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Alpha rhythm collapse predicts iso-electric
suppressions during anesthesia
Jérôme Cartailler1,4, Pierre Parutto1,4, Cyril Touchard2, Fabrice Vallée2 & David Holcman 1,3

Could an overly deep sedation be anticipated from ElectroEncephaloGram (EEG) patterns?

We report here motifs hidden in the EEG signal that predict the appearance of Iso-Electric

Suppressions (IES), observed during epileptic encephalopathies, drug intoxications, coma-

tose, brain death or during anesthetic over-dosage that are considered to be detrimental. To

show that IES occurrences can be predicted from EEG traces dynamics, we focus on transient

suppression of the alpha rhythm (8–14 Hz) recorded for 80 patients, that had a Propofol

target controlled infusion of 5 μg/ml during a general anesthesia. We found that the first time

of appearance as well as changes in duration of these Alpha-Suppressions (αS) are two

parameters that anticipate the appearance of IES. Using machine learning, we predicted IES

appearance from the first 10 min of EEG (AUC of 0.93). To conclude, transient motifs in the

alpha rhythm predict IES during anesthesia and can be used to identify patients, with higher

risks of post-operative complications.
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Various frequency bands can be extracted from the elec-
troencephalogram (EEG), but also transient patterns such
as iso-electrical suppressions (IES) that consist of periods

of iso-electric (flat) activity lasting from few seconds to several
minutes1. These suppressions compose the quiescent part of the
Burst-Suppression (BS) pattern and appear in several pathological
conditions such as epileptic encephalopathies2, drug intoxica-
tions3, comatose4 or brain death5. They are also associated with
post-operative sleep disorder6, the emergence of delirium7,8, and
an increased mortality in sedated critically ill patients9. IES can
also appear when the concentrations of anesthetics increases10.
Avoiding anesthetic drug-related IES is a recommendation during
anesthesia, yet there are no robust methods to anticipate and
prevent IES11.

EEG monitoring is currently used to track loss of consciousness
in real time12 and to evaluate the depth of anesthesia13 using
sophisticated algorithms that can also detect the presence of
IES14. However, no causal relation between rhythms has been
documented today to predict the appearance of IES. In a
propofol-induced general anesthesia (GA) the main rhythms
consist of the alpha-rhythm ([8–14] Hz) and a delta-band
([0.5–5] Hz) activity15, unless the rhythm breaks and IES
develop. It is unclear whether IES appear as the result of drug-
induced boosting of cortical post-synaptic inhibitory currents or a
decreased cerebral metabolic rate of oxygen (CMRO)10,16,17,
which could lead to a damaging cerebral hypoxia.

To predict how a collapse of the rhythmic alpha-delta activity
leads to IES transient periods, we developed here a methodology
based on new EEG motifs that consist in partial and transient
suppression of the alpha-rhythm (αS). We show that these
changes (in duration or amplitude) can reliably predict IES
occurrences during propofol-induced GA, which was suggested
in12,18–20. We developed an algorithm based on wavelets and
local signal amplitude enhancement analysis to detect periods of
αS. The manuscript is divided into three parts: first, we present
the relation between αS and IES relative proportions and occur-
rences in the EEG signal, demonstrating that αS precede IES; in
the second part we compare αS properties time course for
patients that developed IES versus those that did not. In the last
part, we use classification machine learning algorithms to
demonstrate that the transient statistical properties of the α band
predict IES occurrences with a remarkably good score and thus
reveal patients at risk during the first 10 min of GA. We conclude
from the present study that transient motifs in the alpha rhythm
predict IES during anesthesia and offer a perspective to detect
cerebral fragility and anticipate post-operative complications.

Results
Alpha-suppressions (αS) anticipate IES during anesthesia. We
used the EEG signal monitored during GA with four frontal
electrodes Fp1, Fp2, F7 and F8 (Fig. 1a) to detect α-Suppressions
(αS) and iso-electrical suppressions (IES) (Fig. 1b, c), using the
segmentation procedure described in’Methods’. We applied this
procedure to the EEG of 80 patients and distinguished two
populations characterized by a low (<10 s) (np= 47) and a more
important (≥10 s) (np= 33) fraction of IES during the first
35 min of GA (Methods).

