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ABSTRACT
Software Visualization can be defined as the use of graphical and textual formalisms to describe the
execution of computer programs. A large amount of Software Visualization technology has been
developed to support computer science education, using a range of interface techniques. Far less
effort has been devoted to evaluating the technology. As a result, it is unclear how effective
Software Visualization tools are, either for students or professional programmers. Even more
worrying, it is doubtful whether lessons are being learnt in successive designs of Software
Visualization tools, or whether the application of new technologies (e.g. 3D animation and the
internet) has become the primary goal, rather than the true goal of making computer programs
easier to understand. To counter this problem the study reported here used protocol analysis to
develop a fine-grained account of user behaviour, identifying (i) information access from the
display, (ii) the use of comprehension strategies, and (iii) misunderstandings of the visualization
and execution. The results were able to motivate future deigns which in turn could be compared and
improved. The approach is compared to other evaluation techniques which aim to inform design.
Finally, the generalizability of the approach is considered.

1 . INTRODUCTION
This paper presents a framework for the principled evaluation and design of Software Visualization
(SV) technology. SV is the process of using techniques such as typography, graphic design,
animation and cinematography to provide representations of a program and its execution. Though a
great deal of research effort is being devoted to SV development, SVs are still not widely used in
practice, either by professional programmers or within computer programming education. Price,
Small and Baecker (1993) argue an important reason why the technology has not been readily taken
up is because its benefits have not been clearly demonstrated. Allied to this, is the uncertainty as to
whether SV technology is improving, by learning lessons from earlier systems and using these
lessons to motivate designs of the future. The SV field is certainly progressing technologically,
though whether it is progressing from a cognitive or educational perspective is unclear.

There have been a few empirical evaluations of SV technology. These have generally been coarse-
grained, measuring how quickly or successfully certain tasks can be carried out with various SVs.
These studies can provide estimates as to which SV “is best” for certain tasks or users but tell us
little about “why”. This paper reports on the development and application of a new methodology.
The methodology uses protocol analysis (Ericsson and Simon, 1984) to gain cognitive evidence as
to how SVs are used and understood. Previous research in the psychology of programming can be
used to determine the types of cognitive evidence we can expect to identify within the protocols of
subjects using a SV. SVs are intended to support the programmer in the tasks of program
comprehension and debugging. Empirical investigations of program comprehension and debugging



suggest the kinds of cognitive evidence that we can hope to derive about how the nature of the SV
affects the ways in which it is used and understood. This cognitive evidence is divided into three
broad categories, describing the three main ways in which the SV may impact on the cognition of
the user: the access of information, the utilisation of strategies to support the comprehension of
information, and misunderstandings that arise while using the SV. These categories guide the
analysis of the verbal protocols derived from the study.

The empirical study shows how this fine-grained evaluation methodology can be used to find out
how well an environment rates on each of these criteria. This provides the kind of data necessary
for overall performance differences between SVs to be confidently interpreted. The results of the
fine-grained evaluation are used to motivate the design of a new SV which was found to be more
suitable for a novice population than those previously evaluated. Overall, the process illustrates
how lessons can be learnt rather than lost as SV technology progresses apace.

As the methodology draws heavily on the psychology of programming literature, a programming
language was chosen which has been intensively studied. It was also important that a number of
SVs existed for the programming language, which could be realistically evaluated. Prolog was
therefore chosen as the language. A great deal of research has considered how it is used (Taylor,
1988) and the conceptual difficulties students have encountered (Fung, Brayshaw, du Boulay and
Elsom-Cook, 1990). Also, a number of SVs have been developed for the Prolog language. Four
were analysed in this research.

Before presenting the evaluation and design process, some related studies will be reviewed and then
used to motivate the new approach. Following this, an overview of the evaluation and design
process will be given. The case-study is then presented in five parts. First the SV test-bed is
presented. Second, this test-bed is evaluated using a fine-grained methodology incorporating
protocol analysis. Third, the results are interpreted in order to make the mapping between the
features of the SV and their cognitive effects. Fourth, the interpretation is used to design a new
SV. The final section of the case-study presents an evaluation of the new design. The final sections
of the paper compare the approach to other evaluation techniques and consider its generalizability.

2 . COARSE-GRAINED STUDIES ARE NOT INFORMATIVE
There have been a few evaluation studies attempting to determine the benefits of Software
Visualization systems. On the whole these have been of two main types: finding out whether
using a particular SV is better than no additional intervention; or a direct comparison between a
number of SVs for performing some particular task.

Stasko, Badre and Lewis (1993) carried out a study to investigate whether using an SV was better
than no additional intervention. They investigated the educational benefits of SV. In their study a
visualization of a priority queue algorithm was used. Half of the students were provided with the
visualization and the program, while the other half were just given the program. The SV was found
to only slightly assist student comprehension.

Another study by Brusilovsky (1994) took a slightly different approach. The study investigated the
potential role of SV as a tool for novice program debugging. The experiment was carried out as
part of a computer programming practical class. When students noticed their solution to a
programming problem was working incorrectly, four stages of explanation were used successively
until the student managed to understand the reason for the buggy behaviour. First, the student was
shown the disparity between their own result and the correct result. Second, they were shown a
visualization of the execution of their program. Third, a verbal simulation of the execution of the
program was provided. Finally, if the student still failed to understand, the assistant used their own
knowledge to explain the error. As over a third of problems were solved at the visualization stage,
the results indicated a plausible role for SV within a full teaching environment.



Though these studies provide some insight into the potential role of SV in education they have to
rely on anecdotal evidence for the interpretation of their findings. This means the results cannot
directly explain what cognitive activities the students were performing when using the SV, whether
students had any particular conceptual difficulties with the SV, or how the SV could be improved.

