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Development of a Deep Neural
Network for Speeding Up a Model of
Loudness for Time-Varying Sounds

Josef Schlittenlacher1 , Richard E. Turner2, and
Brian C. J. Moore1

Abstract

The “time-varying loudness” (TVL) model of Glasberg and Moore calculates “instantaneous loudness” every 1ms, and this is

used to generate predictions of short-term loudness, the loudness of a short segment of sound, such as a word in a

sentence, and of long-term loudness, the loudness of a longer segment of sound, such as a whole sentence. The calculation

of instantaneous loudness is computationally intensive and real-time implementation of the TVL model is difficult. To speed

up the computation, a deep neural network (DNN) was trained to predict instantaneous loudness using a large database of

speech sounds and artificial sounds (tones alone and tones in white or pink noise), with the predictions of the TVL model as

a reference (providing the “correct” answer, specifically the loudness level in phons). A multilayer perceptron with three

hidden layers was found to be sufficient, with more complex DNN architecture not yielding higher accuracy. After training,

the deviations between the predictions of the TVL model and the predictions of the DNN were typically less than 0.5 phons,

even for types of sounds that were not used for training (music, rain, animal sounds, and washing machine). The DNN

calculates instantaneous loudness over 100 times more quickly than the TVL model. Possible applications of the DNN are

discussed.
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There are many practical applications of devices/meth-

ods for estimating the loudness of sounds in real time

based on loudness models (Chalupper & Fastl, 2002;

Glasberg & Moore, 2002; Zwicker, 1977), in other

words of loudness meters (Fastl, 1993; Stone et al.,

1997). For example, they may be used to control the

loudness of commercials in broadcasting or to regulate

the relative levels of the voices of different speakers in

teleconferencing. However, loudness meters have

involved compromises; in order to achieve real-time per-

formance, the computational models of loudness on

which they are based have to be simplified and approx-

imations have to be made (Stone et al., 1997), which can

lead to reduced accuracy. In this study, we describe a

method for the rapid calculation of loudness using a

deep neural network (DNN) that was trained using the

predictions of a model for the loudness of time-varying
sounds, the time-varying loudness (TVL) model of
Glasberg and Moore (2002). The use of the DNN poten-
tially allows real-time calculation of loudness with min-
imal reduction in accuracy.

To our knowledge, a preprint describing the present
work (Schlittenlacher et al., 2019) was the first to use
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knowledge distillation via DNNs (Hinton et al., 2015)
for perceptual models, but further work has been pre-
sented at conferences since then: see Van Den Broucke
et al. (2020) for a transmission-line model of the cochlea,
Sharma et al. (2019) for a speech-quality model, and Cox
et al. (2020) for a glimpse-based speech-intelligibility
model. DNNs have also been used for other tasks in
the hearing domain, for example, to select hearing-aid
fittings (Arntsen et al., 1996) and to separate speech
from noise (see Wang & Chen, 2018, for an overview).

A block diagram of the TVL model is shown in
Figure 1. The model includes a sequence of stages to
simulate the transmission of sound to the eardrum
(Shaw & Vaillancourt, 1985), the transmission of
sound through the middle ear (Aibara et al., 2001), the
frequency analysis that takes place in the cochlea (result-
ing in an auditory excitation pattern; Glasberg &Moore,
1990; Moore & Glasberg, 1983), the creation of a specific
loudness pattern (including the effects of the compres-
sion that occurs in the cochlea; Moore & Oxenham,
1998), and summation of specific loudness across char-
acteristic frequencies (Zwicker & Scharf, 1965) to give
instantaneous loudness. Within the model, frequency is
transformed to the ERBN-number scale, which has units
Cams (Glasberg & Moore, 1990; Moore, 2012). This is a
perceptually relevant scale comparable to a scale of dis-
tance along the basilar membrane (Moore, 1986).
Instantaneous loudness is assumed to be an intervening
variable, not available to conscious perception, although
it has been shown that certain cortical regions show
activity that is correlated with the instantaneous loud-
ness calculated using the model (Thwaites et al., 2016).
Instantaneous loudness represents a loudness scalar for a
single point in time, based on the sound’s short-term
spectrum at this time.