We computed for the two populations the percentage of time
spent in αS, IES and α+ δ (hypnosis) using a sliding window
procedure (Fig. 1d, e). We performed this analysis during two
phases of GA: induction (10 min) and maintenance <180 min
(Table 1). We found that during induction (resp. maintenance)
patients with IES had 1.9 ± 2.9%, 11.6 ± 8.1% and 86.4 ± 9.3%
(resp. 10.5 ± 8.7%, 19.4 ± 9.2% and 70.1 ± 10.5%) of IES, αS and
α+ δ respectively, where the notation α+ δ indicates that both

rhythms are present in the EEG. Comparatively, patients without
IES had 2.7 ± 4.0% and 97.3 ± 4.1% (resp. 6.7 ± 8.8% and 93.0 ±
9.3%) of αS and α+ δ respectively. The group without IES the
first 35 min had 0.3 ± 0.7% IES during the maintenance phase.
Additionally, we found that 43% (n= 18) of patients with IES,
had their first IES after the induction period, showing that
occurrence of IES during induction is not a predictive marker. At
this stage we concluded that patients without IES or few αS
during the first 10 min shown almost no IES during the
maintenance phase. In contrast, patients that already had more
IES or αS during the induction phase had a larger fraction of IES
(35 times more) during maintenance.

We then restricted our analysis to the first 35 min where no
NMDA antagonizing drugs, such as ketamine, have been used.
During that period of time, we asked whether αS could precede
IES, and therefore be used as predictive factors. To address this
question, we restricted ourselves to a subpopulation (np= 38) for
which the EEG contained both αS and IES events, then we
estimated the time tαS (resp. tIES) of the first occurrence of an αS
(resp. IES) event (“Methods”). To define these occurrence times,
we computed the fraction Pα (resp. PIES) of αS (resp. IES) time
course, using a 240s width sliding window (Fig. 1d, e), ultimately
the first occurrence time corresponded to the first time
proportions reached 5%. A statistical analysis showed that the
time tαS of αS (Median; IQR) tαS= 2.11;3.28 min preceded
the time tIES= 11.88;16.23 min of first IES appearance (Fig. 1f):
in averaged tIES was five times larger than tαS (paired t-test,
P-value= 0.0001, one-tailed).

We then explored if the statistics associated with αS could
differentiate between the populations containing or not IES. To
address this question we computed the αS proportion Pα(t)
(Fig. 1g, yellow curves) for each subpopulation (individual traces
in Supplementary Fig. 1). We found two different behaviors
characterized by their initial increase and steady state. To
compare the two populations, we estimated the initial slope a
of the proportion Pα of αS. We obtained a slope a= 0.90 ±
1.31 %min−1 (R2= 0.96) for patients with no IES, compared to
a= 3.85 ± 1.90 %min−1 (R2= 0.97) for patients with IES. For
the group without IES, Pα plateaued at the value 7.85%, while
for the other one, Pα showed underdamped oscillations,
converging to a plateau value 18.5% (Fig. 1g). Finally, to
confirm that the slope a, computed during the induction phase,
was significantly different between patients from the two groups,
we plotted the distribution estimated over a population of
np= 80 patients, and we found a clear separation between the
two populations (Fig. 1h) with (Median; IQR) anoIES= 3.80;1.66
%min−1 for patients without IES and aIES= 0.20;1.66 %min−1

for patients with IES (Mann–Whitney test, P-value= 0.0001
one-tailed, Fig. 1h). These results show that, in the present
dataset, αS events estimated during the first 10 min, could be
used to anticipate the occurrence of IES.

αS events separate patients with an without IES. To differentiate
the EEG signal of patients with and without IES, we decided to
look for three statistical variables extracted from the Sα(t) signal
(Fig. 2a). We subsequently segmented the signal Sα(t) into αS
(yellow) and the rest in blue that we call Inter-αS (IαS) corre-
sponding to regions between two consecutive αS. Note that IαS
includes both bursting periods as well as continuous alpha
activity in the filtered signal Sα(t) (three examples are shown in
Fig. 2a). In Fig. 2a, the αS with the smaller amplitude and the
longest duration corresponded to an IES in the unfiltered signal.

We first estimated the duration Durα of αS events averaged
over each group (Fig. 2b) and found that during the induction
phase, αS duration increased from 1 to 2.5 s for the IES group, in
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contrast for the second group it was almost constant with mean
〈Durα〉= 1.24 s. To further characterize the induction phase, we
computed the mean behavior of Durα by estimating for each
group the slope γ of the fitted curves y(t)= γt+ b, where b is a
constant. We found γ= 0.02 s min−1 (resp. γ= 0.16 s min−1) for
the group without IES (gray) (resp. with IES (magenta)). At this
stage, these results suggest that the αS duration has a tendency to
increase for the IES group only. These properties were confirmed
during the first 35 min of the maintenance phase where the
duration Durα for the IES group plateaued, while the group
without IES remained at a baseline value of 1.3 s.

