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Abstract

Bone marrow hematopoietic stem cells (HSCs) are responsible for both lifelong daily maintenance of all blood cells and for
repair after cell loss. Until recently the cellular mechanisms by which HSCs accomplish these two very different tasks
remained an open question. Biological evidence has now been found for the existence of two related mouse HSC
populations. First, a dormant HSC (d-HSC) population which harbors the highest self-renewal potential of all blood cells but
is only induced into active self-renewal in response to hematopoietic stress. And second, an active HSC (a-HSC) subset that
by and large produces the progenitors and mature cells required for maintenance of day-to-day hematopoiesis. Here we
present computational analyses further supporting the d-HSC concept through extensive modeling of experimental DNA
label-retaining cell (LRC) data. Our conclusion that the presence of a slowly dividing subpopulation of HSCs is the most likely
explanation (amongst the various possible causes including stochastic cellular variation) of the observed long term
Bromodeoxyuridine (BrdU) retention, is confirmed by the deterministic and stochastic models presented here. Moreover,
modeling both HSC BrdU uptake and dilution in three stages and careful treatment of the BrdU detection sensitivity
permitted improved estimates of HSC turnover rates. This analysis predicts that d-HSCs cycle about once every 149–193
days and a-HSCs about once every 28–36 days. We further predict that, using LRC assays, a 75%–92.5% purification of d-
HSCs can be achieved after 59–130 days of chase. Interestingly, the d-HSC proportion is now estimated to be around 30–
45% of total HSCs - more than twice that of our previous estimate.
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Introduction

Multi-potent stem cells are required to regenerate self-renewing

tissues such as the skin, gut, and hematopoietic system. They have the

capacity to provide both life-long self-renewal and to generate all the

terminally differentiated cell types of each lineage. In order to protect

against oncogenic mutations, most immature adult stem cells are

thought to divide infrequently and be predominantly in a quiescent

state (reviewed in [1]). In addition, quiescence has been postulated to

prevent stem cell exhaustion. Bone marrow (BM) hematopoietic stem

cells (HSCs) are crucial to maintain lifelong production of all blood

cells. Due to the technological advances provided by flow cytometry,

the existence of multiple monoclonal antibodies directed to stem cell

specific cell surface antigens, and in vitro and in vivo assays that can

quantitate their functional capacity, mouse BM HSCs are amongst

the most well characterized (both phenotypically and functionally)

adult stem cells. All functional activity resides within the

Lin{Sca1zcKitzCD150zCD48{CD34{ population (hereafter

termed HSCs) that comprises around 0.001% of mouse BM.

Although HSCs have been shown to be predominantly in a transient

resting state of cell cycle and are therefore thought to divide

infrequently, it has always been assumed that this is a stochastic

process with the entire HSC pool turning over every few weeks.

Indeed, the earliest studies estimated the doubling time of individual

HSCs to be between 17.8 and 30 days with the entire HSC pool

turning over every 57 days. Moreover, these studies excluded the

existence of a dormant HSC population. Thus the common dogma

was that despite their relative transient quiescence, all HSCs

nevertheless regularly entered and exited the cell cycle.

In recent studies however, we and others have identified a

population of dormant mouse HSCs (d-HSCs) within the HSC

BM population that divides only about 5 times in the life span of a

mouse [2,3]. We combined flow cytometry with Bromodeoxyur-

idine (BrdU) and histone-2B-GFP (H2B-GFP) label-retaining

assays that depend on the ability of dormant HSCs to retain a

DNA or nuclear protein label over a long chase period (up to 306

days). Cycling cells will however rapidly lose this type of label as it

is diluted by half after every complete cell cycle, and is

undetectable by flow cytometric assays after 4 to 5 cell divisions.

We further showed that while d-HSCs possess most of the multi-

lineage long-term self-renewal activity, they are efficiently

activated in response to BM injury. After re-establishment of
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homeostasis, activated HSCs return to dormancy, suggesting that

HSCs are not stochastically entering the cell cycle but reversibly

switch from dormancy to self-renewal under conditions of

hematopoietic stress (Figure 1, right panel).

While putative dormant stem cell populations have been

observed in situ in both the skin and the intestine using the

classical BrdU-label retaining cell assay [4], their precise

phenotypic characterization has been elusive due to the lack of

specific surface markers and functional assays for these organs.

Recently, studies using the H2B-GFP transgenic system described

in [2] under the control of the K5 epidermal specific promoter

have provided functional evidence for an epidermal stem cell with

limited cycling potential [5]. Nevertheless, neither of these stem

cell populations is as well characterized as the HSC particularly in

the context of quiescence or reversible activation after injury.

Thus, to date the existence of a bona fide d-HSC remains confined

to the hematopoietic system.

Here we present deterministic and stochastic computational

models of our BrdU label-retaining cell (LRC) data. We show that

those models that assume the existence of a slowly cycling

subpopulation and heterogeneity over time are able to describe the

observed experimental data the most satisfactorily. The LRC

models we define here are more extensive than those we used in

[2] in that we now also model BrdU uptake and refine the way in

which the model accounts for the BrdU detection threshold

(BDT). It turns out that there exist a multiple nonlinear

dependency between the number of divisions during uptake, the

number of divisions during chase, and the BDT. By carefully

elucidating this relationship and incorporating the results in our

model we were able to better estimate HSC turnover rates. We

further describe a stochastic model that enabled us to simulate

BrdU-based LRC assays as a Markov Process. Results from these

stochastic simulations shows the observed long term BrdU

retention cannot be explained by stochastic variation alone. More

importantly, the two-sample Kolmogorov-Smirnov test indicates

that the experimental data are more likely a sample from a

heterogenous population of cells than a homogeneous population.