A few studies have made a direct comparison of a number of SVs for performing specific tasks.
These studies used static screen snapshots rather than the full SV, and required the subjects to
derive particular pieces of information from the display as quickly and accurately as possible. For
example, Patel, du Boulay and Taylor (1991) performed a direct comparison of static snapshots of
three SVs for Prolog. They investigated the relative speed with which subjects could access
information from static displays of three Prolog SVs. Differences were found between the SVs on
particular questions though the results were difficult to interpret, relying on anecdotal evidence.

Though these direct comparison studies are informative as to the issue of how easily information
can be accessed from different static formats, the dynamics of a “real” SV are a crucial aspect of its
design. The dynamics show how the execution of the program develops over time. The students’
ability to appreciate and understand these dynamic changes is crucial to its usability. Measuring the
amount of time taken to access specific information fragments can only help explain one aspect of
how the SV impacts on the cognitive activities of the user. A more detailed cognitive account
would help to explain the high level performance differences between SVs. This would provide
stronger evidence as to how each SV could be improved and more directly highlight their strengths
and weaknesses.

3 . FINE-GRAINED EVALUATION OF INFORMATION, STRATEGY AND
MISUNDERSTANDING
The evaluation and design process presented in this paper has at its centre a fine-grained approach to
the evaluation of SV tools. The evaluation technique uses protocol analysis to derive a fine-grained
account of how the student interacted with the SV. This section will first introduce the three kinds
of cognitive evidence analysed from the protocols, and then explain how this fits into the
evaluation and design process as a whole.

3 . 1 Information
Some studies have already considered the kinds of information that are accessed during program
comprehension phases. For example, Bergantz and Hassell (1991) used protocol analysis to
measure information access during Prolog comprehension using four main information types
(which they termed relations): control flow, data flow, program structure and program function.
Clearly these information types will have to be extended and modified to take into account the
incorporation of the SV, though these outline some basic information types that are central to
program comprehension and would therefore be expected during SV use.

3 . 2 Strategy
Some work has also looked at the use of programming strategies during program comprehension
and debugging. Green (1977) considered the ease with which forward and backward reasoning
strategies can be utilised given different control constructs within the program. Similarly, Katz and
Anderson (1987) used the analysis of forward and backward reasoning in their discrimination
between novice and expert program comprehension. It is therefore possible that forward and
backward program analysis could be employed when using an SV during program comprehension.
More specific strategies relating to SVs may also be observed.



3 . 3 Misunderstanding
The misunderstandings category is the most language dependent of the three1. Fortunately a great
deal of work has been carried out on the kinds of misunderstandings novices tend to have of the
Prolog execution model (Fung et al, 1990). The protocols will give an insight into how the
subject interprets the SV and execution of the program. This will allow an investigation of how
misunderstandings are affected by the SV. It would be expected that using a SV would reduce many
of the well documented misconceptions, though the extra demands of dealing with the SV could
create new misunderstandings which have not previously been investigated.

3 . 4 The Evaluation and Design Process
The full evaluation and design process is made up of four stages: developing an SV test-bed,
performing a fine-grained evaluation, interpreting the findings, and designing a new SV. Each of
the four stages of the process has particular deliverables attached to it. First, the test-bed of
candidate SV systems has to be assembled. During this stage, the emphasis for the
evaluator/designer is on identifying the main features of the SV, in terms of the textual ad
graphical constructs used in the design. These will tend to be closely related to the claims made by
the original designers as to what display methods are appropriate for clearly presenting programs
and their execution.

The fine-grained evaluation provides the cognitive evidence as to how useful each of the SVs are.
The cognitive evidence comprises how users are able to access information from the SV, the kinds
of strategies they employ to manage that information, and any misunderstandings they have of the
information presented.

In the third stage, the outcomes of the previous two stages are assimilated and interpreted to gain
an understanding of the notational constructs of the SV in terms of their cognitive effects. Finally,
this knowledge can be used in the fourth stage to develop a new SV. The previous stages will
ensure that the design decisions underpinning the new SV will be based on sound evidence as to
how the users’ access to, and assimilation of information needs to be supported, and what kinds of
notational construct should help

4 . DEVELOPING A SOFTWARE VISUALIZATION TEST-BED
Four SVs were used in the study, which are described below. These were implemented within the
same environment, the Prolog Program Visualization Laboratory (PPVL) (Mulholland, 1995).
This provided an experimental laboratory allowing a number of fully implemented SVs to be
compared within the same environment. PPVL provides similar interface and navigation for each
SV and records all user activity at the terminal.

Spy (Byrd, 1980) (figure 1, top left) is a stepwise, linear, textual SV system which adopts the Byrd
Box model of Prolog execution. Spy gives a basic procedural account of the execution. The head of
a clause can be thought of as a procedure and the tail treated as one or more sub procedures. Byrd’s
aim in the development of Spy was to provide a basic but complete account of Prolog underpinned
by a consistent execution model.

PTP (Prolog Trace Package)  (figure 1, top right) was developed by Eisenstadt (1984) to provide a
more readable and detailed account of Prolog execution than is found in Spy. PTP aimed to make
the account of execution as explicit as possible, thereby reducing the amount of interpretation
required by the user. Particular areas where PTP aimed to improve on Spy was in the presentation
of more specific status information and a more explicit presentation of how the program relates to
the execution.

1Thoughts on the generalizability of the methodology will be presented later.



