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Evidence from the global outbreak of SARS-CoV-2 has clearly demonstrated that

individuals with pre-existing comorbidities are at a much greater risk of dying from

COVID-19. This is of great concern for individuals living with these conditions, and

a major challenge for global healthcare systems and biomedical research. Not all

comorbidities confer the same risk, however, many affect the function of the immune

system, which in turn directly impacts the response to COVID-19. Furthermore, the

myriad of drugs prescribed for these comorbidities can also influence the progression of

COVID-19 and limit additional treatment options available for COVID-19. Here, we review

immune dysfunction in response to SARS-CoV-2 infection and the impact of pre-existing

comorbidities on the development of COVID-19. We explore how underlying disease

etiologies and common therapies used to treat these conditions exacerbate COVID-19

progression. Moreover, we discuss the long-term challenges associated with the use

of both novel and repurposed therapies for the treatment of COVID-19 in patients with

pre-existing comorbidities.
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INTRODUCTION

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and subsequent
SARS-CoV-2 induced coronavirus disease 2019 (COVID-19) has spread on an unprecedented
scale. According to the World Health Organization (WHO), as of the 8th July 2020, there have
been 11,669,259 cases and 539,906 COVID-19 related deaths worldwide. Evidence from the
global outbreak has clearly demonstrated that individuals with pre-existing comorbidities such
as hypertension, cardiovascular disease, and diabetes are at a much greater risk of dying from
COVID-19 (1, 2). This is of great concern for individuals living with these conditions, and a major
challenge for global healthcare systems and biomedical research. Given that comorbidities are
associated with high mortality among COVID-19 patients, a better understanding of the biological
mechanisms that underpin this risk are needed to enable development of appropriate preventative
and therapeutic strategies.

The immune system plays a vital role during COVID-19, and the degree of immune dysfunction
correlates with disease severity (3, 4). Severe COVID-19 cases are associated with significant
lymphopenia and an overactivated innate immune response resulting in hyperinflammation (5).
Many COVID-19 associated comorbidities affect the function of the immune system, which in
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turn directly impacts the response to COVID-19. Furthermore,
the myriad of drugs prescribed for these comorbidities will also
influence the progression of COVID-19 and limit additional
treatment options available for COVID-19. Here, we review
the current SARS-CoV-2 literature and explore how pre-
existing comorbidities adversely affect COVID-19 outcome.
Furthermore, we discuss the long-term challenges associated with
the use of both novel and repurposed therapies for the treatment
of COVID-19 in patients with pre-existing comorbidities.

HUMAN CORONAVIRUSES

In December 2019, several cases of an infectious pneumonia
with an unknown etiology emerged in Wuhan Province,
China. By January 2020, a novel coronavirus termed SARS-
CoV-2 was identified as the cause. The virus spread rapidly
and was classified as a pandemic by the WHO on the
11th March 2020. However, this is not the first pathogenic
human coronavirus to emerge in the last decade. In 2002, a
severe acute respiratory syndrome (SARS) coronavirus (SARS-
CoV) with animal to human transmission was reported in
Guangdong Province, China (6, 7). Prior to SARS-CoV, four
human coronaviruses belonging to the alpha and beta genera
of the Coronaviridae family had been identified: HCoV-229E,
HCoV-OC43, HCoV-NL63, and HCoV-HKU (8). However,
unlike the previously identified coronaviruses, SARS-CoV was
phylogenetically distinct (9). Furthermore, rather than causing
upper respiratory tract infections with mild common cold
symptoms, SARS-CoV caused severe lower respiratory tract
infections, resulting in viral pneumonia and risk of developing
acute respiratory distress syndrome (ARDS). The SARS-CoV
outbreak lasted 8 months, and infected 8,098 individuals
across 26 different countries, with a mortality rate of ∼10%
(10). In 2012, a second novel human coronavirus emerged
in Saudi-Arabia and was termed Middle East respiratory
syndrome (MERS) coronavirus (MERS-CoV). Similar to SARS-
CoV, infection with MERS-CoV can cause fatal pneumonia. To
date, the WHO has reported 2,519 MERS-CoV cases, with a
mortality rate of∼30% (10).

While the previous two coronavirus outbreaks were relatively
well-contained, the unprecedented spread of the current
pandemic has demonstrated increased infectivity of SARS-CoV-
2. Early genome sequencing from China revealed that the 30 k
base-pair viral genome of SARS-CoV-2 shared 79.6% sequence
identity with SARS-CoV, whereas a bat coronavirus previously
detected in Rhinolophus affinis shared 96% sequence identity (11,
12). Whilst MERS-CoV utilizes dipeptidyl peptidase-4 (DDP4)
for cell entry, SARS-CoV, and SARS-CoV-2 share the same
cell entry receptor; angiotensin converting enzyme II (ACE2)
(11, 12). ACE2 is recognized by the S1- subunit of the spike
protein and is ubiquitously expressed in the epithelia of the
nasal cavity, airway tract and the alveolar space. Notably,
reports have shown that the receptor binding domain of SARS-
CoV-2 S1 has a higher affinity for ACE2, which may be one
contributing factor to the increased viral pathogenesis of SARS-
CoV-2 (13, 14). The scale of the ongoing pandemic demonstrates

the need for a more comprehensive understanding of the
disease, and of the contributing factors such as pre-existing
comorbidities, which are proving detrimental for disease severity
and outcome.