Results

BrdU uptake influences parameter estimates during
chase

We have previously defined a mathematical model of BrdU

LRC data to support the dormant HSC hypothesis [2]. There our

approach was a simple comparison between two versions of the

model to see whether the observed BrdU labeling data can be

Figure 1. Conventional vs. dormant population HSC hierarchy. The hierarchical organization of the hematopoietic system has long been
recognized, with rarely-dividing multipotential HSCs producing rapidly dividing lineage-restricted transit-amplifying and committed progenitors
which in turn will give rise to all differentiated cell types of the blood. Within the HSC population, two possible models can be envisaged. In the
conventional model (left panel), the HSC population is homogeneous with respect to cell cycle entry with the entire HSC pool turning over every few
weeks. In contrast, in the dormant HSC model (right panel), the hierarchical organization of the hematopoietic system includes the phenotypic HSC
pool, in which two subpopulations can be defined based on their relative turn-over frequencies. An active HSC (a-HSC) population is responsible for
the day-to-day maintenance of the hematopoietic system, while a second population, the dormant HSC pool (d-HSC), cycles only a few times over the
life span of the mouse in a homeostatic situation (dashed arrow) but is activated and participates in replenishment of the hematopoietic system after
injury (solid arrow).
doi:10.1371/journal.pone.0006972.g001
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more satisfactorily described by a one-population model or by a

two-population model. In addition to HSC proliferation kinetics,

the BDT was estimated since it can have a confounding effect on

the observed LRC data. Even though BrdU labeling assays are

characterized by two phases, the shorter uptake or pulse phase

(BrdU present for 10–13 days) and a longer chase phase (BrdU

absent for up to 306 days), our focus was previously exclusively on

BrdU dilution data. The reason was due to the fact that the

discriminative power for both heterogeneity in HSC proliferation

parameters and the BDT can be expected to lie in the chase phase

of the data only. LRCs can, by definition, only be observed during

the chase phase when labeling is diluted. In addition, the only

information about the BDT we can learn from the uptake data is

that 50% labeled DNA (thus after one or more uptake divisions) is

an upper bound for our detection threshold estimate. If BrdU

detection by flow cytometry was less sensitive than 50%, cells

would need to divide at least twice before we could detect them as

BrdUz, making BrdU labeling very inefficient. Nevertheless the

BDT upper bound is apparent in the chase phase data where a

detection threshold of more than 50% would imply rapid loss of

labeling, similar to what would be the case if chromosomes

segregated asymmetrically [6,7].

Here our models in [2] are elaborated upon and extended with

the aim to improve model parameter estimates. We have included

equations for BrdU uptake and refined the way we account for the

fluorescent detection threshold of BrdU. Although BrdU uptake

data has little discriminative power when investigating HSC

heterogeneity, actual parameter estimates are in fact strongly

influenced when they are based on both BrdU uptake and chase

data, as opposed to chase data only (which was the case in [2]).

This observation is based on the concept that cells that have

divided more in the presence of BrdU need more divisions to

dilute the BrdU they have taken up. The BDT further complicates

matters since some cells will take n chase divisions to transcend the

detection threshold whilst others that have divided more during

uptake will take nz1 divisions. However, for some other BDT

these same cells might take an equal number of divisions to dilute

their label. This multiple nonlinear relationship is summarized in

Table 1 where we can clearly see that at a threshold of 5%, 1 and

2 uptake division cells will lose label after 4 divisions, and 3 and

more uptake division cells will lose label after 5 divisions. At a

7.5% threshold, 1 uptake division cells will lose label after 3

divisions whilst all the others (2 or more uptake divisions) will take

4 divisions. Interestingly all cells will lose label after 3 divisions at a

12.5% threshold. It is thus obvious that a complex interplay

between the number of divisions during uptake, the BDT, and the

number of divisions during chase exists. Any BrdU model used to

infer cell division kinetics should carefully address these three

factors. See Methods for details on how the values in Table 1 were

computed.

Long term LRC data indicate a slowly dividing
subpopulation

The empirical BrdU LRC data we obtained are shown in

Figure 2, with the uptake data on a timescale of hours for

improved readability. The novelty of this dataset is the

exceptionally long chase period, as previous BrdU datasets only

included uptake [8] or tracked label dilution no longer than 70

days [9–11] or 120 days [6] at most. Strikingly the rate of label

dilution in Figure 2 decreases after chase day 70 flattening out as

label is retained on the long term. In this section we investigate

possible causes of the observed long term BrdU retention and

conclude that it must be due to a slowly dividing subpopulation of

cells.

Long term retention of experimentally labeled DNA in cells

such as observed in Figure 2 are either an artefact of the

experimental procedure used or can be explained by some

biological property of the cells under scrutiny. Our quantitative

approach accounts for two possible experimental confounding

factors that might create an illusion of label retention. The first is

controlling for the BDT, which as highlighted above, is an absolute

necessity for more accurate parameter estimation. Apart from its

influence on parameter estimation the BDT also provides a

Table 1. BrdU detection threshold.

BDT % DNA strands labeled c1 c2 n c1 n c2

1 1.25% 1,2 3,4,… 6 7

2 2.5% 1,2 3,4, … 5 6

3 3.75% 1 2,3, … 4 5

4 5% 1,2 3,4, … 4 5

5 6.25% 1,2, … 4

6 7.5% 1 2,3, … 3 4

7 8.75% 1 2,3, … 3 4

8 10% 1,2 3,4, … 3 4

9 11.25% 1,2,3 4,5, … 3 4

10 12.5% 1,2, … 3

BDT: BrdU detection threshold (minimum number of labeled DNA strands that
can be detected). For each BDT we divide cells into two groups during the chase
phase (c1 and c2) depending on how many times a cell has divided during BrdU
uptake. We then give n c1 and n c2, the number of times cells in each group has
to divide to go below the detection threshold. Consider a BDT of 4 strands for
example: cells that have divided once or twice during uptake will dilute their BrdU
in 4 divisions, whilst it will take 5 divisions for cells that have divided 3 or more
times during uptake. This table was completed using Figure 6.
doi:10.1371/journal.pone.0006972.t001

Figure 2. Observed experimental data of BrdU uptake and
chase. Green: uptake; blue: chase; red x: mean observed data; vertical
dotted line: time at which BrdU was removed. Each time point represents
between 5 and 11 mice. The dose of BrdU administered is 180 mg i.p. per
mouse at the start followed by water containing 800 micrograms per ml
BrdU continuously for 10–13 days (for more details on the experimental
procedure see [2]). Plotting BrdU uptake on a timescale of hours and
chase on a timescale of days clearly shows a markable change in kinetic
slope at 5 time points (black arrows). Definitive biological events can be
attributed to the first three changes, which motivated a three-stage
(second stage shaded in solid grey) parameter estimation strategy, as
discussed in the main text. The change occurring at chase day 70 (fourth
arrow) can be regarded as the starting point of the long label retaining
tail in the graph. The observed data at chase day 177 (fifth arrow) seems
like an outlier since subsequent time points return to the kinetic slope as
observed prior to day 177.
doi:10.1371/journal.pone.0006972.g002
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possible explanation for label retention, since if BrdU detection by

flow cytometry was extremely sensitive, cells would still be detected

as BrdUz even after many chase divisions and hence it will appear

as if cells have long term BrdU retention. Alternatively it might be

possible that the natural stochastic variation between mice at the

HSC level is much larger than expected. In this case the observed

long tail in Figure 2 may be due to an inadequate or unintentional

skew sample of mice examined at each time point. To investigate

this possibility we predicted confidence intervals using variance

estimates of a stochastic version of our model discussed in the

following section.

