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Abstract: 
Parallel-plates based micro-tunable capacitors are known to have low travel range, which worsen as going 
even lower in terms of their initials gap sizes. Such conditions have put strict requirements on the operation 
of such designs and hence hindering their use in numerous practical applications requiring high tunability. 
This work is proposed to examine the possibility to implement a closed-loop control strategy to increase 
the maximum capacitance and therefore tunability of micro tunable capacitors. The suggested control 
strategy is implemented on an electrostatically actuated parallel-plates (one stationary and one movable) 
based micro-capacitor and had an objective to stabilize the movable electrode when it is close to the fixed 
one for the sake of maximizing its maximum capacitance and possibly improving its overall tunability. 
Robustness of the micro-capacitor to the so-called pull-in phenomenon (short-circuit instability) when 
using the closed loop control scheme is studied. Indeed, an adaptive sliding mode controller is designed to 
compensate the effects of uncertainty, disturbance and eliminate any possibility for chattering phenomenon. 
The controller proficiencies in terms of stabilizing the micro-capacitor and its robustness to uncertainty as 
well as disturbance have been thoroughly examined. Furthermore, the effects of the control parameters on 
the behavior of micro-capacitor, such as overshoot, settling time, steady state error, robustness to 
uncertainty, external disturbances and to the chattering phenomenon, have been completely inspected. The 
obtained results indicated satisfactory proficiency and trustworthiness of the proposed control strategy to 
achieve high level of tunability and maximum capacitance. 
Keywords: micro tunable capacitor, tunability, capacitance, sliding mode control, uncertainty 

 

1. Introduction 

Micro-tunable capacitors are miniature micro-sized structures that find various applications 

ranging from wireless systems to even high frequency-based circuits. They have attracted the 

attention of several researchers resulting into the publication of a significant research work [1-5] 

mainly devoted into considering these tiny structures in the design of numerous devices such as 

voltage control micro-oscillators [6, 7], micro-filters [8-10], super-heterodyne micro-transceivers 

[11], etc… 

Tunability represents one of most important characteristics for micro-tunable capacitors, which is 

mainly be governed by the difference between their respective maximum and minimum 

capacitance values. The more the maximum capacitance is accomplished, the higher the tunability 

is. Microelectromechanical (MEM) parallel-plates based micro-capacitors have been widely used 
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in communication transceivers [5] owning high tunability because of numerous reasons: the ease 

of implementation as simple tuning mechanisms, their low area consumption, their high quality 

factor and straightforwardness in their fabrication. Indeed, there are three major techniques to 

possibly increase the tunability of parallel-plates micro-capacitors:  

 Regulation of the electrodes initial gap distance [12-14],  

 Optimization of the effective actuated parallel-plates area [15, 16], and  

 the dielectric displacement method [5, 17].  

The above techniques are not commonly successful in increasing the overall maximum capacitance 

or even in reducing the minimum capacitance to certain optimized levels mainly due to the 

presence of the pull-in phenomenon (short-circuit instability) in electrostatically actuated parallel-

plates based micro-capacitors [18, 19]. Therefore, for such case, modifications are principally 

made on the mechanical structure of the micro-capacitors [20-25]. Most of these modifications are 

essentially implemented to withstand the pull-in instability but in most cases, these revisited 

designs complicate their fabrication processes and cost, create residual stress, and therefore may 

reduce the overall system reliability [23]. Furthermore, the existence of uncertainty in the 

fabrication and characterization of MEM devices in addition to the presence of noise/disturbance 

represent major contributors in reducing the performance of such micro-sized devices [26].  

Attracted by the above observations, the utilization of closed loop control strategies to reduce and 

even compensate the effects of uncertainties and disturbances for the characterization of MEM 

devices have shown to be successful in increasing their efficiency [27-33]. Moreover, considering 

the importance of micro-tunable capacitors, several works [27-31] proposed numerous closed-loop 

control strategies to improve their efficiency and possibly increase their tunability and tuning ratio. 

