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ABSTRACT: The crucial issue among lithium−oxygen batteries (LOBs) lies in the development 

of highly efficient catalysts to improve their large discharge−charge polarization, poor rate 

capability, and short cycle life. Herein, a composite of three-dimensional honeycomb graphene-
supported a Mo/Mo2C heterojunction has been synthesized and can be utilized as a self-supported 

LOB cathode directly. The LOBs based on the Mo/Mo2C heterojunction composite cathode show 

a low overpotential of 0.52 V, a high discharge capacity of about 12016 mAh g−1 at 100 mA g−1, 

and a long-term cyclability (about 360 cycles) under a restricted capacity of 1000 mAh g−1 at 100 

mA g−1, which exceeds the features of the majority of Mo-based catalysts for LOBs reported so 

far. Based on both experimental tests and density functional calculations, it is confirmed that the 

outstanding electrochemical performance is closely associated with a hierarchical porous structure 

for convenient oxygen/electrolyte diffusion, a large number of activity sites (interfaces/defects) 

for high capacity, and a high conductivity with metallic bonds for good rate capability. The 

method can be extended to prepare other metal based heterojunctions. 
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1. INTRODUCTION

With the increasing consumption of fossil energy, both lithium ion and lithium−air batteries have 
been considered as green and renewable energy conversion and storage sources.1−5 Compared 
with lithium ion batteries, lithium−O2 batteries (LOBs) possess a high energy density of ∼3500 

Wh kg−1 based on the reaction (2Li+ + O2 + 2e− → Li2O2, E0 = 2.96 V vs Li/Li+) consisting of 
the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which is 5−10 times 
higher than Li-ion batteries.6−10 Hence they have attracted extensive research enthusiasm 
recently. Nevertheless, a large number of technical challenges need to be overcome before 
industrial applications of LOBs, such as poor rate capability, low round trip efficiency, and poor 
cyclability. These problems are mainly related to the accumulation of discharge products (such as 
nonconductive Li2O2) in the cathode, which results in their poor reversibility, high polarization, 
and large overpotential when the discharge products are decomposed during charging.11,12 In this 
regard, the development of highly efficient cathode catalysts is a promising approach to improve 
life and reversibility of LOBs. Porous carbon materials have the advantages of a wide source of 
raw materials, good electrical conductivity, adjustable porous structure, and high specific 
volume.13−16 Therefore, they are popular choices for ORP and OER catalyst carriers for LOBs. 
17, 18



However, the inert character of porous carbon materials gives rise to high discharge−charge 

overpotential for Li2O2 oxidation (∼1 V).2 Consequently, it is an urgent issue to improve cathode 

reaction kinetics for low overpotential and high energy efficiency. The common method is the 

development of composite cathodes by supporting catalysts such as noble metals, metal oxides, 

and metal carbides on carbon materials.19−21 Nevertheless, the scarcity and cost of noble metals 

and the poor conductivity of transition metal oxides greatly limit their practical applications. 

Comparatively, metal carbides are alternatives used as cathode catalysts for rechargeable LOBs 

due to their prominent electrocatalytic performances.22 Among transition metal carbides, Mo2C 

is considered to be the most promising LOB electrodes because of its good electrochemical 

activity and low cost;23,24 however, the pure Mo2C catalyst suffers from weak conductivity, 

limited activated sites, and poor structural stability. Subsequently, interface engineering efforts 

relative to a heterojunction have been attempted to enhance the electrochemical properties of 

Mo2C catalysts.25,26 For example, a Mo2N−Mo2C hetero- junction is a high efficiency catalyst 

for hydrogen evolution.26 The reaction center is located at Mo in the vicinity of the interface 

which modifies the local chemical environment of graphene oxide, exhibiting activity superior to 

Pt/C at large current densities (>88 mA cm−2) in alkaline media. A MoC− Mo2C 
heteronanowire27 has been confirmed to be high activity in both acidic and basic solutions due to 

the optimized electron density created by the carbide surface. Additionally, hierarchical porous 

MoO2/Mo2C heteronanotubes28 have been developed as a promising anode material for high 

performance lithium-ion batteries. Unfortunately, owing to low conductivity, limited activated 

sites, and oxidation of these heterojunctions, some new and high performance Mo2C 

heterojunctions are desirable for the accelerated rhythm of LOB applications. 