The instantaneous loudness is smoothed over time to
calculate short-term loudness, which is meant to repre-
sent the loudness of a short piece of sound such as a

single word in a sentence or a note in a piece of music.
The short-term loudness is itself further smoothed over
time to calculate the long-term loudness, which is meant
to represent the overall loudness of a longer stretch of
sound, such as a whole sentence or a musical phrase. The
peak value of the long-term loudness gives good predic-
tions of judged loudness for a variety of sounds, includ-
ing amplitude compressed speech (Moore et al., 2003),
sonic booms and impact sounds (Marshall & Davies,
2007), machinery sounds (Rennies et al., 2015), and
speech processed to have increased or decreased dynam-
ic range (Zorila et al., 2016). The model forms the basis
of a proposed ISO standard (ISO 532-3, 2020), although
the model used in the standard includes additional stages
to account for the way that loudness is combined across
ears (Moore & Glasberg, 2007; Moore et al., 2016).

Computationally, the most time-consuming stage of
the TVL model is the calculation of the excitation pat-
tern, which is estimated from the short-term spectrum of
the sound and is used to calculate instantaneous loud-
ness at 1-ms intervals. The excitation pattern is defined
as the output of the auditory filters as a function of
center frequency (Moore & Glasberg, 1983). It is
estimated by calculating the outputs of an array of
level-dependent auditory filters in response to each com-
ponent of the input signal (after outer- and middle-ear
filtering; Glasberg & Moore, 1990; Moore et al., 1997).
The number of computations required to calculate
instantaneous loudness makes it difficult to implement
the TVL model in real time. To overcome this difficulty,
we developed and trained a DNN to speed up the com-
putation of instantaneous loudness from the momentary
spectrum (third to fifth stages in Figure 1, outlined by
the rectangular box), allowing real-time implementation.
The DNN was trained to predict instantaneous loudness
using a large database of speech sounds and artificial
sounds (tones alone, bandpass filtered and notched
noises, and tones in white or pink noise), with the

Figure 1. Block Diagram of the TVL Model of Glasberg and Moore (2002). The large rectangle outlines the stages replaced by the DNN.
CFs¼ characteristic frequencies.
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predictions of the TVL model as a reference (providing
the “correct” answer, specifically the loudness level in
phons). Speech stimuli were selected for training because
of the importance of speech for many applications and
because speech has strong spectral and temporal fluctu-
ations. The artificial sounds were included to improve
the generalization and accuracy of the model for extreme
cases, such as sounds with strong tonal components or
with spectral notches. By avoiding the use of other cat-
egories for training, such as environmental sounds, we
were able to assess how well the trained DNN general-
ized to unseen sounds.

Structure and Training of the DNN

The stimuli used for training had a sampling rate of
16 kHz. Spectra were initially calculated using a 1,024-
point discrete Fourier Transform, with successive win-
dows being shifted by 560 samples. Then bins were
grouped to form 61 bands with center frequencies up
to 8 kHz, with one bin per band for center frequencies
up to 0.2 kHz and 1/9th-octave wide bands for higher
center frequencies. Sixty-one bands rather than the 512
bins of the Fourier Transform were chosen to reduce the
number of weights in the DNN, permitting faster train-
ing. The 1/9th-octave wide bands still provided several
inputs per ERBN. The limit of 8 kHz was chosen due to
the sampling rate of the training material. The magni-
tude of the spectrum was expressed in decibels.