An original way to increase the tunability for parallel-plates based capacitor is through using a 

nonlinear controller to operate its movable electrode very close to its lower stationary actuating 

electrode without experiencing the pull-in instability. Such scenario results into a drastic increase 

in the maximum capacitance and therefore increase in the capacitor tunability. But it is worth 

mentioning that the above control strategy is very challenging and somehow practically impossible 

as the applied voltage difference assumed between both movable and stationary electrodes depends 

a lot on the position and the velocity of the movable electrode in addition to the design uncertainties 

and external perturbations. The sliding mode strategy, which has been considerably considered in 



controlling numerous nonlinear systems [34-40], represents an efficient control process that is 

somehow robust to uncertainties and external disturbances.  

This work focuses on designing an adaptive sliding mode controller, derived based on the 

“Lyapunov” theory, to possibly compensate the effects of uncertainty, disturbance, chattering and 

control of the pull-in instability in parallel-plates MEM based capacitors. This work aims to reveal 

the richness and proficiency of the suggested controller in increasing the capacitor tunability as 

well as maximizing its overall maximum capacitance will been analyzed in the presence of 

uncertainties and disturbances. Moreover, alterations of the control parameter (the applied voltage) 

and the effect of the control parameters on the micro-system behavior will be examined. To this 

end, this research manuscript is organized as follows: Next section overviews the theoretical model 

used to design the adaptive sliding mode controller. Section 3 summarizes the electro-mechanical 

model adopted to capture the dynamic behavior of a parallel-plates based micro-sized capacitor. 

The dynamic behavior of the un-controlled and controlled MEM capacitor is first solved and then 

discussed in Section 4. Finally, Section 5 presents the summary of concluding remarks of the 

results for this work.  

2. Adaptive Sliding Mode Control Strategy: 
In this section, an extended design of the sliding mode controller is suggested based on a former 

control approach proposed by Aghababa and Akbari [41]. Indeed, in theory work [41] they have 

presented a methodology to design an adaptive sliding controller to mitigate unwanted high 

responses in nonlinear systems. For controlling such systems, an independent input needs to be 

controlled at each state and at a given error. They considered a sliding surface to be governed by 

the following state equation: s e : where the parameter s  represents the sliding surface, e  

represents the error and   symbolizes a positive number. Knowing that the dynamic equation of 

a parallel-plates based capacitor has someway differences with the dynamic nonlinear system 

presented in [41], their methodology cannot be applied accordingly without few revisions. 

Therefore, we intend next to extend the method described in reference [41] to design an adaptive 

sliding mode controller for the following state-space dynamical system: 
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where: x , u , and t  represent respectively the state, input, and time variables. The parameter 

 ,f x t  and  ,g x t  are non-linear functions, that satisfy the Lipchitz condition [42]. The functions 

 ,F x t  and  d t  denote both the uncertainty and disturbance conditions. For the case of the 

dynamical system governed by Eq. (1), the following design conditions:  ,F x t    and 

 d t   where   and   are both positive values, are considered. If the purpose of the designed 

control is to track a desired path of dx  for the dynamical variable  1x t , the system dynamic error 

can be defined as 1 1 de x x  . The considered controller is intended to force the dynamic response 

wave  1x t  to follow a desired wave dx , or, in other words, to make sure the system dynamic 

error 1e  wave converges to a small value. Considering this definition and assuming that the 

dynamic error will be governed by the following system of equations: 
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Since, there is not any independent input to control the dynamic error wave 1e , thus, unlike what 

is suggested in reference [41], the sliding surface for this work will be considered to mimic the 

following equation: 1 1ss e k e  , where sk  is a positive number. Actually, this choice is intended 

not only to control and stabilize the error wave 1e  , but also to guarantee the controller's stability 

and the convergence of the dynamic response wave to the desired path dx . In addition, if the input 

wave function u  is defined as in the below Eq. (3), the controller's stability will be guaranteed and 

the dynamic response convergence will be also assured (proof of stability in Appendix A). 