Herein, we prepared three-dimensional (3D) honeycomb graphene composites containing a Mo/

Mo2C heterojunction by a convenient synthesis method. Depending on the geometry of the three-

dimensional honeycomb structure, the interconnected honeycomb cells, and the Mo/Mo2C 

heterojunction structure, this self-supporting composite cathode delivers outstanding 

performances, achieving a low overpotential (0.52 V), a long cycle life (over 360 cycles), and a 

high specific capacity of 12016 mAh g−1 at a current density of 100 mA g−1. Simultaneously, the 

catalytic mechanisms of composite electrodes were elucidated by microstructural observations, 

component identifications, and first-principles calculations in detail. 



2. RESULTS AND DISCUSSION

2.1. Characteristics of the Mo/Mo2C Heterojunction 

Three-dimensional honeycomb graphenes and their composites were prepared by the following 

method. Typically, a Mg−5 wt % Mo alloy was prepared at 1200 °C for 30 min under a loading 

pressure of 4 GPa in a cubic-anvil large-volume press with six rams. And then, the alloys and 

pure magnesium were loaded into a ceramic tube reactor and exposed to CO with a flux of 60 

mL min−1 at different temperatures. Consequently, the reaction products were removed by acid 

cleaning and freeze-drying (the detailed procedure is described in the experimental procedure). 

As identified by X-ray diffraction (XRD, Figure 1a), the Mg−5 wt % Mo sample calcined at 800 

°C is mainly composed of C, Mo, and Mo2C peaks. Moreover, field-emission scanning electron 

microscopy (FESEM, Figure 1b−c) images show that the graphene sheets are curved and 

connected each other, resulting in the formation of a 3D honeycomb-like graphene structure 

(3DHG). This typical graphene character is also confirmed by Raman spectrum (Figure 1d). 

Similar structures have been also reported in Li2O or Mg calcination.29,30 Subsequently, this 

unique structure has further been clarified by transmission electron microscopy (TEM Figure 

1e). Four typical characters have been confirmed. First, a large number of fine particles with a 

diameter of about ∼4.5 nm (calculated in terms of 50 random particles, Figure 1f) are

homogeneously distributed on the graphene layers. Secondary, the high magnification

atomicscale image (Figure 1h) shows that the particle is related to a distinct heterojunction. One 

side is related to a hexagonal structure of Mo, as evidence by a spacing of ∼0.22 nm. 

Comparatively, the other side is associated with the d-spacing of nanoparticle of 0.26 nm, which 

is ascribed to plane (100) of Mo2C phase. Moreover, the 3DHG and 3DHG-Mo/Mo2C 

heterojunction contents of the as-prepared 3DHG-Mo/Mo2C- 800 were further studied using 

thermogravimetric analysis (TGA) (Figure S1), in which 3DHG was determined to be 75.92% 

and Mo/Mo2C heterojunction was determined to be 24.08%.31 The weight fraction of Mo/
Mo2C is about 2:1. This interpretation is also confirmed by selected area electron diffraction 
(SAED) pattern (Figure 1g) and XRD pattern (Figure 1a). Third, a large number of defects or 
vacancies are confirmed in both Mo and Mo2C phases (white triangles, Figure 1h). 
Furthermore, the interface between Mo and Mo2C is irregular, which is relative to the existence 
of interface stress owing to their mismatch lattices. Finally, the elemental mapping images 
(Figure 1i−k) show that both Mo and C elements are homogeneously distributed in the carbon 
layer. As a result, this unique 3D honeycomb graphene containing a Mo/Mo2C heterojunction is 
denoted as 3DHG-Mo/Mo2C-800. 
In addition, the similar amorphous 3D honeycomb graphene (3DHG), evidenced by XRD, SEM, 
TEM, and Raman spectrum (Figure 1d and S2), has also been attained by calcining pure Mg 
under CO at 800 °C. This reference can be shown as 3DHG-800. Comparatively, when the 
calcined temperature of Mg−5 wt % Mo alloy is reduced to 700 °C, the thick honeycomb is 
attained, wherein some particles still remain (Figure S3). The HRTEM and atomic-scale image 
show that the nanoscale particles with the dimension of 2 nm are observed in the carbon layer. 
The lattice spacing of 0.217 nm demonstrates that these particles might be Mo, which is 
consistent with the XRD pattern (Figure 1a). Accordingly, the sample with a 3D honeycomb 
graphene and Mo particles can be defined as 3DHG-Mo-700. In turn, when the temperature is 
increased to 900 °C, both the fine 3DHG structure (160 nm) and pure Mo2C precipitates have 
been achieved (Figure S4), as evidenced by the XRD result (Figure 1a). Notably, compared 
with 3DHG-Mo/Mo2C-800, 3DHG structure becomes finer, but the dimensions of the Mo2C 
precipitates change to be larger (over 10 nm). Hence, the Mg−5 wt % Mo sample after 
treatment at 900 °C can be marked as 3DHG-Mo2C-900. 