In terms of biological properties of stem cells explaining label

retention two independent hypotheses have been postulated.

Firstly it has been proposed in the ‘‘Immortal Strand Hypothesis’’

that stem cells divide frequently, but in doing so asymmetrically

recognize and retain the ‘‘old’’ labeled mother DNA strand, while

the newly synthesized unlabeled chromosomes are selectively

distributed to the non stem cell daughter [12,13]. Alternatively

stem cells with a very slow division rate during chase will retain

DNA label much longer than those that divide more frequently.

Recently we, and others have shown that label retention, which

cannot be convincingly explained by an asymmetric segregation

mechanism, has also been observed in nuclear protein labeling

assays, such as that using a H2B-GFP fusion protein under control

of specific promoters [2,3]. Moreover the ‘‘Immortal Strand

Hypothesis’’ has recently been seriously challenged for HSCs

[6,14,15], although it has been found that the LRC data of [6]

provides insufficient information about the segregation mechanism

of chromosomes, but nevertheless supports HSC heterogeneity

including a dormant population [7]. The models we present here

have therefore assumed random chromosome segregation so that

the presence or absence of dormancy is the only biological

hypothesis we have to address. Similar to our approach in [2] two

versions of the LRC model were thus implemented. First a one-

population version that models the data as being observed from a

single population of cells with homogeneous turnover rates was

defined. Secondly this model was extended to a two-population

version that assumes heterogenous turnover rates between the two

subpopulations.

Each model is defined by a set of Ordinary Differential

Equations (ODEs) that describes the rate of change of the

proportion of labeled cells over time (see Methods for details). The

dynamics of the model equations are determined by the self-

renewal (s), differentiation (d) and death (c) rates of the cell

population in question. These parameters were assumed to be

constant and constrained to maintain a steady state. By this

assumption we thus effectively estimated the average turnover

rates over particular periods in time. If HSC dynamics are

constant, as during homeostasis, this poses no problem and serves

as a convenient description of the net effect of state-dependent (i.e.

non constant) parameters. However careful study of the observed

LRC data in Figure 2 reveals 5 points in time where a peculiar

change in kinetic slope is apparent, indicated with black arrows.

There is an initial lag phase after BrdU is first added to the system.

After 24 hours a sudden increase in BrdU uptake rate can be

observed (first arrow), which extends until 312 hours (13 days)

when BrdU is removed (second arrow). At this time point, the cells

immediately start to dilute their label as they continue to divide

and hence the percentage of BrdUz cells rapidly decreases, until

day 10 of chase (third arrow) when it seems that the BrdU dilution

rate decreases and the curve flattens out. Each one of these three

time points we just noted has a biological interpretation. The most

obvious is the second when BrdU is removed at 312 hours and the

cells immediately start to dilute out the label. The initial lag phase

(0–24 h) during uptake followed by the sudden increased

incorporation of BrdU after 24 hours of pulse (the first time

point) is however much less obvious. As some toxic effects of BrdU

on cycling cells have been previously reported [16,17], a

proliferative signal is most likely induced in HSCs (commencing

around 24 h) in response to peripheral injury caused by BrdU.

Indeed, we have confirmed that this is the most likely reason for

the changes in proliferation kinetics at this point [2]. Importantly,

this proliferative burst is the most likely explanation as to why

dormant HSCs can be efficiently labeled with BrdU (around 90%

after 13 days) in the first place. Similarly, when BrdU is removed

at 312 hours we first observe a rapid loss of BrdU label over about

10 days before HSC proliferation returns to ‘‘normal’’ rates. This

initial rapid loss of label is also a consequence of the toxic effects of

BrdU on the periphery, as HSCs are still cycling in response to

injury signals mediated by the presence of BrdU. Once the BrdU is

removed, it may take several days for the injury status to resolve

and for homeostasis to be re-established.

Unlike the first 3 time points discussed above, there is no known

biological event that can be attributed to the change occurring at

day 70. However, the change of kinetic slope at this time point can

be regarded as the starting point of the label retaining tail we

observed. Since we have implemented measures to control for the

observed tail, we are satisfied that the model can readily account

for the alteration in kinetics of BrdU loss at day 70. At day 177 an

unexpected drop in BrdU retention can be observed. This is most

likely due to non-specific external influences on the mice (such as a

mild infection) during the long chase period, which activated the

d-HSCs. The change of slope at chase day 177 is different from

the previous four in that it is a solitary change with the subsequent

time points returning to the kinetic slope as observed prior to day

177. Thus the observed data at chase day 177 could be regarded

as outlying, particularly as omitting this time point had negligible

effects on parameter estimation (data not shown).

From the discussion above we thus motivate parameter

estimation in three regions, rather than one set of parameter

estimates for all time points. Our three-stage parameter estimation

strategy proceeded as follows:

1. Starting with 0% of the cells labeled, we fitted parameters to

uptake data observed in the first 24 hours. These parameters are

an estimate of the homeostatic proliferation rates, but we kept in

mind that little information can be conveyed by the only three

observed data points (excluding day 0), hence these estimates

carry less weight than the homeostatic estimates of stage 3.

2. Continuing with the distribution predicted by stage 1 as the

initial condition, we estimated a new set of parameters for the

rest of the uptake data and the first 10 days of chase (shaded in

grey in Figure 2). Since we hypothesized d-HSC to be activated

in this stage we expected an increase in parameter estimates

(‘‘hematopoietic stress’’ proliferation rates). In this stage there is

a switch between the BrdU uptake and chase phases. Since the

BDT has a profound effect during chase the cells have to be

partitioned into two groups at the onset of chase - those that

lose labeling after n divisions and those that lose labeling after

nz1 divisions. See the discussion in the previous section for

more details.

3. Finally we estimated parameters for the rest of the chase data,

from day 10 onwards. The initial labeling proportions amongst

the two partitions are obtained from the day 10 predictions in

stage 2 so that we maintain parameter integrity between the three

different estimate regions. In this region we assumed that HSC

turnover has settled back to homeostatic rates, hence dormant

cells, if present, would have switched back to a dormant state.

Modeling BrdU LRC Dynamics
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The predictions of our LRC models after all parameters have

been optimized are shown in Figure 3. Here we plot the results of

the best one-population model (A), and two different parameter

settings for the two-population model (B and C) together with the

d-HSC (red) and active HSC (a-HSC) (green) BrdUz percentages.