Second, we focused on changes in the occurrence of αS. For
that purpose, we computed αS occurrence frequency Fα defined as
the number of αS events per minutes (“Methods”). Computing Fα
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Fig. 1 αS and iso-electric suppressions in EEG signal during GA. a Schematic representation of four frontal electrodes (F7, Fp1, Fp2, F8) to record EEG.
b, c EEG signal and its associated spectrogram showing Iso-Electrical Suppressions (IES) (b, upper panel, red) and frequency loss in the alpha band
(8–14 Hz), called α-Suppressions (c, upper panel, yellow). The hypnotic EEG signal (blue) contains both α+ δ waves. d Schematic representation of the
sliding window of width 240 s, translated every 1 s. e Proportion of αS (yellow), IES (red) and α+ δ waves (blue) contained in a sliding window from
(d). f Distribution of first occurrence times of αS (yellow) and IES (red) for np= 38 patients having both events (evaluated during 180min). g Time course
of αS (yellow) (resp. IES (red)) proportions Pα(t) (resp. PIES) computed with the sliding widow (see d, e), for two populations: without (np= 47) and with
(np= 33) IES. The slope (dashed blue) at time zero is equal to a= 0.9 ± 1.31 and 3.85 ± 1.9 for patients without and with IES respectively. h Distribution of
the slope a defined in (g), for np= 80

Table 1 Propofol TCIentage of αS, IES and α+ δ computed
during 10min (induction) and 180min of the maintenance
phase for: all patients, patients with and without IES in the
first 35 min

Events (%) α+ δ αS IES

Patient with IES (np= 33) Ind. (10min) 86.4 11.6 1.9
Maint. (180min) 70.1 19.4 10.5

Without IES (np= 47) Ind. 97.3 2.7 0
Maint. 93.0 6.7 0.3

All patients (np= 80) Ind. 92.8 6.4 0.8
Maint. 83.4 11.9 4.5
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(Fig. 2c) showed a clear distinction between each group: although
Fα is in both case increasing, it plateaus at 8.3 min−1 for IES
group and 2.8 min−1 for the second group. Indeed, we fitted Fα
with a single exponential y(t)= Fmax(1− exp(−t/τ)), where Fmax

and τ are constants, and found Fmax= 8.3 αS min−1, τ = 1.9 min
(R2= 87%) (resp. Fmax= 2.8 αS min−1, τ = 0.4 min (R2= 97%))
for the group with (resp. without) IES. To conclude, this result
shows that αS events are three times more frequent in group with
IES compared to the other group during induction and
maintenance.

Finally, the third variable that we considered is the changes in Sα
averaged amplitude, computed as the mean area Aα and AIαS below
the curve |Sα(t)|, estimated for the αS and IαS events (Fig. 2d, e).
During the induction phase, the area Aα decreased for patients with
IES (magenta) with an initial slope γ=−8.1 nVmin−1 while it was
almost constant (γ=−0.5 nVmin−1) for the other group (gray)
(Fig. 2d). In contrast, the power of the signal Sα did not separate
the two groups (Supplementary Fig. 2). The previous analysis
applied to the inter-αS signal by computing the area AIαS for both
populations almost superimposed and thus could not be used to
separate each population (Fig. 2e). We conclude that αS and IαS
evolve quite differently, in particular, the decrease of the αS
amplitude can be used to separate the two groups of patients,
which was not the case for IαS.

To conclude, the three variables: duration Durα, occurrence
frequency Fα and average amplitude Aα evaluated during the
induction phase could be used to determine the class to which a
patient belong to. Additionally, for the IES group, these variables
reached a steady-steady state with a time scale similar or shorter
than IES proportions PIES (Fig. 1g, red and Supplementary Fig. 2).
These results confirm that these variables are good candidates for
predicting IES.

Predicting IES from the induction phase. During surgery several
variables are routinely collected to monitor anesthesia. The Mean
Arterial Pressure (MAP) is acquired continuously to prevent

propofol hypotensive effect (among others), while age, weight and
height are used in setting the amount of intravenous analgesia
and anesthetic agents21 (chap. 8). Additionally, we also included
in the analysis the per-operative MAP drop (ΔMAP) as its link
with post-operative complications is still debated22,23. We
explored here the capacity of these non-EEG variables and the
ones extracted from the alpha-band Sα signal to predict the
appearance of IES during the first 35 min of the surgery, based
only on the first 10 min.

First, we looked at the correlation between each pair of
variables. We computed the Pearson-correlation matrix (Fig. 3a),
which showed the strongest correlation (ρ= 0.84) between the
slope a (slope of Pα) and the frequency Fα, while the other
variables (age, height, weight, ΔMAP, a, Fα, Aα and AIαS) were not
or weakly (−0.32 ≤ ρ ≤ 0.39) correlated with each other, except
for the age that was moderately correlated with Fα (ρ= 0.54) and
ΔMAP (ρ= 0.55). Mostly weak correlations of Sα-related
variables with each other as well as with the non-EEG variables,
indicates that they represent different aspects of the signal and
therefore justify their use in classification.