(3) 
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where ˆ 0   and ˆ 0   are two positive adaptive parameters used for the adaptation of the 

uncertainty and disturbance functions, respectively. The parameters 0   and 0   are similarly 

two positive adaptation coefficients to tune the system gain and the abruptness of the “tanh” 

function, respectively. The previously mentioned adaptation parameters are updated using the 

following adaptive laws: 
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where p  and q   are both positive values, and the values 0̂ , 0̂ , 0 , and 0  represent initial 

values for updating the parameters of ̂ , ̂ ,  , and  . 

 

3. Parallel-Plates Micro Capacitor Electro-Mechanical Model: 
In this section, the electro-mechanical model of a micro-sized parallel-plates based capacitor is 

overviewed. The top-view microscopy image and a side-view simple 2D schematic view of the 

considered capacitor are both shown in Fig. 1a and 1b, respectively. In the simple 2D schematic 

of Fig. 1b, the movable (upper) and fixed (lower) electrode are displayed. Figure 1a represents the 

top view of micro capacitor where it shows the upper movable electrode. The initial gap distance 

between the upper and lower electrodes is symbolized as 0G  and V  denotes the applied voltage 

between both electrodes. The applied voltage causes an attractive force that pushes the moving 

electrode toward the stationary resulting into a reduction of the initial gap distance between the 

two electrodes. This decrease of the initial distance increases according the capacitance and, 

consequently, increases the micro-capacitor tunability. 

  
(b) Side-View (a) Top-View [43] 

Fig. 1. (a) Top-View and (b) Side-View Schematics of a tunable parallel-plates based capacitor. 

 

As shown in the top-view of Fig. 1a, the movable electrode is suspended with four thin arms. 

Consequently, the overall equivalent stiffness of the suspended electrode system is 4eq armk k  . 



Each arm stiffness is equal to 312armk EI L , where E , 3 12I bh , and L  represent the Young’s 

modulus of elasticity, the cross-sectional moment of inertia, and the arm length, respectively, and 

b  and h  are both the width and thickness of each arm, correspondingly. For simplicity, we 

assumed that the thickness of all four arms is the same as the thickness of the movable electrode 

and all are made of homogeneous material with mass density  . 

The governing dynamic equation of the moving electrode without considering uncertainties and 

external disturbances can be simply written as follows: 
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where m , c , and A represent mass, damping coefficient, and the cross-sectional area of the 

moving electrode, respectively. In the above equation, the forcing term  
22

0 02AV G z   denotes 

the attractive electrostatic force between the moving and fixed electrodes where 0  symbolizes the 

permittivity of the vacuum and z  indicates the relative displacement of the movable electrode with 

respect to the fixed one. Considering the following normalizing variables:  
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Eq. (5) can be simplified in a dimensionless form as follows [43]: 

(7) 
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where t  denotes the dimensionless time.  

Next, assuming the following state-space variable 1w x  and 1 2w x x  , and considering the 

presence of uncertainties and external disturbances designated by the following functions:  

 ,F x t  and  d t  , respectively, Eq. (7) can be re-written in a state-space form as follows: 
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(8) 

The above equations represent the dynamic equation of tunable micro-capacitor in a standard form 

like the one in Eq. (1) and taking into consideration the uncertainties and disturbances effects. 

Next, assuming 2u V  to be control parameter, and considering the state error as 1 de x x  , the 

dynamic equation governing the error can be simply derived as follows: 1 2d de x x x x    . 

Besides, the governing dynamic equation of error can be therefore expressed as: 
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(9) 

Assuming the above equation, the control law can be obtained easily using eq. (3). 

 

4. Results and discussion: 
In this section, the obtained results and relevant discussion will be succinctly presented and 

discussed. The coming first batch of results are based on neglecting the uncertainties and 

disturbances. The Physical and geometric properties of the simulated micro-capacitor are 

summarized in Table 1.  
Table 1. Physical and geometric properties of the micro tunable micro-capacitor. 