TPM (Transparent Prolog Machine)  (Brayshaw and Eisenstadt, 1991; Eisenstadt and Brayshaw,
1988) (figure 1, bottom left) aimed to provide the very detailed account provided by PTP in a much
more accessible form. TPM uses an AND/OR tree model of Prolog execution. Execution is shown
as a depth first search of the execution tree. Unlike the other SVs, TPM incorporates two levels of
granularity. An AND/OR tree model is used to provide an overview of the execution. Fine grained
views giving details relating to a particular goal within the program execution are obtained by
selecting the node in question.

TTT (Textual Tree Tracer) (Taylor, du Boulay and Patel, 1991) (figure 1, bottom right) has an
underlying model similar to TPM but uses a sideways textual tree notation to provide a single
view of execution which more closely resembles the source code. Unlike linear textual SVs such as
Spy and PTP, current information relating to a previously encountered goal is displayed with or
over the previous information. This keeps all information relating to a particular goal in the same
location. The aim behind TTT was to provide the richness of information found in the TPM SV in
a form more closely resembling the underlying source code. This approach necessitates an
important trade-off in the design of the SV notation. TPM aims to show the structure and nature of
the execution by using a graphical formalism to show an overall picture. For TTT, constructing a
SV notation with a close affinity to the underlying source code was a primary aim.

 call  grandparent(_1, _2)      Spy
 UNIFY 1   []
   call  parent(_1, _3)
   UNIFY 1   [_1 = tom _3 = liz]
   exit  parent(tom, liz)
   call  parent(liz, _2)
   fail  parent(liz, _2)
   redo  parent(tom, liz)
   UNIFY 2   [_1 = pam _3 = bob]
   exit  parent(pam, bob)
   call  parent(bob, _2)
   UNIFY 3   [_2 = ann]
   exit  parent(bob, ann)
 exit  grandparent(pam, ann)

 1: ? grandparent(_1, _2)       PTP
 2: > grandparent(_1, _2) [1]
 3:   ? parent(_1, _3)
 4:   +*parent(tom, liz) [1]
 5:   ? parent(liz, _2)
 6:   -~parent(liz, _2)
 7:   ̂  parent(tom, liz)
 8:   < parent(tom, liz) [1]
 9:   +*parent(pam, bob) [2]
10:   ? parent(bob, _2)
11:   +*parent(bob, ann) [3]
12: + grandparent(pam, ann) [1]

                      T P M >>>1: grandparent(X, Z)   1S   TTT
|1    X = pam
|     Z = ann
 ***2: parent(X, Y_1)   1SF/2S
 |1    X ≠ tom
 |     Y_1 ≠ liz
 |2    X = pam
 |     Y_1 = bob
 ***3: parent(liz, Z)   Fm
 ***4: parent(bob, Z)   3S
 |3    Z = ann

Figure 1. Software Visualization displays of a Prolog grandparent program, which infers
grandparent relations from a given set of parent relations. The SVs shown are (top left) the linear
textual Spy, (top right) the readable textual PTP, (bottom left) the graphical TPM showing the
AND/OR tree and the fine-grained details of the grandparent node, and (bottom right) the non-linear
textual TTT.



5 . PERFORMING A FINE-GRAINED EVALUATION
This section describes the fine-grained evaluation of the SV test-bed. First the study is described.
This is followed by the overall performance results on the set task, and the cognitive evidence in
terms of how students were able to access information from the SV, the kinds of strategies they
used and the occurrence of misunderstandings of what the SV was showing.

5 . 1 . The Study
To assess how well each of the four SVs could be used by students, a study was carried out
involving 64 Open University residential school cognitive psychology students taking the
Artificial Intelligence project. Students taking the project are required to model a simple cognitive
theory in Prolog. Each residential school project lasts approximately 2.5 days.

The empirical study itself required subjects to work in pairs. This was used to facilitate a
naturalistic protocol. A between subjects design was used. Eight subject pairs were tested for each
of the four SVs. Initially, a pre-test was administered to ensure the students understood the basics
of control flow and unification before commencing the experiment. Questions covered the order in
which goals and subgoals are tried and the Prolog unification algorithm. The subjects were then
given five minutes to familiarise themselves with a program presented on a printed sheet. The
program (see figure 2) was an isomorph of the one developed by Coombs and Stell (1985) and has
been widely used to investigate difficulties students have in understanding Prolog, particularly the
features of the execution model.

knows(joe,  mick).
knows(charles,  fred).

famous(mick).
famous(charles).

sarcastic(mick).
sarcastic(fred).

unfriendly(Person)  :-
name_dropper(Person),
sarcastic(Person).

name_dropper(ND)  :-
knows(ND,  BigShot),
famous(BigShot).

name_dropper(ND)  :-
knows(BigShot,  ND),
famous(BigShot).

Figure 2. Correct version of the Coombs and Stell (1985) isomorph.

They each retained a copy of this program throughout the experiment. They were then asked to
work through the visualizations of four versions of the program which had been modified in some
way. Their task was to identify the difference between the program on the sheet and the one being
visualized. They had no access to the source code of the modified versions. The four modifications
the subjects were required to identify were a control flow change, a data flow change, a relation
name change, and a change to an atom. The control flow change was either swapping the order of
facts, or the order of subgoals within a rule. The data flow change was either changing a variable
name or replacing a variable with a constant. The relation name change was replacing all
occurrences of the word “knows” in the program with the word “likes”. The atom change was
replacing all occurrences of “charles” within the program with “prince_charles”. If after exploring
one of the four visualizations for five minutes the subject pair had not spotted the change, they



were given the opportunity to move onto the next one. A post-test questionnaire was administered
to derive feedback on the SV and its role within the course. Subjects were asked questions as to
how useful they perceived the SV to be and how able they felt to use it. A record was also taken of
any previous programming experience the subjects had.