CLINICAL PRESENTATION OF COVID-19

Clinical presentation of COVID-19 varies greatly. A meta-
analysis of 61 studies from 11 countries (59,254 patients) reported
81.4% of cases as mild, 13.9% as severe and 4.7% as critical
(15). Most healthy individuals are asymptomatic or present
with mild/moderate respiratory illness (16). The majority of
critical cases occur in older (≥60 years) or comorbid individuals
(15, 17, 18). COVID-19 symptoms are typical of pathogenic
human coronaviruses (Figure 1) (22), with fever and cough
reported most commonly, however other common symptoms
include dyspnoea, sore throat, sputum production, fatiguem
and headache (17, 18, 23). More recently, olfactory dysfunction
such as anosmia has been described in COVID-19 patients
(20, 24–27). Furthermore, rare gastrointestinal symptoms such
as nausea, diarrhea and vomiting have also been described (17,
28, 29). Patients with severe COVID-19 can develop serious and
potentially fatal complications such as ARDS, thromboembolic
events, septic shock and multiple organ failure (Figure 1). Due
to the severity of these complications, many are associated with
critical COVID-19 patients who require intensive care (19, 30).
Due to underreporting and large inter-country variation, the
fatality rate remains unclear. For instance, in Italy the overall
case-fatality rate has been reported as 7.2% compared to 2.3% in
China (31). However, despite the variation, the evidence clearly
demonstrates a higher fatality rate among those who develop
severe COVID-19 (32).

Immune Dysfunction and Disease Severity
The immune system plays a vital role during COVID-19, and
the degree of immune dysfunction correlates with disease
severity (Figure 2) (3, 4). During SARS-CoV-2 infection
the immune system becomes activated, resulting in local
inflammation, the recruitment of monocytes, dendritic cells
(DCs), natural killer (NK), T and B cells. This response
may manifest as mild/moderate disease resulting in a
fever, cough and fatigue, however this will be followed
by resolution of both the infection and inflammation.
In severe COVID-19 cases, severe lymphopenia and the
accumulation of functionally exhausted T and NK cells
result in an inability to mount an effective antiviral immune
response to clear SARS-CoV-2 (34, 35). Furthermore,
interleukin 6 (IL-6) levels remain elevated over time, and
are accompanied by high levels of IL-2, IL-7, IL-10, tumor
necrosis factor-α (TNF-α), C-X-C motif chemokine 10 (CXCL-
10), monocyte chemoattractant protein-1 (MCP-1), and
macrophage inflammatory protein-1α (MIP-1α) resulting in
systemic cytokine storm (30). This uncontrolled systemic
hyperinflammation can cause the development of critical
and potentially life-threatening complications such as severe
pneumonia, ARDS, septic shock and multiple organ failure
(17, 30, 33). Both lymphopenia and hyperinflammation
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FIGURE 1 | Prevalence of COVID-19 symptoms and complications. Data obtained from a quantitative meta-analysis of 19 studies (19). It’s important to note that 87%

of all cases analyzed in the meta-analysis were hospitalized cases. Therefore, the proportion of symptoms and complications are representative of this and the overall

proportions with regards to all COVID-19 cases will be much lower. The prevalence of anosmia (20) and thromboembolic events (21) were obtained independently

from smaller cohorts and may therefore change as more data is published.

FIGURE 2 | Immune response in mild/moderate and severe COVID-19 cases. Mild/moderate COVID-19 is characterized by local inflammation, the recruitment of

monocytes, DCs, NK cells, T and B cells, followed by resolution of the infection and inflammation. Severe COVID-19 is characterized by severe lymphopenia, T cell

exhaustion, and systemic hyperinflammation that can cause the development of critical and potentially life-threatening complication such as severe pneumonia,

ARDS, septic shock, and multiple organ failure (17, 30, 33).
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are being reported in the majority of COVID-19 cases
admitted to hospital and is associated with a poor prognosis
(4, 32, 36).

More detailed examination has demonstrated negative effects
on all lymphocyte subpopulations including CD4+ and CD8+

T cells, B cells, and NK cells (3). High-dimensional analysis
of circulatory immune profiles in mild, moderate and severe
COVID-19 patients by mass cytometry revealed that proportions
of naïve CD4+ T cells, TGFβ+CD28− naïve CD4+ T cells,
DCs, and macrophages are associated with mild cases, whereas
a sharp decline in the proportion of CD8+ T cells and NK cells
was observed in severe cases (3). Interestingly, single-cell RNA
sequencing of PBMCs isolated from hospitalized COVID-19
patients revealed a novel population of developing neutrophils,
which appeared to be closely related to plasmablasts, in patients
that had developed ARDS (37). As this was a small cohort
of patients, further studies are needed to assess whether this
novel subset of neutrophils plays a role in the development of
ARDS and other COVID-19 complications. Functionally, CD8+

T cells and NK cells in severe COVID-19 patients exhibited
more signs of exhaustion than mild/moderate patients (34,
35). For example, elevated programmed cell death protein-1
(PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4)
and T cell Ig and ITM domain (TIGIT) on CD8+ T cells
and increased NKG2A on NK cells (34, 35). As exhausted
T and NK cells are less able to mount an effective antiviral
immune response, it is unsurprising that these subsets are unable
to eradicate SARS-CoV-2 and correlate with severe COVID-
19 cases.

In addition to T cell changes, humoral immunity against
SARS-CoV-2 is starting to come to light. Evidence of SARS-
CoV-2 specific antibodies was demonstrated in a study of 173
hospitalized patients. IgG and IgM SARS-CoV2 antibodies were
present in 40% of patients within 1 week of onset and 100%
by day 15 (38). In another study, most patients developed
robust antibody responses between 17 and 23 days, and although
delayed, a stronger antibody response was observed in critical
patients (39). These findings were also mirrored in a study of
285 COVID-19 patients, who all showed a positive IgG response
by day 19, followed by seroconversion to IgM (40). Interestingly,
antibody titers were found to be higher among severe COVID-19
patients (40), however the authors acknowledge that interpreting
an association between antibody response and disease severity
is difficult due to the small sample size of severe and critical
patients in their study. A recent study reported low variable
plasma antibody titers in convalescent individuals, however they
found binding domain specific antibodies with potent anti-viral
activity in all individuals (41).