 
Properties Value 

Area of movable electrode (S) 400 400m m   
Thickness of each arm (h) 2 m  

Thickness of movable electrode 
(h) 

2 m  

Length of each arm (L) 200 m  
Width of each arm (b) 5 m  
young's modulus (E) 169GPa  
Initial gap size ( 0G ) 3 m  

Mass-density (  ) 
32300kg

m
 

 
 

4.1. Control of micro tunable capacitor without considering of uncertainties and 

disturbances  



As a first case, we consider the case of 0.95dx  , and the control parameters were all assumed as 

follows: 0.1sk  , 0 5  , 0 50  , 1q  , and 1p  . The results of Fig. 2 are only for 

demonstration purpose and only to show the capability of the controller to regulate the dynamic 

response of the micro capacitor. Figures 2a-2g show the time history variations of the micro-

capacitor displacement, the system dynamic error, the micro-system capacitance, the applied 

voltage, as well as the variations of the adaptation coefficients (  and  ), respectively for a 

tracking  value of 0.95dx  . As shown in Figs. 2a and 2b, the movable electrode is exactly placed 

at distance of 0.05 m  from the fixed electrode and the corresponding dynamic error converges to 

zero at the steady-state. In addition, Fig. 2c shows the maximum capacitance of the micro-capacitor 

reaching a value of  129.44 10 F . Given the fact that the calculated minimum capacitance for 

this case is around  1447.22 10 F  and using the following  relationships to compute the respective 

values of the capacitor tunability and tuning ratio as follows: max min

min

Tunability 100%C C
C


   and 

max

min

Tuning_Ratio 100%C
C

  , they were both found to be equal to 1900%  and 2000% , 

respectively, demonstrating significant values. The minimum capacitance for this micro capacitor 

is fixed and it is equal with 1447.22 10 F  but with the help of presented method the minimum gap 

between two electrodes can reach to 0.05 m  and consequently the maximum capacitance can 

reach to value of 129.44 10 F . The micro-capacitor voltage time-history variation is presented in 

both Figs. 2d and 2e. As shown in Fig. 2e, the applied voltage starts to decrease from 25.3 Volt 

reaching zero around 62.97 10 s   , then around 52.42 10 s    it starts again to increase 

reaching a value of  1 Volt to then smoothly decreases again and remains equal to 0.5 Volt at 

the steady-state. Moreover, the time-history variations of the adaptations coefficients   and   are 

shown in both Figs. 2f and 2g, respectively. As it is evident from the obtained curves, both 

parameters decrease with time and when reaching 52.34 10 s    they both attain their respective 

steady-state values denotes by: 49.87ss   and 4.87ss  . As seen from all the results of Figure 

2, with the advantage of the controller, the micro-capacitor was able to track the mentioned path 

with relatively acceptable proficiency. But it is worth mentioning here that because we considered 

in this case, the distance between the two electrodes to be considerably small, the effects of 



dispersion forces such as the Van der Waals and Casimir forces can be reasonably noticeable and 

such disturbing forces may cause to premature dynamic pull-in instability. These forces are often 

not considered in the mathematical modeling of micro-systems, but these forces are considered in 

the modeling of nanostructures and play an important role in the dynamical behavior of 

nanostructures.  

In addition, any overshoot in the response of the micro-capacitor may cause as a premature 

dynamic pull-in as well. In the rest of this section, it will be shown that changing any of the  

controller parameters may cause an overshoot in the system response. Therefore, and in order to 

avoid any pull-in phenomenon, in the rest of this investigation the desired path will be restricted 

to values not exceeding 0.9.  

 

  

Fig. 2a) variation of 1x  versus time  Fig. 2b) variation of 1e  versus time  

 

  
Fig. 2c) variation of C  versus time  Fig. 2d) variation of V  versus time  
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Fig. 2e) Zoomed view of Fig 1d Fig. 2 f) variation of   versus time 

 

 
Fig. 2 g) variation of   versus time 

Fig. 2) obtained result for control of the micro tunable capacitor considering 0.95dx   

 

 

The relevant results of 1x , 1e , c , V  for the tracking of the different values of dx  are shown in 