5 . 2 . Overall performance on the task
The mean number of problems solved by each subject pair in total are shown in figure 3. PTP
performed the best overall. The lowest success rate was found with the graphical TPM. There was a
significant main effect for SV, F(3, 28) = 3.260, p < 0.05.
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(tree text)

Figure 3. Mean number of problems completed within five minutes.

5 . 3 . Information
A preliminary analysis of the protocols identified the kinds of information referred to by subjects.
Three information types identified important differences between the SVs. These were control flow
information (CFI), data flow information (DFI) and SV related information (SVI). Control flow
statements may refer to the order in which events happen within the execution, the status of goals
within the program, or the clause number within the program with which a goal has unified. Data
flow statements either referred to bindings occurring within a goal or to the sharing of values
between variables contained in different goals. SVI utterances related to the navigation or notation
of the SV, usually relating to which button has to pressed or referring to some symbol within the
notation. A more detailed account of how the protocols were coded for information types can be
found elsewhere (Mulholland, 1995).
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Control Flow Information
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Software Visualization
Information (SVI)

Figure 4. Mean number of CFI, DFI and SVI utterances.

The means for CFI, DFI and SVI information by SV are shown in figure 4. CFI and DFI are
successful attempts to access information. SVI represents attempts to access information about the
SV rather than the program itself. Subjects accessed more control flow than data flow information
with each of the four SVs. By far the greatest number of utterances relating to understanding the



SV rather the program were found with TPM, which also had the least number of control flow and
data flow utterances.

As control flow and data flow are the more central information types to program comprehension, a
two way mixed ANOVA was performed on this data. This revealed significant main effects for SV,
F(3, 26) = 5.155, p < 0.01 and information type, F(1, 26) = 15.262, p < 0.01. A Tukey (HSD)
post-hoc comparison revealed significant differences between PTP and TPM (p < 0.05) and TTT
and TPM (p < 0.05). A one way analysis of variance revealed a significant main effect for SV
related utterances (SVI), F(3, 26) = 5.536, p < 0.01. A Tukey (HSD) post-hoc comparison revealed
significant differences between PTP and TPM (p < 0.01) and TTT and TPM (p < 0.05).

5 . 4 . Strategies
A preliminary analysis of the protocols identified the kinds of comprehension strategies used by
subjects. Five comprehension strategies showed interesting differences between the SVs. These
were review control flow (REVIEW CF), review data flow (REVIEW DF), test control flow
(TEST CF), test data flow (TEST DF), and mapping between the SV and the code (MAPPING). A
more detailed account of how the protocols were coded for strategy types can be found elsewhere
(Mulholland, 1995).

The strategy REVIEW CF denotes reviewing some or all of the previous steps in the control flow
in order to better understand the current state of the execution. A similar strategy was concerned
with reviewing previous changes in data flow in order to understand or explain all or any of the
current variable bindings (REVIEW DF). The mean occurrence of review strategies is shown in
figure 5.
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Figure 5. Mean number of control flow and data flow review strategies (REVIEW CF and
REVIEW DF).

The only SV to encourage data flow to be reviewed more frequently than control flow was TTT,
which is consistent with what the designers claimed (Taylor et al, 1991). Subjects using PTP
reviewed control flow and data flow to similar extents. Those using Spy and TPM had less review
strategies, with a strong bias toward control flow.
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Figure 6. Mean number of control flow and data flow test strategies (TEST CF and TEST DF).

A two factor ANOVA comparing the four SVs across the two review strategies revealed a main
effect for SV, F(3, 26) = 3.495, p < 0.05 and a significant interaction between SV and strategy,
F(3, 26) = 4.304, p < 0.05. Simple effects were found for the strategy REVIEW DF, F(3, 43) =



5.528, p < 0.01 and the SV TTT, F(1, 26) = 9.333, p < 0.01. A Tukey (HSD) post-hoc
comparison revealed a significant difference between PTP and TPM (p < 0.05).

Test strategies related to the prediction and testing of future control flow (TEST CF) or data flow
(TEST DF) states. When using this strategy the subjects would make some prediction as to a
future control flow or data flow state and then step forward to test their prediction. The distribution
of test strategies is shown in figure 6. All SVs showed more control flow test (TEST CF) than
data flow test (TEST DF) strategies. TPM subjects showed the least number of test strategies.

A two factor ANOVA comparing the four SVs across the two test strategies revealed a main effect
for SV, F(3, 26) = 3.253,p < 0.0378. A Tukey (HSD) post-hoc comparison revealed a significant
difference between PTP and TPM (p < 0.05).
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Figure 7: Mean number of MAPPING strategies.

Another strategy identified the mapping made between the SV and the program code (MAPPING).
Often it was not clear what level of understanding was occurring during the use of this strategy. In
its simplest form, the subjects could be just spotting a physical resemblance between some text in
the SV and some text appearing in the source code, rather than fully understanding the context in
which the information is being presented. The mean number of MAPPING strategies for each SV
are shown in figure 7. In contrast to relative distribution of review and test strategies, TPM showed
the greatest number of MAPPING strategies.

A one way analysis of variance of the distribution of the MAPPING strategy revealed a main effect
for SV, F(3, 26) = 5.656, p < 0.01. A Tukey (HSD) post-hoc comparison revealed a significant
difference between TTT and TPM (p < 0.01) and TTT and Spy (p < 0.05).

5 . 5 . Misunderstandings
A preliminary analysis of the protocols revealed four main misunderstandings of the SV. These
were: making an inappropriate mapping between the visualization and the program (MAPM),
deriving an incorrect model of either control flow (CFM) or data flow (DFM), or failing to
appreciate the stage within the execution being presented, referred to as Time Misunderstandings
(TM). A more detailed account of how the protocols were coded for misunderstanding types can be
found elsewhere (Mulholland, 1995). The mean number of misunderstandings per subject pair are
shown in figure 8.
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Figure 8. Mean number of each misunderstanding per subject pair.