IMPACT OF AGE, BIOLOGICAL SEX AND
ETHNICITY

Older individuals (≥60 years) are more prone to severe
COVID-19 and have a higher mortality rate (15, 18, 36,
42). Clinically, older patients have more pronounced immune

dysfunction compared to younger patients, as lymphocyte counts
are lower and pro-inflammatory cytokine levels higher (43).
This is not surprising as aged immune systems are associated
with immunosenescence and chronic low-grade inflammation,
termed inflammaging (44). Although immunosenescence affects
all aspects of the immune system, much of the deterioration in
protective viral immunity can be attributed to defective T cell
immunity (45). The decline of naïve T cell output due to thymic
involution (46) and the accumulation of senescent T cells leads
to reduced viral host immunity (47). In mice, CD4+ T cells were
shown to be crucial against SARS due to their important role in
SARS-CoV clearance. This protection was lost in aged mice as
senescent CD4+ T cells responded poorly to antigen (48, 49).
Moreover, in addition to inflammaging, the accumulation of
senescent CD8+ T cells and B cells with distinct senescence-
associated secretory phenotypes (50, 51) in older individuals
results in elevated baseline inflammation, further increasing
susceptibility to hyperinflammation and cytokine storm upon
SARS-CoV-2 infection.

In addition to age, biological sex and ethnicity have also
been implicated in COVID-19 outcomes. Although no major sex
differences exist when examining absolute number of COVID-
19 cases, disease incidence is higher in males when comparing
older individuals (≥60 years). Furthermore, initial reports from
China suggested a male bias in mortality (23, 36), which
has now been reported in 37 out of 38 countries that have
reported sex-disaggregated data, revealing a global male case
fatality rate of 7.3% compared to 4.4% in females (52, 53).
This finding is consistent with data obtained from the previous
SARS andMERS epidemic (54–56). The predominant hypothesis
to explain these biological sex differences is that estrogen
plays a protective role against COVID-19. Following the SARS
epidemic, studies in mice demonstrated that ovariectomy or
pharmaceutical blocking of estrogen in female mice resulted in
elevated immune cell infiltration in the lung and consequently a
more severe disease outcome (57). In support of this, researchers
in China reported that lower levels of estrogen were associated
with more severe COVID-19 cases in women (58). Although
the exact molecular mechanisms underpinning how estrogen
protects against COVID-19 are yet to be confirmed, the influence
of estrogen on aging and immunity, ACE2 levels, and sex-related
risk factors for comorbidities have all been suggested (52, 53, 59).
Due to these benefits, researchers in the UK have commenced
investigations into the effects of hormonal therapies such as the
contraceptive pill and hormone replacement therapy, however no
data has been published yet. More recently, data has emerged
suggesting that Black, Asian and Minority Ethnic (BAME)
individuals are at a greater risk of acquiring SARS-CoV-2 and
have worse clinical outcomes (60). For instance, in the UK two
thirds of COVID-19 fatalities among healthcare workers were
BAME individuals (61, 62). Underlying comorbidities, which are
more prevalent in BAME individuals, in addition to cultural,
behavioral and socio-economic differences have been proposed
as possible causes (60). However, more data is needed in order
to truly establish whether a relationship between COVID-19 and
ethnicity exists.

Frontiers in Immunology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 1991

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Callender et al. Impact of Comorbidities on COVID-19

IMPACT OF PRE-EXISTING
COMORBIDITIES

Evidence from the global outbreak has demonstrated that
individuals with pre-existing comorbidities are at a much greater
risk of dying from COVID-19 (1, 2). However, a greater
understanding of the biological mechanisms that underpin
this risk is needed to develop appropriate preventative and
therapeutic strategies. Here we review the major comorbidities
identified in a number of meta-analyses (Figure 3) (1, 2).
After identification, independent searches were conducted
in order to comprehensively assess the impact of each
comorbidity and its associated therapies on SARS-CoV-2 risk,
COVID-19 progression and outcome, and future COVID-19
therapy options.

Hypertension and Cardiovascular Disease
Hypertension has been repeatedly reported as the highest
pre-existing comorbidity in COVID-19 patients (1, 2, 17,
63–65). Retrospective analysis revealed that patients with
hypertension have an increased risk for severe infection and
mortality (65, 66). However, whether hypertension itself or

the use of hypertensive therapies are responsible for these
statistics is currently unknown. Hypertensive patients are
commonly treated with renin angiotensin system inhibitors, such
as ACE inhibitors (ACEI) and angiotensin-receptor blockers
(ARB). As ACEI and ARB can significantly increase ACE2
expression (67), many speculate they are responsible for the
increased risk to hypertensive patients (68). Conversely, a
retrospective review of 417 hospitalized COVID-19 patients,
of which 12.23% had underlying hypertensions, indicated that
ACEI and ARB may be protective effect against COVID-
19, as the percentage of severe cases were lower in patients
treated with ACEI/ARB (23.5%) when compared to those
treated with other anti-hypertensive treatments such as calcium
channel blockers, β-blockers, and diuretics (48%) (69). However,
patients treated with non-ACI/ARB were also found to
have a higher incidence of additional comorbidities (69),
which may have been responsible for the development of
severe disease. Due to the conflicting evidence and opinions
among the scientific community, it remains unclear whether
treatment with ACEI/ARB has a positive or negative impact
on COVID-19 progression, however many are continuing to
examine this.

FIGURE 3 | Prevalence of pre-existing comorbidities among hospitalized COVID-19 patients. Prevalence of pre-existing comorbidities determined from an extensive

meta-analysis of 76,993 hospitalized COVID-19 patients (1). Hypertension (16%), cardiovascular disease (12.11%), and diabetes (7.87%) were the most prevalent

pre-existing co-morbidities. As this data is representative of hospitalized patients, the prevalence of these among mild/moderate cases may be different, and as more

