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Abstract 

Name: Philip Simon Smith 

Title: Molecular genetic investigations of renal cell carcinoma predisposition 

 

Renal Cell Carcinomas (RCC) are a diverse group of histologically and genetically distinct renal 

neoplasms accounting for 2.4% of all cancers worldwide. While a majority of RCC cases are sporadic 

in nature, a proportion are due to genetic predisposition caused by syndromic and non-syndromic 

conditions. Inherited renal cell carcinoma is associated with alterations in genes such as VHL, MET, 

FH, and FLCN and identification of these genes has been critical to understanding the molecular 

biology of both inherited and sporadic RCC, informing both clinical management and treatment. 

Despite the large number of known genes which are linked to RCC predisposition, most individuals 

with features of RCC predisposition do not harbour variants in known inherited RCC genes, 

suggesting additional unknown causes of heritability have yet to be uncovered. This study has 

utilised a range of genomic sequencing methodologies, scaling from single gene to whole genome 

sequencing, on individuals with features of renal cell carcinoma predisposition in order to identify 

novel causes of heritability associated with RCC. Multiple genomic sequencing approaches in these 

individuals has uncovered a range of potential genetic features that could be associated with 

predisposition to RCC, including genes not previously known to be associated with RCC, discovery 

of new molecular mechanisms of genetic inheritance for known RCC predisposition syndromes, and 

provided innovative methods for the identification and characterisation of molecular alterations in 

specific inherited RCC subtypes. 

  



3 
 

Table of Contents 

DECLARATION ................................................................................................................................................. 1 

ABSTRACT ....................................................................................................................................................... 2 

TABLE OF CONTENTS .................................................................................................................................... 3 

ACKNOWLEDGEMENTS ................................................................................................................................. 9 

1.0 INTRODUCTION ....................................................................................................................................... 10 

1.0.1 TABLE OF CONTENTS .............................................................................................................................. 11 

1.1 MEDICAL GENETICS: FROM MENDEL TO GENE THERAPY ................................................................................ 13 

1.1.1 Discovery of genetics ..................................................................................................................... 13 

1.1.2 Models of inheritance ..................................................................................................................... 13 

1.1.3 De novo variants and mosaicism ................................................................................................... 14 

1.1.4 Landscape of genetic alterations .................................................................................................... 15 

1.1.5 Medical genetics in the present ...................................................................................................... 15 

1.2 CANCER: A GENETIC DISEASE .................................................................................................................... 17 

1.2.1 Genetic origin of cancer ................................................................................................................. 17 

1.2.2 Hallmarks of cancer ........................................................................................................................ 20 

1.2.3 Genetic inheritance of cancer ......................................................................................................... 22 

1.3 RENAL CELL CARCINOMA ........................................................................................................................... 23 

1.3.1 Incidence ........................................................................................................................................ 23 

1.3.2 Major histological subtypes ............................................................................................................ 24 

1.3.3 Tumour staging .............................................................................................................................. 27 

1.3.4 Tumour grade ................................................................................................................................. 27 

1.3.5 Survival .......................................................................................................................................... 29 

1.3.6 Generalised treatment .................................................................................................................... 29 

1.4 GENETICS OF RENAL CELL CARCINOMA ........................................................................................................ 32 

1.4.1 Inherited renal cancer ..................................................................................................................... 32 

1.4.2 Additional genetic risks factors in RCC predisposition ................................................................... 32 

1.4.3 Von Hippel-Lindau disease ............................................................................................................ 34 

1.4.4 Hereditary leiomyomatosis and renal cell carcinoma ..................................................................... 38 

1.4.5 Birt-Hogg-Dubé syndrome .............................................................................................................. 41 

1.4.6 Hereditary papillary renal cell carcinoma ........................................................................................ 43 

1.4.7 Succinate dehydrogenase renal cell carcinoma ............................................................................. 44 

1.4.8 Tubular sclerosis complex .............................................................................................................. 46 

1.4.9 Cowden syndrome ......................................................................................................................... 48 

1.4.10 CDC73-Related disorders ............................................................................................................ 50 

1.4.11 Non-syndromic renal cell carcinoma ............................................................................................ 51 

1.5 SOMATIC VARIATION IN RENAL CELL CARCINOMA ........................................................................................... 53 

1.5.1 Clear cell renal cell carcinoma ....................................................................................................... 53 

1.5.2 Papillary renal cell carcinoma ......................................................................................................... 55 

1.5.3 Chromophobe renal cell carcinoma ................................................................................................ 56 

1.5.4 Epigenetics of renal cell carcinomas .............................................................................................. 57 

1.6 INHERITED AND SOMATIC VARIANTS IN RENAL CELL CARCINOMA ...................................................................... 59 



4 
 

1.7 SEQUENCING IN RARE DISEASES ................................................................................................................. 62 

1.7.1 Sequencing technologies ............................................................................................................... 62 

1.7.2 Sequencing technologies - The right tool for the job ...................................................................... 64 

1.7.3 Variant detection in rare disease .................................................................................................... 66 

1.8 SUMMARY ................................................................................................................................................ 68 

1.9 AIMS ....................................................................................................................................................... 70 

2.0 MATERIALS AND METHODS .................................................................................................................. 71 

2.0.1 – TABLE OF CONTENTS ........................................................................................................................... 72 

2.0.2 LABOUR CONTRIBUTIONS ........................................................................................................................ 73 

2.1 SAMPLE PREPARATION .............................................................................................................................. 74 

2.1.1 Sample retrieval and extraction ...................................................................................................... 74 

2.1.2 Sample source and storage ........................................................................................................... 74 

2.1.3 Patient cohort description ............................................................................................................... 75 

2.2 SAMPLE QUALITY CONTROL AND METRICS .................................................................................................... 76 

2.2.1 DNA quantification.......................................................................................................................... 76 

2.2.2 Whole genome amplification of low quantity samples .................................................................... 76 

2.3 POLYMERASE CHAIN REACTION (PCR) METHODS ......................................................................................... 77 

2.3.1 Primer design ................................................................................................................................. 77 

2.3.2 Short range PCR ............................................................................................................................ 77 

2.3.3 Nested PCR ................................................................................................................................... 79 

2.3.4 Long range PCR primer design ...................................................................................................... 79 

2.3.5 Long range PCR............................................................................................................................. 79 

2.3.6 Gel electrophoresis ........................................................................................................................ 81 

2.4 SANGER SEQUENCING ............................................................................................................................... 82 

2.4.1 PCR product clean-up .................................................................................................................... 82 

2.4.2 Sanger sequencing termination reaction ........................................................................................ 82 

2.4.3 Isopropanol clean-up and DNA precipitation .................................................................................. 84 

2.4.4 Sequencing analysis ...................................................................................................................... 84 

2.5 POOLED AMPLICON CLEAN-UP .................................................................................................................... 85 

2.6 DNA SEQUENCING AND LIBRARY PREPARATION ............................................................................................ 87 

2.6.1 Illumina Nextera XT Library preparation and sequencing ............................................................... 87 

2.6.2 Illumina TruSight Cancer library preparation and sequencing ........................................................ 87 

2.6.3 Illumina TruSeq rapid exome library preparation and sequencing ................................................. 87 

2.6.4 Whole genome sequencing by Novogene ...................................................................................... 88 

2.6.5 Library preparation labour contributions ......................................................................................... 88 

2.7 GENERALISED SEQUENCING PIPELINE.......................................................................................................... 89 

2.8 VARIANT FILTERING AND ANNOTATION ......................................................................................................... 90 

2.9 OXFORD NANOPORE TECHNOLOGIES SEQUENCING ...................................................................................... 92 

2.9.1 Sample preparation and long-range PCR amplicon ....................................................................... 92 

2.9.2 Nanopore sequencing library preparation ...................................................................................... 92 

2.9.3 Nanopore bioinformatics ................................................................................................................ 92 

3.0 SEQUENCING OF CANDIDATE GENES BY SANGER AND TARGETED NEXT GENERATION 

SEQUENCING APPROACHES ....................................................................................................................... 93 



5 
 

3.0.1 - TABLE OF CONTENTS ............................................................................................................................ 94 

3.1 INTRODUCTION ......................................................................................................................................... 95 

3.1.1 – Candidate gene - CDKN2B ......................................................................................................... 95 

3.1.2 – Candidate gene - EPAS1 ............................................................................................................ 97 

3.1.3 – Candidate genes - KMT2C and KMT2D ...................................................................................... 98 

3.1.4 Aims ............................................................................................................................................. 100 

3.2 MATERIALS AND METHODS ....................................................................................................................... 101 

3.2.1 Samples ....................................................................................................................................... 101 

3.2.2 Sanger sequencing primer design and co-ordinates .................................................................... 101 

3.2.3 PCR reactions and Sanger sequencing ....................................................................................... 101 

3.2.4 Long range PCR........................................................................................................................... 101 

3.2.5 Illumina Nextera XT library preparation for amplicon sequencing ................................................ 102 

3.2.6 Primary bioinformatics .................................................................................................................. 102 

3.2.7 Variant filtering, annotation, and classification ............................................................................. 102 

3.2.8 Sequence identity comparison ..................................................................................................... 102 

3.2.9 Statistics ....................................................................................................................................... 102 

3.3 RESULTS ............................................................................................................................................... 103 

3.3.1 Targeted Sanger sequencing - PCR product generation .............................................................. 103 

3.3.2 Targeted Sanger sequencing – Variant analysis .......................................................................... 106 

3.3.3 KMT2C & KMT2D targeted sequencing – Long range PCR product generation .......................... 109 

3.3.4 KMT2C & KMT2D targeted sequencing – Library preparation and quality control ....................... 112 

3.3.5 KMT2C & KMT2D targeted sequencing – Variant analysis .......................................................... 116 

3.3.6 KMT2C & KMT2D Targeted sequencing – Off-target regions and read mapping ........................ 118 

3.3.7 KMT2C & KMT2D Targeted sequencing – BAGE2 gene sequence comparison ......................... 120 

3.3.8 Validation of KMT2C nonsense variant ........................................................................................ 120 

3.4 DISCUSSION ........................................................................................................................................... 122 

3.5 CONCLUSION .......................................................................................................................................... 128 

4.0 CANCER GENE SEQUENCING OF INDIVIDUALS WITH FEATURES OF INHERITED RCC .............. 129 

4.0.1 TABLE OF CONTENTS ............................................................................................................................ 130 

4.1 INTRODUCTION ....................................................................................................................................... 131 

4.1.1 Aims ............................................................................................................................................. 133 

4.2 METHODS .............................................................................................................................................. 134 

4.2.1 Patients ........................................................................................................................................ 134 

4.2.2 DNA extraction and quantification ................................................................................................ 134 

4.2.3 Library preparations and sequencing ........................................................................................... 134 

4.2.4 Sequencing bioinformatics ........................................................................................................... 134 

4.2.5 Variant filtering and prioritisation .................................................................................................. 134 

4.2.6 Statistical Analysis........................................................................................................................ 135 

4.2.7 Sanger sequencing ...................................................................................................................... 135 

4.3 RESULTS ............................................................................................................................................... 136 

4.3.1 Clinical features ............................................................................................................................ 136 

4.3.2 Quality control and variant filtering ............................................................................................... 138 

4.3.3 Detection variants in Group A cancer predisposition genes ......................................................... 140 

4.3.4 Detection of variants in Group B cancer predisposition genes ..................................................... 141 



6 
 

4.3.5 Detection of variants in Group C cancer predisposition genes ..................................................... 144 