Both accuracy and computation speed were impor-
tant considerations when choosing the structure of the
DNN. The DNN was designed to replace the computa-
tionally most expensive part of the TVL model, the cal-
culation of instantaneous loudness from the short-term
spectrum, that is, the loudness for a single time frame
(the third to fifth stages in Figure 1). The final DNN was
a multilayer perceptron that consisted of an input layer
with 61 units (corresponding to the 61 frequency bands),
three hidden layers with 150 units each, and a single
output unit with linear activation. The factors leading
to this choice of structure are described here. The output
of the DNN was a scalar representing the instantaneous
loudness level in phon. This output format was chosen
because of its similarity to the input scale. Both scales
range roughly from 0 to 110, and the just noticeable
difference in loudness is roughly constant on these
scales. This facilitated the DNN in developing the map-
ping from input to output without the need for scale
transformations. Simple “rectified linear unit” activa-
tions (Nair & Hinton, 2010) were used.

Alternative architectures were also considered.
Convolutional neural networks (Fukushima, 1980),
which are frequently used in image processing and appli-
cations where some of the latent features are invariant to
shifts, did not achieve the same accuracy. This was

probably because the input scale used (logarithmic fre-
quency) did not allow the network to simulate filters that
were valid over the whole range of the ERBN-number
scale that is used in the TVL model. For example, the
octave from 200 to 400Hz spans 3.6 Cams but the
octave from 4000 to 8000Hz spans 6.2 Cams.

The DNN was optimized with regard to the root-
mean-square (RMS) error from the predictions of the
TVL model. The Adam gradient-descent optimizer
(Kingma & Ba, 2014) was used with its default parame-
ters. All weights of the DNN were initialized randomly.
Three sets of data were used for training and choosing the
hyperparameters (i.e., number of hidden units per layer
and number of layers). First, 500,000 spectra were calcu-
lated from the LibriSpeech corpus (Panayotov et al.,
2015), using the “clean” development set. These sounds
were scaled so that each input file (typically a sentence)
had an RMS level of 60 dB SPL. Second, about 700,000
pure tones with levels ranging from 15 to 110dB SPL and
various levels of background noise (from inaudible up to
10dB below the level of the pure tone) were generated.
Third, about 500,000 spectra of bandpass filtered noises
and noises with spectral notches were generated. They
had various overall levels, bandwidths, notch widths,
and spectral gradients. To check for “over-fitting,” the
performance of the DNN was assessed after training for
220, 1,000 and 5,000 epochs, where an epoch is a complete
pass over the entire dataset one time.

The choice of 150 hidden units per layer was motivat-
ed by the resolution of specific loudness along the fre-
quency axis in the TVL model; specific loudness is
calculated for Cam values from 1.75 to 39 in 0.25-Cam
steps. The data described earlier were split into a training
set (90%) and a validation set (10%) after a random
shuffle. The validation set was used for rough tuning
of hyperparameters: 150 hidden units and three layers
produced an RMS error of 0.3 phons for the validation
set and gave more accurate predictions than deeper net-
works with up to nine layers and 75 hidden units (vali-
dation RMS error 0.5 phons). Architectures with 150
hidden units for each of four layers; 300 hidden units
for each of three layers; or a narrowing structure of
600, 300, and 150 units for successive layers did not
yield more accurate predictions than the chosen archi-
tecture. Predictions were less accurate when 150 hidden
units and two layers were used (validation RMS error
0.7 phons).

Assessment of the DNN

Predictions of the Instantaneous Loudness of Speech
and Everyday Sounds

Instantaneous loudness was predicted for two further
sets of data from the LibriSpeech corpus: “clean” test
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set and “other” test set; neither of these sets of data was