2.2. Electrochemical Properties in LOBs. 

To investigate the electrochemical properties of all the hybrids, the samples and PVDF were 

mixed in a ratio of 9:1 and rolled as the cathodes to assemble into 2032-type batteries for 

electrochemical tests. The cyclic voltammetry (CV) curves under high pure O2 (Figure 2a) was 

measured from 2 to 4.5 V versus Li/Li+ at a scan rate of 0.2 mV s−1, which reveal that there are 

two peaks for both 3DHG-Mo/Mo2C-800 and 3DHG-Mo2C-900 cathodes, and they are totally 

different from the 3DHGMo-700 and 3DHG sample.32 Simultaneously, the ORR peaks 

of 3DHG-Mo/Mo2C-800 are similar to those of 3DHG-Mo2C-900. Notably, the onset potential 

of 3DHG-Mo/Mo2C-800 is about 2.67 V, which is higher than that of 3DHG-Mo2C-900

(about 2.65 V) and 3DHG-Mo-700 (2.44 V). Additionally, an obvious OER peak is also detected 
in both 3DHG-Mo/Mo2C- 800 and 3DHG-Mo2C-900, but it is hardly distinguished in 3DHG-
Mo-700.5,33 More importantly, compared with other two samples, 3DHG-Mo/Mo2C-800 
bestows a larger ORR/OER peak current. In brief, the above results demonstrate that 3DHG-Mo/
Mo2C-800 exhibits the highest ORR onset potential companying with the highest ORR/OER 
peak current, comparing with those of 3DHG-Mo2C-900 and 3DHG-Mo-700. In this respect, 
3DHG-Mo/Mo2C-800 might be offer a potential higher ORR/OER activity toward both the 
decomposition of discharge product in LOBs. 
The galvanostatic discharge/charge profiles of four composites were carried out within the 
voltage range from 2 to 4.4 V at a current density of 100 mA g−1 (Figure 2b). The 3DHGMo/
Mo2C-800 cathode delivers a discharge capacity of about 12016 mAh g−1 and charge capacity of 
11602 mAh g−1, which are higher than those of 3DHG-800,3DHG-Mo-700, and 
3DHG-MC-900 electrodes (Figures S5, S7, and S8), consequently yielding a high roundtrip 
efficiency of about 96.5% in the deep discharge−charge model. In addition, when the discharge/
charge capacity is limited to 1000 mAh g−1 at a density of 100 mA g−1 (Figure 2c), the 3DHG-
Mo/Mo2C-800 cathode shows low polarization, as evidenced by a discharge− charge 
overpotential of 0.52 V. In contrast, the overpotential values increase to 0.93 V for 3DHG-800, 
0.76 V for 3DHGMo- 700, and 0.82 V for 3DHG-Mo2C-900, respectively. Attractively, this 
value for 3DHG-Mo/Mo2C-800 is merely about 39.4% of commercial KB ( 1.32 V) (Figure 
S5). It shows that the 3DHG-Mo/Mo2C-800 cathode offers outstanding catalytic activity. 
To confirm the absolute recovery of discharge products and ameliorate the ORR/OER of LOBs, 
we examined the batteries with a limited depth of discharge−charge under high pure O2. 3DHG-
Mo/Mo2C-800 operates for 360 cycles, when the cutoff capacity of LOBs is limited at 1000 mAh 
g−1 at the current density of 100 mA g−1 (Figure 2d). Even at a high current density of 300 mA 
g−1 (Figure S6a-b), the battery with 3DHGMo/ Mo2C-800 cathode can also run well for more 
than 160 cycles. By comparison, the cycling numbers change to 190 cycles for 3DHG-Mo-700 
and 210 cycles for 3DHG-Mo2C-900 under the 100 mA g−1 current density, respectively 
(Figures S7−S8). Moreover, with an increase in the current density to 300 mA g−1, these cycling 
values are further reduced to 120 cycles for 3DHG-Mo-700 and 150 cycles for 3DHGMo2C-900, 
respectively. Note that the cycling performances are poor for both commercial KB and 
3DHG-800, wherein their numbers are no more than 50 cycles in the range of 100−300 mA g−1 
current density (Figure S5). Figure 2e illustrates the terminal potentials as a function of cycle 
number at various current rates. Basically, the polarization of the system becomes serious when 
the current density increased, as this phenomenon is commonly observed in LOBs.34,35 
To probe the current rate performances, the LOBs composed of different composites were studied 
with a fixed capacity of 1000 mA h g−1. Figure 2f shows the voltage versus cycle number on the 
discharge−charge terminal of the LOBs with four different cathodes at 100 mA g−1. Noteworthy, 
the battery with the cathode with 3DHG-Mo/Mo2C-800 exhibits superior current rate 
performances (360 cycles). To better illustrate the superiority of the 3DHG-Mo/Mo2C-800 
cathode, a comparison between the cycling performances and overpotential of our cathode and 