data is analyzed these may change.
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Cardiovascular disease has also been highly reported among
COVID-19 patients and is associated with an increased mortality
rate (17, 63, 70). Furthermore, cardiovascular complications
such as thromboembolic events, myocarditis, acute coronary
syndrome, arrythmia, cardiogenic shock and heat failure,
have been documented in COVID-19 patients without prior
cardiovascular disease (71), demonstrating a significant impact
of SARS-CoV-2 infection on the heart. In a case series of
187 COVID-19 patients, those with underlying cardiovascular
disease had a mortality rate of 37.5%, which was further
increased to 69.44% in a subset of patients who had both
underlying cardiovascular disease and elevated troponin T levels,
indicative of myocardial injury (70). Two possible explanations
for the increased prevalence and mortality among patients
with comorbid cardiovascular disease have been proposed.
Firstly, cardiovascular disease is commonly treated with renin
angiotensin system inhibitors as described above (72, 73), and
secondly, ACE2 is highly expressed in the heart (74). A recent
study analyzing the cellular distribution of ACE2 in human heart
tissue obtained from COVID-19 patients identified that ACE2
was highly expressed in pericytes, cardiomyocytes and fibroblasts
(75). Furthermore, CD209, an additional binding receptor for
SARS-CoV, was specifically expressed in macrophages (75). Due
to the increased presence of macrophages in cardiovascular
disease, the authors speculate that CD209+ macrophages may
enhance viral entry into the human heart. Collectively, this study
indicated an intrinsic susceptibility to SARS-CoV-2 infection
in the heart, which could explain the high susceptibility to
COVID-19 among cardiovascular disease patients and the
higher incidence of acute cardiac injury in non-cardiovascular
disease patients.

According to numerous reports severe COVID-19 patients
are at heightened risk of thromboembolic events, with 20–
30% of critically ill COVID-19 patients reported to have
developed thromboembolic complications (21, 76–79). Systemic
inflammation and subsequent activation of coagulation are both
contributing factors to this increased risk (79, 80). Coagulation
abnormalities have been reported throughout the COVID-19
pandemic and the term COVID-19-associated coagulopathy
(CAC) has been used to describe patients displaying coagulation
changes (78). Elevated levels of prothrombin, fibrinogen and D-
dimer, in addition to elevated inflammatory markers such as
C-reactive protein (CRP) and IL-6, are markers of CAC (78).
In particular, increased D-dimer levels highly correlate with
disease severity, as elevated D-dimer presenting at admission
or over time are associated with increase mortality in COVID-
19 patients (81). Due to the high incidence of thromboembolic
events, the use of thromboprophylaxis for patients admitted to
hospital with severe COVID-19 has been suggested (76, 78),
and CAC should be monitored carefully in all hospitalized
COVID-19 patient, particularly those with pre-existing risk of
thromboembolic events.

Diabetes and Obesity
Diabetes is the third most prevalent underlying comorbidity
in COVID-19 patients (2, 17, 63, 82, 83). Type 2 diabetes is
a multifactorial disease characterized by chronic inflammation

and impaired metabolism and has become an increasing
risk to human health. Diabetic individuals have an increased
susceptibility to infection (84), and are at a high risk of
developing multiple comorbidities such as cardiovascular disease
(83). One study on COVID-19 found that diabetic patients
were more likely to develop pneumonia and were responsible
for 11.7% of severe cases, but only 4% of mild/moderate
cases (85). There are a number of reasons as to why people
with diabetes are more likely to develop severe COVID-19.
Firstly, chronic inflammation in diabetic patients increases their
susceptibility to hyperinflammation and the development of
cytokine storm. This has been already reported in COVID-
19 patients, as IL-6 and CRP levels were found to be
significantly higher in diabetic patients (83). Secondly, it is
well-documented that hyperglycaemia can impair the immune
response, increase oxidative stress and is associated with the
onset of premature senescence (86, 87). Consequently, diabetic
patients that are unable to control their blood glucose levels
may have an even greater vulnerability to severe disease. Finally,
in addition to disease etiology, the treatment of diabetes may
also impact COVID-19 development. As previously discussed
for hypertension and cardiovascular disease, the use of renin
angiotensin system inhibitors may increase susceptibility to
SARS-CoV-2 infection (88, 89). Furthermore, DPP4 inhibitors
commonly used to treat diabetes have an anti-inflammatory
effect, resulting in reduced macrophage infiltration, which could
impair the innate immune response during COVID-19 (90).

Obesity is associated with most of the common COVID-
19 comorbidities such as hypertension, cardiovascular disease
and diabetes (91, 92). The global prevalence of obesity varies
greatly, for example obesity is more common in the United States
and Europe than it is in Asian countries (93). Consequently,
COVID-19 severity and mortality rates may also vary as a
result of this. One study reported a higher BMI in patients
with severe infection, and when comparing survivors vs. non-
survivors, it was reported that 88.2% of non-survivors had a
BMI above 25 kg/m2, which was a significantly higher proportion
than survivors (94). However, the cohort for this study was
small (n = 30) and further retrospective analysis of existing
studies is needed to clarify the impact of obesity on COVID-19.
Following the previous H1N1 pandemic, retrospective analyses
reported that obesity was associated with increased risk of
severe infection and mortality (95), which is in line with
the increased risk of infection in obese individuals (96). In
addition to increased risk of comorbidities, obesity is also
linked to an impaired immune response (97), with evidence of
impaired antibody (98) and T cell (99) responses. Furthermore,
expression of ACE2 is upregulated in adipocytes of obese
individuals and therefore may act as a potential target for
SARS-CoV-2 (100).

Cancer
The incidence of cancer as a COVID-19 comorbidity has
been low. In an extensive meta-analysis of 76,993 patients,
malignancy accounted for just 0.92% of comorbidities reported
(1). However, a nationwide analysis in China reported that
1.1% of COVID-19 cases had active cancer, and these patients
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had a higher proportion of serious events in comparison
to individuals without cancer (101). At this current time,
it is unclear whether cancer patients are at high risk of
COVID-19 due to an immunocompromised state linked to
certain cancer therapies. In one particular study, patients
that underwent recent chemotherapy or surgery had a higher
risk of clinically severe events than those who did not.
However, a limited number of just 19 patients were included
in this analysis (102), demonstrating the need for more
thorough research.