On the right the full model predictions are shown on a time scale

of days and on the left only stage 1 and 2 (uptake and first 10 days

of chase) on a time scale of hours. Table 2 summarizes the best

Figure 3. Deterministic LRC model predictions of BrdU content. Brown line: HSC chase; red line: d-HSC; green line: a-HSC; dashed line: HSC
uptake; blue x: observed data. Left panel: stage 1 & 2 predictions (uptake and first 10 days of chase) on a timescale of hours; right panel: uptake and
chase predictions on a timescale of days. (A) One-population model predictions. This model can satisfactorily describe BrdU uptake but not the long
term label-retention. (B) Two-population model predictions with a BDT of 4 and 30% d-HSC proportion. The effect of a smaller d-HSC population is
visible in the left panel of this plot. (C) Two-population model predictions with a BDT of 6 or 7 and 40% d-HSC proportion. This model gave the best
overall goodness-of-fit. Activation of the d-HSCs can be clearly seen in the left panel where both d-HSC and a-HSC are predicted to take BrdU up at
the same rate (cycling about once every 10 days). During chase d-HSCs return to a dormant state and are predicted to divide about once every 165
days, whilst a-HSCs divide once every 31 days, diluting label much faster than the d-HSCs.
doi:10.1371/journal.pone.0006972.g003
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performing parameter sets for each of the one-population and two-

population models based on the Residual Sum of Squares (RSS)

measure. From these results it is clear that the one-population

model does not fit the observed data nearly as well as the two-

population model whose best RSS value of 71.7 is more than five

times lower that the best one-population RSS value of 391.9.

Considering each parameter estimation stage individually howev-

er, we see that both model versions fit the observed data during

stages 1 and 2 satisfactorily. This is to be expected since the d-

HSCs have not been activated in stage 1 so we are mostly

observing the a-HSCs, allowing the one-population model to have

a good fit. Conversely we start observing the d-HSCs after

24 hours (stage 2) since they have now been activated, but since

they are dividing at an increased rate (most likely close to the a-

HSC rate) it still appears as if there is a homogenous rate of BrdU

uptake. In stage 3 the d-HSCs have switched back to a resting

state, but unlike in stage 1 we do observe them since most of the d-

HSCs have been labeled in stage 2. Thus in stage 3 there is

heterogeneity in the BrdU dilution rate causing the one-population

model to completely fail in describing the data. In contrast the

two-population model describes the stage 3 data extremely well.

The fact that the one-population model can successfully describe

the uptake data but not the chase data is in agreement with our

analysis earlier that the discriminative power for heterogeneity

only lies in the chase data.

The best two-population model (highlighted in bold in Table 2)

suggests a BDT of 6 or 7 DNA strands, which both map to the

same 3–4 division partitioning (Table 1). Not only does this

parameter set result in the lowest RSS, its Mean Squared Error

(MSE) for stage 2 and 3 is also consistent. Moreover, the stage 2

estimate for the d-HSC self-renewal rate s2
d and a-HSC self-

renewal rate s2
q are similar - supporting the idea that d-HSCs are

activated to self-renew at the a-HSC rate during stage 2. Indeed all

d-HSC self-renewal estimates in Table 2 clearly predict a resting-

activated-resting scheme for stages 1, 2 and 3 respectively, indicating

that activation of d-HSCs is reversible. Using our estimated

parameters we predicted the ratio of d-HSCs to a-HSCs amongst

the BrdUz cells (shaded area of Figure 4). This information is of

great interest for biologists who want to isolate d-HSCs during an

LRC experiment. Our model predicts that 75%–92.5% purifica-

tion can be achieved if BrdUz cells are isolated between chase day

59 and 130.

In summary our parameter estimates (based on a maximum

RSS of 80.6) are: BDT: 6–7 strands (3–4 divisions); d-HSC

proportion: 30–45%; d-HSC self-renew during stage 3 (putative

homeostatic rate): once every 149–193 days; a-HSC self-renew

during stage 3: once every 28–36 days.

Stochastic variation cannot explain long term label
retention

The ODE-based LRC models described above result in

deterministic solutions, and hence describe average population

dynamics. It is widely accepted that stochasticity is an inherent

property of biological systems and modeling them as such is an

area of great interest [18–20]. In spite of being deterministic our

ODE-based models have been very useful and efficient for

parameter estimation. However, we have already highlighted the

need - under the d-HSC hypothesis - to rule out stochastic

variability as a cause of the observed long-term label retention.

Describing individual cells as agents and keeping track of the

labeling status of their chromosomes proved to be a simple and

useful stochastic model of BrdU data [7]. Its discrete properties

made this approach especially effective in implementing the BrdU

detection threshold by alleviating the need for continuous

approximation and grouping of the number of labeled DNA

strands in a cell. However the relationship between the predictions

of our deterministic ODE model and a stochastic agent-based

model for the same set of parameters is unclear. Any inference of

stochastic variance estimated by an agent-based model using

parameters optimized by our ODE model are thus somewhat

troublesome.

Fortunately all reaction rates of the ODE model are first order,

which means we can derive a Markov Process whose average

behavior is exactly described by the ODE model for the same set

of parameters [20]. Assuming that the system we model adheres to

the Markov property (cells don’t have memory of their labeling

states and number of cells in the past), and that times between

events are exponentially distributed, descriptive statistics of the

system can be calculated from multiple stochastic simulations with

the reassurance that the deterministic predictions will be correctly

described by the mean stochastic trajectory. For each set of

equations in our ODE model we derived a Master Equation that

defines the transition kernel of a continuous time state-discrete

Markov Process (see Methods for details). Using the best

Table 2. Goodness-of-fit results for the LRC model.

BDT DP RSS MSE1 MSE2 MSE3

1

sd

1 1

sd

2 1

sd

3 1

sa

1 1

sa

2 1

sa

3

9 0% 391.9 1.54 6.56 27.54 26.1 10.4 95.5

3 30% 131.8 1.51 11.7 4.31 208.3 16.2 122.2 18.7 7.2 25

4 30% 113.8 1.51 9.42 3.94 208.3 15 134.4 18.7 7.6 26.5

5 30% 87 1.51 5.79 3.22 208.3 13.8 150.2 18.7 8.2 32.3

6 & 7 30% 80.6 1.51 4.07 3.6 208.3 11 189.9 18.7 9.3 35.6

6 & 7 35% 73.6 1.5 3.97 3.25 208.3 10.2 170.3 17.5 9.6 32.4

6 & 7 40% 71.7 1.5 3.89 3.22 208.3 9.9 165.1 16.1 9.8 30.5

6 & 7 45% 73.7 1.5 3.8 3.41 208.3 9.8 149.1 14.8 9.8 28

8 35% 95.2 1.5 3.85 4.93 208.3 10.2 193.9 17.5 10.2 40.3

BDT: BrdU detection threshold, DP: Dormant proportion, RSS: Residual sum of squares, MSE: Mean Squared Error, superscripts indicate modeling stage 1,2 or 3. DP of 0%
indicates the one-population model. Self-renewal rates sd and sa are inverted to units of days.
doi:10.1371/journal.pone.0006972.t002