those main Mo−C cathodes reported so far are presented in Figure 2g,23,24,28,32,36−39 wherein 

the 3DHG-Mo/Mo2C-800 cathode has the longest cycle life (∼360 cycles) accompanied with a 

very low overpotential (∼0.52 V). 

2.3. Reaction Processes. 

Figure 3a shows the initial galvanostatic discharge−charge curve of the LOBs with the 3DHG-Mo/

Mo2C-800 cathode at the current density of 100 mA g−1. XRD patterns (Figure 3b) show that some 

new diffraction peaks can be seen at 32.9°, 35.0°, 47.2°, and 48.9°, which are in perfect agreement 

with the standard pattern of Li2O2 (JCPDS no. 09-0355). This is also confirmed by the Raman 

spectrum (∼787 cm−1, Figure 3c) and galvanostatic intermittent titration technique (GITT) testing 

(2.96 V, Figure S6c).40 After charging, Li2O2 completely disappeared. This reaction process has 

also been identified by ex-situ SEM observations. After discharging from position A to position B, 

some nanosheet-shaped Li2O2 discharge products are observed (Figure 3d−e). Note that this 

hierarchical porous structure and nanosheet structure reveal that oxygen and electrolyte are evenly 

distributed around the discharge products and promote the decomposition of Li2O2 products during 

the charging process (Figure 3f). More importantly, the similar morphology of the 3DHG-Mo/
Mo2C-800 electrode remains well after 100 cycles (Figure S9), revealing the good reversibility of 
Li2O2 products. On the contrary, owing to the low catalytic activity, the reaction discharged 
products cannot decompose absolutely for the other three samples (Figure S10), which cover the 
surfaces of the electrodes, resulting in their weak cyclability. In-situ environmental TEM has 
further been applied to observe the morphology and structure evolution of 3DHGMo/ Mo2C-800 
during the discharge−charge process.41,42 The images in Figure 4a-c (captured from Movie 1) 
show the morphological variation of the 3DHG-Mo/Mo2C-800 cathode in different states. With the 
increment of the discharge time, Li2O2 gradually grows and increases, and the surface of the 
3DHG-Mo/Mo2C-800 electrode becomes coarse. Conversely, as the charging process proceeds, the 
product gradually disappeared, until the electrode surface is as clean as that of the pristine 
electrode. The in-situ SAED patterns (Figure 4d− f) show that the primitive electrode is composed 
of C, Mo, and Mo2C. This changes to a mixture of C, Mo, Mo2C, and Li2O2 after discharging, and 
then, the nanowire returns to being C, Mo, and Mo2C. These results are also verified by the 
electron energy loss spectroscopy (EELS) analysis (Figure 4g−h), in which the appearance/
disappearance of the Li2O2 peaks (59.3, 64.5, and 67.5 eV) shows no structural change during the 
reactive process and also indicates the high reversibility of the battery with the 3DHG-Mo/
Mo2C-800 electrode.

2.4. Catalytic Mechanism of Heterojunction. 

To elucidate the high electrochemical properties of 3DHG-Mo/ Mo2C-800 electrode, X-ray 
photoelectron spectroscopy (XPS) tests have been performed to analyze the valence variation of the 
electrode at different discharge/charge stages. As shown in Figure 5a, the peak fitting result 
suggests that there are five valence states for Mo (Mo0, Mo2+, Mo3+, Mo4+, and Mo6+), and the 
fitting fractions are summarized in Table S1. The Mo0 might be related to elementary Mo, and the 
low oxidation states of Mo2+ and Mo3+ may due to Mo−C bonds in Mo2C. In contrast, the 
existence of Mo4+ and Mo6+ may be due to the formation of MoO2 and MoO3 when the sample is 
exposed to the air.31,43,44 After cycling (Figure 5b−c), the fractions of the Mo0 state decrease 
sharply, while the fractions of Mo2+ and Mo3+ remain stable. Note that the amount of Mo4+ and 
Mo6+ is increased after cycling, which might be related to the formation of oxides owing to the 
oxidation of Mo. Consequently, the oxidation of Mo0 will remarkably reduce the concentration of 
O, and then, the oxidation of Mo2C will be prohibited correspondingly. Additionally, the 
appearance/disappearance of Li 1s peak (Figure 5d−f) reveals that the formation and decomposition 
of Li2O2 is reversible. 