4.3.6 Analysis of variants of uncertain significance ............................................................................... 146 

4.4 DISCUSSION ........................................................................................................................................... 151 

4.5 CONCLUSION .......................................................................................................................................... 155 

5.0 GERMLINE WHOLE EXOME SEQUENCING OF INDIVIDUALS WITH FEATURES OF INHERITED 

RENAL CELL CARCINOMA ......................................................................................................................... 156 

5.0.1 TABLE OF CONTENTS ............................................................................................................................ 157 

5.1 INTRODUCTION ....................................................................................................................................... 158 

5.1.1 Single nucleotide variant analysis ................................................................................................ 158 

5.1.2 Copy number detection ................................................................................................................ 159 

5.1.3 Gene burden analysis .................................................................................................................. 159 

5.1.4 Additional detection methods ....................................................................................................... 161 

5.1.5 Aims ............................................................................................................................................. 162 

5.2 MATERIALS AND METHODS ....................................................................................................................... 163 

5.2.1 Patients ........................................................................................................................................ 163 

5.2.2 DNA extraction and quantification ................................................................................................ 163 

5.2.3 Library preparations and sequencing ........................................................................................... 163 

5.2.4 Sequencing bioinformatics ........................................................................................................... 163 

5.2.5 Variant filtering and prioritisation .................................................................................................. 164 

5.2.6 Copy number variation detection .................................................................................................. 164 

5.2.7 Population stratification and sample concordance ....................................................................... 166 

5.2.8 Burden analysis ............................................................................................................................ 167 

5.2.9 Short tandem repeat detection ..................................................................................................... 170 

5.2.10 Mobile element insertion detection ............................................................................................. 170 

5.2.11 Statistical methods ..................................................................................................................... 170 

5.3 RESULTS ............................................................................................................................................... 171 

5.3.1 Clinical features ............................................................................................................................ 171 

5.3.2 Quality control and variant filtering ............................................................................................... 174 

5.3.3 Truncating and splice site-affecting variants across all genes ...................................................... 178 

5.3.4 Detection of SNVs in sporadic renal cell carcinoma genes .......................................................... 181 

5.3.5 Detection of SNVs in metabolic genes associated with Krebs cycle ............................................ 185 

5.3.6 Copy number alterations - Calibration of copy number pipeline ................................................... 187 

5.3.7 Copy number alterations calibration - Evaluation of call rate, type I, and type II errors ................ 187 

5.3.8 Copy number alterations – RCC copy number analysis ............................................................... 189 

5.3.9 Gene burden analysis .................................................................................................................. 194 

5.3.10 Short tandem repeat expansion analysis ................................................................................... 199 

5.3.11 Mobile element analysis ............................................................................................................. 201 

5.4 DISCUSSION ........................................................................................................................................... 203 

5.5 CONCLUSION .......................................................................................................................................... 208 

6.0 CHARACTERISATION OF RCC-ASSOCIATED CONSTITUTIONAL CHROMOSOMAL 

ABNORMALITIES BY WHOLE GENOME SEQUENCING ........................................................................... 209 

6.0.1 TABLE OF CONTENTS ............................................................................................................................ 210 

6.1 INTRODUCTION ....................................................................................................................................... 211 



7 
 

6.1.1 Constitutional translocations in RCC ............................................................................................ 211 

6.1.2 Constitutional translocations in other cancers .............................................................................. 213 

6.1.3 Methods for translocation characterisation ................................................................................... 213 

6.1.4 Summary ...................................................................................................................................... 214 

6.1.5 Aims ............................................................................................................................................. 215 

6.2 MATERIALS AND METHODS ....................................................................................................................... 216 

6.2.1 Literature review ........................................................................................................................... 216 

6.2.2 Clinical studies ............................................................................................................................. 216 

6.2.3 Sequence alignment and variant calling ....................................................................................... 216 

6.2.4 WGS Analysis: Candidate gene analysis and Breakpoint identification ....................................... 217 

6.2.5 Nanopore sequencing of translocation breakpoints ..................................................................... 217 

6.2.6 Sanger sequencing ...................................................................................................................... 217 

6.2.7 Statistical tests ............................................................................................................................. 217 

6.3 RESULTS ............................................................................................................................................... 218 

6.3.1 Literature review of previously reported cases ............................................................................. 218 

6.3.2 Clinical features of previously unreported cases .......................................................................... 227 

6.3.3 Whole genome sequencing and bioinformatics ............................................................................ 230 

6.3.4 Characterisation of constitutional rearrangements in previously unreported cases ...................... 230 

6.3.5 Characterisation of translocation breakpoints utilising Nanopore sequencing .............................. 233 

6.3.6 Computational evaluation of breakpoint-related genes ................................................................ 236 

6.4 DISCUSSION ........................................................................................................................................... 238 

6.5 CONCLUSION .......................................................................................................................................... 243 

7.0 DISCUSSION ........................................................................................................................................... 244 

7.0.1 TABLE OF CONTENTS ............................................................................................................................ 245 

7.1 RESULTS CHAPTERS: CONSEQUENCES, ASSOCIATIONS, AND LIMITATIONS ..................................................... 246 

7.2 GENERAL LIMITATIONS IN NEXT GENERATION SEQUENCING PROJECTS ........................................................... 252 

7.3 FUTURE DIRECTIONS FOR THE DETECTION OF HERITABILITY IN RCC ............................................................. 255 

7.4 CONCLUSION .......................................................................................................................................... 258 

8.0 BIBLIOGRAPHY ..................................................................................................................................... 259 

9.0 APPENDIX............................................................................................................................................... 279 

9.0.1 TABLE OF CONTENTS ............................................................................................................................ 280 

9.0.2 NOTES ON APPENDIX DATA .................................................................................................................... 281 

9.1 CHAPTER 2 MATERIALS AND METHODS ...................................................................................................... 282 

9.1.1 Next generation sequencing pipeline – FASTQ to VCF ............................................................... 282 

9.1.2 Next generation sequencing pipeline – VCF filtering and annotation ........................................... 285 

9.1.3 ONT Nanopore sequencing pipeline ............................................................................................ 295 

9.2 CHAPTER 3 TARGETED SANGER AND AMPLICON SEQUENCING ..................................................................... 308 

9.2.1 Sanger sequencing and long range PCR primers ........................................................................ 308 

9.2.2 Sequence identity comparisons ................................................................................................... 310 

9.2.3 Sequence alignment and quality metrics – KMT2C/KMT2C sequencing ..................................... 311 

9.2.4 BAGE-family genes table ............................................................................................................. 312 

9.2.5 KMT2C/BAGE2 conservation ....................................................................................................... 313 

9.3 CHAPTER 4 CANCER GENE PANEL SEQUENCING ......................................................................................... 314 



8 
 

9.3.1 Cancer gene panel target list ....................................................................................................... 314 

9.3.2 Sanger sequencing primers – BRIP1 ........................................................................................... 316 

9.4 CHAPTER 5 WHOLE EXOME SEQUENCING .................................................................................................. 317 

9.4.1 WES gene lists ............................................................................................................................. 317 

9.4.2 HapMap sample list ...................................................................................................................... 320 

9.4.3a CNV pipeline - main ................................................................................................................... 321 

9.4.3b CNV pipeline - Reference interval file generation ....................................................................... 331 

9.4.4 Miscellaneous scripts ................................................................................................................... 335 

9.4.5 Burden testing scripts ................................................................................................................... 338 

9.4.6 Burden testing results ................................................................................................................... 347 

9.5 CHAPTER 6 RCC-ASSOCIATED TRANSLOCATIONS ...................................................................................... 351 

9.5.1 Copy number and structural variant calling scripts ....................................................................... 351 

9.5.2 IGV visualisations of translocation break point ............................................................................. 353 

9.5.3 Sanger sequencing of translocation break points ......................................................................... 358 

9.5.4 Translocation Manta structural variant calls ................................................................................. 360 

 

  



9 
 

Acknowledgements 

The writing of this thesis has undoubtedly been the greatest labour of love I have undertaken in my 

scientific career and I have numerous people to thank who have supported, educated, guided, and 

most of all tolerated me over the last four years. After four years of dedicated work on human 

genetics, inherited cancer, and bioinformatics, I am elated to still feel the same passion and curiosity 

at the end of this journey that I felt when I began. 

First and foremost, I wish to thank Professor Eamonn Maher for his mentorship, guidance, and 

patience, as well as graciously allowing me to pursue my PhD whilst maintaining my role as a 

research assistant. Professor Maher’s support and discussions have vastly improved my approach 

to science, my understanding of human genetics, as well as continually challenged me to push 

myself and develop my knowledge in an area of biology I adore. Secondly, I am grateful to Dr Marc 

Tischkowitz, who as my second supervisor, provided me with productive discussions, insightful 

comments, critiques on my experimental plans and scientific thinking, and always provided a 

consistent and ever-present support system if I needed it. 

I am exceptionally grateful and owe more thanks than I can possibly bestow to my friends and 

colleagues that I have had the privilege of working with over the last four years. The conversations, 

discussions, and collaborations I have made with all my colleagues have been invaluable for my 

development and growth as a scientist. There are several people who deserve special mention for 

supporting me in my academic endeavours and as such I would like to personally thank Dr Ruth 

Casey, Dr Graeme Clark, Dr France Docquier, Dr Eleanor Fewings, Dr Mae Goldgraben, Dr Benoit 

Lan-Leung, Dr Alexey Larionov, Dr Eguzkine Ochoa, Dr Hannah West, and Dr James Whitworth. 

Finally, I would like to thank my family who have consistently supported my ambition of working in 

science and have been endlessly understanding of my absences at family engagements, putting up 

with my long explanations of what I am doing, and keeping me motivated. Without their support and 

guidance, I am certain that I would not have had the will, drive, or opportunity to submit this thesis. 

  



10 
 

1.0 Introduction 

  



11 
 

1.0.1 Table of contents 

1.0.1 TABLE OF CONTENTS ......................................................................................................................... 11 

1.1 MEDICAL GENETICS: FROM MENDEL TO GENE THERAPY ............................................................... 13 

1.1.1 DISCOVERY OF GENETICS ....................................................................................................................... 13 

1.1.2 MODELS OF INHERITANCE ....................................................................................................................... 13 

1.1.3 DE NOVO VARIANTS AND MOSAICISM ........................................................................................................ 14 

1.1.4 LANDSCAPE OF GENETIC ALTERATIONS ..................................................................................................... 15 

1.1.5 MEDICAL GENETICS IN THE PRESENT ........................................................................................................ 15 

1.2 CANCER: A GENETIC DISEASE ............................................................................................................. 17 

1.2.1 GENETIC ORIGIN OF CANCER ................................................................................................................... 17 

1.2.2 HALLMARKS OF CANCER ......................................................................................................................... 20 

1.2.3 GENETIC INHERITANCE OF CANCER .......................................................................................................... 22 

1.3 RENAL CELL CARCINOMA ..................................................................................................................... 23 

1.3.1 INCIDENCE ............................................................................................................................................ 23 

1.3.2 MAJOR HISTOLOGICAL SUBTYPES ............................................................................................................ 24 

1.3.3 TUMOUR STAGING .................................................................................................................................. 27 

1.3.4 TUMOUR GRADE .................................................................................................................................... 27 

1.3.5 SURVIVAL ............................................................................................................................................. 29 

1.3.6 GENERALISED TREATMENT...................................................................................................................... 29 

1.4 GENETICS OF RENAL CELL CARCINOMA ............................................................................................ 32 

1.4.1 INHERITED RENAL CANCER ...................................................................................................................... 32 