Furthermore, not all cancer patients should be considered
equally immunocompromised. Cancer patients treated with
immuno-oncology therapies such as immune checkpoint
inhibitors (ICI) could be more immunocompetent than
patients undergoing chemotherapy (103). Nonetheless,
there are two major concern associated with the use of
immuno-oncology therapies during COVID-19. Firstly,
there is potential overlap between COVID-19 interstitial
pneumonia and possible pneumological toxicity from anti-
PD-1/PDL-1 agents, which can be fatal. Although this is a
rare immune-related adverse event, it has been reported in
2.5–5% of patients treated with anti-PD-1/PDL-1 monotherapy,
and 7–10% of patients treated with anti-PD-1/anti-CTLA-4
combination therapy (104, 105). Secondly, there is a risk of
cytokine release syndrome associated with T cell-engaging
immunotherapy, such as chimeric antigen receptor (CAR)
T cells. Given that cytokine storm has been linked to a
negative outcome in COVID-19 due to the development
of ARDS and multiple organ failure, ICI and CAR-T cell
therapies may exacerbate this hyperinflammatory state and
increase mortality in these patients (103). Overall, despite the
lower incidence of cancer among COVID-19 patients, those
being treated with immunocompromising therapies such as
chemotherapy, and those susceptible to immune-related adverse
events in response to immuno-oncology therapies should be
monitored carefully.

Respiratory Diseases
As infection with SARS-CoV-2 results in an acute respiratory

disease that can progress to ARDS, respiratory failure and

potentially even death, it is reasonable to speculate that patients
with pre-existing respiratory disease would be at increased risk

of severe COVID-19. Surprisingly, this risk is not as striking

as one might anticipate, as the prevalence of asthma was just
0.90% in a study of 548 COVID-19 patients in China (106).

Furthermore, the incidence of chronic obstructive pulmonary

disease (COPD) among hospitalized COVID-19 patients was
reported to be just 0.95% in a meta-analysis of 76,993 patients

(1). Conversely, the Center For Disease Control and Prevention
(CDC) recently released data of US hospitalizations indicating
that COPD is present in 9.2% of patients (107). A possible
explanation for this global variation could be due to differences
in therapeutics agents and disease management. For instance, a
global survey assessing the severity and control of 7,786 asthmatic
adults worldwide published that individuals in Japan and

Asia-Pacific regions reported less severe disease than those in
Europe and the United States (108).

Liver and Kidney Disease
The prevalence of chronic liver disease in COVID-19 patients is
estimated to be 3% (19, 109). However, liver damage has been
repeatedly reported as a common complication in response to
COVID-19 (30, 36, 109). In a study of 1,100 patients in China,
elevated levels of the liver enzyme aspartate aminotransferase
(AST) were reported in 18% of mild/moderate COVID-19
patients, and 56% of severe COVID-19 patients (36). The same
study also reported elevated levels of alanine aminotransferase
(ALT) in 20% of mild/moderate COVID-19 patients and 28%
of severe COVID-19 patients (36). Consequently, it has been
proposed that liver damage associated with severe COVID-19
patients is due to dysregulated innate immunity against SARS-
CoV-2, or hepatoxicity in response to treatments, rather than
pre-existing liver disease.

Chronic kidney disease is associated with an increased risk
of pneumonia, and elevated mortality from infectious diseases
has been reported in patients with end stage renal disease (110).
In an extensive meta-analysis, chronic kidney disease accounted
for 0.83% of comorbidities in COVID-19 patients (1). While
the prevalence of chronic kidney disease among COVID-19
patients is low, those with pre-existing kidney disease have
been associated with severe disease and increased mortalities
(111). ACE2 expression in the kidney is elevated in chronic
kidney disease (112). However, elevated ACE2 expression in the
kidney does not appear to correlate with increased susceptibility
to SARS-CoV-2 in the same way as it does in the heart.
Nonetheless, chronic kidney disease is associated with persistent,
low-grade inflammation which could exacerbate COVID-19
symptoms. Several factors contribute to this inflammation such
as elevated cytokines including IL-6 and CRP, oxidative stress
and impaired metabolism (113). Therefore, the underlying
pathogenesis of chronic kidney diseasemay increase vulnerability
to hyperinflammation and cytokine storm upon SARS-CoV-2
infection, resulting in severe COVID-19.

Autoimmune Diseases
Autoimmune diseases are conditions characterized by
inappropriate immune activation and destruction of healthy
cells. Lymphopenia is common among autoimmune diseases
such as type 1 diabetes, rheumatoid arthritis and systemic
erythematosus lupus (114), and since lymphopenia is regarded as
a major risk factor for developing severe COVID-19, individuals
living with an autoimmune condition may be perceived as
high risk. However, unlike other comorbidities mentioned
above, autoimmune diseases have not been reported as a risk
factor in the current meta-analyses. One possible explanation
could be that autoimmune diseases are often treated with drugs
designed to restrict immune activation, many of which are now
being repurposed for COVID-19 and will be discussed below.
Furthermore, potential alterations in patient behaviors in order
to shield themselves from infection could influence reporting of
autoimmunity as a risk factor.
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CONSIDERATIONS FOR COVID-19
THERAPIES

As the pandemic continues to accelerate globally, so does the
race to develop an effective therapy to protect against and
treat COVID-19 (Figure 4). However, robust efficacy and safety
assessments are needed, particularly with regards to their use in
comorbid patients, as reviewed below.

Vaccines
The SARS-CoV-2 genome and spike protein structure was
discovered very rapidly (115), enabling focussed development
of both RNA- and protein-based vaccines. However, vaccine
development is a challenging and time-consuming process.
Following the SARS-CoV epidemic, several vaccines were
developed and assessed using animal models. Vaccination with
live virus was shown to cause complications in mice such
as lung damage (116, 117), and although recombinant spike
protein based vaccines were able to protect animals from SARS-
CoV challenge, they were ineffective at inducing sterilizing

immunity (118). Other vaccines with inactivated SARS-CoV
and MERS-CoV have demonstrated reduced viral titers, reduced
morbidity and greater survival in animal models (119, 120).
However, the rapid eradication of SARS-CoV reduced demand
for development. Some MERS-CoV vaccines are currently in
pre-clinical and clinical development (121), however as MERS-
CoV is less closely related, it is unlikely that these will
cross-protect against SARS-CoV-2. Learnings from previous
coronavirus outbreaks indicate that antibody responses are not
particularly long-lived, with SARS-CoV antibodies lasting on
average just 2 years (122). This apparent lack of long-term
protection exacerbates the need for an effective vaccine or vaccine
programme to protect against potential recurrent seasonal SARS-
CoV-2 infections.