MAPM (Mapping Misunderstanding) refers to when part of the program is compared in an
inappropriate way to a part of the SV. Essentially, this misunderstanding is an inappropriate
application of the MAPPING strategy described earlier. The MAPM misunderstanding occurred,
when either some part of the display and code were incorrectly compared because of some surface
similarity, such as the presence of a particular word, or conversely, when some part of the code and
display were thought to be unrelated because of some surface dissimilarity such as the use of
different variable names in the display.

CFMs (Control Flow Misunderstandings) resulted from either the subjects adopting an ad hoc false
interpretation of control flow which the SV failed to counteract, or an incorrect interpretation of the
SV which lead subjects to reject their correct model of control flow. Similarly, DFMs (Data Flow
Misunderstandings) tended to result from a disparity between the subjects’ assumption regarding
what should happen at some point in terms of data flow, and their interpretation of what the SV
was displaying. Once again, the origin of the misunderstanding seemed to be either the subjects
adopting an incorrect model of data flow on an ad hoc basis which the SV failed to counteract, or a
false interpretation of the display leading them to reject their correct assumptions.

Time misunderstandings (TM) were those resulting from a failure to appreciate the position in the
execution being shown at some particular point. For example, some subjects thought the SV was
faulty because a particular variable was unbound, though the stage of the execution at which it
becomes bound had not yet occurred.

Spy and TPM subjects exhibited the greatest number of misunderstandings, though differed in the
nature of the misunderstandings exhibited. Spy subjects showed a large number of control flow and
data flow misunderstandings. The misunderstandings of TPM subjects were largely time
misunderstandings. Some time misunderstandings were also noticed among TTT subjects.
MAPPING misunderstandings were noticed across all SVs.

A one way ANOVA of the total number of misunderstandings for each subject pair revealed a main
effect for SV, F(3, 26) = 3.669, p < 0.05. A Tukey (HSD) post-hoc comparison revealed a
significant difference between PTP and TPM (p < 0.05).

6 . INTERPRETING THE FINDINGS
The evaluation can be used to motivate the design principles of a new SV. The protocol evidence
can be used to identify successful features of the SVs studied, and areas where new design features
are required to support the user. Before the interpretation can begin, some agreement has to be
reached as to whether high or low ratings on various protocol measures is desirable. The
misunderstandings category is the most straightforward. Regardless of the domain, minimising the
number of misunderstandings is clearly a goal of the new design. Determining desirable levels for
information access and strategy utilisation requires a little more thought. It could be argued that a
large number of, for example, control flow utterances actually indicates that control flow is being
obscured in the display, leading to the endless repetition of the same fragments of information.
Similarly, subjects may make frequent but ineffective use of a particular strategy. Here, there are
no hard and fast rules, though looking for interrelations between the measures and the overall
performance on the task can give a good indication, as can careful consideration of the user
population and experimental task undertaken. In order not to detract from the flow of the paper,
further statistical analysis will not be given here, though a cursory glance through the results is
sufficient to indicate the more successful SVs showed high levels of information access and
strategy utilisation. The exception to this is access to Software Visualization Information (SVI)
which was detrimental to performance, as it led students to talk about the characteristics of the SV
rather than what it was showing them.



This correlation between information, strategy and overall performance can also be explained in
terms of the task and user population. The subjects had very limited expertise in Prolog. An
expert, having a model of what information is required in order to gain a good understanding of a
program, may track down obscure information. This would result in an inverse relationship
between how well a certain kind of information was presented and the number of related utterances.
This did not appear to be the case in the above study. Their use of the SV was more exploratory
and less goal directed. Additionally, the task, which was very characteristic of how an SV is used,
required the user to explore until they found something suspicious. This provides reasonable
evidence that the subjects were working with the information they could glean, rather than
searching for information they could not find. In summary, a future SV design should ideally
produce less Software Visualization Information (SVI) and misunderstandings, and more of the
other kinds of information and strategies. Four particular areas of the design will now be
considered.

First, it is important that there is a clear, simple mapping between the SV and the underlying
source code. The graphical TPM, which had the least affinity to the source code suffered as a result
with this early novice population. The MAPPING strategy helps the student to understand the
current state of the SV directly in terms of the program they wish to understand. It is though more
complex than just making the SV look like the code, as this could cause the student to map
inappropriately between the SV and code. This could be seen from the protocols, particularly with
the textual Spy and TTT displays. Although these SVs produced an output similar to the code,
there were insufficient safeguards within the notation to ensure the student did not just look
indiscriminately for a surface resemblance between the code and SV, which often lead to mapping
misunderstandings (MAPM). It is therefore important that as well as having a reasonable degree of
affinity, the notation encourages the student to compare the SV and code in way which involves a
reasonable degree of understanding.

The two areas where the correct mapping between the SV and the code must be particularly
emphasised is in terms of control flow and data flow. Evidence for this can once again be seen from
the protocol evidence of Spy and TTT subjects. With Spy, many of the mapping problems were
due to the subject failing to appreciate how the goal to be evaluated within the execution (as shown
in the SV) related to part of the program. The crucial information to help them in this was shown
in “UNIFY” lines within the display. These were largely misunderstood or even ignored by the
subjects. This is probably because they show execution details in a way which makes it hard to
relate to the source code. This lead to a number of related control flow and data flow
misunderstandings (CFM and DFM). Similarly, in TTT all information relating to this is placed at
the end of the line, when in fact this information is required in order to understand the goal which
is shown earlier in the line. It is therefore important that the goal and status information that
relates the control flow as shown by the SV to the code is emphasised to encourage correct
interpretation.