1.4.2 ADDITIONAL GENETIC RISKS FACTORS IN RCC PREDISPOSITION .................................................................. 32 

1.4.3 VON HIPPEL-LINDAU DISEASE ................................................................................................................. 34 

1.4.4 HEREDITARY LEIOMYOMATOSIS AND RENAL CELL CARCINOMA ..................................................................... 38 

1.4.5 BIRT-HOGG-DUBÉ SYNDROME ................................................................................................................ 41 

1.4.6 HEREDITARY PAPILLARY RENAL CELL CARCINOMA ...................................................................................... 43 

1.4.7 SUCCINATE DEHYDROGENASE RENAL CELL CARCINOMA ............................................................................. 44 

1.4.8 TUBULAR SCLEROSIS COMPLEX ............................................................................................................... 46 

1.4.9 COWDEN SYNDROME .............................................................................................................................. 48 

1.4.10 CDC73-RELATED DISORDERS .............................................................................................................. 50 

1.4.11 NON-SYNDROMIC RENAL CELL CARCINOMA ............................................................................................. 51 

1.5 SOMATIC VARIATION IN RENAL CELL CARCINOMA .......................................................................... 53 

1.5.1 CLEAR CELL RENAL CELL CARCINOMA ....................................................................................................... 53 

1.5.2 PAPILLARY RENAL CELL CARCINOMA......................................................................................................... 55 

1.5.3 CHROMOPHOBE RENAL CELL CARCINOMA ................................................................................................. 56 

1.5.4 EPIGENETICS OF RENAL CELL CARCINOMAS .............................................................................................. 57 

1.6 INHERITED AND SOMATIC VARIANTS IN RENAL CELL CARCINOMA ............................................... 59 

1.7 SEQUENCING IN RARE DISEASES ........................................................................................................ 62 

1.7.1 SEQUENCING TECHNOLOGIES .................................................................................................................. 62 



12 
 

1.7.2 SEQUENCING TECHNOLOGIES - THE RIGHT TOOL FOR THE JOB .................................................................... 64 

1.7.3 VARIANT DETECTION IN RARE DISEASE ..................................................................................................... 66 

1.8 SUMMARY ................................................................................................................................................ 68 

1.9 AIMS .......................................................................................................................................................... 70 

  



13 
 

1.1 Medical genetics: From Mendel to gene therapy 

1.1.1 Discovery of genetics 

Mendelian inheritance, as first described by Gregor Mendel in 1865 in the Proceedings of the Natural 

History Society of Brünn (1), was the beginning of our understanding of how genetic traits and 

phenotypic features were passed from one generation to the next and is widely considered the birth 

of the field of genetics. Rapid developments in the understanding, models, and theories regarding 

genetics and genetic inheritance led to the identification of genetic alterations, which could confer 

detrimental or beneficial survival advantages, as explored by scientists such as Charles Darwin and 

Thomas Hunt Morgan, amongst many other 20th century geneticists. The application of genetic 

inheritance to human disease traits in the mid to late 20th century transformed our understanding of 

various diseases, demonstrating that diseases could be investigated as underlying inheritable traits 

and their genetic aetiology understood. 

1.1.2 Models of inheritance 

Genetic diseases, defined as a condition that manifests due to a genetic abnormality, occur at 

varying levels of pervasiveness within human populations and at varying clinical severities. While 

many genetic disorders follow Mendelian inheritance, multiple models of inheritance have now been 

defined and implicated in human disease, including but not limited to, X and Y-linked inheritance, 

co-dominant inheritance, mitochondrial inheritance, and polygenic or complex traits. Further 

complexity is added by way of incomplete or partial penetrance of phenotypes, as well as specific 

genotype-phenotype correlations. Penetrance, for example, is the probable likelihood for any given 

genotype to result in a phenotype, where a genotype is considered 100% penetrant when its 

associated phenotype is always present. Genotype-phenotype correlations describe the 

phenomenon of different alterations in one gene loci resulting in different phenotypic presentations, 

for example a lower risk of phaeochromocytomas in Von Hippel-Lindau disease if resulting from a 

truncating mutation in the tumour suppressor gene VHL compared to a missense substitution (2). 
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1.1.3 De novo variants and mosaicism 

De novo genetic events, as a result of newly acquired alterations during zygote formation, can lead 

to disease phenotypes without being inherited from the parental genomes. In fact, all genetically 

inherited diseases will have stemmed from an initial de novo mutational event, with subsequent 

generations inheriting that disease-causing allele. De novo events often lead to increased disease 

prevalence within isolated human populations due to founder effects (e.g. Ellis–van Creveld 

syndrome in Amish populations (3)) as a consequence of increased endogamy and consanguinity 

or, in the case of autosomal recessive sickle cell disease, caused by variants in β-globin (HBB) gene, 

due to the selective advantage conferred in the heterozygous state to malaria infection (4). De novo 

events can also result in mosaic alterations, depending upon which cellular division in embryonic 

development that the alteration occurred in, resulting in two cell populations with differing genotypes 

within the same organism. Mosaicism is subdivided into somatic and germline mosaicism, based on 

the subset of cells affected, with somatic cells unaffected in germline mosaicism. Mosaicism is a 

prevalent mechanism for the occurrence of genetic disease and potential for unusual inheritance 

patterns in the case of germline mosaic variants, as reviewed by Forsberg and Gisselsson (2017)(5). 
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1.1.4 Landscape of genetic alterations 

Genetic aberrations are heterogeneous in nature but include alterations such as chromosomal 

aneuploidy, chromosomal rearrangements (e.g. translocations and inversion), epigenetic and 

imprinting defects, copy number alterations, and single or small nucleotide base errors (e.g. 

nucleotide substitutions, insertions, and deletions). The human genome is highly variable with every 

individual harbouring thousands of inherited alterations and tens of de novo alterations (6), many of 

which confer no phenotype or no known effect. For non-neutral variants, the alterations vary greatly 

in how they mechanistically lead to disease phenotypes but they broadly lead to altered or absent 

protein products either via 1) haploinsufficiency, in which a single functional gene allele is insufficient 

to generate sufficient protein to perform its biological function, 2) recessive variant or bi-allelic 

inactivation of a gene leading to insufficient or inactive protein products, or 3) generation of a 

dominant negative effect in which the affected gene product interferes with wildtype protein functions, 

all of which cause aberrations in downstream molecular pathways resulting in abnormal phenotypic 

presentations. 

1.1.5 Medical genetics in the present 

Understanding genetic alterations and their role in genetic diseases has developed and transformed 

into the field of medical genetics. Medical genetics is now a broad, multi-disciplinary, scientific field 

focused on identifying, classifying, and diagnosing genetic disorders and seeking to provide clinical 

prognoses, counselling, and treatment options for affected individuals and related family members. 

Prognosis of any genetic disorder varies widely based on the disease, ranging from only a minor 

impact on quality of life to severe life-long medical intervention. Genetic disorders, in general, 

intrinsically do not have any known cures (i.e. methods to correct the causative genetic alteration) 

due to the causative alterations being ubiquitous to every cell, though some success has been seen 

in the treatment of genetic autoimmune diseases in bone marrow utilising gene therapy and marrow 

transplants (7).  
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Treatments for genetic disorders focus on methods to alleviate or remove disease symptoms, slow 

the advances of disorders which become progressively worse with time, and provide counselling for 

affected individuals and their families regarding screening and prophylactic options, transplantation 

of the affected organ, as well as family planning in regard to fertility and likely transmission rates for 

offspring. Currently, medical genetics is focused on the application of personalised medicine for 

clinical management and the development of gene therapies, in order to provide a curative option 

for patients afflicted with genetic diseases. Utilisation of genomic sequencing to inform 

pharmacological contraindications and responses (8), potential tolerances and responses to 

treatment plans are already being implemented and used in cancer genomics through analysis of 

tumour sequencing, allowing for targeted use of tumour-specific therapeutics (9).  

Gene therapies are a recent form of therapeutic measures for genetic disorders that aim to directly 

alter the genetics of an affected individual. Gene therapy can be applied by two distinct approaches, 

either somatic or germline, where somatic is by far the most common. Somatic applications could be 

used to fix genetic alterations in specific tissues or organs, such as lung epithelial tissue in cystic 

fibrosis (10), where the effect is not permanent and based on the ability of delivery methods to reach 

the affected cells. Germline methods function identically but occur by altering the DNA of germline 

cells, meaning that alterations are heritable. Most recently, the application of CRISPR-Cas9 

nucleotide base editing has been seen as potential milestone in gene therapy with the ability to 

permanently repair mutations in genes causing diseases, with the resulting change present in 

subsequent cell divisions, but there are a number of ethical and practical concerns, particularly 

regarding germline applications (11). 
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1.2 Cancer: A genetic disease 

Cancer is multi-systemic group of diseases resulting from abnormal and uncontrolled cellular growth 

in any organ within the human body leading to tumour formation. Cancers, in contrast to benign 

tumours, have malignant properties and can invade and metastasise to other tissues, leading to 

organ failure and ultimately death.  

1.2.1 Genetic origin of cancer 

Cancers are, at the most fundamental level, a genomic disease and the occurrence and 

accumulation of genetic alterations or alterations in epigenetic regulation. These alterations lead to 

a cellular environment in which uncontrolled replication can occur, which in turn leads to growth of 

tumour cells in the affected organ. In all cells, mutations and damage to DNA are acquired over time 

through both endogenous and exogenous mechanisms but they are generally either successfully 

repaired (12), detected by cell cycle check points (13), or the alterations are functionally neutral or 

result in no change to fitness (14). 

Genetic alterations in genes leading to cancer development are defined by altering either one of two 

core types of genes, tumour suppressor genes (TSGs) or oncogenes, which function in opposing 

roles in the prevention and promotion of cellular proliferation and survival. TSGs are classically 

associated with the transcription of proteins, which act to negatively regulate pathways involved in 

cell cycle progression, replication, and positive regulation of pathways inducing apoptosis or cellular 

senescence. Tumour suppressor genes are consistently inactivated by genetic alterations in cancer 

cells, resulting in a loss of these functions. Conversely, proto-oncogenes (termed oncogenes after a 

causal genetic alteration has occurred) serve to negatively regulate apoptotic pathways and are 

positive drivers of cell cycle progression and division. Alterations in oncogenes, in contrast to TSGs, 

are not inactivating and act to either increase the function of the transcribed protein, cause 

constitutional protein activity, or elevate transcription rates, leading to further upregulation of their 

target molecular pathways. 
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The identification of both TSGs and oncogenes led to the development of hypothesises on how an 

acquired genetic alteration can specifically result in carcinogenic transformation. Knudson’s two-hit 

hypothesis is regarded as one of the pivotal discoveries in cancer biology stating that loss or 

inactivation of a single TSG allele is insufficient to result in cancer and a secondary ‘hit’ to inactivate 

the remaining wild type allele is needed for cancer to develop (15). As with any rule there are 

exceptions, such as TSGs expressing dominant negative effects or haploinsufficiency (16), but most 

TSGs conform to this theory with secondary hits via additional inactivating variants or chromosomal 

deletions (which result in loss of heterozygosity (LOH)) of the remaining wild type allele. 