Figs 3a-3e. As demonstrated by Figs. 3a and 3b, an overshoot is observed in the behavior of 1x  

and 1e , but for higher values of dx , the level of overshoot significantly decreases. Such overshoot 

can also be seen in the variation of capacitance. The amount of applied voltage versus time is also 

shown in Figures 3d and 3e. For the time interval of 6 53 10 2.4 10s s     , the voltage level 

reaches zero. As exposed in Fig. 3d, the initial voltage level for all dx  except 0.2dx   is about 

25 V and as time elapses, it reaches zero. By increasing dx  the amount of applied voltage, reaches 

zero at higher time. Also, according to Fig. 3e, for 52.4 10 s    and smaller dx , more voltage is 

needed and this voltage reaches its peak at a later time. 
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Fig. 3b) variation of 1e  versus time for different 

values of dx  

Fig. 3a) variation of 1x  versus time for different values 

of dx  
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The maximum capacitance, tunability as well as tunning ratio for different values of dx  are 

summarized in Table 2. As it is clear from the table that a relatively high value of tunability is 

reachable by means of active control as well as utilization of proposed adaptive sliding mode 

controller.  

 

 

 

Table 2. The acquired level of maximum capacitance, tunability, as well as tunning ratio for different values of dx  

by application of proposed controller ( 13
min 4.72 10C F  ) 

 0.2dx   0.4dx   0.6dx   0.8dx   0.9dx   

max ( )C F  135.90 10  137.87 10  1311.81 10  1323.66 10  1347.10 10  
tunability  25.01%  66.69%  150.11%  401.06%  897.45%  

tunning ratio  125.01%  166.69%  250.11%  501.06%  997.45%  
 

 

 

 

In the following, we propose to examine the behavior of the system for different values of sk , 

, and  . Variations of 1e , C , and V   have been plotted in figs. 4a to 4d for 0.2dx   and different 

values of sk . As shown in Fig. 4a, the overshoot level increases significantly with increase of sk , 

but the error converges to zero, in less time. But as shown in this figure, settling times are in the 

order of  40.5 10 s  and 41.5 10 s   for 1sk   and 0.1sk  , which are both very small magnitude 

and for 0.1sk   capacitor has a enough quick response; so, for this case, overshoot should be 

considered 0.1sk   or 0.2sk  . It is worth noting that an assumed higher overshoot increases the 

collision possibility between two electrodes, as is apparent from this figure, for 1sk   a movable 

electrode is at the threshold of contact with the fixed electrode. 

Similarly, time dependent capacitance changes are shown in Fig. 4b. As can be seen from this 

figure, the overshoot level for capacitance is higher than the overshoot generated in the error of 1e

, and it shows the more sensitivity of capacitance to sk . In addition, the values of applied voltage 



are plotted in Figures 4c and 4d. As it can be seen, the initial applied voltage is about 25 V for 

0.2sk  , but for 515 10 s   , this value is the same for all modes. 
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The results for different values of   and 0.2dx   are subsequently plotted in Fig. 5a-5d. As 

shown in Figs. 5a and 5b, an increase of   causes an increase of the overshoot, the control error, 

the capacitance, as well as the system settling time. In addition, according to Fig. 5c, it is clear, 

that the initial value of voltage increases with the increase of  , but a relatively higher voltage is 

reaching zero in shorter time. Additionally, for 42.5 10 s    no significant change in the voltage 

can be observed, furthermore the voltage level for different   and 43 10 s    tends to 4.06 V . 
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Therefore, given that the increase of   causes to increase in overshoot and initial voltage, it is 

suggested to use less value of   (e.g. 1  ) in the controller design. 
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The diagrams of 1e  and the capacitance changes assuming an 0.2dx   and for different values of 

   are presented in Figures 6a and 6b. As seen from these plots, any increase of   causes 

systematically an increase of the overshoot, the controller error signal, as well as its capacitance. 