In terms of how to present data flow, a difficult design decision has to made. The SV can either use
variable names within the display that reflect data flow through the program (i.e. permeating high
level variable names through the execution), or they can use variable names that are faithful to the
source code (i.e. using variable names as they appear in local scopes within the program). TTT
used names related to data flow. This had its advantages as can be seen from the way TTT subjects
were able to review data flow events (REVIEW DF) presented by the SV. This though had its
down side, in the occurrence of data flow and mapping misunderstandings, due to different variable
names appearing in the SV and the code. An improved design should present program data in way
which allows the student to appreciate the pattern of data flow through the execution, but also
helps the student to associate this information with the actual variable names appearing in the
program.



A further issue that can be identified from the protocols is the tendency of time misunderstandings
to occur in the protocols of TPM and TTT, though not Spy and PTP. This is because Spy and
PTP develop in a linear way, the number of lines on the display giving the subject a clear
indication of how far the execution had progressed. TPM on the other hand has a definite tree shape
which remains throughout the execution, giving no obvious clues as to what stage of the
execution has been reached. Similar problems were found for TTT, which although is textual
develops nonlinearly by moving up the display to overwrite or insert new information. The results
suggest that for a novice population, it is important to give a very straightforward temporal
perspective on the execution.

Finally, even subjects using PTP, which performed reasonably well, still revealed certain
misunderstandings of the execution, with regard to mapping inappropriately between the SV and
the code (MAPM) and data flow misunderstandings (DFM). Almost without exception these
occurred during backtracking sequences during the execution which is when, on failure, the
execution moves back to an earlier goal to see if it can be achieved in an alternative way. A new
SV design should be able to clearly represent backtracking phases of the execution in way which
avoids misunderstandings.

In summary, the new design must focus on supporting the user in:
1) mapping between control flow information in the SV and the code;
2) mapping between data flow information in the SV and the code;
3) gaining a clear temporal perspective of execution within the SV;
4) keeping track of control flow even during complex phases.

7 . DESIGNING A NEW SOFTWARE VISUALIZATION
A number of SVs were designed using these motivating principles. For this case-study an SV
called Plater will be considered, as this was the first SV to emerge from the design criteria and has
itself been evaluated. The relation between Plater and the interpretation above is illustrated in table
1 and figure 9. The interpretation of the findings suggests four issues which the new design needs
to address. These are: (i) supporting an effective mapping between the SV and the source code, (ii)
presenting data flow in a way which remains faithful to the source code, (iii) providing a clear
perspective on the execution history in a way which allows students to understand what has already
happened, what is currently happening, and what is about to happen, and (iv) clearly showing how
the execution resumes when a goal fails. These four issues and how each are tackled in the Plater
design will be considered in turn.

First, the issue of helping the mapping in terms of control flow was tackled by emphasising the
information relating to the status of each goal and how that relates to the code. This was done by
moving this information to the beginning of each line. This should encourage students to take note
of it before moving onto analysing the goal itself. The intended outcome of this change is a
reduction in the number of mapping misunderstandings (MAPM). These misunderstandings tended
to arise when the subject lost the context for a goal shown in the SV which led to an inappropriate
mapping being made between the SV and code. This change should also increase access to control
flow information, and its utilisation in comprehension strategies. In figure 9, “Decision 1” shows
how in line two of the visualization, the information that the first clause has been entered is shown
near the beginning of the line. This is true of all lines in the visualization which relate to a goal.

Second, it is important that the SV presents data flow information in way that does not prevent the
user from mapping to the variables as shown in the program. This is dealt with in Plater by the
use of “textual lozenges” whereby the left variable in each lozenge reflects data flow and the right
variable is faithful to the underlying source code. In figure 9, “Decision 2” shows how the top
level variable “B” is permeating through the execution, and is related to variable “Z” within the
scope of the rule. Presenting both the data flow and code faithful variables in context is intended to



reduce the mapping and data flow misunderstandings and replace these with effective mapping and
data flow strategies.

Design goal Design decision Desired effects
Reduce Increase

Support effective
mapping of control
flow information to
the code

Status information
before term

Mapping
misunderstandings
(MAPM).

Control flow
information access
(CFI) and strategies
(REVIEW CF and
TEST CF).

Support effective
mapping of data flow
information to the
code

Textual lozenge Mapping (MAPM)
and data flow
misunderstandings
(DFM).

MAPPING and data
flow related strategies
(REVIEW DF and
TEST DF).

Provide a clear
temporal perspective
of program execution

Linear development Time
misunderstandings
(TM)

Control flow
information access
(CFI) and strategies
(REVIEW CF and
TEST CF).

Support the
comprehension of
control flow even
during complex
phases

Choice-point model Control flow (CFM)
and mapping
(MAPM)
misunderstandings

Control flow
information (CFI)
and mapping strategy
(MAPPING)

Table 1. Plater SV design summary, showing design goals, design decisions and their intended
effects.

• ?  grandparent(A, B)
• >1 grandparent({A=X}, {B=Z})
•   ?  parent(A, Y _1)
    «1 parent({A ≠tom}, {Y _1≠liz})
    ?  parent(liz, B)
    -m parent(liz, B)
    ^^^^^^^^^^^^^^^
•   *2 parent({A=pam}, {Y _1=bob})
•   ?  parent(bob, B)
•   +3 parent(bob, {B=ann})
• +1 grandparent({A=pam}, {B=ann})

Textual lozenge relates data 
flow to the underlying code

Linear development 
down the display

Status information at the 
beginning of the line

Special symbols used 
to show choice-points

Decision 1

Decision 4

Decision 2

Decision 3

Figure 9. Plater visualization of the grandparent program (figure 10) with the design decisions
identified.