Proto-oncogenes typically do not follow the same two-hit hypothesis and most are dominant in 

nature, with a single activating event sufficient to initiate oncogenic processes. In many cases, the 

loss of TSGs and activation of proto-oncogenes act in concert to drive tumour initiation, which 

consequently results in increased clonal expansion and genetic alterations to drive tumour 

evolution through acquired driver mutations. The process of clonal expansion and tumour evolution 

is not dissimilar to evolution that occurs at a species level, with acquired mutations conferring or 

reducing survival advantages for sub-clones of the initiating tumour cell (17). These features of 

tumour development resulted in the emergence of cancer cell traits termed the “hallmarks of 

cancer”, a series of biological processes by which cancers can expand, survive, and resist 

detection and death (18). 
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Lastly, temporal distribution over which the first initiating event and the progression towards 

oncogenic potential occur, has been recently highlighted by the assessment of mutational profiles 

in normal tissues. Evidence for the occurrence of cancer driver mutations found clonally in normal 

tissues, such as skin and oesophageal, have demonstrated that driver mutations in both proto-

oncogenes and tumour suppressors have been found in a large proportion of normal cells, 

increasing with age and exposure to exogenous mechanisms of DNA damage. These mutations 

were observed to have occurred as early as infancy, indicating that initiating event occur and 

persist over large temporal spans but cells harbouring these driver variants lacked additional 

oncogenic features such as higher mutational burden and chromosomal instability seen in cancer 

cells of the respective tissues (19–21). Furthermore, assessment of the timing of mutational events 

seen in clear cell RCC in the TRACERx renal study demonstrated that initial clonal expansion 

consists of only a few hundred cells harbouring a 3p loss initiating event, occurring upwards of 20 

years prior to inactivation of VHL (considered to be the second hit). Following the inactivation of 

VHL, diagnosis of clear cell RCC was not found until between 10-30 years after numerous 

additional driver events had occurred (22). The importance of the temporal distribution of driver 

events is that cancer cells, relative to cancer at a patient-level, have extremely low penetrance and 

rarely result in a tumour. 
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1.2.2 Hallmarks of cancer 

The hallmarks of cancer, as reviewed by Hanahan & Weinberg (2011)(18), are a set of biological 

features that are intrinsically linked to tumour initiation and development, acting to drive tumour 

proliferation or hinder pathways and external mechanisms that would act moderate, attenuate, or 

prevent tumour growth. Different cancers utilise different constituents of the hallmarks, manipulating 

both intracellular pathways and the external surrounding tissues and making use of different 

molecular networks and mechanisms to sustain cellular proliferation, the consequences of which 

drive the diversity in both cancer types, histologies, and prognoses. The hallmarks of cancer are not 

a definitive list of factors that drive cancer but a robust framework that acts to categorise the broadest 

number of molecular features that can drive tumour progression (see 1.2 Figure 1). 

Loss of control of biological processes such as proliferative signalling, induction of replicative 

immortality by activation of telomerases, and the promotion metabolically favourable intracellular 

conditions act to increase cellular growth and replication. In tandem, disruption of cellular 

mechanisms functioning as growth suppressors through cell cycle checkpoints and negative 

feedback loops, resisting cell death via inhibition or inactivation of apoptotic signalling pathways, and 

the avoidance of immune destruction through dysregulation of cell surface markers and extracellular 

signalling, act to reduce cancer cell death by either internal molecular routes or external immune 

detection. Finally, tumours utilise the surrounding stromal tissue to establish a supportive 

environment for growth and development by inducing angiogenesis via activation of angiogenic 

pathways and prompting local inflammatory responses, which aid in tumour development, the 

consequence of which leads to the formation of a tumour microenvironment in which cellular growth, 

clonal expansion and evolution, and tissue invasion can flourish. The ability to be invasive and cause 

metastases is a distinct property of cancers, making this hallmark potentially the most significant in 

terms of disease mortality. While many benign tumours utilise the hallmarks of cancer sustain and 

promote their growth, local and distal invasion through increased motility and large-scale changes 

to underlying cellular subtype, as such the epithelial-mesenchymal transition (EMT), are properties 

only exploited by cancers. These two traits are the greatest contributors to the lethality of cancers 

with almost all cancers showing significant decreases in survival metrics once metastatic disease 

has occurred (23). 
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1.2 Figure 1 

Hallmarks of cancer – 1A Diagram depicting the features that comprise the hallmarks of cancer. Biological 

mechanisms tumours used to promote growth and survival. 1B Diagram demonstrating the newly discovered 

hallmarks of cancer regarding immune evasion and metabolic dysregulation, and non-hallmark characteristics 

which support tumour growth and development. Figure adapted from (18). 
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1.2.3 Genetic inheritance of cancer 

While cancers most frequently occur sporadically, with incidence rates increasing proportionally to 

age in line with random acquisition of genetic variation and exposure to environmental factors, 

familial inheritance of cancers and susceptibility to cancers is well documented. A predisposition to 

cancer is most commonly identified by a strong family history of one or several cancer types within 

a pedigree but is also signified by a reduction in the average age of onset in the presenting 

individuals, or the presentation of multifocal or bilateral tumours. In many cases, these features 

present concurrently, with family histories containing individuals presenting with earlier onset and 

multiple tumours on presentation. 

The mechanism for cancer development in an inherited disease is essentially identical to that of 

sporadic cases in regard to the genetic mechanisms and subsequent biological changes which result 

in oncogenesis, although the age of onset and cancer-specific presentations can differ, for example 

inheritance of a null TP53 allele results in Li-Fraumeni syndrome (24), a syndrome characterised by 

predisposition of a number of rare cancer types. Conversely, sporadic occurrences of TP53 

mutations results in more common cancer types such as small cell lung, oesophageal, and ovarian 

cancers (25). Inheritable cases of cancer arise due to the inheritance, or in some cases de novo 

acquisition, of a constitutional variant in a TSG or proto-oncogene. The stable presence of a non-

wild type TSG allele in all cells has a significant impact on the probability of tumour development; for 

TSGs, the barrier for complete allelic loss (as proposed in Knudson’s two-hit hypothesis) is halved 

as only one somatic inactivating variant is required in the remaining wild type allele, rather than two 

as required in sporadic cases (15). For proto-oncogenes the process is similar; constitutional variants 

in proto-oncogenes overcome the requirements for somatic activation by already being 

constitutionally active and only requiring the loss of additional TSGs or the correct cellular 

environments to allow for tumour progression. Many syndromes associated with cancer risk 

phenotypically display an array of non-cancer pathologies as a result of a non-wild type allele in 

genes with multiple biological functions (26). Conversely, several cancer predisposition phenotypes 

only manifest as a predisposition to cancer development, despite most associated genes having 

functions outside of the remit of a TSG or oncogene, such as BRCA1 DNA repair associated and 

BRCA2 DNA repair associated (BRCA1 and BRCA2) in Hereditary breast–ovarian cancer 

syndrome (27). 
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1.3 Renal cell carcinoma 

1.3.1 Incidence 

Renal cell carcinoma (RCC) is the most frequent form of kidney cancer accounting for more than 

90% of diagnosed cases, the remaining of which includes cancers of the renal medulla and 

transitional cell carcinomas of the renal pelvis. Kidney cancers account for approximately 2% of new 

cancer diagnoses and 1.5% of cancer deaths per year, globally (28). RCC occurs on average at 64 

years of age (29), with age of onset being significantly lowered in individuals presenting with RCC 

predisposition syndromes (30). Life time risk for individuals in the United Kingdom are estimated at 

3% for males and 2% for females (31), with approximately 34% of cases being defined as 

preventable (attributed to lifestyle and environmental factors) (32).  

The primary lifestyle factors attributable to RCC risk are increased body mass index (BMI; kg/m2) 

and tobacco usage. Increased BMI results in combined relative risk increases for both sexes of 28% 

and 77% for overweight and obese individuals, respectively. BMI-linked RCC risk is biased towards 

females with increased risk at 38% compared to 22% in overweight individuals and 95% compared 

to 63% in obese individuals (33). Tobacco usage has also been showed to provide increased risk 

for RCC development with a relative risk increase of 16-36% for tobacco users compared to never-

smokers (34). Other lifestyle and environmental factors for RCC risk include hypertension (35), 

acquired cystic kidney disease (36), diabetes (37,38), non-prescription analgesic usage (39), poor 

dietary choices (40,41), and exposure to specific chemical compounds (42,43).  

Kidney cancer has seen the greatest increase in age-standardised incidence rate (ASIR) among all 

cancers, having seen a 23% increase in incidence between 1990 and 2013. Furthermore, kidney 

cancer occurs more readily in developed countries but has seen a similar increases of 34% and 36% 

in incidence rates between both developing and developed countries, respectively (28). Increases in 

ASIRs for kidney cancer may be attributable to increased rates of obesity (44), particularly in 

developed countries, which is directly linked to poor dietary choices (45), as well as compounding 

other risk factors such as hypertension (46) and diabetes (47). Moreover, kidney cancers have been 

historically difficult to detect due to being relatively asymptomatic until late in tumour progression 

(48), meaning technological advances such as use of abdominal ultrasound imaging, improved 

screening, and increased life expectance may lead to a greater proportion of kidney cancers being 

reported. 
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1.3.2 Major histological subtypes 

Though RCC is broadly discussed as a singular disease, it is more accurately defined as collection 

of renal neoplasms with distinct morphologies, molecular mechanisms, and genetic backgrounds. 

According to the International Society of Urological Pathology (ISUP) more than 15 histological 

subtypes of RCC can be defined but a majority of cases are categorised into three primary groups; 

clear cell RCC, papillary RCC, and chromophobe RCC, which accounts for a vast majority of all RCC 

cases (49) (1.3 Figure 2). 

Clear cell RCC is the most commonly diagnosed histological subtype of RCC with an occurrence 

rate of 63-83% of all RCC cases (50,51). Clear cell RCC occurs more predominantly in males than 

females (1.5-3:1 male to female ratio) and has its highest incidence between 60 and 70 years of age. 

Clear cell RCC is thought to originate from epithelial cells of proximal convoluted tubule and is 

defined by large clear cytosolic cell body due to lipid accumulation (52,53). In term of gross 

morphology, clear cell RCCs are solid, yellow tumours with a high degree of vascularisation (54). 

Clear cell RCC has the worst clinical prognosis compared to both papillary RCC and chromophobe 

RCC, with cancer-specific 5 years survival rates being 68.9%, 87.4%, and 86.7%, respectively (55). 

The most frequent tumour stage at diagnosis in clear cell RCC is stage I but some studies reported 

inconsistently, with stage III in two European studies (54,56) but stage I in a Japanese cohort (57). 

Papillary RCC is the second most common histological subtype of RCC reported, split into two further 

subtypes type 1 and type 2, accounting for 11-18.5% of all RCC (50,51). As discussed in relation to 

clear cell RCC, type 1 papillary RCC have better prognoses and are clinically less aggressive (55), 

where type 2 papillary RCC are similar in clinical presentation. In similarity to clear cell RCC, patients 

most frequently report at stage I and at a median age of 65 (55). The two subtypes are designated 

as basophilic (type 1), due to the presence of small hyperchromatic basophiles with minimal 

cytoplasm, and eosinophilic (type 2) resulting from the presence of tumour cells with abundant 

eosinophilic cytoplasm (58). Morphologically, papillary tumours are solid, well-demarcated with 

minimal vascularity, particularly compared to clear cell RCC, and are slow growing (59). Differences 

between type 1 and type 2 papillary RCC, while they present at similar frequencies, are that type 2 

papillary RCC more frequently present at higher grades and has markedly worse survival outcomes 

compared to type 1 (50). 
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Chromophobe RCC occurs in 5-6% of reported RCC tumours (50,51) and is considered the least 

aggressive subtype of the three major subtypes (55), with 5-year survival rates as high as 94% (51), 

and metastasis only seen in a small proportion of cases (58). Histologically, chromophobe RCC 

consists of large cells with webbed cytoplasm and haloed nuclei. Conversely to clear cell and 

papillary RCC, chromophobe RCC appears to occur more frequently or equally in females and 

occurs most frequently at lower stages, rarely being diagnosed at stage III or IV (50,55). 