used for training. Each of them consisted of 500,000

spectra and they were scaled so that each file (typically

a sentence) had an RMS level of 60 dB SPL. Loudness

was also predicted for 250,000 spectra derived from the

ESC-50 corpus (Piczak, 2015). This corpus contains 50

categories of environmental sounds, for example rain,

animals, aircraft, keyboard typing, and washing

machine. The sounds were again scaled to have an

RMS level of 60 dB SPL. Finally, loudness was predicted

for 100,000 spectra from 20 popular songs of the 1960s,

which were scaled to have an RMS level of 70 dB SPL

for each song. The slightly higher level was chosen

because music is often listened to at a higher level than

speech. The distributions of instantaneous loudness

levels for all test and training sets as calculated by the

TVL model are shown in Figure 2. Their modes are at

loudness levels higher than the respective RMS sound

levels, mainly due to spectral loudness summation

(Zwicker et al., 1957). The distributions for speech and

the environmental sounds extend to low loudness levels,

corresponding, for example, to pauses between words

and have standard deviations between 16 and 20

phons. The distribution for the songs is rather narrow,

probably because they were amplitude compressed

during the production process, and has a standard devi-

ation of 7 phons.
Table 1 shows the RMS error in phons between the

predictions of the TVL model and the predictions of the

DNN after training for 220, 1,000, and 5,000 epochs.

The errors did not vary systematically with the predicted

loudness level, except for a small increase at very low

levels, and the errors had a Gaussian distribution. After

1,000 epochs, the RMS error was below 0.5 phons for all

classes of sounds. After 5,000 epochs, the RMS error

increased slightly for the LibriSpeech “other” and

ESC-50 sounds, which is a sign of “over-fitting.”

Therefore, in what follows, we focus on the results

achieved after training for 1,000 epochs.
Table 2 shows various error measures for the DNN.

The mean absolute error was 0.2 to 0.3 phons for each

corpus, and smaller than 1.5 phons for 99% of all spec-

tra for each corpus. The errors were not markedly lower

for the two parts of the training set, the LibriSpeech

“clean” development set and the artificial sounds

(bottom two rows), than for the other sets, suggesting

that the DNN generalizes well. Figure 3 shows scatter

plots of instantaneous loudness values predicted by the

TVL model (abscissa) and by the DNN (ordinate) for

each of the four test sets. Note that the instantaneous

loudness levels cover a wide range even for the stimuli

whose overall RMS level was fixed. Outliers mostly

occurred at low loudness levels, to which the DNN

was exposed less during training.
To investigate the effect of the training material, we

trained DNNs with the same structure but with different

sets of data, similar to a cross validation. Four sets were

used for training: the ESC-50 set, the 1960s songs, the

LibriSpeech “clean” development set as a subset of the

original training set, and the artificial sounds of the orig-

inal training set. Table 3 shows the RMS errors in phons

of predictions made by the DNNs trained on these four

sets, with rows indicating the training set and columns

indicating the test set. For each DNN, the training and

validation RMS error were the same to one decimal

place. The DNNs trained with speech or with the envi-

ronmental sounds gave accurate predictions of the loud-

ness of those same sounds and of the songs, even slightly

better than the original DNN. However, they failed to

predict the loudness of the artificial sounds, with RMS

errors above 20 phons. Training with the 1960s songs,

which had only a narrow range of loudness levels, led to

consistently less accurate predictions. The artificial

sounds produced moderately accurate predictions for

Figure 2. Distributions of Calculated Instantaneous Loudness
Levels in the Training and Test Sets. The test sets were LibriSpeech
(solid line), ESC-50 (dashed line), 1960s songs (dotted line), and
artificial sounds (dash-dotted line).

Table 1. RMS Difference (Error) in Phons Between the
Instantaneous Loudness Predicted by the TVL Model and by the
DNN.

Number of epochs

Test material 220 1000 5000

Validation set 0.51 0.33 0.34

LibriSpeech “clean-test” 0.35 0.27 0.28

LibriSpeech “other-test” 0.55 0.45 0.47

ESC-50 0.56 0.45 0.47

Songs from the 1960s 0.38 0.35 0.31

The LibriSpeech “clean” sounds from the development set and a variety of

tones and noises were used for training, while the remaining sounds were

not used for training.
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all test sets, despite the fact that this set did not contain

any real-world sounds. However, the RMS error was

about 5 to 10 times that of the original DNN, being

between 1.7 and 3.5 phons.
Because of the computational cost of loudness

models, A-weighted SPL is frequently used as a proxy

for loudness. The last row of Table 3 shows the RMS

error when taking the A-weighted SPL as an estimator

of the instantaneous loudness level predicted by the TVL

model. The prediction bias of the test sets, that is, the

mean difference between A-weighted SPL and loudness

level of the TVL model, was subtracted from the

A-weighted SPLs before calculating the RMS errors.