In addition, the electrochemical properties of the 3DHGMo/ Mo2C-800 electrode are also related 

to the specific surface area and pore-size distribution. 3DHG-Mo-700, 3DHG-Mo/ Mo2C-800, and 

3DHG-Mo2C-900 composites show similar surface areas of ∼96.8 m2 g−1 (Figure S11a), which is 

lower than those of 3DHG-800 (∼155.8 m2 g−1). However, note that both fine pores (∼2.2 nm) 

and coarse pores (∼20 nm) (Figure S11b) are detected in the 3DHG-Mo/Mo2C-800 sample. This 

hierarchical structure in pore distribution, especial wide pore dimension, accelerates ion

transformation, improving both capacity and rate performance.45 This trend is also confirmed by 

EIS measure (Figure S12), in which the lowest charge transfer resistance accounts for the highest 

conductivity.46 Moreover, the overlapped curves indicate its high reversibility. To probe the 

underlying mechanism on the outstanding catalytic activity of the Mo/Mo2C heterojunction, 

density functional calculations have been conducted. As shown in Figure 6a, it is obvious that 

charge redistribution occurs in the vicinity of the heterojunction interface, which is beneficial to 

improving electron mobility and thus catalytic activity. Moreover, the electronic local function 

(ELF) shown in Figure 6b−d gives rise to the electronic local distribution related to the interfaces, 

i.e., P1, P2, and P3 as indicated. This reveals that the ELF in the position of P1, which is

dominated by Mo 3d electrons, behaves as an electron gas (green color, ELF = 0.5) and shows

metallic character. As far as the Mo2C (as in P3) is concerned, the electron in the neighborhood of

C is highly localized (surrounded by red with ELF = 0.9) and Mo acts as an electron donator,

indicating that it is typically ionically bound (Mo−C). By contrast, electrons at the interface (P2)

are highly delocalized, reflected by the blue color in between atoms with ELFs around 0.2. More

importantly, as shown in Figure 6e, differing from that in Mo2C, an upshift of the d band center to

the Fermi level is achieved in the Mo/Mo2C interface, indicating the stronger O2 binding energy.

Simultaneously, a larger DOS value in the Fermi level of Mo/Mo2C interface might be associated

with more electrons for conductivity in contrast to Mo2C, resulting in a higher rate performance.

3. CONCLUSIONS

In summary, a 3DHG-Mo/Mo2C heterojunction composite electrode was prepared using a facile 

solid-phase synthesis. On the one hand, the three-dimensional honeycomb structure with 
interconnected walls and cells can provide sufficient channels for achieving rapid electron transfer 
and Li-ion and oxygen diffusion, which offers excellent reaction kinetics. On the other hand, the 
unique Mo/Mo2C heterojunction provides an enhanced conductivity, plenty of activated sites, and 
the reduction of Mo2C oxidation, resulting in excellent electrocatalytic performance. Typically, the 
LOBs using 3DHG-Mo/Mo2C-800 as the cathode have a low overpotential (0.52 V), which can be 
run well over 360 cycles under the conditions of current density of 100 mA g−1 and limited 
capacity of 1000 mAh g−1. In particular, this technique can be extended to prepare other 3D 
honeycomb metal−metal carbon heterojunctions, which undoubtedly inspires future wide 
applications of these heterojunctions such as those in biomedical, chemical, and material sciences. 
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Figure 1. Structural characteristics. (a) XRD patterns of different composites. (b and c) SEM 

images of 3DHG-Mo/Mo2C-800. (d) Raman spectra of the different samples. ID/IG is the 

intensity ratio of D- and G-peaks, and I here represents the intensity ratio. (e) TEM image of 

3DHG-Mo/Mo2C-800. (f and g) Size distribution and SAED pattern of the Mo/Mo2C 

nanoparticles. (h) HAADF-STEM image of the Mo/Mo2C heterojunction. TEM image (i) 

and EDX element mapping images (j−k) of 3DHG-Mo/Mo2C-800. 
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Figure 2. Electrochemical properties of LOBs with 3DHG-800, 3DHG-Mo-700, 3DHG-