Modeling BrdU LRC Dynamics

PLoS ONE | www.plosone.org 6 September 2009 | Volume 4 | Issue 9 | e6972



parameter sets deduced with our ODE models, multiple

simulations for each of the one and two-population models

enabled us to estimate confidence intervals of predictions (shaded

areas of Figure 5). If the confidence interval of the one-population

model encapsulates the late state data then it is quite possible to

observe long-term label retention without HSC dormancy. Clearly

this is not the case in Figure 5. In contrast at least all the mean

experimental data falls inside the two-population confidence

interval. There are however, a few time points where the observed

variability is larger than predicted. This is most likely either due to

fewer mice examined at those particular time points or additional

variation not accounted for by our model, like different number of

initial HSCs. However, little variation has been observed at chase

day 306, which happens to be encapsulated by the two-population

confidence interval. Moreover the two-sample Kolmogorov-

Smirnov test [21] suggests the observed data is more likely to be

a sample from the two-population model predictions (null

hypothesis not rejected, p-value = 0.133) than the one-population

model predictions (null hypothesis rejected, p-value = 0.0314).

Taken together both the deterministic and stochastic models

thus strongly support a dormant subpopulation in HSCs.

Discussion

While it has been long accepted that HSCs are quiescent,

meaning they rarely divide, our previous work has demonstrated

heterogeneity among the phenotypic long term HSC population

(Lin{Sca1zCD117z CD34{CD150zCD48{CD135{), with

the existence of a dormant subset of cells (d-HSCs), which

proliferates only several times during their lifespan, and an active

subset which is responsible for day-to-day maintenance of the

hematopoietic system [2]. Nevertheless, upon different stimuli

such as 5-FU, G-CSF or IFNa [2,22], these d-HSCs can exit

dormancy and proliferate to the same rate as their active

counterparts. As most current chemotherapeutic strategies target

actively cycling cells, dormant and oncogenically mutated stem

cells would be immune to such treatment, and could potentially

cause leukemic relapse unless they can be pharmacologically

stimulated to enter an active state. Hence the challenge is to

understand which drugs should be combined with which

chemotherapeutic agents in order to eradicate even the most

primitive cancer stem cells (reviewed in [23]). The BrdU

compound used in our LRC experiments, is one of such substances

Figure 4. Summary of experimental data and modeling conclusions. Kinetics of uptake and loss of BrdU within the phenotypic HSCs
(Lin{Sca1zCD34{CD150zCD48{CD135{) as determined experimentally (solid black line) overlaid with the relative proportion of d-HSCs (dormant
HSC) and a-HSCs (active HSCs) amongst BrdUz phenotypic HSCs estimated by our modeling (dark grey shaded curve). The populations that can be
found at any time point of a LRC experiment amongst phenotypic HSCs are indicated in the light grey box. The time points of chase at which the d-
HSCs represent 75% and 92.5% of the LRC phenotypic HSCs are indicated by solid black circles.
doi:10.1371/journal.pone.0006972.g004
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that can make d-HSCs exit dormancy. Therefore useful

information can be gathered by carefully analyzing the kinetics

of BrdU uptake and dilution.

Here we have refined our previous mathematical modeling and

thereby identified some biologically relevant parameters. First, our

new modeling approach (see below) estimates the percentage of

d-HSCs amongst Lin{Sca1zCD117zCD34{CD150zCD48{

CD135{ (phenotypic HSCs) to be around 40% (bold row in

Table 2) under homeostatic conditions, markedly higher than our

previous evaluation. It is important to distinguish this parameter

from the relative proportion of d-HSCs amongst BrdUz LRCs at

any point during the LRC experiment (plotted in solid light grey in

Figure 4). This latter number is of practical interest because it

predicts that after 130 days of chase the a-HSC contribution to the

label retaining pool (BrdUz stem cells) is negligible as d-HSCs would

comprise more than 90% of the remaining BrdUz LRCs at this time

point (Figure 4). Notably, the curve asymptotes at 95%, meaning

that a totally pure population of d-HSCs can never be purified by

label-retaining assays alone, underlining the need to search for other

d-HSC markers. Indeed, future biological studies will be focused on

elucidating new surface markers that could be used to isolate d-HSCs

without the need to perform long-term label retaining experiments.

Once identified, putative d-HSC-specific markers may be utilized to

screen tumors for potential cancer stem cells.

The proportion of d-HSCs amongst phenotypic HSCs (regard-

less of their label-retaining state) would also change throughout the

LRC experiment. At time 0 (when the mice are first exposed to

BrdU, and prior to peripheral injury signals being registered by

HSCs) the homeostatic situation would prevail, therefore around

40% of HSCs would be d-HSCs. However, during the injury

phase (after 24 h of exposure to BrdU and up until removal of

BrdU at 10 days) the proportion of d-HSCs amongst all HSCs

would decrease until close to zero. After cessation of BrdU, the

40% homeostatic plateau would be gradually regained.

One paradoxical question that invariably comes to mind when

trying to prove dormancy in cells using BrdU-based LRC assays is: if

in what we observe there are dormant cells, and hence these

dormant cells are all labeled during the pulse period, these labeled

dormant cells can no longer be considered as dormant since only

cells that have cycled, thus non-dormant cells, can be labeled in the

first place? Our data showing that BrdU can indirectly induce

activation of HSCs, provides an elegant explanation for this

phenomenon [2] which additionally raises the possibility that the

d-HSCs can reversibly switch between active and dormant states

(Figure 1). A further issue is whether BrdUz HSCs undergo cell

cycle arrest during chase due to the incorporated BrdU, thereby

leading to the appearance of a slow cycling subset. Although we

cannot completely exclude this possibility, there are two reasons why

we think this is not the case. The first is that we [2], and others [3]

have confirmed our observations of the same slowly cycling HSC

subset using a second, non-chromosomal model (a nuclear protein,

Histone2B-GFP). Secondly, our mathematical models predict that,

at the onset of chase, half of the BrdUz cells are a-HSCs (see

Figure 4) which indeed have ‘normal’ rates of cycling (28–36 days)

similar to what was previously estimated for the entire HSC pool.

Thus it is unlikely that BrdU creates a slow-cycling population.