Moreover, an assumed applied voltage of 5000   is shown in Fig. 6c and 6d. As can be seen 

from the figures, a chattering phenomenon is formed for the interval of 42.52 10 s   . In fact, 

as   increases, the approximation of    tanh s sign s   becomes more accurate and for higher 
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values of   there is discontinuity around 0s  , which causes a sharp switching at the sliding 

surface and creates chattering consequently. 
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The capacitance and 1e  diagrams are demonstrated in Figures 7 and 8 assuming 0.6dx   and 

0.9dx  . The figures show that an increase in   in addition to an increase of the overshoot causes 

consequently an apparition of a steady state error in the system. In addition,  for higher values of  

an assumed dx , the level of the steady state error becomes more noticeable. Therefore, for higher 
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0 1 2
x 10-4

4

5

6

7

8

9

10

x 10-13

Time (s)

C
ap

ac
ita

nc
e 

(F
)

 

 

 = 50
 = 500
 = 5000

0 1 2 3 4
x 10-4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

e 1

 

 

=50
=500
=5000

3.2 3.4 3.6 3.8 4
x 10-5

0

5

10

15

Time (s)

A
pp

lie
d 

V
ol

ta
ge

 (V
)

0 1 2 3 4
x 10-5

0

5

10

15

20

25

30

Time (s)

A
pp

lie
d 

V
ol

ta
ge

 (V
)



probability of occurrence of the chattering phenomenon. For this, it is suggested to use the 

following value of 50  . 
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4.2. Robustness assessment of controller in the presence uncertainties and disturbances  

 

As a continuation of this investigation, the robustness of the suggested controller to uncertainties 

and disturbances will be subsequently investigated. For this case, the terms of uncertainty and 

disturbance are considered as    1, sinF x t x   and    sind t t , respectively. 
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Figures 9a and 9b show diagrams of 1e  and capacitance for different values of  , 5   and 

0.2dx  . As these forms show, with increasing   or level of uncertainty, overshoot and settling 

time increase. The voltage variation for this case is also plotted in Figures 9c and 9d. 

As already mentioned earlier, any decrease in sk  and   reduces the overshoot consequently. The 

diagram of 1e  and capacitance variation for 100  , 5  , and 0.2dx  , and for different values 

of sk  and   are the presented in Fig. 10a and 10b. As shown in these Figures, decreasing sk  and 

 , reduces the overshoot. The voltage variation diagrams for these particular cases are also shown 

in Fig. 10c. 
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Next, the diagrams of 1e  and capacitance for 5  , 0.2dx  , and different values of    are plotted 

in Figures 11a and 11b. As it is demonstrated by these figures, with a relative increase in  results 

intyo an increase in both the overshoot, and the settling time. Nevertheless, any increase of   has 

a significant impact on the settling time. To more elucidate on this, an assumed voltage variation 

for different   are depicted in Fig. 11c.  As it is noticeable from this sketch the presence of noise 

causes oscillations of the applied voltage for 52.5 10 s   , which fluctuations are to compensate 

the noise effects. 
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Changes of 1e  together with capacitance variation for 20   and different values of   and sk  

are shown in Figs. 12a and 12b. It is clear from these figures that decreasing both   and sk  

reduces consequently the overshoot level. Additionally, the variations of applied voltage versus 

time are plotted in Fig. 12c. As it is evident from these variations that an assumed increase of   

causes a rise of the initial value of applied voltage. 
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At the end of this sub-section, some of the achieved results related to improvement of tunability in 

recent years are summarized in Table 3. The examined processes in the cited works in Table 3 

were carried out without the utilization of an active control strategy, and were all based on 

restructuring of capacitance to increase the secondary stiffness, increase the maximum 

capacitance, and/or reduce the minimum capacitance. In fact, and after a thorough look at the 

current literature, the authors haven’t found any single research work related to the tenability 

improvement using an active control strategy. It is important to note that in these cited research 

works in Table 3, the proposed structures were more complex than the assumed conventional 

parallel plate capacitors in our work, which makes it very difficult to be fabricated. Comparison 

of the presented results of this work with the other research outcomes summarized in Table 3 
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shows the remarkable capability of the presented control strategy in increasing the micro-capacitor 

tunability as well as tuning ratio. In addition, the obtained results in this work show the high 

reliability of the micro-capacitor to uncertainties and perturbations. 