Mo/Mo2C-800, and 3DHG-Mo2C-900 electrodes. (a) CV curves from 2.0 to 4.5 V (vs 

Li+/Li) under a scan rate of 0.2 mV s−1. (b) Initial fully discharge−charge profiles at a 

current density of 100 mA g−1. (c) First discharge−charge cycle of the LOBs with five 

different cathodes at a current density of 100 mA g−1. (d) Discharge−charge cycling stability 

of the 3DHG-Mo/Mo2C-800 electrode at 100 mA g−1 with a cutoff capacity of 1000 mAh 

g−1. (e) Terminal voltages as a function of cycle number at various current densities of 

different samples. (f) Cycling stability and terminal discharge−charge voltages of 3DHG-

Mo/Mo2C-800 cathode at 100 mA g−1 with a limited capacity of 1000 mAh g−1. (g) 

Comparison of the electrochemical performances of the 3DHG-Mo/Mo2C-800 cathode with 

those of other reported Mo−C based LOBs. 



Figure 4. In-situ microstructural features of 3DHG-Mo/Mo2C-800. Typical morphology 

variation during the discharged process from a to b and the charged process b to c. In-situ 

SAED patterns of the primitive (d), discharged (e), and charged (f) states. (g and h) Low-loss 

and core-loss EELS of 3DHG-Mo/Mo2C-800 electrode at different states. 

Figure 3. Characteristics of the discharged/charged products. (a) Initial cycle galvanostatic 

discharge−charge profiles. (b) Ex-situ XRD patterns of discharged samples corresponding to 

the different positions in part a. (c) Raman spectra of the different states of 3DHG Mo/Mo2C-

800. Typical SEM images of 3DHG-Mo/Mo2C-800 with the pristine (d), discharged (e), and 
charged (f) states, respectively. (insets) Local high magnification images.



Figure 6. Theoretical calculations. (a) Schematic model of the lattice matching and 

distribution of charge density difference at Mo (110) and Mo2C (100) interface. (b−d) ELF 

maps of different surfaces of the heterojunction. (e) Atom-projected DOS for Mo, Mo2C, and 

Mo/Mo2C heterojunction. 

Figure 5. XPS spectra variation. Ex-situ high resolution XPS spectra of Mo 3d (a−c) and Li 

1s (d−f) at different discharge−charge statuses of 3DHG-Mo/Mo2C-800 for the first cycle. 
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Experimental Sections 

Synthesis of heterojunctions

Mg-5wt.% Mo precursors has been prepared by ultrahigh melting method. Specifically, the 

powders were wrapped with Ta foil and then inserted into a BN crucible in a cubic-anvil 

large-volume press with six rams. The loading pressure (4 GPa) was added before increasing 

the temperature. The temperatures varied from room temperature to 1200 °C. The time was 

30 min. After ultrahigh pressure treatment, the samples were quenched to room temperature.

Subsequently, the alloy was loaded into a ceramic tube reactor and exposed to CO at a flux of 

60 ml min-1. The reaction temperatures were 700 ºC, 800 ºC and 900 ºC, respectively. The 

reactor temperature was increased from room temperature to high temperature at a rate of 5 

ºC min-1 and then kept for a 5 h, followed by cooling down to room temperature. These 

products were treated by 10 wt% hydrochloric acid (HCl) and washed with de-ionized water 

until the pH of around 7. The residual solids were separated from water by centrifugation 

(8000 rpm) and then freeze dried for 24 h to get the powders. Finally, the sample which 

treated at 700 ºC was mainly composed of 3D honeycomb graphene (3DHG) and Mo 

particles (denoted as 3DHG-Mo-700). In contrast, the samples at 800 ºC and 900 ºC were 

involved Mo/Mo2C and Mo2C except for 3DHG, respectively. They were remarked as 

3DHG-Mo/Mo2C-800 and 3DHG-Mo2C-900 correspondingly. The pure Mg sample treated at 

800 ºC was introduced as reference (3DHG-800). 

Structural Characterization

Powder X-ray diffraction (XRD) patterns were collected on an X-ray diffraction (Rigaku 

D/MAX-2005/PC) using a filtered Cu Kα radiation at a sweep rate of 2 degree/min, Scanning 

electron microscope (SEM) was characterized by Hitachi S-4800. Transmission electron 

microscope (TEM) images, electron energy loss spectrum (EELS) analysis and elemental 

mapping were observed on a Titan ETEM G2 at 300 kV. The specific surface areas and pore 

size distribution were measured by a Micromeritics ASAP2020 using nitrogen gas adsorption 

at 77 K (-196 oC). X-ray photoelectron spectroscopy (XPS) patterns were conducted on a 

ThermoFisher with Al Kα (1486.71 eV) X-ray radiation (15 kV and 10 mA). The binding 

energies obtained in the XPS analysis were corrected by referencing the C 1s peak position 
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(284.60 eV). Raman spectroscopy was obtained from Renishaw micro-Raman spectroscopy 

with a laser radiation of 514 nm.