The RMS errors were between 2.7 phons for the songs

and 6.7 phons for the artificial sounds.

In summary, the original DNN, which was trained
with both speech and artificial sounds, gave more
accurate predictions than DNNs with the same architec-
ture but trained with more restricted sets of materials,
and also gave more accurate predictions than A-weight-
ed SPL.

Predictions of Short-Term, Long-Term, and Overall
Loudness

As described earlier, the TVL model calculates short-
term and long-term loudness from instantaneous loud-
ness (Figure 1). To compare the predictions of the DNN
with those of the TVL model for short-term and long-
term loudness, instantaneous loudness was predicted
once per 1ms for the 2,620 sentences of the
LibriSpeech “clean” test set and for the 2,000 five-
second long sounds of ESC-50, with both the DNN
and the TVL model. Short-term and long-term loudness
were calculated using the formula of the TVL model.
The maximum value of the long-term loudness was
taken to represent the overall loudness (Zorila et al.,
2016). The predicted values for overall loudness had a
narrower distribution than for instantaneous loudness
(Figure 2), as expected. The standard deviations for
overall loudness were 2.3 phons for the LibriSpeech
“clean” test set and 4.8 phons for the ESC-50 set, respec-
tively, and the ranges were 15.9 phons (from 76.5 to
92.4) and 63.2 phons (from 39.9 to 103.0), respectively.
Tables 4 and 5 show various error measures for the
speech sounds and environmental sounds, respectively.
The errors were somewhat smaller than those for instan-
taneous loudness. RMS errors were smaller than 0.4
phons and 99% of all loudness values based on the
DNN were within 1.1 phons of the predictions of the
TVL model. The prediction bias, which is the difference
between the mean of the loudness levels predicted by
the DNN and by the TVL model, was close to zero
for all loudness metrics, implying that there was no sys-
tematic error.

For comparison to another method that calculates
overall loudness with a low computational cost, the

Table 2. Error Measures of the Differences in Phons Between the Instantaneous Loudness Predicted by the TVL Model and by the DNN.

Test material

Root-mean-

square error

Mean absolute

error

99-percentile

of absolute error

Maximum

absolute error

Prediction

bias

LibriSpeech “clean-test” 0.3 0.2 0.7 8.6 0.1

LibriSpeech “other-test” 0.4 0.2 1.3 15.7 0.1

ESC-50 0.4 0.3 1.4 15.3 0.2

Songs from the 1960s 0.4 0.3 0.9 10.3 0.3

LibriSpeech “clean-dev” 0.3 0.2 0.7 7.5 0.1

Tones and noises 0.4 0.3 1.1 6.8 0.1

The LibriSpeech “clean” sounds from the development set and tones and noises were used for training. The last two rows show predictions for part of the

training material (training and validation set collapsed).

Figure 3. Scatter Plots Showing the Predictions of the DNN
Versus the Instantaneous Loudness Level Calculated Using the TVL
Model for the Four Test Sets. The four test sets include
LibriSpeech “clean” test, LibriSpeech “other” test, 1960s songs
and ESC-50, clockwise from upper left. Each panel shows more
than 100,000 data points. DNN¼ deep neural network;
TVL¼ time-varying loudness.
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average spectrum of each sound was taken and its loud-

ness was calculated using ISO 532-2 (2017). For station-

ary diotic sounds, ISO 532-2 produces almost the same

loudness values as the TVL model. For the speech

sounds and environmental sounds, the RMS errors

were 1.6 and 3.6 phons, respectively. For 1% of the

sounds, the absolute errors were larger than 3.9 and

10.0 phons, respectively. Thus, overall loudness was pre-

dicted more accurately using the DNN than using the

long-term average spectrum and ISO 532-2.