Third, a clear indication of how far through the execution the SV has progressed is illustrated by
the length of the display produced by the SV. Each event with the execution causes the SV to
extend by one line. This should ensure that the students are not prone to time misunderstandings,



and can appropriately access and utilise control flow information. Students should also be more
able to apply test strategies. Clearly, the application of test strategies will be inhibited if students
are unclear as to what is the current state of the execution.

parent(tom, liz).
parent(pam, bob).
parent(bob, ann).
grandparent(X, Z) :-

parent(X, Y),
parent(Y, Z).

Figure 10. The grandparent program.

Fourth, an attempt to tackle the problem of encouraging a correct understanding of control flow
during backtracking was done by adopting a choice-point model of execution (explained in Byrd,
1980) which shows explicitly how the execution will backtrack, should the current execution path
fail. A choice-point execution model can be thought of as finding a route through a maze. When
alternative paths are available, this is marked as a choice-point. Should the current path fail, the
search continues by returning to the choice-point and taking another available path. Within Plater,
four notational conventions are required to show the choice-point model. In figure 9, “Decision 4”
identifies these. The important concepts required for a choice-point model are a knowledge of
available choice-points, choice-points that have been “used-up”, points of failure and steps of the
current successful path. These are shown in Plater as *, «, ^^^^^^^^^^^^^^^ and • respectively. If this
design decision is successful, the occurrence of control flow and mapping misunderstandings during
complex control flow sequences should reduce and be replaced with effective control flow and data
flow strategies. The next section presents an evaluation of the extent to which the fine-grained
approach succeeded in producing an improved SV design.

8 . EVALUATING THE NEW SOFTWARE VISUALIZATION DESIGN
The evaluation and design process has allowed us to describe and design key features of the new SV
in terms of the cognitive events they are intended to help or hinder. Specifically the process
considers how notational constructs help or hinder the access of information, the utilisation of
strategies, and the occurrence of misunderstandings. To illustrate the case, this section will present
a further study which compared Plater against PTP from the previous study, using the same
experiment presented earlier. The results of the evaluation are shown in table 2. Not only did
students using Plater perform better on the task but also a trend in the predicated direction was
found for the cognitive events, some of which were statistically significant. In particular students
using Plater spent less time deciphering the SV notation (shown by a reduction in Software
Visualization Information). Plater subjects were also more able to apply a Review Data Flow
(REVIEW DF) strategy than students using PTP. The Plater students also had less
misunderstandings of the SV.

This illustrates how a fine-grained evaluation can motivate a far more informed approach to design.
The reason for its success is that systems are not just compared with the aim of finding “which is
best” but also “why”. This helps the designer to make the elusive link between features of the SV
and their consequences in terms of how the system is used and understood.

The results are particularly pleasing as PTP was a good SV tool in its own right. Even though, the
evaluation and design process made further gains in the form of Plater. The detailed interpretation
of these findings is beyond the scope of this paper. Such an interpretation would address whether
the non-significant trends indicate that, for example, the access of control information is now
adequately supported, or whether further improvements can be made on the Plater design. The next
section considers the contribution of this methodology and compares it to some other evaluation
techniques.



Plater PTP Significance (T-Test)
Overall Performance 3.875 2.875 < 0.05 (t = 2.69, df = 14)
Control Flow Information 26.88 26.38 N.S.
Data Flow Information 18.88 11.75 N.S.
Software Visualization
Information

1.75 3.5 < 0.05 (t = -2.41, df = 14)

Review Control Flow 2.00 1.00 N.S.
Review Data Flow 4.38 1.50 < 0.01 (t = 3.05, df = 14)
Test Control Flow 4.88 3.50 N.S.
Test Data Flow 2.38 1.50 N.S.
Mapping 6.00 3.75 N.S.
Misunderstandings 0.25 1.22 < 0.05 (t = -2.49, df = 14)
Table 2. A comparison of Plater with PTP across the key protocol measures.

9 . COMPARISON WITH OTHER EVALUATION METHODS
The methodology appeared to serve its purpose of providing a fine-grained account of the
performance of subjects, succeeding in identifying information access, strategies, and
misunderstandings in the protocols. It was hoped that this kind of approach would be able to offer a
justifiable explanation as to the reasons why subjects performed to the level they did when using
the various SVs, as well as motivate improved SV designs. The approach identified important
problems subjects have when using particular SVs, which were able to directly feed into ways in
which the SV could be enhanced. This led to a new design, which could be described not only in
terms of the notational conventions it used but also in terms of the changes in information access,
strategy utilisation and misunderstandings, it was intended to produce. The new design could be
evaluated itself, allowing lessons learnt in successive designs to feed directly into the next
generation.

This approach to evaluation and design is intended to be complementary to other established forms
of evaluation. Traditional empirical techniques (considered in section 2) have been the most
common form evaluation technique within this area, though are often difficult to interpret in terms
of the cognitive impact of the system. A very promising technique is the analysis of Cognitive
Dimensions (Green, 1989; 1990), which has been used to describe a 3D graphical representation of
Prolog (Ford, 1996) as well as visual programming languages (Green and Petre, 1996). A
Cognitive Dimension analysis takes the form of a “thought experiment” by which the designer of a
system can evaluate the interface and notation in terms of where it can be placed along various
Cognitive Dimensions. Cognitive Dimensions were developed with the aim of providing a
vocabulary by which a system can be described in terms of how it supports the user in the
cognitive task being undertaken. An important feature of the dimensions is that they can be applied
across a wide range of notations and are independent of what task the notation is used to perform. It
was envisaged that within the field of programming, the dimensions could also be used to identify
what role support tools (such as SVs) do and could play within programming activities such as
comprehension and debugging. In common with the analysis described above, Cognitive
Dimensions aim to span the gap between the system being used and the cognition of the user.
Great advantages of the Cognitive Dimension approach are that it is very accessible to non-HCI
practitioners, and takes and afternoon of contemplation, rather than the weeks or months that can
be devoted to empirical evaluations.

