0TRG
2
0TR = −G0TLG0

(
d

dE
TR

)
.

Finally, we obtain

tr (RL +RR) = tr

(
(I −G0TLG0TR)−1 d

dE
(G0TLG0TR)

)
=

d

dE
tr ln (I −G0TLG0TR) .
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Now reflection coefficients are related to the T -matrix [53] as follows

r = 〈y |G0 | y〉 〈−k |T | k〉 ,

where

〈−k |T | k〉 =

∫
eik(x′+x′′) 〈x′ |T |x′′〉 dx′dx′′

Starting from the free-particle wave-function

G0(y, y′) = m
i~2ke

ik|y−y′|

and projecting (C.1) onto the real space we obtain

GL(y, y′) = G0(y, y′) +

∫
G0(y, u)T (u, v)G0(v, y′)dudv

=
m

i~2k
eik|y−y

′| +
( m

i~2k

)2
∫
eik|y−u|T (u, v)eik|v−y

′|dudv

=
m

i~2k
eik|y−y

′| +
m

i~2k
eik(y+y′) m

i~2k

∫
eik(u+v)T (u, v)dudv

=
m

i~2k
eik|y−y

′| +
m

i~2k
eik(y+y′) 〈y |G0 | y〉 〈−k |T | k〉

=
m

i~2k

(
eik|y−y

′| + re−ik(y+y′)
)
.

Hence, the diagonal Green’s function to the left of the scatterer is GL = m
i~2k

(
1 + re−i2ky

)
.

Similarly, to the right of the scatterer we find GR = m
i~2k

(
1 + r′ei2ky

)
. Therefore, the Green’s

function in the spacer is

GS = G0 +G0TLG0 +G0TRG0 + ∆GLR,
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where ∆GLR is the interaction term which gives rise to exchange coupling. Bearing in mind

that G0TL(R)G0 = GL(R) −G0 we obtain

∆GLR = GS −GL −GR −G0

=
m

i~2k

(
1 + r′r + r′e−i2ky + r−i2ky

1− r′r
− 1− re−i2ky − 1− r′i2ky + 1

)
=
r′r
(
2 + r′ei2ky + re−i2ky

)
1− r′r

,

which is the one-dimensional version of the general result proved in [5]
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transfer matrix: A geometrical perspective. Physics Reports, 513(4):191–227, 2012.

[4] D.M. Edwards and A. Umerski. Exchange coupling in magnetic multilayers. Wiley, 2007.

[5] P. Bruno. Theory of interlayer magnetic coupling. Phys. Rev. B, 52:411–439, 7 1995.

[6] A. Brataas, Y.V. Nazarov, and G.E.W. Bauer. Spin-transport in multi-terminal nor-

mal metal-ferromagnet systems with non-collinear magnetizations. The European Physical

Journal B - Condensed Matter and Complex Systems, 22(1):99–110, 7 2001.
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