Predictions for Pure Tones

Figure 4 shows loudness levels predicted by the DNN for

pure tones in quiet as a function of input sound level for

frequencies of 100 Hz (dotted line), 1000 Hz (solid line),

Table 4. Various Measures of the Difference in Phons (error) Between the Predictions of the TVL Model and the DNN for the
LibriSpeech “Clean-Test” Set for Short-Term, Long-Term, and Overall Loudness. Error Measures for Stationary Loudness are also shown.

RMS

error

Mean absolute

error

99th-percentile of

absolute error

Maximum absolute

error

Prediction

bias

Short-term loudness 0.2 0.2 0.4 8.3 �0.1

Long-term loudness 0.2 0.2 0.4 8.3 �0.2

Overall loudness 0.2 0.2 0.4 0.7 �0.2

Stationary loudness 1.6 1.2 3.9 6.3 0.6

The last row shows differences between the overall loudness predicted by the TVL model and stationary loudness (ISO 532-2, 2017), based on the average

spectrum.

Table 3. Root-Mean-Square Errors in Phons of Predictions of DNNs With the Same Architecture as the Selected DNN but Trained on
the Material Given by the Rows, and Evaluated Using the Material Given by the Columns.

Evaluation material

LibriSpeech

“clean-dev” ESC-50

1960s

songs

Tones and

noises

LibriSpeech

“clean-test”

LibriSpeech

“other-test”

Training material

LibriSpeech “clean-dev” 0.2 0.3 0.4 22.9 0.2 0.3

ESC-50 0.3 0.2 0.1 23.3 0.2 0.3

1960s songs 2.5 2.4 0.2 38.7 1.8 3.1

Tones and noises 3.3 3.0 1.7 0.4 3.4 3.5

A-weighted level 5.0 5.0 2.7 6.7 4.8 5.3

When the training and test sets were the same, the training RMS error and validation RMS error were the same within one decimal place. The last

row shows RMS errors of loudness predictions using A-weighted sound pressure level, after correction for the prediction bias associated with the

respective test set.

Table 5. Various Measures of the Difference in Phons (errors) Between the Predictions of the TVL Model and the DNN for the ESC-50
Set for Short-Term, Long-Term, and Overall Loudness. Error Measures for Stationary Loudness are also shown.

RMS

error

Mean absolute

error

99th-percentile of

absolute error

Maximum absolute

error

Prediction

bias

Short-term loudness 0.3 0.2 1.1 12.5 �0.2

Long-term loudness 0.3 0.3 0.9 12.4 �0.2

Overall loudness 0.4 0.4 1.1 3.6 �0.3

Stationary loudness 3.6 2.7 10.0 20.1 1.4

Figure 4. Loudness Level in Phons Predicted by the DNN as a
Function of Sound Level for Pure Tones With Frequencies of 100,
1000, and 3000Hz and for White Noise (15 to 8000Hz).
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and 3000 Hz (dashed line), assuming free-field presenta-
tion with frontal incidence. Note that pure tones with a
wide range of levels and frequencies were included in the
sounds used during training, so we expected these pre-
dictions to be accurate. The predictions are shown here
to demonstrate that the inclusion of speech and noise
bands in the training material did not adversely affect
the accuracy of the predictions for the pure tones.

The predictions are consistent with empirical data
(Hellman, 1976) and are almost identical to the predic-
tions of the TVL model. For the 1000-Hz tone, by def-
inition its loudness level in phons is equal to its physical
level in dB SPL. The predictions of the DNN show this
relationship almost exactly. The loudness level is greater
for the 3000-Hz than for the 1000-Hz tone because
3000Hz is close to the resonant frequency of the ear
canal, so the sound level at the eardrum is boosted rel-
ative to that in free field (Shaw & Vaillancourt, 1985).
The loudness level is lower at 100Hz than at 1000Hz
partly because of the attenuation characteristic of the
middle ear and partly because less gain is applied by
the active mechanism in the cochlea at low frequencies
(Cooper, 2004; Moore et al., 1997). Both of these effects
are simulated in the TVL model.