On the 6th July 2020, theWHO reported 160 candidate SARS-
CoV-2 vaccines under development worldwide (123). Some
of the most promising include an mRNA vaccine; mRNA-
1273 (124), a DNA plasmid vaccine (125), and an adenovirus
vaccine; ChAdOx1 nCoV-19 (126). Although clinical evaluation
is underway, outcomes are not available yet. Furthermore,

FIGURE 4 | Current COVID-19 treatment strategies. (1) Novel vaccines and convalescent plasma are being investigated to prevent viral entry. Broad-spectrum

antiviral agents that inhibit (2) cell entry via endocytosis, and (3) viral replication through RNA-dependent RNA polymerase (RdRP) and protease inhibition are being

repurposed to test efficacy against SARS-CoV-2. Furthermore, (4) immune modulating and anti-inflammatory treatments are being explored to prevent the

development of severe COVID-19 development.
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vaccine efficacy depends upon an individual’s ability to mount
a strong immune response against it. Consequently, vaccine
regimens that grant protection in healthy individuals may not
be adequate for older individuals and those with comorbid
conditions who have increased immunosenescence (127). For
influenza, the use of adjuvant (128) and high dose vaccines
(129, 130) have been developed and implemented to increase
vaccine immunogenicity for older and high-risk comorbid adults.
Therefore, similar measures are likely to be needed to fine
tune a SARS-CoV-2 vaccine once it becomes available. In
the interim, rolling out a SARS-CoV-2 vaccine with proven
efficacy in healthy individuals could result in herd immunity,
preventing transmission to those more vulnerable and offer
indirect protection.

Convalescent Plasma Therapy
Another therapeutic approach intended to prevent COVID-19
is convalescent plasma therapy. Previous use during the SARS
(131) and MERS (132) epidemics, and H1N1 pandemic (133),
demonstrated reasonable efficacy and safety. Evidence from
those outbreaks revealed that convalescent plasma contained
neutralizing antibodies (134), and a meta-analysis from 32 SARS-
CoV and influenza studies, reported a significant reduction in
mortality following convalescent plasma therapy (135). Several
convalescent plasma studies for SARS-CoV-2 have been reported.
In China, a small pilot study was conducted to test convalescent
plasma collected from 40 recently recovered patients on 10 severe
COVID-19 patients, four of which had underlying conditions
including hypertension and cardiovascular disease (136). From
the 40 patients, 39 had high neutralizing antibody titers of
≥1:640. No serious adverse events were reported following
transfusion, and all patients experienced improved symptoms
within 1 to 3 days post-transfusion. However, there are many
caveats to this study, the very small sample size and the use
of concomitant treatments mean it is not possible to ascertain
if clinical improvements were due to convalescent plasma.
Consequently, additional large scale, controlled, randomized
trials are needed and are currently underway.

Despite no adverse events being reported in the small sample
sizes currently being tested for COVID-19, plasma transfusions
are not without risk. As with any transfusion, there is a risk of
transfusion transmitted infections, albeit small (137). Perhaps
of more concern are the non-infectious risks such as allergic
reactions, transfusion related acute lung injury characterized
by acute hypoxemia and pulmonary oedema, and transfusion
associated circulatory overload, characterized by hypertension,
tachycardia, tachypnoea and dyspnea (138). These are of
particular concern for severe COVID-19 patients with extensive
lung damage, and for those with pre-existing hypertension,
cardiovascular disease or renal failure (138, 139). Due to
the increased prevalence of comorbidities among COVID-19
patients, those predisposed to transfusion-related adverse events
will need to be carefully evaluated. As transfusion volume and
rate have both been identified as risk factors for transfusion
associated circulatory overload (140), COVID-19 trials should
examine these parameters to ensure safety in comorbid patients.

CHALLENGES TO OVERCOME WITH
REPURPOSED DRUGS

While many scientists attempt to develop novel therapies to
prevent COVID-19, others are focusing their attention on
repurposing drugs that are already on the market (Figure 4).

Chloroquine and Hydroxychloroquine
At present, the most contested repurposed drug is chloroquine
and its analog hydroxychloroquine. Following the 2002 SARS-
CoV epidemic, researchers found that in vitro treatment of
chloroquine could increase endosomal pH and impair terminal
glycosylation of ACE2 receptors on the cell surface, therefore
inhibiting SARS-CoV-ACE2 interactions and preventing virus
entry (141, 142). Similarly, after the 2012 MERS-CoV epidemic,
researchers demonstrated that chloroquine could inhibit in
vitro replication of MERS-CoV in well-established cell lines
(143) and primary mature antigen presenting cells (144).
However, as SARS-CoV and MERS-CoV resolved relatively
quickly, continued assessment of chloroquine remained limited.
Furthermore, although in vitro treatment can inhibit SARS-
CoV-2 (145), the use of chloroquine and hydroxychloroquine
for COVID-19 in the clinic is highly controversial. A series
of early clinical trials conducted in China reported apparent
efficacy of chloroquine phosphate in treating COVID-19 (146).
This was followed by a small, non-randomized study of
just 36 patients from France, which demonstrated a clinical
benefit from the use of hydroxychloroquine, but lacked an
appropriate control group and a long-term follow-up (147).
However, an observational study of 1,376 patients treated with
hydroxychloroquine report no sign of efficacy for COVID-19
(148). This was further confirmed by results from the large
Randomized Evaluation of COVID-19 Therapy (RECOVERY)
trial that examined 1,542 hospitalized COVID-19 patients treated
with hydroxychloroquine and reported no significant difference
in mortality when compared to 3,132 standard of care patients
(149, 150).