Additional histological subtypes of RCC do occur but most are rare relative to the frequency of the 

three primary types already discussed. These subtypes include, but are not limited to, clear cell 

tubulopapillary RCC, a histological subtype with characteristics similar to that of both clear cell RCC 

and papillary RCC (60). MiT-family translocation RCC, a subtype driven by recurrent somatic 

translocations of Transcription Factor Binding To IGHM Enhancer 3 (TFE3) on Xp11.2 and 

t(6;11)(p21;q12) translocations involving Transcription Factor EB (TFEB), as well as Melanocyte 

Inducing Transcription Factor (MITF) and Transcription Factor EC (TFEC) (61). Mucinous tubular 

and spindle cell carcinoma, subtype with strong similarities to papillary RCC but recently described 

as a distinct histological subtype, reviewed by Zhao et al. (2015)(62). Lastly, succinate 

dehydrogenase (SDH)-deficient RCC tumours, caused by loss of the SDH complex components, are 

a recently classified histological subtype of RCC defined by distinctive eosinophilic inclusions 

corresponding to giant mitochondria (49). 

A histological feature that appears independently of histological subtype but has a substantial effect 

on prognosis is presence or absence of sarcoma-like histology. Approximately 1-5% of RCC tumours 

consist of a sarcoma-like or sarcomatoid histology which is strongly associated with a much poorer 

prognosis compared to other histologies alone (63). While not consistently attributable to a single 

primary histological subtype, sarcomatoid RCC is more frequent in chromophobe RCC histologies 

though comprehensive data is limited (64,65). Sarcomatoid RCC is linked to a shift from an epithelial 

to mesenchymal phenotype (EMT) (66) and EMT is linked with metastatic potential and increases in 

mobility and invasiveness (67), explaining the increase in aggressiveness of RCC tumours with any 

sarcomatoid histology present. 
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1.3 Figure 2 

Histological appearances of the three main tumour types of RCC: 2A Histological presentation of 

clear cell RCC. 2B Histological presentation of type 1 papillary RCC. 2C Histological presentation of 

type 2 papillary RCC. 2D Histological presentation of chromophobe RCC. Images adapted from 

Muglia et al. (2015)(58). 
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1.3.3 Tumour staging 

Typically RCC is staged according to the degree of tumour spread throughout the body, where 

tumour size and invasiveness are taken into account (68). RCC stage is characterised and 

designated by classifications laid out by the American Joint Committee on Cancer as a combinatorial 

function of tumour size (T0-4), lymph node metastasis (NX, N0, or N1), and distant metastasis (M0 

or M1) (69). 1.3 Table 1 describes the TNM system and its associated staging. 

1.3.4 Tumour grade 

The prognostic value of RCC tumour grades has long been recognised and widely utilised as a metric 

for outcome prediction and tumour progression rates (70). Tumour grading based on microscopic 

cellular morphology and differentiation of tumours acts as a surrogate for numerous underlying 

molecular and biochemical processes that influence the prior factors. Classically, RCC tumours have 

been widely graded by the Fuhrman grading system (71) but more recent studies have demonstrated 

that Fuhrman grading inadequately models tumour differentiation and that grading based on 

individual histological subtype is more representative of predicted disease progression (49). 

Current grading of RCC tumours was proposed jointly by the world health organisation (WHO) and 

ISUP in 2012, with clear cell and papillary RCC being graded independently using nucleolar 

prominence and tumour necrosis for clear cell and nucleolar prominence only for papillary (72). Due 

to poor correlation with grading parameters (73) it was suggested that chromophobe grading should 

not be performed (49). With all other histological subtypes, application of ISUP grading guidelines is 

considered challenging due to lack of large enough cohorts to perform stratified analysis to inform 

survival predictions. 
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1.3 Table 1 

Features and classification for staging of RCC tumours 

Stage 
TNM 
classification 

Description 

Stage I T1, N0, M0 
Tumour limited to kidney, less than 7 centimetres in size with no 
lymph node or distant metastasis. 

Stage II T2, N0, M0 
Tumour limited to kidney, greater than 7 centimetres in size with no 
lymph node or distant metastasis 

Stage III 

T3, N0, M0 Tumour expanded to invade large proportion of kidney including 
major veins but with no lymph node or distant metastasis or tumour 
is any size and does not extend to the renal vein but lymph node 
metastasis 

T3, N0, M0 

T2, N1, M0 

Stage IV 

T4, N0, M0 

Tumour extends beyond the kidney tissues into external tissues or 
any kidney tumour with distant metastasis. 

T4, N1, M0 

T1-4, N0-1, M1 
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1.3.5 Survival 

Overall survival rates for kidney cancer are approximately 72.4%, 56.2%, and 49.5% for 1-year, 5-

year, and 10-year survival, respectively. Survival rates for kidney cancers are strongly dependent on 

tumour stage, grade, and histological subtype, as discussed previously. Survival declines sharply if 

diagnosed at stage III or IV, with 5-year survival of 92.6% at stage I compared to 68.7% at stage III 

and only 11.6% at stage IV (29). 5-year survival is also impacted by age of diagnosis where 

individuals diagnosed before 45 years of age have a net survival rate of 87.8% compared to only 

67.5% for those over 65 years of age (29).  

1.3.6 Generalised treatment 

While discussing all potential therapeutic routes and methods currently available for RCC is beyond 

the scope of this thesis, this section covers the general patterns and principles guiding RCC 

treatments as summarised from clinical guidelines (74).Treatment for RCC cases is generally 

directed by tumour stage at presentation, with surgical intervention being the most effective current 

treatment option. Surgical resection by partial, simple, or radical nephrectomy to remove tumour 

tissue with increasing amount of the surrounding normal kidney based on tumour spread, is the first 

line treatment for RCC where a lymphadenectomy is typically performed in stage III cases to remove 

affected regional lymph node tissues (74). In stage IV tumours use of radical nephrectomy is still 

widely used though is usually palliative due to tumour metastasis or tumour embolisms into the 

circulatory system, and where resection of distance metastases is also performed where applicable 

(74).  

Across all stages, targeted therapeutic agents are deployed as both first- and second line treatments 

for RCC. Anti-angiogenic agents, such as sunitinib and pazopanib, which target vascular endothelial 

growth factor receptor (VEGFR), are commonly used in RCC due to known upregulations in 

angiogenic pathways driven by VEGFR and other kinases in RCC tumours (75,76). Most targeted 

therapeutic agents of this type are multi-kinase inhibitors and target VEGFR and its various isoforms, 

as well as epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor 

(PDGFR), mast/stem cell growth factor receptor (KIT), and hepatocyte growth factor receptor (MET) 

tyrosine kinases (77–79).  
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Further targeted pharmaceutical agents, such as temsirolimus and everolimus, have been design to 

target and inhibit mammalian target of rapamycin (mTOR) (80,81) due to its function in cell growth, 

proliferation, and cell motility via the PI3K-AKT-mTOR pathway which includes proteins coded by 

RCC-associated genes (82). Most recently, the development of Hypoxia inducible factor 2 alpha 

(HIF2-α) antagonists has shown potential in down regulation of angiogenic pathways in metastatic 

RCC with substantial pre-treatment with other agents (83). Phase I clinical trials utilising these 

compounds have demonstrated their tolerability as well as some moderate evidence for disease 

progression attenuation (84). 

Immune therapy utilising monoclonal antibodies have been used as second line treatments for 

individuals with RCC (74). Use of antibodies, such as ipilimumab and nivolumab show increased 

overall survival and act to impair immune checkpoint mechanisms by inhibiting proteins Programmed 

death-ligand 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), resulting in 

reduced cancer immune evasion (85,86). Additional treatments such as bevacizumab have also 

been used to target VEGFR, therefore blocking angiogenic pathways in a manner similar to that of 

sunitinib and pazopanib (87). Cytokine-based therapies have also been used for the treatment of 

RCC to augment immune response to cancer cells. Cytokines such as interferon-α and interleukin-

2 have been widely given as conjunctive first line therapies with targeted therapeutic agents, though 

overall efficacy is modest (74). 
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Though therapeutic routes for many RCC patients are relatively effective, particularly in early stage 

diagnosis with high disease free and overall survival, therapeutic resistance is a well-documented 

outcome in metastatic RCC treatment in both clear cell (88) and non-clear cell subtypes (89). 

Resistance to tyrosine kinase inhibitors, such as sorafenib and sunitinib, which antagonise cell 

surface receptors VEGFR and PDGFR to supress angiogenic response, occurs frequently in 

metastatic RCC after 6-12 months (90), leading to disease progression despite continued treatment. 

While the mechanism of resistance is not fully elucidated, there are several proposed routes by which 

advanced RCC develop therapeutic resistance including drug resistance through reduced uptake or 

lysosomal sequestration (91,92), activation of alternative angiogenic pathways (93), and 

upregulation of pro-angiogenic cytokine Interleukin-8 (94). The effects of the tumour 

microenvironment has also been implicated in resistance through external expression of VEGF via 

pericytes supporting angiogenic growth in surviving endothelial cancer cells (95) and the recruitment 

of pro-angiogenic inflammatory cells to the tumour site (96). More recently, EMT and its associated 

transcriptional and morphological changes have been implicated as a mechanism of tyrosine kinase 

inhibitor resistance, with suppression of EMT-related gene expression resulting in attenuated 

therapeutic resistance in cell models (97). 
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1.4 Genetics of renal cell carcinoma 

A number of Mendelian causes of RCC have been described and there is also evidence for the 

involvement low penetrance susceptibility alleles in RCC predisposition. In this section I will first 

describe Mendelian disorders associated with susceptibility to RCC and the results of GWAS studies 

for susceptibility alleles. 

1.4.1 Inherited renal cancer 

Though a majority of RCC cases are sporadic in origin, an estimated 2-4% of RCC cases are due to 

an inherited disorder (98). This minority of cases has been highly informative in sporadic cases for 

the determination of involved molecular and genetic pathways that are affected in RCC (99), as well 

as potential therapeutic targets for curative or palliative treatment (76,81,100). A summary of the 

different syndromic and non-syndromic RCC predisposing conditions is provided in 1.4 Table 2 and 

are discussed in further detail below. 

1.4.2 Additional genetic risks factors in RCC predisposition 

Family history of RCC is a significant risk factor with a relative risk of RCC incidence being at least 

2.2 fold greater in individuals with a family history of kidney cancer (101). Regardless of familial 

history, early presentation of RCC is a strong indication of predisposition, with early onset being 

predictive of a positive detection of a pathogenic variant in a RCC predisposition gene (102). Lastly, 

presentation of RCC with multiple foci or bilateral occurrence is also a common indication of genetic 

predisposition of RCC with a significantly increased occurrence in comparison to sporadic cases 

(103). In an assessment of heritability of RCC in Icelandic populations, 58% of RCC cases were 

found in families with 2 or more affected family members, with increased relative risk for siblings and 

parents, particularly if incidence was prior to 65 years of age (104). Nordic twin studies have also 

validated the genetic component of RCC within families with a reported heritability of 38% (95% CI, 

21%-55%), with no significant contribution from a shared environment (105). 
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In addition to the rare Mendelian causes of RCC predisposition described above, several studies 

have attempted to identify risk loci through genome wide association studies (GWAS) of RCC 

patients but, in contrast to the large number of susceptibility alleles identified for breast and colorectal 

cancers, there have been a limited number of loci identified as predisposing to RCC. Two SNPs 

(rs11894252 and rs7579899) found at 2p21 were shown to be associated with RCC risk and were 

present within intron 1 of Endothelial PAS Domain Protein 1 (EPAS1; HIF2-α) with an odds ratio 

(OR) = 1.18, a gene with inherent links to carcinogenic mechanisms in RCC (106,107), as well as 

an additional locus at 11q13.3 (rs7105934) associated with reduced risk (108). Fine mapping of the 

region surrounding 2p21 and detailed single nucleotide polymorphism (SNP) imputation, three 

further SNPs (rs4953346, rs12617313 and rs9679290) which were not correlated with the SNPs 

reported previously (108), were associated with RCC risk and suggest a complex haplotype 

surrounding EPAS1 (109).  