Then, we evaluated the ability of these variables to predict the
appearance of IES during the first 35 min of the surgery using
only the induction phase (first 10 min). We started by testing
individual variables, using univariate Logistic Regression (LR)
classifiers (Fig. 3b). To train and evaluate the performance of the
different classifiers, we used a nested k-fold cross validation
procedure combined to a grid-search optimization for finding
optimal hyper-parameter values (see Supplementary Table 1). We
found that the age and ΔMAP were poor classifiers, with average
areas under the ROC curves area under the curve (AUCs) of
0.68 ± 0.13 and 0.64 ± 0.13 respectively. The AIαS slope failed to
predict IES with an average AUC of 0.56 ± 0.15, while the others
were fair to good classifiers with AUCs of 0.76 ± 0.1, 0.84 ± 0.11
and 0.90 ± 0.07 for Aα, Fα and a slopes respectively. Furthermore,
the height and weight variables presented no separations between
the classes (Supplementary Figs. 3 and 4) and were not used. At
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this stage, we conclude that the Sα-related variables: slope a, Fα,
Aα (except for AIαS) are stronger predictors than the non-EEG
variables: ΔMAP, age, weight and height.

We then evaluated the capacity of multivariate classifiers to
improve classification accuracy. We considered three ensembles
of Random Forest (RF) classifiers based either on: only Sα-related
variables (slope a, Fα, Aα, AIαS), only non-EEG variables (age,
weight, height and ΔMAP) or all variables and used the same
training/evaluation procedure as for the univariate classifiers (see
“Method”). The generalization ROC curves presented in Fig. 3c
show that the classifiers using Sα-related only and all variables
obtained excellent average generalization AUCs of 0.92 ± 0.07 and
0.93 ± 0.07 respectively. The classifier based only on non-EEG
variables failed to distinguish the two classes with an average
AUC of 0.57 ± 0.14. We conclude that both in uni- and

multivariate classifiers, the Sα-related variables efficiently predict
IES while non-EEG variables carry little predictive information.

We further confirmed the importance of Sα-related variables
for predicting IES by extracting the variable importance24 from
the RF classifiers based on all variables presented in Fig. 3c. We
found that the classifiers mostly used three variables: the a slope
(32.1 ± 2.8% importance), the frequency Fα (22.4 ± 3.5%) and the
Aα slope (19.2 ± 2.6%) (Fig. 3d), while the other variables all had
importances below 8%. Lastly, we assessed the capacity of the best
RF classifiers using Sα-related only and non-EEG only variables to
separate patients with and without IES. To this end, we computed
the proximity plots, a two-dimensional projection of the distance
induced by a random forest, presented in Fig. 3e for Sα-related
only and Supplementary Fig. 5 for non-EEG only classifiers.
Comparing the two proximity plots clearly showed that the Sα-
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related variables only classifier almost perfectly separated the two
classes while for the non-EEG variables only RF classifier the two
classes are mixed.

Finally to further characterize the structure of our 79 patients
dataset, we optimized the hyper-parameters of a classification
tree25 (p. 308) using all the variables to obtain the best accuracy
score on the entire dataset (see method). This tree, presented in
Fig. 3f, had only four levels and a prediction accuracy of 96.2%
with the initial split using the a slope (threshold T= 0.051) and
already allowing to mostly separate the two populations with an
accuracy of 88.6%. We remark that only one split out of eight is
based on a variable which is not Sα-related. In contrast, a tree
based only on non-EEG variables (age, weight, height, and
ΔMAP) failed to correctly classify the two groups, with an
accuracy after four splits of 73.4% (Supplementary Fig. 5). To
finely assess the quality of the tree, we used an information
entropy metric (see “Method”) to compute the purity of the tree
at each level as presented in Fig. 3f inset. We compared the tree
using all variables (Fig. 3f) with the one using only non-EEG
variables (Supplementary Fig. 5) and found that the former is able
to attain a better entropy in much fewer levels (IH= 0.10 at tree
level 4 compared to IH= 0.35 at level 9).

Discussion
We presented here a general method to detect, during GA,
transients and partial suppressions in the alpha rhythm (αS), that
we showed could be used to predict occurrences of iso-electrical
suppressions. αS events are present in the EEG signal of both
patients with and without IES, however their statistics were
clearly different between the two groups and that already in the
first 10 min of GA. In particular, patients that developed IES had
in average more frequent and longer αS periods (Fig. 2). In
addition, the average amplitude of αS events rapidly decreases
during the induction phase for patients from the IES group. This
property was specific to αS and contrasted with periods of no-
suppressions in the alpha rhythm defined as inter-αS (IαS) time
periods. Finally, the αS statistics, estimated during the first 10 min
of anesthesia, could be used to efficiently predict whether patients
will develop IES with an accuracy of 96.2% and a ROC AUC
of 0.93.

Monitoring EEG during GA has become a routine practice, yet
it remains difficult to interpret and predict. GA can result in mild
cognitive impairments but also lead to devastating cognitive
complications such as confusion or delirium, which might results
in of loss of autonomy7,11,26–29.