Predictions for Noises as a Function of Bandwidth

Figure 5 shows the loudness level of bandpass filtered
pink noise geometrically centered at 1 kHz, plotted as a
function of bandwidth, as predicted by the TVL model
and by the DNN. The overall level of the noise was
60 dB SPL. Again, it should be noted that noise bands
with a wide range of levels, center frequencies, and band-
widths were included in the sounds used during training.
The point here was to check that the inclusion of speech
and pure tones in the training material did not affect the

accuracy of the predictions for noise bands. For small
bandwidths, the loudness level predicted by the DNN
was slightly below that predicted by the TVL model.
Overall, the predictions of the DNN for the loudness
of bands of noise showed good accuracy.

The loudness level of white noise as a function of level
as predicted by the DNN is shown in Figure 4 (dash-
dotted line). Its threshold, corresponding to a loudness
level of about 2 phons (Moore et al., 1997), is higher
than for the 1-kHz and 3-kHz pure tones because for
broadband noise the level at the output of any single
auditory filter is much lower than the overall level. At
medium levels, the loudness level of the white noise is
considerably higher than for pure tones of the same
level, because of spectral loudness summation, and this
effect deceases at high levels, consistent with experimen-
tal data (Zwicker et al., 1957).

Discussion

The predictions of the DNN for the environmental
sounds and music were remarkably accurate. This is
noteworthy, since the DNN was trained only using
speech and synthetic sounds. This suggests that the
DNN generalizes well to real-world sounds and would
do so for sounds other than those tested here. The pre-
dictions for music were accurate despite the fact that the
music test sounds were scaled to have an RMS level of
70 dB SPL, which is higher than the level of 60 dB SPL
that was used with the speech sounds used for training.
This shows that the DNN works well for sounds with
levels that it was not exposed to frequently during train-
ing. However, there were some prediction errors for low
loudness levels (Figure 3), to which the DNN was not
exposed frequently during training (Figure 2).

Predictions were accurate for real-world sounds other
than those used for training when the artificial sounds
were not included in the training set (see Table 3).
However, the catastrophic performance for pure tones
and notched noises when the DNN was trained with
real-world sounds indicates that the DNN can produce
large errors for test materials that are very different from
any training material. This may have occurred because
when the artificial sounds were not used for training, the
DNNs did not simulate the structure of the TVL model
but instead performed a nonlinear regression in the 61-
dimensional input space. For this reason, it was impor-
tant to include the artificial sounds in the training set.
The overall performance of the DNN might have been
even better if the training sounds had included more
sounds with lower levels. It might also be possible to
achieve even better generalization by using an adversar-
ial approach (Szegedy et al., 2013), in which a second
DNN tries to find sounds for which the predictions
of the first DNN are inaccurate, with the first DNN

Figure 5. Loudness Level in Phons Predicted by the DNN (Solid
Line) and by the TVL Model (Dashed Line) as a Function of the
Bandwidth of a Pink Noise Geometrically Centered at 1 kHz with
an Overall Level of 60 dB SPL. DNN¼ deep neural network;
TVL¼ time-varying loudness.
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then adapting in order to achieve more accurate predic-
tions for the problematic sounds. We leave this for a
future study.

The predictions of short-term, long-term, and overall
loudness based on the DNN were slightly more accurate
than those for instantaneous loudness. One might have
expected markedly smaller prediction errors because of
the temporal smoothing involved. However, successive
spectra in a sound are not independent, and this limits
the improvement that can be expected. Both for instan-
taneous loudness and for overall loudness, the predic-
tions of the DNN were much more accurate than
those of other computationally cheap methods, specifi-
cally A-weighted SPL and stationary loudness calculated
using ISO 532-2 (2017), which are frequently used in
practical applications. The improvement for the DNN
was a reduction of the RMS error in phons by a factor of
5 to 20, despite the fact that predictions based on
A-weighted SPL were corrected for the prediction bias
of the test set.