A follow-up study, which included meta-analysis of both studies (108,110), confirmed both previously 

described loci as risk loci in RCC on 2p21 and 11q13.3, and suggested two additional SNPs in 

linkage disequilibrium on 12p11.23 (rs718314 and rs1049380) located proximally to the gene Inositol 

1,4,5-Trisphosphate Receptor Type 2 (ITPR2) (110). Analysis of clinical features of individuals 

carrying rs7105934 on 11q13.3 and rs1049380 on 12p11.23 demonstrated increased and reduced 

age of onset in RCC patients, respectively (111). A GWAS study in Icelandic participants further 

elucidated risk loci for RCC, identifying a dinucleotide SNP (rs35252396) on 8q24.1, in the vicinity 

of MYC proto-oncogene, BHLH transcription factor (MYC), conferring an OR = 1.27 which had 

already been associated with other cancer types (112). Several additional studies then identified risk 

loci on 2q22.3, associated with rs12105918 in intron 2 of Zinc Finger E-Box Binding Homeobox 2 

(ZEB2), and on 1q24.1, associated with rs3845536 within intron 4 of Aldehyde Dehydrogenase 9 

Family Member A1 (ALDH9A1) (113,114). Association studies have also identified that risk loci on 

11q13.3 are able to modify the binding of HIF to the transcriptional enhancer of cyclin D1 (CCND1) 

(115) and that SNPs rs1944129 and rs7177 found within CCND1 may contribute towards RCC 

risk in Chinese populations (116). Most recently, association studied have demonstrated an 

association between cumulative SNPs linked to increased leukocyte telomere lengths and risk of 

RCC, implicating several additional loci with RCC risk (117). 
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The calculated population statistics and the limited risk conferred by common SNPs suggests that 

2-4% of RCC cases linked to predisposition is likely an underestimate and there remains a relatively 

large unexplained proportion of heritability. Underestimation of heritability is supported by recent 

assessments of patients meeting genetic referral, where consensus referral criteria provided by the 

American College of Medical Genetics (ACMG) across two independent RCC cohorts resulted in 24-

33.7% individuals in which their clinical features and histological findings would make them eligible 

for genetic testing (118), suggesting that many individuals with heritability may not be referred for 

genetic analysis in the first instance. 

1.4.3 Von Hippel-Lindau disease 

Von Hippel-Lindau disease (VHL; OMIM: 193300) is an inherited, autosomal dominant syndrome 

associated with predisposition to multiple benign and malignant tumour types. Individuals with VHL 

disease are subject to a range of clinical features including haemangioblastomas of the nervous 

system and retina, renal cysts, clear cell RCC, phaeochromocytomas (PCCs), cystadenomas, 

pancreatic neuroendocrine tumours, and endolymphatic sac tumours (119,120). VHL disease is a 

rare condition, at a prevalence of 1:39,000-91,000 and a birth incidence of 1:22,000-42,987 

(121,122). Though VHL disease predisposes to various clinical features and multiple tumour types, 

clear cell RCC has a cumulative lifetime risk of ~70%, at a mean age of 44 years (123,124).  

VHL disease was first described by Treacher Collins in 1894 who described two siblings with 

retinal haemangioblastomas (125). Studies in 1904 by Eugen von Hippel and further 

characterisation by Arvid Lindau in 1927 solidified the clinical features of VHL disease but the 

genetic cause was not uncovered until a century after the initial description. Comparisons made 

between the age of onsets in sporadic RCC cases and VHL disease cases suggested that the 

genetic component responsible for VHL was a tumour suppressor following Knudson’s two-hit 

hypothesis (30), and loss of 3p in RCC was suggestive that this region contained the causal gene 

(126). Subsequent gene mapping, determination of the gene loci from collections of co-segregating 

disease-specific loci, led to the discovery of the gene von Hippel-Lindau (VHL) on the short arm of 

chromosome 3 at 3p25.3 (127). Investigations into mutational patterns in VHL disease patients and 

sporadic RCC cases revealed frequent inactivation of VHL and LOH in tumours, confirming it as a 

primary cause for RCC in both VHL disease and sporadic RCC cases (128,129).  
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A majority of individuals with VHL disease present with a family history of VHL with dominant 

inheritance of the affected VHL allele, though de novo variants and mosaicism is estimated to 

occur in 23% of cases (130,131). Interestingly, pathogenic alterations in VHL are also associated 

with familial erythrocytosis type 2 (ECYT2; OMIM: 263400), an autosomal recessive condition 

caused by homozygous or compound heterozygous specific missense variants in both VHL alleles 

(132) with little to no overlap of the clinical features with those of VHL disease (133). 

Pathogenic variants in VHL are remarkably penetrant at the patient-level (contrary to cellular 

penetrance described earlier) with individuals developing at least one VHL-related cancer before 65 

years of age in approximately 80-90% of cases (122,123). VHL disease is broadly categorised into 

four subtypes, corresponding to differential phenotypic presentations concentrated on presence and 

risk of RCC and phaeochromocytomas. The subtypes are defined as follows: Type 1 – RCC present 

with no phaeochromocytomas, which is further subdivided into high and low RCC risk dependent on 

the absence or occurrence of BRK1 deletions in concert with VHL deletions (134), designated as 

Type 1A and 1B. Type 2A – Phaeochromocytomas with low RCC risk, Type 2B – both 

Phaeochromocytomas and RCC, and Type 2C – Phaeochromocytomas with no RCC (135). Though 

VHL is a well conserved gene, amino acids 1-53 show low evolutionary conservation and non-

truncating variants in these amino acids do not appear to cause VHL disease (136). Variant types 

that lead to inactivation of VHL cover the full spectrum of molecular alterations including nonsense, 

frameshifting insertions and deletions, missense, partial or complete loci deletions (136), and most 

recently synonymous and intronic splice site affecting variants (137). 
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The VHL gene codes for the von Hippel-Lindau protein (pVHL) which functions in the regulation of 

cellular response to hypoxia. Under normoxic conditions Egl-9 Family Hypoxia Inducible Factor 1, 2 

and 3 (EGLN1, EGLN2 and EGLN3; prolyl hydroxylases; PHDs) act to hydroxylate specific proline 

residues of HIF-α proteins, after which pVHL acts to bind hydroxylated HIF-α as a component of an 

pVHL E3 ubiquitin ligase complex (VCB), resulting in ubiquitin-directed proteolysis (138). During 

hypoxia, the oxygen-dependent hydroxylation of HIF-α proteins by PHDs does not occur, therefore 

the VCB complex does not bind and ubiquitinate HIF-α proteins, leading to an accumulation of 

hypoxia inducible factors (107,139). The translocation to the nucleus and cellular abundance of HIF-

α allow for hetero-dimer formation with HIF1-β subunits which then bind hypoxia response element 

(HRE) motifs upstream of genes associated with hypoxic response (140). This leads to an 

upregulation of transcription of genes associated with growth, angiogenesis, metabolism and stem 

cell like phenotypes, reviewed by Keith et al. (2012)(141). 

Loss of pVHL results in pseudo-hypoxic cellular environment, in which HIF1-α and HIF2-α substrates 

are not targeted for degradation regardless of hydroxylation status, which leads to upregulation of 

hypoxic response genes under normoxic conditions (141), consequentially driving tumour initiation. 

It is worth noting that although both HIF1-α and HIF2-α function in response to hypoxia, they have 

diverging functions and some reports suggest HIF1-α may act in opposition to HIF2-α as a tumour 

suppressor gene (142,143) and loss of HIF1-α is rarely reported somatically (144). 

While pVHL primarily functions in the regulation of hypoxia, pVHL also functions in the regulation of 

cell cycle control, via p27 (145), microtubule organisation and spindle assembly (146), and regulation 

of p53 (147). While these alternative functions are well defined and have functions related to 

preventing tumourigenesis and progression, they are less rigorously studied, and the primary route 

of pathogenesis is presumed to be loss of HIF regulation. Animal modelling of VHL loss have 

provided some evidence to support the current theory regarding VHL-driven tumourigenesis.  
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Though homozygous VHL knockout mice models are embryonic lethal, heterozygous knockouts 

develop haemangioblastoma-like liver growths and VHL disease-like renal cysts (148,149) but 

studies were unable to show RCC development with VHL loss alone and suggest that tumour 

development is not dependent on constitutional activation of HIF pathways (150). This in turn is 

supported by the lack of cancer phenotype in bi-allelic inactivation of VHL seen in erythrocytosis type 

2, where hypomorphic VHL alleles are present in every cell (133), the frequent loss of 3p as a second 

hit somatically (151), and by mouse models which recapitulated human clear cell RCC development 

in kidney-specific deletions of VHL and Polybromo 1 (PBRM1) together but not alone (152). 
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1.4.4 Hereditary leiomyomatosis and renal cell carcinoma 

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC; OMIM: 150800) is an autosomal 

dominant disease resulting in a predisposition to tumours including RCC as well as cutaneous and 

uterine leiomyomas (153,154). The population prevalence of HLRCC syndrome is currently 

estimated to be 1 in 200,000 and relative risk for features of HLRCC have been estimated. HLRCC 

is highly penetrant for non-RCC phenotypes with most affected individuals presenting with 

leiomyomas, but risk for RCC appears to be reduced with occurrence between 15.6-31% (154,155). 

Median age of presentation of RCC in HLRCC cases is 37 years of age (range 10-77) (156), which 

matches to the age of onset described for other RCC predisposition syndromes and cases usually 

present with a limited or single tumour, though multifocal cases have been reported. Most tumours 

tend to be histologically classified as type 2 papillary RCC but also present with features of other 

histological subtypes (157). HLRCC RCC tumours tend to be highly aggressive (grade III or IV) (155), 

in contrast to most papillary RCC tumours which tend to be more latent (158). 

HLRCC is associated with pathogenic variants in the Fumarate Hydratase (FH) gene (155,159,160). 

Most of the reported pathogenic variants within FH are missense mutations (68.2%), the remaining 

being small insertions or deletions, truncating mutations and splice altering variants (155,161). 