Broad-Spectrum Antiviral Agents
Lopinavir/Ritonavir
Lopinavir is a protease inhibitor often formulated with low-
dose ritonavir and traditionally used to treat HIV patients (151).
Lopinavir/ritonavir was previously assessed in a small, non-
randomized study conducted in Hong Kong during the SARS-
CoV epidemic. This study demonstrated that lopinavir/ritonavir
treatment resulted in reduced viral load and milder disease,
with less recurrence of fever, diarrhea, and improved chest
radiographs when compared with those treated with ribavirin,
an alternative antiviral (152). During the current outbreak, two
independent case studies of COVID-19 patients hospitalized
in South Korea, reported a reduction in viral load and
subsequent recovery of patients following the administration of
lopinavir/ritonavir (153, 154). However, a randomized control
study in China of 199 severe COVID-19 patients demonstrated
no difference inmortality, or in the amount of viral RNA detected
(155). Furthermore, recent findings from the RECOVERY trial
comparing 1,596 patients randomized to lopinavir/ritonavir to
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3,376 standard of care patients concluded no clinical benefit
from the use of lopinavir/ritonavir (149, 156). Moreover, protease
inhibitors such as lopinavir/ritonavir have been associated with
hepatotoxicity during HIV treatment (157, 158), and drug-
to-drug interaction (DDI) with certain statins, for example
rosuvastatin, can increase the risk of myopathy (159, 160).
Therefore, administration to COVID-19 patients with pre-
existing liver disease and those being treated with statins could
prove detrimental. Like other members of the protease inhibitor
class, lopinavir/ritonavir has also been associated with metabolic
changes that can result in hyperglycaemia (161), hyperlipidaemia
(162), and insulin resistance (163). Due to the lack of efficacy
and increased risk of toxicity to certain COVID-19 patients
lopinavir/ritonavir could be prove more harmful to patients and
should therefore be avoided.

Oseltamivir and Favipiravir
Oseltamivir and favipiravir, two antiviral treatments traditionally
used to treat influenza, have also been examined for use in
COVID-19. Oseltamivir is a neuraminidase inhibitor, which has
been extensively used as a prophylactic against influenza. In
a small, single-center study of 138 patients with SARS-CoV-
2 pneumonia in China, 89.9% of patients received oseltamivir
alongside anti-bacterial drugs such as moxifloxacin, ceftriaxone,
azithromycin, and glucocorticoid therapy (18). The study
concluded no effective outcomes based on oseltamivir (18).
However, the small study size, lack of appropriate control and
the fact that many patients remained hospitalized at the time of
publications limits full interpretations. Favipiravir is an antiviral
with potent inhibitory activity against viral RNA-dependent RNA
polymerase. Experimentally, favipiravir demonstrated effective
SARS-CoV-2 inhibition in Vero E6 cells (145). Furthermore,
a small, open-label, non-randomized comparative study of 80
patients in China, compared clinical outcomes of patients treated
with favipiravir and lopinavir/ritonavir (164). The median time
until viral clearance was 4 days with favipiravir compared to 11
days with lopinavir/ritonavir. At day 14, CT scans of the chest
from patients treated with favipiravir demonstrated significant
improvements. Adverse events occurred in 11% of favipiravir
treated patients compared to 55% of lopinavir/ritonavir treated
patients (164). However, despite initial promise more robust
clinical data is needed in order to establish the efficacy and safety
of favipiravir as a treatment of COVID-19.

Remdesivir
Another antiviral agent being examined for use in COVID-19 is
remdesivir. When metabolized into its active form, remdesivir
inhibits viral RNA polymerases, causing a decrease in viral RNA
production. Remdesivir has been shown to inhibit SARS-CoV
and MERS-CoV in human airway epithelial in vitro models
(165, 166), and in combination with interferon beta, remdesivir
has been shown to be superior to lopinavir/ritonavir in a MERS-
CoV mouse model (167). Despite some initial controversial
findings (168), results from more robust clinical trials have
demonstrated reasonable efficacy. For instance, preliminary
results from the National Institute of Allergy and Infectious
Diseases Adaptive COVID-19 Treatment Trial involving 1,063

patients, demonstrated that remdesivir accelerated recovered by
31% compared to placebo (169). Furthermore, recent results
from the Phase 3 SIMPLE trial investigating the use of remdesivir
in patients with moderate COVID-19 showed that patients
receiving remdesivir treatment were 65% more likely to have
improved clinically by day 11 than standard of care patients
(170, 171). Due to the success of these two trials, the use of
remdesivir has been approved by the FDA, EMA, UK, and Japan
as a treatment for COVID-19. Despite proven efficacy, adverse
events in response to remdesivir have been reported in 60%
of patients of which 12% were severe (168). These included
septic shock, multiple organ dysfunction syndrome, acute kidney
injury and hypotension. Therefore, the use of remdesivir in
comorbid patients with increased susceptible to these adverse
events requires further evaluation.

Anti-inflammatory Treatments
As severe COVID-19 cases are characterized by
hyperinflammation, the use of immune modulating and
anti-inflammatory treatments to prevent severe lung injury and
disease progression are being explored.

Mesenchymal Stem Cell (MSC) Therapy
Due to their immunomodulatory properties, MSCs are being
clinically assessed to treat inflammatory conditions such as
systemic lupus erythematosus (172) and graft vs. host disease
following allogeneic haemopoietic stem-cell transplantation
(173). Consequently, a pilot study was initiated to investigate
the potential therapeutic benefit of MSCs for COVID-19
infected patients in China. The study involved just 10
COVID-19 patients who were monitored for 14 days post-
MSC injection (174). MSC treatment was well-tolerated and
no adverse events occurred during treatment. Furthermore,
virtually all clinical symptoms subsided, with 3 patients being
discharged 10 days post-MSC injection (174). Mass cytometry
of PBMCs revealed that peripheral lymphocytes, regulatory
CD14+CD11c+CD11bmid DCs and IL-10 increased. Whereas,
CRP, TNF-α and overactivated CXCR3+ CD4+/CD8+/NK cells
decreased 3 to 6 days following injection compared to placebo
group. MSCs were shown to be ACE2 negative, meaning they
were immune to SARS-CoV-2 infection (174). Although this
pilot study shows promise, more robust clinical data is required
to validate therapeutic benefit and safety. Moreover, the use of
MSCs would require clinical grade MSC production and may not
be a plausible solution for many healthcare systems.