A poor cognitive outcome has been associated with IES in EEG.
To our knowledge, no previous methods have been proposed to
either anticipate IES or to consider that αS is a predictive and
reliable marker7,18. The method we developed here allows to
anticipate IES and therefore to identify patients with a potential
cerebral fragility.

Patients sensitivity to GA has been found to be closely related
to IES appearances30,31. Therefore, by showing that patient pro-
pensity to develop IES can be assessed from the first minutes of
induction, we propose here that patient sensitivity to GA could
also be evaluated on that same time scale. We suggest that IES
prediction evaluated from the early stage of GA combined with
an αS tracking procedure could be used by practitioners to finely
tune the anesthetic dose32. Another possible application of our
method might be to identify factors, such as comorbidities, psy-
chotropic treatments (bezodiazepine, antidepressant medication),
linked to postoperative cognitive complications7,33.

We focused here on drug-induced alpha-band suppressions,
characterized by the dominance of a delta rhythm in the EEG34.
During GA, transient events occurring in the alpha rhythm are

mostly described as ‘spindle-like’ EEG patterns resulting from
propofol GABA-mediated inhibition35–38. Interestingly, the
phase coupling between alpha spindle-like epochs and delta
rhythms19,37 has been found to measure the degree of patient
consciousness during GA. Although a profound loss of con-
sciousness is associated to emergence of IES, this correlation
analysis described in refs. 19,37 did not result in predicting IES
occurrences. However, we showed here that suppression periods
in the alpha rhythm, αS, contain enough information about GA
to predict the appearance of a large number of IES and therefore
estimate patient sensitivity to GA.

The depth of anesthesia can be quantified by several markers
such as the delta band power or the alpha-to-delta ratio39. The
performance of these markers in predicting the occurrence of IES
during the first 35 min, can be obtained by comparing the αS’Pα
proportion slope a’ to the alpha-to-delta ratio or the delta power.
For that goal, we estimated these parameters during the induction
phase. We started by computing the power spectrum during the
induction phase for the groups presenting or not IES. We esti-
mated the alpha-to-delta ratio (Supplementary Fig. 6) and found
that the power spectrum between the two groups (with and with
no IES) was visibly different. Using a univariate logistic model, we
show here that αS features (’Pα proportion slope a’) outperformed
alpha-to-delta ratio by 20% (85% vs 65%, respectively (table of
Supplementary Fig. 6). Similarly, the δ-power had an accuracy of
73.75% vs 75% and 85% for αS amplitude (Aα) and’Pα proportion
slope a’. Interestingly, multivariate analysis shows that the δ-
power and the αS amplitude are independent (see Supplementary
Fig. 7). Yet, using these two variables, we found an accuracy of
76.25% and an AUC of 0.825 which remains much below the
performance obtained with the’Pα proportion slope a’ variable
alone. Finally, when we compare the δ-power and’Pα proportion
slope a’, we found that there are not independent: in that case the
δ-power was no longer significant (p= 0.363), while the ’Pα
proportion slope a’ is clearly the most predictive variable with a
p-value < 0.0001. These results support that αS are the most suited
to predict IES occurrences. We discuss here three complementary
correlations:

First, patients without IES during the first 35 min, developed
few to no IES during surgery, as shown in Table 1. Still, in this
study doses of propofol during the first 35 min were in average
higher (Target Controlled Infusion, TCI= 4.3 μg ml−1) than
during the rest of the surgery (TCI= 3.6 μg ml−1). We recall here
that a higher TCI is associated with more IES10.

Second, the maximal mean arterial pressure drop (ΔMAP)
measured during induction is neither correlated with αS nor with
IES, as shown in Fig. 3. This point confirms recent findings
showing that MAP drop and POCD are poorly correlated23,
contrary to IES and POCD7. Additionally, to assess whether the
lowest MAP during the induction period could predict or not IES,
we used an univariate logistic model, and we found no significant
correlation results with p= 0.848, AUC= 0.51. This is in contrast
with The ΔMAP that was significant with p= 0.026, AUC= 0.64
with a classification accuracy of 66.25% (vs. 58%).

Third, we found here that patient age poorly predicted IES
occurrences, as shown in Fig. 3. This absence of prediction was
more noticeable since patients more than 65 years old were
expected to be more sensitive to GA7,33. Nevertheless, in the
present study the 10 youngest patients (<29.5 yrs) did not develop
IES during GA. Yet, patients from the IES group (age mean ± SD:
59.2 ± 14.3 yrs) were thus not all necessary (>65 yrs), suggesting
therefore that the age criterion should be reconsidered for the
evaluation of patient GA sensitivity. Finally, to clarify that during
the maintenance, IES increase cannot be attributed to an increase
of propofol, we compare the averaged TCI for groups of patients
with no IES vs IES (Supplementary Fig. 8): we find that the no IES
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group had a slightly higher TCI during maintenance compared to
the IES group (median [IQR)]; TCI= 3.7[3.3, 4] μg ml−1 ‘no IES’
vs 3.2[3, 3.6] μg ml−1 for ‘IES’ patients). This result could be
understood by an adaption of the propofol dose to the patients
response. This result confirms that, propofol TCI cannot be used
to predict the appearance of IES.