Pathogenic FH variants are not found in between 10-15% of HLRCC, suggesting there may be an 

unknown proportion of heritability that may be associated with undiscovered variants in FH (non-

coding variation or copy number alterations) or associated with alterations in genes other than FH 

(155,160). As with VHL, FH is suggested to function as a tumour suppressor gene with bi-allelic loss 

of FH resulting in complete ablation of FH enzyme function (154,159). The FH gene is located at 

1q43 at chr1:241,497,557-241,519,785 and consists of 10 exons which encodes the protein 

Fumarate hydratase, a core enzyme in the tricarboxylic acid (TCA) cycle (162). 
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FH catalyses the reversible hydration of fumarate to malate as part of the TCA cycle (163), driving 

generation of substrates such as purine triphosphates (adenosine/guanine triphosphates; ATP/GTP) 

and nicotinamide adenine dinucleotide (NADH) which are utilised by the electron transport chain for 

oxidative phosphorylation. Loss of FH results in perturbation of the TCA cycle, leading to a loss of 

oxidative phosphorylation and a metabolic switch to aerobic glycolysis to generate energy (164,165), 

in line with the metabolic shift described by the Warburg effect (164) in tumours. PHD enzymes 

function to hydroxylate proline residues of HIF2-α proteins, depending on cellular oxygen levels, and 

regulate hypoxic response (see above). Under normoxic conditions these post-translational 

modifications are added to HIF-α allowing pVHL complex binding and ubiquitination, leading to 

proteolysis of HIF-α (107,138,166). In cells with bi-allelic inactivation of FH, cellular fumarate 

accumulates and act as competitive inhibitors of PHDs which in turn results in the constitutive 

activation of HIF-α, establishment of pseudo-hypoxia, and transcription of genes associated with 

angiogenesis, cell growth, and metabolism (167–169).  

Moreover, loss of FH can increase the number of reactive oxygen species (ROS) present which 

again acts to stabilise HIF2-α via inactivation of PHD proteins by reducing the availability of non-

ROS oxygen molecules (170). Fumarate is able to post-translationally modify Kelch-like ECH 

Associated Protein 1 (KEAP1), a protein associated with a E3 ubiquitin ligase complex which 

regulates the stabilisation of nuclear factor erythroid 2-related factor 2 (NFE2L2) (171). NFE2L2 

transcriptionally regulates genes associated with antioxidant response, upregulating genes which 

encode proteins which function in antioxidant response element (ARE) controlled genes (172). 

Specifically, ARE-controlled genes such as aldo-keto reductase family 1 member B10 (AKR1B10) is 

suggested to be upregulated in both sporadic type 2 papillary RCC and HLRCC type 2 papillary 

RCC, allowing for improved response to oxidative stress and confer a survival advantage, particularly 

given the increased oxidative stress of a Warburg-like or glycolysis driven metabolism (172).  
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This is contrary to previous studies suggesting ROS actively inhibit PHD enzymes. It is likely that the 

increase of intracellular ROS is a genuine consequence of FH loss, as loss of oxidative 

phosphorylation leads to increase oxidative stress (173), but that fumarate both competitively inhibits 

PHD enzymes and modifies KEAP1 directly while ROS themselves confer relatively little to the 

stabilisation of HIF-α proteins. Lastly, accumulation of intracellular fumarate results in the inhibition 

of α-ketoglutarate-dependent diooxygenases involved in histone and epigenetic demethylation, such 

as ten-eleven translocation enzymes (TET) and lysine-specific demethylase (KDM) family enzymes 

(174). Dysregulation of epigenetic modifications by the inhibition of these enzymes, particularly TET, 

were then demonstrated to result in the indirect upregulation of HIF-α via loss of epigenetic inhibition 

of HIF target transcripts (175). 

In similarity to VHL, homozygous or compound heterozygous variants in FH result in a differential 

autosomal recessive disease with limited phenotypic overlap. Bi-allelic inactivation of FH causes 

Fumarase deficiency (FMRD; OMIM: 606812) which manifests as progressive neurological 

dysfunctions including seizures, cerebral atrophy, and metabolic irregularities including lactic, 

pyruvic, and fumaric aciduria (176,177). Phenotypic presentation appears to be variable in severity 

but no FMRD case has presented with features associated with HLRCC, however parents of a FMRD 

case did present with HLRCC (159). Currently, it is suggested that differences in phenotype 

presentation between HLRCC and FMRD is due to gene dosage differences and that a majority of 

FMRD cases have a high rate of mortality before an age at which HLRCC features typically develop. 
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1.4.5 Birt-Hogg-Dubé syndrome 

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant syndrome associated with 

fibrofolliculomas, pulmonary cysts, pneumothorax, and renal cancers. BHD is driven by genetic 

aberrations in the folliculin (FLCN) gene. BHD predisposes to renal neoplasms, with between 12-

27% of BHD patients developing renal cancer, often presenting as hybrid chromophobe RCC, 

typically chromophobe/oncocytomas (178–180). In contrast to some other inherited RCC disorders, 

renal cancers in BHD are histologically diverse; though one study reported a majority of BHD-related 

tumours as hybrid chromophobe/oncocytoma or solely chromophobe (84%), with a minority of cases 

being clear cell, oncocytoma, or papillary RCC (9%, 5%, and 2% respectively), other studies have 

reported a majority of tumours were of clear cell subtypes (179). Additionally, there is some isolated 

evidence that tumour histology in BHD cases is determined by the underlying driver variants within 

early tumour clones, with tumours harbouring somatic mutations correlating to the presenting 

histological subtype (i.e. oncocytoma with a secondary FLCN variants, oncocytic papillary RCC 

carrying a MET Proto-Oncogene (MET) variant, and a clear cell RCC tumour harbouring a VHL 

variant) (181). 

Multifocal and bilateral occurrences in BHD-resultant renal cancers have a prevalence of 60% and 

77%, respectively (182), with more recent studies reconfirming that a majority of individuals (83%) 

present with either bilateral or multifocal RCC (183). While the primary clinical manifestation of BHD 

syndrome is fibrofolliculomas, pulmonary cysts, pneumothorax, and RCC, BHD has also been shown 

to be related to several other cancers. BHD has been linked to the development of thyroid tumours, 

parotid tumours, adrenal carcinomas, melanoma, and the development of colorectal cancer (CRC) 

and/or colorectal polyps which have also been suggested to be clinical features of BHD (184–188), 

though further evidence to substantiate the associations is needed. 
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FLCN is a candidate tumour suppressor gene first identified by genome linkage analysis of BHD 

families to 17p11.2 (189). Subsequently, genetic analysis mapped FLCN to chr17:17,206,924-

17,237,188 coding for a single full-length transcript of 14 exons, the first three of which are non-

coding. FLCN is a highly conserved gene with many pathogenic variants being truncating variants, 

or variants within heavily conserved protein domains and these variants have been demonstrated to 

generate unstable protein products and to be under purifying selection (190). Additionally, FLCN 

contains a mutational “hotspot” at exon 11 due to the high frequency in which BHD patients present 

with truncating variants within this loci (191,192), though frequent deletions of exons 1-3 and exons 

9-14 have also been reported (193,194).  

BHD patients harbouring a single inactivating variant in FLCN are frequently found to have acquired 

a secondary somatic variant in, or LOH of, the wild-type allele of FLCN in RCC tumours (195). 

Conversely, it has been suggested fibrofolliculomas do not appear to display LOH and the 

pathogenesis of fibrofoliculomas seem to be driven by haploinsufficiency (196). Several animal 

models have corroborated this hypothesis; Rat models harbouring a heterozygous germline variant 

in the rat orthologue of FLCN were shown to present with renal tumours, of which 91% presented 

with LOH of the wild type allele and the remaining LOH-negative tumour had deleterious frameshift 

variant within the wild type allele.  

The FLCN protein acts within several cellular pathways to regulate functions related to cellular 

growth, metabolism, and apoptosis. Through interactions with Folliculin interacting protein 1 and 2 

(FNIP1 and FNIP2), FLCN acts to regulate 5' AMP-activated protein kinase (AMPK), which functions 

in the upregulation of hamartin and tuberin in the PI3K-AKT-mTOR pathway, resulting in attenuated 

signalling (197–199). FLCN knockout models have also established increased mTOR activity where 

loss of the wild type allele occurs, demonstrating a mechanism for tumour development in BHD 

patients (200). Furthermore, FLCN and its complex proteins FNIP1 and FNIP2 have been shown to 

inhibit the function of the MITF-TFE3-TFEB complex by reducing nuclear localisation (201), where 

MITF has been shown to regulate both mTOR and HIFα.  
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1.4.6 Hereditary papillary renal cell carcinoma 

Hereditary papillary renal cell carcinoma (HPRCC; OMIM: 605074) is an autosomal dominant 

condition conferring a predisposition to the development of multifocal and bilateral papillary RCC 

tumours (202). HPRCC is associated with type 1 papillary RCC, generally being low grade, well 

differentiated, and is highly penetrant (156,203). The median age of onset for HPRCC tumour is 41 

years of age and HPRCC cases are frequently bilateral or multi focal, but conversely to sporadic and 

other germline causes of RCC, sex appears to be uniformly affected (156,204,205). HPRCC 

tumours, in contrast to many other RCC syndromes, rarely co-occur with renal cysts but microscopic 

lesions do occur proximally to the primary tumours (204,205) and much like sporadic type 1 papillary 

RCC, HPRCC with type 1 papillary RCC are usually indolent in nature (206). 

HPRCC is known to be caused by activating variants in MET and all activating variants have been 

nonsynonymous changes with the MET tyrosine kinase domain (207,208). The MET gene is located 

at 7q31.2 at chromosome co-ordinates chr7:116,672,390-116,798,386 and encodes a 21-exon 

transcript for the C-MET tyrosine kinase receptor (MET). MET functions as a cell surface receptor 

for hepatocyte growth factor (HGF) as it’s only known ligand (209). Binding of HGF to MET allows 

for the transduction of a signal cascade through the PI3K-AKT-MTOR pathway and RAS-ERK 

pathways, leading to upregulation of genes associated with cell survival, proliferation, and motility 

(210), as well as increased HIF1-α and HIF2-α activity through mTOR activation (211). 

Nonsynonymous variants in the tyrosine kinase domain of MET result in a protein with constitutive 

MET auto-phosphorylation without the presence of HGF, resulting in a constant upregulation of the 

pathways, such as PI3K-AKT-mTOR pathway, leading to tumour initiation (208).  
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1.4.7 Succinate dehydrogenase renal cell carcinoma 

Succinate dehydrogenase renal cell carcinoma (SDH-RCC) is a subtype of RCC driven by loss of 

function of the succinate dehydrogenase complex (SDH; electron transport chain complex II). Only 

recently recognised as a distinct subtype of RCC (49), germline pathogenic variants in genes 

encoding components of the succinate dehydrogenase complex leads to a predisposition to RCC in 

an autosomal dominant manner. Inactivation of Succinate dehydrogenase complex, subunits A-D 

via pathogenic variants in SDHA, SDHB, SDHC, and SDHD respectively, are frequently associated 

with paragangliomas (PGLs), PCCs, and gastrointestinal stromal tumours (GISTs) (212).  

Variants in these same genes can lead to RCC predisposition with the most common cause being 

SDHB mutations (213–216), with SDHA mutations having only been demonstrated more recently 

(217,218). SDH-deficient PCC and PGL have also been linked to variants in SDHAF2, which codes 

for an SDH complex assembly factor but no germline variants have currently been described in 

relation to RCC predisposition (219), and evidence for this association is limited. SDH-RCC cases 

are rare compared to the other RCC predisposing syndromes with an incidence rate estimated at 

0.05-0.2% of all RCC cases (220). In similarity to other RCC-predisposition syndromes, age of onset 

is earlier than in sporadic RCC cases with a median of 40-43 years of age and moderately more 

predominant in males compared to females (M:F=1.7-2.3:1) (220,221). Generally SDH-RCC 

tumours are low grade but are frequently observed to be multifocal or bilateral in 26% and harbour 

metastatic potential, with a reported 11-33% of cases developing metastatic disease (220,222).  