Anti-IL-6
IL-6 is considered the key cytokine responsible for the induction
of cytokine storm during SARS-CoV, MERS-CoV and SARS-
Cov-2 infections (30, 175, 176). Consequently, the recombinant
humanized anti-human IL-6 receptor monoclonal antibody
tocilizumab, currently used to treat rheumatoid arthritis (RA),
has been examined for use during COVID-19. Tocilizumab first
demonstrated effectiveness in a small retrospective study of 20
patients with severe COVID-19 pneumonia in China (177).
Oxygen intake was reduced, and improved symptoms occurred
in 75% of patients. Lymphocyte levels returned to normal in
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56% of patients and CRP levels reduced significantly in 84.2%
of patients (177). Several case studies have also demonstrated
rapid clinical improvements following tocilizumab (178–180).
Although these initial studies are promising, the full clinical trial
data is still unavailable. Furthermore, although safety profiles for
tocilizumab are well-established for intermittent use in RA, the
safety of tocilizumab when used in combination with antiviral
agents and other comorbid therapies has not been established.

Kinase Inhibitors
Other anti-inflammatory treatments now being tested clinically
for their use against COVID-19 are Janus kinase (JAK) and
Bruton’s tyrosine kinase (BTK) inhibitors. The JAK-signal
transducer and activator of transcription (JAK/STAT) pathway
mediates the signal transduction of numerous cytokines in
a number of immune cells such as T cell, NK cells, and
DCs (181). Consequently, JAK inhibitors have emerged as
effective treatments for many autoimmune and immune-
mediated disease. At present, a number of JAK inhibitors such as
ruxolitinib (182), baricitinib (183), and fedratinib (184), are being
assessed as a potential treatment for COVID-19. Preliminary
results from a pilot study evaluating 88 hospitalized patients, 20
of which were treated with baricitinib, demonstrated significant
reductions in serum IL-6, IL-1β, and TNF-α, as well as a
rapid recovery of circulatory T and B cell frequencies following
baricitinib treatment (185). Consequently, a Phase 3 Adaptive
COVID-19 Treatment Trial (ATTC-2) has now been established
in order to evaluation the use of baricitinib in combination
with remdesivir compared to remdesivir alone (186). However,
despite promising initial findings, as JAK inhibitors block a wide
range of cytokines including IFN-α, which is crucial during
early innate immunity in response to viral infections, the impact
of this on viral clearance needs to be evaluated. Furthermore,
ruxolitinib and baricitinib have both been associated with
increased weight gain, cholesterol and albumin levels (187, 188).
Although no causal association has been reported yet, the issue
should not be dismissed and COVID-19 patients with metabolic
and cardiovascular comorbidities should be carefully considered
before use.

Bruton’s tyrosine kinase (BTK) is a key regulator of cell
surface receptors expressed primarily in B cells, but also in
monocytes/macrophages and neutrophils (189). Currently, BTK
inhibitors are used to treat various B cell malignancies and
chronic graft vs. host diseases (190). As BTK can regulate
IL-6, TNF-α, and MCP-1, BTK inhibitors are being tested in
combination with CAR-T cells (191), to alleviate cytokine release
syndrome. Furthermore, in chronic lymphocytic leukemia, BTK
inhibitors have been shown to increase CD4+ and CD8+ T
cell, and significantly downregulate PD-1 and CTLA-4 (192),
highlighting a potential reversal of T cell exhaustion, which could
be beneficial in COVID-19. Consequently, clinical trials to assess
the use of BTK inhibitors against COVID-19 are underway.

Corticosteroids
The use of corticosteroids to treat COVID-19 remained largely
uncertain until recently. Although individuals being treated

with long term corticosteroid were instructed to continue with
their medication, the use of corticosteroids specifically to treat
COVID-19 was not recommended (193). This was largely due to
the unknown impact of immune suppression on viral clearance
and potential adverse outcomes. However, preliminary data
from the RECOVERY trial evaluating 2,104 patients randomly
allocated to receive dexamethasone has proven significant clinical
improvements (194). Dexamethasone is a steroid used to reduce
inflammation in a myriad of inflammatory conditions and now
reported to reduce COVID-19 related deaths among patients
receiving respiratory support by one-third (194). In response
to these findings the demand for dexamethasone to treat the
most critical COVID-19 patients has surged globally (195).
Whilst these findings are exciting, safety data detailing potential
adverse events and the impact of co-medications, such as non-
steroidal anti-inflammatory drugs, has not yet been reported and
thus dexamethasone should still be considered carefully prior
to administration.

SUMMARY

Patients with pre-existing comorbidities are at a greater risk of
dying from COVID-19. However, not all comorbidities confer
the same risk. By exploring the underlying disease etiologies
and common therapies used to treat these conditions, we have
discussed their impact on COVID-19. Comorbidities closely
associated with age, chronic inflammation and dysregulated
metabolism such as hypertension, cardiovascular disease,
and diabetes are the most prevalent comorbidities. However,
many of these comorbidities are strongly associated with
each other. Consequently, many patients will have multiple
comorbidities and therefore while we have discussed these
individually, the reality is that a combination of factors will
be at play. Furthermore, as multiple drug use is inevitable
for patients with pre-existing comorbidities, the impact
of overlaying drugs on an already compromised state and
the possibility of DDI leading to adverse events needs
to be carefully considered. As the scale of this pandemic
continues to accelerate globally, we hope this review provides
healthcare professionals and biomedical researchers with
a more comprehensive understanding of the impact of
pre-existing comorbidities on COVID-19 development
and treatment.
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