Li-O2 battery assembly

The Li-O2 battery assembly was performed based on a CR2032 coin type battery. It was 

successively assembled by stacking a lithium metal anode (14 mm in diameter), a piece of 

glass fiber separator (16 mm in diameter, Whatman) soaked with 80 μL of electrolyte (1 M 

LiTFSI dissolved in TEGDME solution) and a rolled cathode with slurry (90 wt% of active 

material and 10 wt% polyvinylidene fluoride in methyl-2-pyrrolidone). The cathodes were 

cut into disks. Several holes (4 mm in diameter) were drilled in the cathode shell so that the 

O2 can easily and quickly access the cathode. Then, the assembled batteries were placed in a 

250 mL glass vessel filled with high-purity O2. The pure O2 was pumped into the glass vessel 

through the straight two-way piston conducted alternatively by vacuuming and ventilating for 

three times. After incubating for 10 h, the discharge and charge cycles of the batteries were 

tested. All potentials were referenced against Li/Li+.

Electrochemical test

The galvanostatic discharge/charge tests were collected on a LAND CT2001A battery test 

instrument. The specific capacity and current density were calculated according to the mass 

of active material on the electrodes. The mass loading of active material (3DHG) on carbon 

paper was found to be 0.3-0.5 mg cm-2. Cyclic voltammetry (CV) curves were conducted on a 

BioLogic VMP3 electrochemical workstation in the potential window of 2.0-4.4 V (vs. 

Li/Li+), and the scan rate was 0.2 mV s-1. Electrochemical impedance spectroscopy (EIS) 

curves were carried out on a BioLogic VMP3 system with the typical frequency range from 

100 kHz to 10 mHz by applying the applied voltage of 5 mV.

First-principle calculations

The first-principle calculations are carried out by VASP code[1, 2] based on density-functional 

theory (DFT)[3,4]. A generalized gradient approximation (GGA) using the spin-polarized 

Perdew-Burke-ernzerhof (PBE)[5] scheme is used to describe the exchange-correlation 
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energy. The core electrons are represented by the projected enhanced wave (PAW) 

potential[6]. The kinetic energy cutoff above 500 eV and the K point sampling on the 

heterojunction interface cell are 7×5×1. Structural optimization was performed with a force 

convergence criterion of 0.01 eV/A and an energy convergence criterion of 10−6 eV. Mo2C 

crystallizes with a hexagonal structure and the optimized structural parameters (a = b = 6.073 

Å, c = 4.724 Å, β = 120°) used in this work were in good agreement with experimental and 

other theoretical values. The simulated lattice parameters of Mo were a = b = c = 3.169 Å. A 

slab model composed of (001) surface and Mo2C (110) was constructed to simulate the 

Mo/Mo2C heterojunction. 

1 G. Kresse and J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.

2 G. Kresse and J. Furthmuller, Phys. Rev. B 1996, 54, 11169.

3 W. Kohn and L. J. Sham, Phys. Rev. 1965, 140, 1133.

4 P. Hohenberg and W. Kohn, Phys. Rev. 1964, 136, 864.

5 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

6 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
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Table S1. The fraction of different valence Mo states based on XPS curves. 

Species percentage (%)States of the 

electrodes Mo0 Mo2+ Mo3+ Mo4+ Mo6+

Pristine 10.6 30.6 22.2 10.5 26.1

Discharge 3.7 27.4 25.9 14.5 28.5

Charge 5.9 26.7 20.6 13.0 34.4
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Table S2. The fitting results in terms of EIS curves.