The fine-grained approach to evaluation and design presented in this paper can be seen to have a
specific niche: areas where either not enough is known about the domain for traditional empirical
studies to be interpreted satisfactorily, or where a Cognitive Dimensions analysis could be
supported by empirical evidence from a cognitive perspective. The fine-grained approach could be



used to find out how the notational constructs of the SV impact on the cognition of the user. This
knowledge could be used to support the designer in a Cognitive Dimensions analysis.

This is related to the role Green and Petre (1996) envisage for Cognitive Dimensions within the
evaluation of visual programming languages. They see Cognitive Dimensions as being supported
by a Programming Walkthrough. Lewis, Rieman and Bell (1991) showed how a Programming
Walkthrough could be successfully used to evaluate the ChemTrains visual programming system.
The Programming Walkthrough technique works by finding out how some programming problem
could be solved using the system, looking at how the solution path was facilitated and constrained
by the system. A particularly valuable aspect of the Programming Walkthrough technique is the
use of a clear design rationale to capture the design alternatives that emerge from each evaluation
stage. A future version of the fine-grained evaluation and design process should certainly include a
more formal approach to capturing design alternatives.

The fine-grained evaluation and design process is though particularly suited to the evaluation of
tools intended to support visualization rather than programming. A Programming Walkthrough
requires a programming problem to be solved using the system. Visualizations are intended to
support the user in finding out something they do not know. It is therefore more difficult to pose a
concrete problem, or envisage the solution paths taken, as can be done in a programming exercise.
The fine-grained approach could therefore play an important role along side Cognitive Dimensions
in the evaluation of visualization tools.

1 0 . GENERALIZABILITY OF THE METHODOLOGY
So far the methodology has been successfully applied to the evaluation and description of Prolog
SVs providing a rich account of the problem solving behaviour in a way which can motivate
design improvements. As yet it cannot be said categorically to what extent the methodology would
apply to other domains though some predictions can be made.

It can be confidently expected that, with minor modification, the fine-grained approach using the
concepts of information, strategy and misunderstanding, could be applied to the evaluation and
design of SVs for other programming languages. When using an SV for any programming
language, program related information will be accessed from the display. Key information types
such as control flow and data flow can be expected to have a central role when comprehending
programs in any language, though some modification of the information types would be necessary.
Also, the student or programmer would adopt strategies to help assimilate information from the
display. This process will draw on their knowledge of the program in question and their background
knowledge of the language. Types of reviewing, testing and code mapping strategies would be
expected in most languages, though some new strategies may be encountered. The
misunderstandings categories would be the most language-dependent of the three as they are closely
related to the particular difficulties that the language poses.

It seems feasible that the basic structure of the methodology could be applied to other problem
solving domains which involved monitoring a complex process by using one or more
representations of its behaviour. One interesting extension to the work would be to apply the
methodology to the evaluation of the displays used to monitor process control systems. Work has
been done into how operators are able to access and use information in process control scenarios
(Rasmussen and Rouse, 1981). In this setting, as in using SV, the user is required to access and
assimilate information from a number of sources. A protocol-based approach could be used to
determine what kinds of information are accessed and from which sources. Second, the user will
adopt strategies to guide which information should be accessed, to help make sense of it, and to
check for consistency between the various sources and the users' own assumptions. Research has
also looked at the kinds of fault-finding strategies used by process control operators, and how
appropriate strategies can be trained and supported (Duncan, 1985). Third, within a process control
setting the users are still prone to misunderstandings or false beliefs as to the functioning of the



system (Duncan, 1987) sometimes with dire consequences (Kemeny, 1979). These forms of
misunderstanding (which accident reports often refer to as “human error”) could also be identified
using a protocol-based approach. The results of the evaluation may be able to motivate
improvements to current process control displays and operator practices, as has been possible with
the SVs described above.

In summary, the methodology in principle, could be used to evaluate and design the external
representations of any complex, dynamic system. The issue is the extent to which the approach
presented would have to be tailored to fit the new domain.

1 1 . CONCLUSIONS
The fine-grained evaluation and design approach used in this study provided a detailed account of
user behaviour in terms of (i) information accessed from the display, (ii) the use of comprehension
strategies, and (iii) the occurrence of misunderstandings. This approach took the empirical analysis
beyond the point of finding out whether SV was helpful or which SV was best for some particular
task. The protocol evidence illuminated why students using each SV performed as they did.

This fine-grained account was able to directly motivate a set of design goals for a SV suitable for a
novice population. Each design goal could be explained in terms of which types of information,
strategy and misunderstanding the design goal was intended to encourage or reduce.
Each design goal formulated was used to support a design decision for a new SV intended for a
novice population. The new SV, called Plater was found in a further study to be a more effective
educational aid for novices than those previously analysed. This was borne out in protocol evidence
as well as overall performance measures. This illustrates how a fine-grained approach to evaluation
and design can successfully motivate design improvements.

The fine-grained approach still needs further work. Two important directions in which the work
should progress is to further strengthen and formalise aspects of the process, particularly by
incorporating a notation with which the design rationale can be captured. Second, the approach
needs to be applied to other domains, both inside and outside the computing field.
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