 
Table 3. Achieved results related to improvement of tunability of micro tunable capacitors in recent years 

 Maximum tunability Maximum tuning range Capacitor type 

Akhtar et al. 2018 [21] 168% 268% Parallel plate 
Hailu 2017 [44] - 143% Comb drive 

Kim et al. 2017 [45] 414% 514% Parallel plate 
Afrang et al 2015 [46] 207% 307% Parallel plate 
Mobki et al 2014 [47] 147% 247% Parallel plate 
Shavezipur 2012 [48] 157% 257% Parallel plate 
Mobki et al 2011 [49] 100% 200% Parallel plate 

Shavezipur et al 2010 [50] 152% 252% Parallel plate 
 

 

5. Conclusion 
In this work, an adaptive sliding mode controller was proposed and investigated to control a 

parallel-plates based tunable micro-capacitor. The purpose of the capacitor control is to track the 

movable electrode to close distance to its lower fixed actuating electrode in order to increase its 

overall maximum capacitance maxC  and therefore its tunability. The obtained results indicated the 

substantial capability of this control strategy in increasing the maximum capacitance maxC  and the 

capacitor tunability. In addition, the adaptive sliding mode controller was examined to mitigate the 

effects of uncertainties, external disturbances as well as to possibly eliminate any chattering 

phenomenon. Furthermore, it was shown that the controller possesses high robustness to 

compensate the uncertainties and disturbances effects.  

The effects of controller parameters on the dynamic behavior of the micro-capacitor were 

completely examined. The results showed that any increase of the controller positive gain 

coefficient sk  as well as controller adaption positive coefficient  resulted into a rise in the micro-

capacitor overshoot level as well as its settling time. Moreover, it was shown that the micro-

capacitor overshoot level decrease with the decrease of the controller adaptation positive parameter

 . Indeed, it was found  that chattering phenomenon can be observed when the adaptation 

coefficient   reaches a value around 5000 and that any increase of this coefficient can cause the 



stabilization in both the steady-state dynamic error 1e  and the micro-capacitor overall capacitance. 

Finally, it was found that, in the presence of uncertainties and external disturbances causing an 

definite increase in the micro-system dynamic response overshoot and in order to  reduce it to an 

acceptable range, it is suggested to consider both positive controller coefficients sk  and   to be 

both small values. 

 

 

Appendices: 
Appendix A: Proof of the controller stability 

If we consider a Lyapunov function described by the below expression: 

)a-1( 
   

222 2 21 ˆˆ
2

v s               

Its time derivative can therefore be written as follows: 

)a-2(    ˆ ˆˆ ˆv ss               

If we consider a sliding surface governed by the following state equation: 1 1 2 1s ss e k e e k e    , 

therefore for s  the following relationship cab be also valid: 

)a-3( 

       
2 1 2 2

2 2, , ,
s s

d s

s e k e e k e
s f x t g x t u d t F x t x k e
   

      
 

Substituting Eq. (3-a) into Eq. (2-a), we can write: 

)a-4(            2
ˆ ˆˆ ˆ, , , d sv s f x t g x t u d t F x t x k e                        

Next, substituting the control law of Eq. (3) and the related relationship of ̂ , ̂ ,  , and   into 

Eq. (4-a), the time derivative of the Lyapunov function v  can be re-written as: 

-5(

)a 
            1 1

ˆ ˆˆ ˆtanh ,v s s d t F x t s s p s e q s e                     

According to the assumed conditions:  ,F x t   and  d t  , consequently the following 

conditions can also be verified:  ,s F x t s    and  sd t s  .  

Assuming the abovementioned relationships, the following inequality can be obtained for v : 



)a-6(         1 1
ˆ ˆˆ ˆtanhv s s s s s s p s e q s e                        

     1 1
ˆ ˆˆ ˆtanhv s s s p e q e               

Knowing that:    tanh tanhs s s s   [41], v  can be finally re-written as follows: 

)a-7(       1 1
ˆˆ tanh 1 tanhv s s s p e q e                  

The term inside of brackets  " "  represents a positive number, and subsequently the condition 

 v s    for the presented controller is therefore guaranteed, for which   represents a positive 

number. 
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