Samples Q1 Q2States Re

(Ω)
Rf 

(Ω) Y n
Rct

 (Ω) Y n
Pristine 20.05 56.05 1.2×10-5 0.74 137.89 1.7×10-2 0.61

1st charge 40.45 41.73 1.8×10-4 0.81 195.62 1.7×10-2 0.59
3DHG-Mo-

700
1st discharge 24.42 83.72 5.1×10-5 0.87 407.93 1.5×10-2 0.77

Pristine 12.36 24.5 1.1×10-3 0.52 68.94 1.2×10-2 0.51
1st charge 15.24 34.7 3.3×10-4 0.63 98.31 1.5×10-2 0.65

3DHG-Mo/
Mo2C-800

1st discharge 17.84 53.2 2.1×10-4 0.71 196.95 1.5×10-2 0.74
Pristine 14.34 41.24 1.6×10-3 0.61 98.49 1.1×10-2 0.51

1st charge 17.23 52.16 1.5×10-3 0.72 169.06 1.5×10-2 0.73
3DHG-Mo2

C-900
1st discharge 24.92 68.47 1.6×10-4 0.58 344.16 1.3×10-2 0.71
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Figure S1. TGA curves of 3DHG-800 and 3DHG-Mo/Mo2C-800, indicating that Mo/Mo2C 

heterojunction was completely transformed into MoO3 while the 3DHG-800 was transformed 

into CO2.

In the TGA curve of 3DHG-Mo/Mo2C-800, the initial weight gain from 25 °C to 240 °C is 

attributed to the evaporation of water (about 1.07 wt. %), and weight gain from 240°C to 

340 °C is attributed to the gradual oxidation of Mo/Mo2C heterojunction to MoO3, followed 

by a weight loss caused by the combustion of 3DHG. When Mo/Mo2C heterojunction is 

heated to 800 °C, it is completely transformed into MoO3. According to these results, the 

Mo/Mo2C heterojunction content is estimated to be 24.08 wt.% in 3DHG-Mo/Mo2C-800 and 

the 3DHG content is calculated to be 74.85 wt. %. The weight fraction of Mo/Mo2C might be 

about 2:1.
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Figure S2. Characteristics of 3DHG-800. (a) SEM image, (b) enlarged SEM image (the inset 

is XRD pattern), (c) TEM image and (d) SAED pattern.

Figure S3. Characteristics of 3DHG-Mo-700. (a) SEM image, (b) High magnification SEM 

image, (c) TEM image and (d) HRTEM image.
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Figure S4. Characteristics of 3DHG-Mo2C-900. (a) SEM image, (b) enlarged SEM image, 

(c) TEM image and (d) HRTEM image.

Figure S5. Electrochemical properties of LOBs based on KB and 3DHG-800. (a-b) 

Discharge-charge cycling stability of KB at 100 and 300 mA g-1 with a cut-off capacity of 

1000 mAh g-1. (c-d) Discharge-charge cycling stability of 3DHG-800 at 100 and 300 mA g-1 

with a cut-off capacity of 1000 mAh g-1.
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Figure S6. Electrochemical properties of LOBs based on 3DHG-Mo/Mo2C-800. a) 

Discharge-charge cycling stability of 3DHG-Mo/Mo2C-800 oxygen electrode at 300 mA g-1 

with a cut-off capacity of 1000 mAh g-1. b) Cycling stability and terminal discharge-charge 

voltages of 3DHG-Mo/Mo2C-800 cathode at 300 mA g-1 with a limited capacity of 1000 

mAh g-1; c) Galvanostatic intermittent titration technique (GITT) of 3DHG-Mo/Mo2C-800.

Figure S7. Electrochemical properties of LOBs based on 3DHG-Mo-700. Discharge-charge 

cycling stability of 3DHG-Mo-700 at 100 mA g-1(a) and 300 mA g-1 (b) with a cut-off 

capacity of 1000 mAh g-1.
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Figure S8. Electrochemical properties of LOBs based on 3DHG-Mo2C-900. 

Discharge-charge cycling stability of 3DHG-Mo2C-900 at 100 mA g-1(a) and 300 mA g-1 (b) 

with a cut-off capacity of 1000 mAh g-1.

Figure S9. Typical SEM images of 3DHG-800 cathode with the 100th discharged state (a-b) 

and the 100th charged state (c-d), respectively.
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Figure S10. Typical SEM images of 3DHG-800 (a-b), 3DHG-Mo-700 (c-d) and 

3DHG-Mo2C-900 (e-f) cathodes with the first discharged state (a, c, e) and the first charged 

state (b, d, f), respectively.
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Figure S11. N2 adsorption and desorption isotherm (a) and pore size distribution curve (b) of 

3DHG-800, 3DHG-Mo-700, 3DHG-Mo/Mo2C-800 and 3DHG-Mo2C-900, respectively.

Figure S12. The electrochemical impedance spectroscopy (EIS) determined the impedance 

of the battery under three states of electrodes with 3DHG-Mo-700(a), 

3DHG-Mo/Mo2C-800(b) and 3DHG- Mo2C-900 (c), (d) corresponds to the fitting circuit.
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