The predictive power of αS statistics described here for the IES
was tested for anesthesia induced with propofol. Different anes-
thetics such as halogenated gases also trigger loss of conscious-
ness, but they can involve different neuronal mechanisms40.
These inhaled anesthetics can induce BS activity and thus IES
through a GABA-mediated inhibition41. Consequently, for GA
based on volatile anesthetics, the same causality between alpha-
rhythm activity and IES could exist. In particular, we suggest that
αS generically anticipates IES.

Similarly, it is unclear whether the present method could be
used with GA based on NMDA antagonizing drugs, such as
ketamine, nitrous oxide, and xenon that tend to enhance arousal,
resulting in the increase of the overall EEG activity42,43 or on the
contrary, leads to paradoxical IES occurrences increase, when
used in combination with classical anesthetics44. Furthermore, we
focused here on alpha and delta rhythms, which are the most
relevant for propofol-induced GA15. Yet, other frequencies such
as beta and gamma bands, also present during GA, could be used
to clarify the neurophysiological mechanisms underlying loss of
consciousness, in particular the role of thalamus45–47.

Our results show that detecting the arrival of transient αS
events allows us to predict patient risk of developing IES. How-
ever, it remains to be demonstrated if a drug administration
guided by our αS analysis would reduce the occurrence of IES and
effectively prevent post-operative cognitive dysfunctions33. Fur-
ther studies are therefore needed to confirm these hypotheses.
Although patients with poor post-operative outcomes present
more IES during their anesthesia7, no causal relations have been
found between IES and complications following GA. Post-
operative complications and IES could both arise from pre-
existing pathologies or cerebral fragility. Further investigations
are clearly needed to clarify how per-operative events (IES and
αS) translates into post-operative consequences (worsening of
mild cognitive impairments, post-operative delirium, etc)8,18.
Finally, we analyzed here an EEG signal free of artifacts resulting
from head manipulation during surgery. Nevertheless, it would be
interesting to automatize the artifact detection/correction stage,
similarly to48.

In the present study, we found EEG features to predict periods
of IES from the first minutes of a GA. We obtained statistics of
partial suppressions of the alpha rhythm, and showed that they
were better predictor of IES than classical variables such as the
age and the ΔMAP. We showed that αS features can be used
successfully to classify patients that will develop IES during GA.
Partial αS, and in particular their causal link to IES, could
hopefully lead to a better understanding of GA.

Methods
Ethics statement. This prospective observational study included patients receiving
a scheduled elective procedure requiring GA at Lariboisière University Hospital
(Paris, France). This study was approved by the Institutional Review Board of La
Société de Réanimation de Langue Française (CE SRLF 11-356). Patients were
excluded from the study if their age was <18 years or they underwent an emergency
procedure. In agreement with the ethics committee for this non-interventional
study an information letter was given, and an oral agreement was obtained from
each patient before anesthesia.

Participants. The group of 80 sedated patients (49 women, 31 men; mean age ±
SD, 52.8 ± 17.5 yr) used in this prospective, observational, single-center, routine
care study were all from the Lariboisière Hospital (Paris, France). Data were col-
lected between January 2018 and May 2018. Patients where admitted for a non-
emergency elective neuroradiology (n= 60) or orthopedic (n= 20) surgery

(Table 2). Pregnant women, minor patients (<18 yr), patients with a body mass
index (BMI) > 35 kg m−2 (invalid Schnider model21, (p. 23)) and patients sedated
under mechanical ventilation at the time of their management were excluded from
the study. The inclusion criteria for patients was to be anesthetized with a Total
IntraVenous Administration (TIVA) of propofol Target Controlled Infusion (TCI)
according to the Schnider model, and combined with a morphine derivative
(remifentanil or sufentanil)21, (chap. 8).

GA induction, maintenance, and monitoring. GA was induced in a standardized
manner with a morphine derivative followed by intravenous administration of
propofol. Patients from neuroradiology surgery group received remifentanil as a
morphinic agent with, a TCI ranging from 5 to 6 ng ml−1 (Minto model21 (chap.
2, 10)) until oro-tracheal intubation, the dose then decreased to 3 to 3.5 ng ml−1

during maintenance, depending on the anesthesiologist’s decisions in the
operating room.

For patients included in orthopedic surgery, the morphine used was sufentanil
in iterative administration (bolus between 5 and 15 gamma), under the
responsibility of the anesthesiologist in charge of the patient.