In the LRC model, when homogeneous parameter values are

assumed for the entire dataset, optimization simply collapses - it is

impossible to fit both the uptake and chase profiles with a

homogeneous turnover rate, even with a heterogenous cell

population. We thus adopted a three-stage parameter estimation

strategy making sure each stage is based on careful biological

motivations. Since the LRC dataset at our disposal is the most

detailed to date, and due to our thorough and novel treatment of

the correlation between the BDT and number of uptake divisions

(Table 1), we were able to estimate parameters very accurately

using our three-stage strategy. This is evident in the good fit

(Figure 3) and low RSS values (Table 2) we were able to achieve.

Our estimates for the d-HSC and a-HSC division rates are

nevertheless in agreement with the chase only model estimates in

[2], albeit that we found a larger range of values to fit the data. It is

notable that the a-HSC division rate of 28–36 days is similar to

previous HSC division rate estimates where a homogeneous HSC

population was assumed [8]. Most interesting is the d-HSC

proportion prediction of 30–45% - markedly higher than the 15%

we estimated in [2]. A clear pattern that emerged during

parameter optimization was that larger d-HSC proportions tend

to fit uptake data (stage 2) better. The fact that we did not consider

uptake data in [2] thus serves as a possible explanation as to why

we had a lower estimate for the d-HSC proportion.

Figure 5. Stochastic LRC model predictions of BrdU content. Mean observed data and variation are indicated in blue; shaded area represents
estimated variance of the predictions from 1000 stochastic simulations, each with and initial 3750 HSCs. Left plot is one-population stochastic
predictions. Right plot is two-population stochastic prediction corresponding to the deterministic model of Figure 3C with a BDT of 6 or 7 strands. It
is clear that the one-population predictions and hence stochastic variation alone cannot explain the observed long-term label retention. The two-
population predictions in turn encapsulates all observed averages, although there are still some unexplained variation at some time points.
doi:10.1371/journal.pone.0006972.g005
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One striking observation that we can infer from the LRC

modeling is that it takes about 10 days for d-HSCs to regain

dormancy after BrdU withdrawal. Interestingly, this recovery

period corresponds to that estimated by transcriptional profiling of

HSCs after a single 5-FU injection [24], suggesting that the

mechanism controlling return to dormancy might be independent

of which stimulus led to activation.

All our findings above were supported by stochastic modeling

which ruled out cellular level variation as a cause for observing

long-term label retention. Our Master Equation approach

conveniently allowed us to estimate variation for a set of

parameters whilst the average random walk remained true to

the deterministic prediction. Future work will focus on exploring

additional unexplained variation on a genetic or molecular level.

One major challenge will be how to deal with the unavoidable

increase in number of unknown parameters.

It is not clear from the LRC models what the impact of the d-

HSC population would be on hematopoietic regulation. The LRC

equations defined here, although modeling proportion of labeled

cells rather than actual cell numbers, implicitly define cell

population dynamics. However, this implicit HSC model cannot

explain dynamic homeostasis since all the kinetic parameters (s, d,

c) are independent of the population state. An interesting question

that arises is whether d-HSC hematopoiesis (Figure 1, right panel) is

evolutionarily superior to the previously widely accepted dormant-

free hematopoiesis (Figure 1, left panel). This question is extremely

hard to answer with human reasoning alone but current work

focuses on a computational treatment of the problem.

In summary, whilst we previously [2] presented biological

evidence supporting the concept of a d-HSC population, this

current work provides additional support for our d-HSC

hypothesis from a Computational Biology perspective. We have

shown that both deterministic and stochastic models of observed

BrdU labeling dynamics strongly support heterogeneity in the BM

HSC population with a small slowly cycling portion of cells (d-

HSCs) responsible for long term label retention. Parameter

estimation indicated that at least a third of the HSC population

are d-HSCs that divide about once every 149–193 days with a-

HSCs dividing once every 28–36 days. We further predict that

more than 90% purification of d-HSCs can be achieved after 130

days of chase using LRC assays. In this study we have focused on

the modeling of LRC-based HSC kinetic data rather than the

modeling of dynamic maintenance and restoration of homeostasis

in the hematopoietic system. The major motivation for not using a

dynamic model for parameter estimation is the inherent data

scarcity of the LRC results. We thus defined the LRC model as

simple as possible to limit the number of parameters that need to

be estimated. As such the trade-off between increased model

complexity and a small improvement in the goodness-of-fit did not

validate the use of models with more than 2 populations.

Moreover, the large difference between the turnover estimates

for d-HSCs and a-HSCs suggest that the transition distribution

between a dormant and active state is indeed disjunct and bimodal

rather than continuous.

Methods

Mapping BrdU intensity to number of divisions
The nonlinear mapping of BrdU intensity to the number of

divisions during uptake and chase are summarized in Table 1,

whose values are computed from Figure 6. Figure 6 depicts the

average real-valued labeling percentage of a single cell based on up

to 4 uptake divisions, and the decrease in label corresponding to

each of the 1 to 4 uptake divisions. Also shown is a slice in more

detail where 5 different detection thresholds are indicated with red

lines. The proportions in Figure 6 can be calculated when realizing

that half of a cell’s DNA is newly synthesized after each mitotic cell

division. During BrdU uptake all newly synthesized DNA will be

BrdUz so that stru ið Þ, the average number of labeled DNA

strands in a single cell after uptake division i is given by the

recursive expression

stru ið Þ~0:5| stru i{1ð Þzstrtð Þ for i[ 1,2,3, � � �f g,

where stru 0ð Þ~0 and strt is the total number of DNA strands

(twice the number of chromosomes). Here we assume that

chromosomes segregate randomly and hence it is possible for

chromosomes to have both their DNA strands labeled after two or

more uptake divisions. Conversely all newly synthesized DNA

during chase is BrdU{ (unlabeled) so that strc jð Þ, the average

number of labeled DNA strands in a single cell after chase division

j is given by

strc jð Þ~0:5|strc j{1ð Þ for j[ 1,2,3, � � �f g,

where strc 0ð Þ~stru nð Þ after n uptake divisions. Note that we are

calculating the average number of labeled DNA strands for a

single cell and non-integer numbers of strands are thus possible.

The biological interpretation must however be made in a cell

Figure 6. Average theoretical BrdU percentage of a single cell
for a given number of divisions during uptake and chase.
Yellow: cell has divided once during uptake; green: cell has divided
twice during uptake; red: cell has divided thrice during uptake; violet:
cell has divided four times during uptake, more than four divisions will
also be in this group; red lines: detection thresholds. Slices of each
uptake pie are cumulative. Uptake divisions follow in a clockwise
direction and chase divisions follow in an anticlockwise direction. Slices
intersected by red lines indicate the number of divisions for the cell to
fall below the detection threshold.
doi:10.1371/journal.pone.0006972.g006
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population context to make sense. For example strc jð Þ~2:5
means that 50% of cells in a particular population have 2 labeled

DNA strands and the other 50% have 3 labeled DNA strands.