In its reference implementation, the TVL model needs
about 50ms to calculate a single instantaneous loudness
value on a modern central processing unit (CPU; Intel i7
6th generation), although it is somewhat faster for
simple input spectra like a pure tone without back-
ground noise. For applications where delays need to be
kept small, it is important to perform a single instanta-
neous loudness calculation in real time, that is, faster
than 1ms. To do this, we implemented the trained
DNN in Matlab. The loudness prediction for a single
input spectrum took 0.3ms when using a single CPU.
Dedicated DNN hardware would be able to perform the
computation even faster. When delays are allowed, for
example when analyzing the loudness of long recordings,
loudness calculations can be done in parallel. To calcu-
late the 86,400,000 instantaneous loudness values of a
24-hr-long recording, our implementation of the DNN
in TensorFlow/Python needed about 1 min on a graphic
processor unit (Nvidia GeForce GTX 1080), and a few
minutes on a CPU.

The present approach has some limitations. First, the
frequency range had an upper limit of 8 kHz, due to the
sample rate of the training material. This may be enough
for many applications but is an octave lower than for the
TVL model. Second, only a few low loudness levels
of real-world sounds were included in the training
material, which led to some large errors at these
levels (see Figure 3 and the maximum absolute errors
in Tables 2, 4, and 5). These limitations may be over-
come by using training sets that have a higher sample
rate and have a more balanced range of instantaneous
loudness levels. For the present study, we intentionally
chose speech as the only real-world sounds in the train-
ing set to investigate how well the DNN generalizes to
completely unseen types of sound.

Potential applications of the DNN include develop-

ment of a real-time loudness meter without the compro-

mises that were necessary previously to achieve real-time

operation (Stone et al., 1997) and real-time control of

levels in broadcasting to ensure (among other things)

that the advertisements are not louder than the main

program material (Moore et al., 2003). The DNN

could be extended to predict loudness for people with

hearing loss (Moore & Glasberg, 1997, 2004). In princi-

ple, this could be used for on-line control of loudness in

hearing aids so as to restore loudness perception more

nearly to normal (Launer & Moore, 2003).
The extension to hearing loss could be done in two

ways. Including parameters characterizing hearing

impairment as part of the input, such as the proportion

of hearing loss due to inner versus outer hair cell dys-

function at different frequencies (Moore & Glasberg,

1997, 2004), would require a considerably larger

amount of training data to cover all possible sorts of

hearing loss, and it is difficult to predict how well a

DNN trained in this way would generalize to unseen

hearing losses. Another approach would be to use a

loudness model for impaired hearing (Moore &

Glasberg, 2004) to generate the “correct” loudness

values for a specific hearing loss during the training of

the DNN. In this case, the trained DNN would only be

valid for that specific hearing loss. However, the

“correct” loudness calculations only need to be done

once during training, and thus, this approach is suitable

for application in a hearing aid using loudness predicted

via a DNN. Furthermore, it can be anticipated that a

DNN trained on a specific hearing loss has about the

same performance as a DNN trained for normal hear-

ing—the input space remains the same and normal hear-

ing is a special case in the hearing-loss loudness model.

Conclusions

The DNN gave accurate predictions of loudness for

environmental sounds and music despite training using

speech and synthetic sounds only. This shows good gen-

eralization and suggests that the DNN will give reason-

ably accurate predictions for a wide variety of everyday

sounds. Most predictions were accurate, with RMS

errors of 0.5 phons or less, a difference in loudness

level that would not be detectable. This was about 5 to

20 times better than metrics that are frequently used in

practice, such as A-weighted SPL and loudness calculat-

ed from the long-term average spectrum. The DNN cal-

culates instantaneous loudness more than 100 times

faster than the TVL model, making real-time implemen-

tation possible. This opens up potential applications in

broadcasting and in the on-line control of loudness in

hearing aids.
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