The brain TCI for propofol, during induction, was 5 μg ml−1 according to the
Schnider model (until oro-tracheal intubation)21 (chap. 2, 10). If patients showed
signs of arousal after several minutes at the target concentration, the
anesthesiologist could increase propofol concentrations.

All patients were intubated after curarization by atracurium besilate (0.5mg kg−1,
Atracrium®) and mechanically ventilated with a tidal volume of 6–8ml kg−1 and a
respiratory rate adapted to obtain an EtCO2 between 35 and 38mmHg. After
intubation, the anesthesiologist was instructed to maintain the patients’ PSI between
25 and 40. The administration of fluids and vasoconstrictors was left to the discretion
of the anesthesiologist present in the operating room based on standard care protocol
of our institution.

Standard monitoring (Pulse Oxygen Saturation: SpO2, Heart Rate: CF, Systolic
and Diastolic Blood Pressures (SBP, DBP) as well as Mean Arterial Pressure MAP,
temperature, expired CO2 fraction: EtCO2) was associated with frontal EEG
monitoring by the Masimo Sedline®monitor (electrodes: F7-Fp1-Fp2-F8, original
sampling frequency: 2500 Hz).

Statistics and reproducibility. We tested that the first αS and IES (Fig. 1f) times
followed a Log-normal distribution using Kolmogorov-Smirnov (K-S) test, where
we obtained for αS (K-S stat.= 0.099, two-tailed P-value= 0.778) and (0.097,
0.797) for IES. We then applied logarithm transform to obtain a Normal dis-
tribution that was tested with a Shapiro-Wilk (S-W) test where we obtained for αS
(S-W stat.= 0.970, two-tailed P-value= 0.346 > 0.05) and (0.984, 0.812) for IES.

We identified and discarded outliers using Grubbs test with a 5% significance
level and 99% of confidence interval on the P-value. We used a paired t-test to
generate a parametric two-tailed P-value where the alternative hypothesis was ln
(tα−S) < ln(tα−S)+ ln(5) (P-value < 0.0001).

We tested difference in slope coefficient a distributions (Fig. 1h) for patients
with and without IES using Mann–Whitney test that was used to generate a non-
parametric P-value for a significance level 0.05, where we found for alternative
hypotheses aαS < aIES, aαS ≠ aIES, and aαS > aIES the P-values (one-tailed) <0.0001,
<0.0001, and 0.9999 respectively.

Detection of IES and αS. The αS monitoring starts following propofol injection,
with a loss of beta activity and an increase in the α-band. We then used the EEG
signal collected from electrodes: Fp1-Fp2 to detect regions of IES, characterized
by a small signal amplitude in the range [−8;8] μV that lasted at least 1 s
(Fig. 4a–c)49,50.

To detect regions of α-Suppressions time periods, we designed a novel
algorithmic procedure that consists in five steps.

For the first step, we used the Daubechies wavelet decomposition with two
vanishing moments (db2) to filter the EEG signal S(t) in the band [8, 16] Hz that
we assimilated to the alpha band51,52 (chap. 6). We have used the second level
detail coefficient d2 (Supplementary Fig. 9). The resulting filtered signal Sα(t) is
shown in Fig. 4d (light blue). In the second step, we estimated from the signal Sα(t)

Table 2 Study group per-operative and demographic data

Nb. of patients np= 80

Age (mean ± SD, range) 52.8 ± 14.5, 18–85 yr
Gender ratio, female/male 1.42
Surgery (Ortho./Neuro.) 20/60
Height (mean ± SD) 167 ± 8 cm
Weight (mean ± SD 70.2 ± 13.6 kg
BMI (mean ± SD) 25.2 ± 4.5
Induction Dur. (mean ± SD) 9.5 ± 2.7 min
Max. MAP drop (Ind.) 28.3 ± 10.6 mmHg
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the minimums xi and the maximums yi conditioned that xiyi < 0 (Fig. 4d).

AmpðtÞ ¼ 1
w

Xnd ðtÞ
i¼1

11Sα ½t�w
2;tþw

2�ð Þðxi; yiÞ; ð1Þ

where nd(t) is the number of distances di falling inside the window ½t � w
2 ; t þ w

2�
(Fig. 4d, gray).

In the third step, we designed a nonlinear filter to enhance the amplitude of
transient oscillatory EEG regions present in the filtered signal Sα(t). Using the
minimums Xi and maximums Yi of the function Amp(t) (Eq. (1)), we identified the
ensemble (Xi, Yi) satisfying RXi < Yi (R= 1.4). For each selected i, we recover the
times sequence {ti} such that Amp(ti)= Yi. We defined the amplification function
Φ as the sum of the function

ϕðtÞ ¼ 1þ B
t
tb

� �η

eηðt=tb�1Þ; ð2Þ

(B= 0.72, tb= 1s and η= 1.96 are constants) positioned at ti and truncated by an

Heaviside function H, so that

ΦðtÞ ¼
X
i

ϕðt � tiÞHðt � tiÞ: ð3Þ

Note that ϕ is maximal at ti. Finally, the enhanced signal is given by

SϕðtÞ ¼ SαðtÞΦðtÞ; ð4Þ

which represents the filtered signal Sα(t) where non αS-regions have an amplified
amplitude (Fig. 4d, red).