The total number of uptake and chase divisions we have to

consider is dependent on the assumed BDT. In theory the smallest

change in BrdU intensity is by one nucleotide, which poses a

potential dilemma in the number of possible detection thresholds to

model. Fortunately BrdU intensity is diluted in units of chromo-

somes upon cell division so that intensity differences on a nucleotide

level can be safely ignored. Moreover, no chromosome can have

both its DNA strands labeled after one chase division. We thus know

that label intensity will be reduced by multiples of single DNA

strands of chromosomes during chase (after the first division) and

that the least possible label intensity in a cell is 1:25%~1780|100
in the case of a mouse. Note that we have assumed that differences

in the sizes of chromosomes are negligible.

Modeling BrdU uptake and chase
We modeled the LRC data of Figure 2 by a system of coupled

Ordinary Differential Equations (ODEs) that describe the rate of

change of the number of BrdU labeled cells over time. Two versions

of this model are defined, a one-population model and a two-

population model. The one-population version assumes a single

active cell population represented by A. The two-population version

in turns assumes an additional dormant cell population (D) whose

differentiated daughter cells enter the A population. Each model has

a set of equations for BrdU uptake (indicated by subscript u) and two

sets of equations for the chase phase, subscript c1 for the group of cells

diluting labeling after n divisions and subscript c2 for the group of cells

diluting labeling after nz1 divisions. Dynamics are determined by

the rates at which cells self-renew s, differentiate d, or die c. Here we

use subscript a and d to indicate the different rates of the active and

dormant populations respectively. A cell that self-renews has

undergone cell cycling and hence is replaced by two daughter cells

with changed label intensities. Label intensity is mapped to the

number of chase divisions a cell has undergone from a reference point

(see Table 1) so that an equation can be defined for cells at each

division level. For example, during uptake active cells that have

divided i times in the presence of BrdU will be presented by Aui
, and

chase group c1 active cells that have divided i times without BrdU

present will be presented by Ac1i
. Dormant cell notation follows in a

similar fashion. Differentiation happens when a cell changes its

phenotype to that of its direct progeny - independent of cell division

and hence label intensity is unaffected. Cells that die are removed

from the system. The various equations are given below.

One-population equations

dAu0

dt
~{ sazdazcað ÞAu0

dAui

dt
~2saAui{1

{ sazdazcað ÞAui
,

dAun

dt
~2saAun{1

z sa{da{cað ÞAun
,

ð1Þ

for i[ 1,2, . . . n{1f g.

dAci0

dt
~{ sazdazcað ÞAci0

dAcij

dt
~2saAci j{1ð Þ{ sazdazcað ÞAcij

,

ð2Þ

where i[ 1,2f g and j[ 1,2, . . . n{1f g if i~1, or j[ 1,2, . . . nf g if

i~2.

Two-population equations

dDu0

dt
~{ sdzddzcdð ÞDu0

dDui

dt
~2sdDui{1

{ sdzddzcdð ÞDui

dDun

dt
~2sdDun{1

z sd{dd{cdð ÞDun

dAu0

dt
~ddDu0

{ sazdazcað ÞAu0

dAui

dt
~ddDui

z2saAui{1
{ sazdazcað ÞAui

dAun

dt
~ddDun

z2saAun{1
z sa{da{cað ÞAun

ð3Þ

for i[ 1,2, . . . n{1f g.

dDci0

dt
~{ sdzddzcdð ÞDci0

dDcij

dt
~2sdDci j{1ð Þ{ sdzddzcdð ÞDcij

,

dAci0

dt
~ddDci0

{ sazdazcað ÞAci0

dAcij

dt
~ddDcij

z2saAci j{1ð Þ{ sazdazcað ÞAcij

ð4Þ

where i[ 1,2f g and j[ 1,2, . . . n{1f g if i~1, or j[ 1,2, . . . nf g if

i~2.

All the above ODEs are linear and thus have analytic solutions

in the form of constrained non-linear multivariate functions (see

Supporting Information File S1 for more details). The sets of chase

equations are coupled to the uptake equations by partitioning of

the uptake cells at chase day 0 into chase group c1 or c2 depending

on the BDT we model.

We assume that parameters are constrained such that the total cell

population remains constant. We use the Residual Sum of Squares

RSS~
Pn

i~1 e tið Þ{m tið Þð Þ2, where e tið Þ is the experimental value

observed at time ti and m tið Þ is the predicted value at time ti, to

evaluate goodness-of-fit. Smaller values for RSS indicate a better fit.

Parameter values that minimise the RSS of each model were found

by using suitable algorithms from the Optimization Toolbox of the

Mathworks MatlabTM software suite. The Mean Squared Error

(MSEk~RSS7nk) is a normalized measure that can be used to

compare the goodness-of-fit during the three stages of parameter

optimization where nk is the number of data points of stage k.

Stochastic methods
The LRC model described above can be viewed as a random

walk moving through a multi-dimensional hyperspace of cellular

species (i.e. all the Aui
, Ac1i

, Ac2i
, Dui

, Dc1i
, Dc2i

for which we have

defined an equation) over time. When the next future state is fully

determined by the current state of the system, independent of all

previous states, the random walk adheres to the Markov property
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and is known as a Markov Process. The Markov property is a

reasonable assumption for the LRC system we are modeling since,

if the current number of cells with their labeling intensities are

known, no additional knowledge about the future number of the

cells and their labeling states can be gained from earlier cell

numbers. We can derive a Master Equation, also known as the

Chapman-Kolmogorov equation [25], for each of the one-

population and two-population ODE models. The Master

Equations can be easily derived if the reactions implied by the

ODEs are first written down. All BrdU reactions for a cellular

species S are defined by the general reaction scheme <,

< Sð Þ~def

Si,Siz1f g {{{{{?
ssSi Si{1,Siz1z2f g

Si, eSSi

n o
{{{{{?

dsSi Si{1, eSSiz1
n o

Si {{{{{?
csSi Si{1

for i[ 0,1, . . . N{1f g, and

SN {{{{{?
ssSN SNz1

SN , eSSN

n o
{{{{{?
dsSN SN{1, eSSNz1

n o

SN {{{{{?
csSN SN{1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

Here eSS refers to species on the next level of the differentiation

hierarchy, thus direct progeny of S. Si indicate species at division

level i and its interpretation is dependent on the context of <,

whether it describes BrdU uptake or dilution. For example, in the

context of BrdU uptake reactions as described by < Suð Þ, Sui

denotes cells that have divided i times in the presence of BrdU.