In the fourth step, to find the αS regions we applied a threshold T= 0.25 to the
normalized Sϕ(t) (by the maximum over the sliding window) and searched for
regions where j�SϕðtÞj<T (Fig. 4d). To repairs noise-induced breaks in αS events we
apply a dilation of 0.9 s, then an erosion of 1.1 s to discard too short αS.

In the fifth step, we detected an αS periods for each electrode. We retain an αS,
if it is at least present on two of the four frontal electrodes. Note that αS represents
partial signal suppressions occurring in the [8, 16] Hz band. The result of the IES
and αS detections is shown in Fig. 4e.
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Fig. 4 Alpha-Suppression (αS) detection procedure. a Unsegmented EEG signal. b Frontal electrodes. c Detection of IES based on Fp1 and Fp2. Box 1: signal
average (Fp1+ Fp2)/2. Box2: threshold detection for regions inside ±8 μV band, lasting at least 1 s. d (Upper) EEG signal S(t) wavelet decomposition
filtered in the band 8–16 Hz resulting in Sα (light blue). d (Middle) Extraction of oscillatory features of Sα(t): the minimums xi, the maximums yi, the distance
di= |xi− yi|. The average Amp(t) of the distance di is computed in the widow interval [t−w/2;t+w/2], where w= 1s. d (Middle low) Nonlinear filtering
enhancing transient oscillatory periods. Xi (orange) and Yi (blue) are Amp(t) (gray) minimums and maximums respectively. The multiplicative function Φ
(t) is the sum of weight function ϕ(t) (green), multiplied by a Heaviside function H at time ti of maximal amplitude Yi=Amp(ti). The resulting function with
enhanced oscillatory regions is Sϕ(t)= Sα(t)Φ(t) (red). d (Lower) Signal below a T= 0.25 threshold (orange) applied on normalized |Sϕ(t)| (blue) and
present at least on two electrodes is considered as an α-S. e Segmented EEG signal with detected IES (red) using method (c) and α-S (yellow) using (d)
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Moving window analysis. From the segmented EEG signal (Fig. 4e), we used a 24s
time window Wt to identify the proportion Pα (resp. PIES) of signal spent in αS
(yellow) (resp. IES (dashed red)) state (Avg. in Fig. 1d, e, g and individual patient
traces in Supplementary Fig. 1). Note that we analyze the signal before time t= teval
(Fig. 1e, green dot). After each step the window is moved by 1 s.

Time of appearance of the first αS and IES events. We estimated the first time
tαS (resp. tIES) that αS (resp. IES) appears in the EEG signal. For that goal we look for
the first time that a yellow (resp. red) region appears. To guaranty the robustness for
the detection of the times tαS (resp. tIES), we used the criteria that the total duration of
the αS events (resp. IES) exceed at least 5% of the 240 s time duration window.

Properties of αS at the initial time. We constructed the curve Pα that represents
the proportion of time αS spent in the moving window Wt (Fig. 1g, yellow). We
introduce the slope a at time zero of Pα as a statistical parameter. To estimate a, we
fitted Pα with equation y= at for the first 10 min (Fig. 1g, dashed blue).

Estimation of αS event duration. From individual segmented EEG signal
(Fig. 4e), we constructed a time-series DurαS(t) of αS durations where for each
detected time point we collected the duration. To construct an average (Fig. 2b)
over patient population, we use a linear interpolation between the detected time.

αS occurrence frequency. We evaluated the number of αS events per minute that
we denote Fα(t) by counting within a moving time window of size wf= 50s the
number (Nb.αS) of distinct αS in the segmented EEG signal:

FαðtÞ ¼
j#αS� events½t � wf =2; t þ wf =2�j

wf
: ð5Þ

The time window moved 10 s forward after each estimation.

Average amplitude per αS events. From individual filtered signal Sα(t), we
constructed a time-series Aα(t) of the average amplitude defined as the area under
the curve |Sα(t)| averaged over each αS events duration Tj

αS. For each jth αS events
starting at tji and ending at tjf :

AαðtjÞ ¼
1

jTj
αSj

Z
Tj
αS

jSαðsÞjds; ð6Þ

where Tj
αS ¼ ½tji ; tjf �. The same method was applied to estimate time-series AIαS(t)

obtained from the Sα(t) area under each inter-αS regions (Fig. 2a, blue). Fitting was
performed using’fit’ function in MATLAB R2018a.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available from the authors upon reasonable request.

Code availability
The code is associated to a filled patent. The method is property of SignalMed+.
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