Alternatively, for reactions of < Scð Þ (BrdU chase), Sci
would in

turn denote cells that have divided i times without BrdU present in

their microenvironment - after they have been labelled. Hence

there is an inverse context dependent interpretation of Si with

unlabelled cells during BrdU uptake -and chase indicated by Su0

and ScN
respectively. Note that differentiation happens indepen-

dent of cell division and hence label intensity is unaffected.

One-population Master Equation. The general form of the

Master Equation for the one-population models is given by

dPð Þ
dt

~
XN{1

i~0

½ss Siz1ð ÞP Siz1,Siz1{2ð Þ{ssSiPð Þ

z ds Siz1ð ÞP Siz1ð Þ{dsSiPð Þ

z cs Siz1ð ÞP Siz1ð Þ{csSiPð Þ�

z ss SN{1ð ÞP SN{1ð Þ{ssSNPð Þ

z ds SNz1ð ÞP SNz1ð Þ{dsSNPð Þ

z cs SNz1ð ÞP SNz1ð Þ{csSNPð Þ

ð6Þ

Where the following equivalences are defined for notational

convenience:

: S0,S1, � � � ,SN½ �

P Sizk½ �:P S0, � � � ,Sizk, � � � ,SN½ �

similarly

P Sizk,Siz1zlð Þ:P S0, � � � ,Sizk,Siz1zl, � � � ,SNð Þ

Note that differentiated progeny eSS do not appear in the Master

Equation since we only model a single population of cells.

We can now describe the BrdU uptake reactions of a

homogeneous a-HSC population S~Au with < Auð Þ, keeping

track of N~n labelling intensities. The Master Equation
dP Auð Þ

dt
describes the transition kernel of a continuous time Markov

Process where we regard Au as the state space. For the BrdU chase

reactions, Au is partitioned into two disjunct groups based on label

intensity and BrdU detection threshold. Let < Ac1
ð Þ be the

reactions for cells that take N~n divisions to loose BrdU labelling,

and < Ac2
ð Þ be the reactions for cells that take N~nz1 divisions

to loose BrdU labelling. We have two state spaces Ac1
and Ac2

,

each modelled by the respective Master Equations
dP Ac1
ð Þ
dt

and
dP Ac2
ð Þ
dt

.

Two-population Master Equation. The general form of

the Master Equation for the two-population models is given by

dP ,e� �
dt

~
XN{1

i~0

½ss Siz1ð ÞP Siz1,Siz1{2ð Þ{ssSiP ,e� �

z ds Siz1ð ÞP Siz1, eSSi{1
� �

{dsSiP ,e� �

z cs Siz1ð ÞP Siz1ð Þ{csSiP ,e� �
�

z ss SN{1ð ÞP SN{1ð Þ{ssSNP ,e� �

z ds SNz1ð ÞP SNz1, eSSN{1
� �

{dsSN P ,e� �

z cs SNz1ð ÞP SNz1ð Þ{csSNP ,e� �

z
XN{1

i~0

½s~ss
eSSiz1

� �
P eSSiz1, eSSiz1{2
� �

{s~ss
eSSiP ,e� �

z d~ss
eSSiz1

� �
P eSSiz1
� �

{d~ss
eSSiP ,e� �

z c~ss
eSSiz1

� �
P eSSiz1
� �

{c~ss
eSSiP ,e� �

�

z s~ss
eSSN{1

� �
P eSSN{1
� �

{s~ss
eSSNP ,e� �

z d~ss
eSSNz1

� �
P eSSNz1
� �

{d~ss
eSSNP ,e� �

z c~ss
eSSNz1

� �
P eSSNz1
� �

{c~ss
eSSNP ,e� �

ð7Þ

Again we introduced some equivalences to simplify notation:

: S0,S1, � � � ,SN½ �
e: eSS0, eSS1, � � � , eSSN

h i

P Sizkð Þ:P S0, � � � ,Sizk, � � � ,SN ,e� �

P Sizk,Siz1zlð Þ:P S0, � � � ,Sizk,Siz1zl, � � � ,SN ,e� �
similarly

P Sizk, eSSizl
� �

:P S0,� � � ,Sizk, � � � ,SN , eSS0, � � � , eSSizl, � � � , eSSN

� �

Let Du be the d-HSC species during BrdU uptake and let Au be

the a-HSC species during uptake. Also let u:Au. The reactions

Modeling BrdU LRC Dynamics

PLoS ONE | www.plosone.org 11 September 2009 | Volume 4 | Issue 9 | e6972



during BrdU uptake are then given by < Duð Þ and < Auð Þ, and the

Master Equation for the Markov Process by
dP Du,Auð Þ

dt
.

As before, we have two state spaces when considering BrdU

chase, with the partitioning dependent on BrdU detection

sensitivity and level of labelling during BrdU uptake. Let Dc1

and Ac1
represent the different cell species that falls below the

BrdU detection threshold after N~n divisions, and let Dc2
and

Ac2
be the ones that looses labelling after N~nz1 divisions.

Reactions for chase in a heterogenous cell population case is then

given by < Dc1
ð Þ, < Ac1

ð Þ, < Dc2
ð Þ and < Ac2

ð Þ. Two Master

Equations
dP Dc1

,Ac1
ð Þ

dt
and

dP Dc2
,Ac2

ð Þ
dt

now govern the Markov

Processes with state spaces Dc1
,Ac1

ð Þ and Dc2
,Ac2

ð Þ respectively.

The Master Equations defined above have no known analytic

solutions but fortunately there are various algorithms available to

simulate such processes. In this paper we used one of the most well

known, namely the exact Stochastic Simulation Algorithm

introduced by Gillespie [26] for simulating biochemical reactions.

We performed 1000 simulations, starting each simulation with an

initial HSC population of 3750 [1].
Two-sample Kolmogorov-Smirnov test. Apart from

estimating variances, it was possible to use the two-sample

Kolmogorov-Smirnov test [21] to compare the probability

distributions of our observed data and simulated data. Our

strategy was to randomly sample 137 values (the total number of

mice examined in the dataset of Figure 2) from the Markov

Process simulations with each sample assigned to one of the time

points for which we have observed data. We then performed the

two-sample Kolmogorov-Smirnov test on the random sample and

experimental data. The whole procedure was repeated 1000 times

and the average p-value reported.

Simulations
Parameter estimates of the LRC model solutions and the two

sample Kolmogorov-Smirnov tests were computed using

MatlabTM . Stochastic simulations were performed with software

written in C++. All diagrams were plotted using MatlabTM with

editing done in the GNU Image Manipulation Program (http://

www.gimp.org/) and Inkscape (http://www.inkscape.org/).

Supporting Information

File S1 Analytic solutions for the LRC model

Found at: doi:10.1371/journal.pone.0006972.s001 (0.04 MB

PDF)
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