While SDH-RCC usually occurs without other malignancies, studies suggest approximately 15% of 

cases will additionally present with PGL and/or wild type GISTs (220). Histologically, SDH-deficient 

tumours do not resemble the classical subtypes seen in other inherited conditions, having a strong 

resemblance to oncocytomas, with cytoplasmic inclusions containing excessive numbers of 

abnormal mitochondria, and features of other histological characteristics also seen (221). The 

difficulties resulting from similarities to other tumour subtypes, particularly non-cancer tumours such 

as renal oncocytomas, is that misdiagnosis of potentially malignant tumours as benign may impact 

clinical treatment. Additionally, SDH-RCC tumours may appear to resemble hybrid 

oncocytic/chromophobe RCC tumours seen in BHD as such confirmation of SDH gene or FLCN 

inactivating variants is critical to inform diagnostics. 
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While estimates for disease penetrance is challenging when assessing SDH-RCC cases, SDHB 

mutation carriers are more frequent than others and lifetime risk for RCC in SDHB variant carriers is 

reported to be up to 14% at 70 years of age (215). However, recent studies employing Bayesian 

estimates of penetrance of pathogenic variants in SDH genes compared to ExAC controls, as well 

as case studies, have provided lower estimates for penetrance rates for SDH genes in PCC/PGL at 

22% for SDHB, 8.3% for SDHC, and 1.7% for SDHA (SDHD was not assessed) (223) and an 

additional study stating a penetrance of between 0.1%–4.9% for SDHA (224). Further assessment 

of RCC risk has been investigated for SDHB and suggested lifetime risk for SDHB mutation carriers 

to be 4.7% by 60 years (225), supporting the limited penetrance of variants in SDH genes, particularly 

given the occurrence of Renal and Phaeochromocytoma/Paraganglioma Tumour Association 

Syndrome (RAPTAS) cases and the strong correlation between PCC, PGL, and RCC (226). 

Loss of any one of the components of the succinate dehydrogenase complex is enough to result in 

destabilisation of the entire complex (227). In a similar manner to HLRCC and inactivation of FH, 

loss of succinate oxidation by SDH into fumarate as part of both the TCA cycle and the electron 

transport chain leads to an accumulation of intracellular succinate (168) as well as a reduction in 

oxidative phosphorylation (228). The accumulated succinate acts identically to fumarate to act as a 

competitive inhibitor of various biological processes related to RCC tumourigenesis. Succinate both 

acts to inhibit the function of PHD proteins, which drive HIF-α destabilisation via pVHL and inhibits 

α-ketoglutarate-dependent demethylases known to result in up-regulation of HIF proteins (175,229). 

Though exceptionally rare, homozygous (or compound heterozygous) alterations to SDH complex 

are profoundly detrimental, resulting in severe metabolic disorder, loss of cardiac function, and infant 

mortality in one case report (230). This is supported by null knock out mouse models in which SDHB, 

SDHC, and SDHD resulted in embryonic lethality (231).  
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1.4.8 Tubular sclerosis complex 

Tubular sclerosis complex (TSC; OMIM: 191100) is an autosomal dominant multi-cancer 

predisposition syndrome which can confer a risk to RCC caused by inactivating variants in TSC 

Complex Subunit 1 (TSC1) or TSC Complex Subunit 2 (TSC2) (232). Patients diagnosed with TSC 

classically present with neurodevelopmental delay and epilepsy (and intracranial hamartomas), with 

cutaneous features such as angiofibromas, cardiac rhabdomyomas, and renal manifestations. The 

most frequent renal manifestations are angiomyolipomas and renal cystics (233). Renal 

angiomyolipomas as an entity are not classed as an RCC subtype as they are benign in nature, but 

both renal cysts and angiomyolipomas are linked to (234,235) and difficult to distinguish from RCC 

(233), respectively. 

In comparison to other RCC-predisposing syndromes, RCC risk is lower in TSC with a prevalence 

estimated at 2-3% in the general population (233). This rate is more significant given that the 

incidence rate of TSC is much higher than many of the other RCC-predisposing syndromes at 

1:6,760–1:13,520 (236), thus increasing the number of individuals going on to develop RCC of the 

total diagnosed with TSC. While the incidence of RCC is low in TSC, an important aspect is the 

molecular biology of the disease and its overlaps with other RCC-predisposing syndromes in genetic 

causes and phenotypic presentation. 

RCC presenting in TSC are observed at a mean age of between 30-42 years of age and, conversely 

to other RCC syndromes, occurs at an inverse sex ratio (1:2.0-2.6: male to female ratio). In 

approximately 47-55% cases present with either multifocal or bilateral RCC, with as many as 20 

individual tumours reported in one case. Metastatic disease is rarely documented in TSC RCC cases 

and prognosis is generally favourable, with most tumours occurring as oncocytic hybrid 

chromophobe-like RCC or papillary-like RCC histologies (232,237). 
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As mentioned previously, TSC is known to be associated with loss of function variants in TSC1 and 

TSC2 which encode the proteins hamartin and tuberin, respectively, mentioned previously in relation 

to BHD. Mutational assessment of genotype-phenotype correlations suggest that pathogenic 

variants in TSC2 result in more severe phenotypes and is also more frequently inactivated than 

TSC1 (238). An estimated 15% of cases are not identified to carry either a coding single nucleotide 

variant (SNV) or copy number variant (CNV) resulting in inactivation of either TSC1 and TSC2, 

though a recent analysis suggested mosaic and intronic variants account for a large proportion of 

the pathogenic variation in TSC (238,239). 

Hamartin and tuberin form a protein-complex, which functions as a tumour suppressor. The 

hamartin-tuberin heterodimer is regulated by RAC-alpha serine/threonine-protein kinase (AKT) (240) 

and is an inhibitor of GTP-binding protein Rheb (RHEB) (241), as components of the PI3K-AKT-

mTOR pathway. RHEB functions upstream of mTOR and primarily acts to upregulate mTOR activity 

through direct interaction or induction of a conformational change in the mTOR complex, leading to 

an increase in mTOR phosphorylation (242). Increased activation of mTOR (and its associated 

complex mTORC1) leads to the same increase in cellular proliferation, motility, survival, and 

autophagy as described in HPRCC and BHD syndromes (82).  
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1.4.9 Cowden syndrome 

Inactivating variants in the Phosphatase and tensin homolog (PTEN) gene are associated with 

Cowden syndrome (CS; OMIM: 158350), an autosomal dominant condition causing some 

neurodevelopmental disorders, as well as both benign and malignant tumours, including RCC. 

Cowden syndrome has an occurrence is estimated at 1 in 200,000 with a significant risk of breast, 

thyroid, endometrial cancers, and RCC. Life time risk of RCC for individuals with CS a reported 34%, 

though estimates are variable given a limited number studies, ranging between 2-34% at age 70 

years, with an elevated risk in women (243–245). A majority cases of CS with RCC exhibited papillary 

RCC tumours, with the remaining presenting as chromophobe RCC, and a majority of the tumours 

showed complete loss of PTEN protein expression under examination by immunohistochemistry 

(246).  

PTEN is a tumour suppressor gene located at chr10:87,863,113-87,971,930, codes for a 9-exon 

protein Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein 

phosphatase (PTEN). PTEN functions in the regulation of the PI3K-AKT-mTOR pathway, via the 

inhibition of Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). PTEN 

acts to dephosphorylate phosphoinositide molecules, a lipid substrate utilised in Phosphatidylinositol 

by PIK3CA, downstream of cell surface tyrosine kinase receptors like VEGFR. This antagonistic 

response to Phosphatidylinositol signalling attenuates PI3K-AKT-mTOR signalling, reducing 

expression of genes associated with cell growth, proliferation, and angiogenic processes (82). 

Further forms of CS or CS-like syndromes, driven by epigenetic inactivation of Killin, P53 Regulated 

DNA Replication Inhibitor (KLLN) and activating mutations in AKT and PI3KCA, have also been 

associated with RCC development in PTEN negative cases (247,248). The KLLN gene is present at 

the same loci as that of PTEN on 10q23.31, sharing the same transcription start site but transcribed 

in the opposite orientation. Analysis of 123 CS and CS-like cases without germline PTEN variants 

demonstrated hypermethylation of the shared promotor region, which did not impact PTEN 

expression but reduced KLLN expression 250-fold. Individuals with KLLN hypermethylation 

presented with RCC in twice as many cases as those with germline PTEN variants (247). 
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Further assessment of CS and CS-like individuals without PTEN or KLLN alterations by Orloff et al. 

(2013) identified alterations in components of the PI3K-ATK-mTOR pathway in AKT and PI3KCA. 

Of 91 cases sequenced, 11% harboured variants in either AKT or PI3KCA (2 and 8, respectively) 

and two individuals, one carrying an AKT variant and the other a PI3KCA variant, presented with 

RCC at 47 and 32, respectively (248). 
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1.4.10 CDC73-Related disorders 

Inactivating variants in cell division cycle 73 (CDC73; also known as HRPT2) are known to cause a 

series of autosomal dominant genetic disorders including Hyperparathyroidism jaw tumour 

syndrome (HPT-JT; OMIM: 145001) which predisposes affected individuals to a range of renal 

manifestations, including RCC. HPT-JT is characterised by synchronous or metachronous 

presentation of hyperthyroidism, ossifying fibroma of the jaw bones, renal tumours, and uterine 

tumours (249). Penetrance of HPT-JT is estimated to be 83% at age 70 years, with lower penetrance 

in females (250). Approximately 20% of individuals diagnosed with HPT-JT display renal lesions of 

some form, most frequently renal cysts or hamartomas with Wilms tumours, a form of paediatric 

kidney cancer, also occurring in a subset of cases. Though RCC manifestations are rare in HPT-JT, 

papillary RCC has been reported in conjunction with germline CDC73 variants and somatic LOH of 

1q31.2 (251) and the known links between renal cysts and malignant renal phenotypes (234). 

CDC73 on 1q31.2 is a tumour suppressor gene encoding a 17 exon, 531 amino acid protein 

parafibromin, a component of the Polymerase-Associated Factor 1 (PAF1) complex, which has a 

cellular role as RNA polymerase II complex, and has been shown to interact with histone-modifying 

H3K4-methyltransferase proteins (252,253) and is known to function in the regulation of cell cycle 

progression via regulation of cyclin D1 expression (254). Parafibromin has also been shown to act 

to repress the transcription of myc proto-oncogene protein (MYC) via promotor suppression and 

demonstrates a capacity to cause G1 phase cell cycle arrest (255,256), cementing CDC73 as a 

tumour suppressor gene. CDC73 inactivation is also seen regularly in somatic renal tumours 

(including clear cell, papillary, and chromophobe RCC) and inactivation is typically via LOH (257), 

though some studies have demonstrated that hypermethylation and mutations within the 5’ 

untranslated region (UTR) also result in allelic loss (258). 
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1.4.11 Non-syndromic renal cell carcinoma 

In recent years, investigations into the molecular basis of inherited RCC have elucidated some of 

the molecular causes of non-syndromic inherited RCC. The earliest of these occurred prior to the 

identification of VHL with the identification of a large Italian American family with a history of clear 

cell RCC, a high incidence of bilateral presentation, and no age of onset greater than 60 years of 

age (259). This family was found to harbour a t(3;8)(p14.2;q24.2) translocation resulting in disruption 

of Fragile Histidine Triad (FHIT) and Ring Finger Protein 139 (RNF139) at the break point sites, and 

formation of a fusion transcript (260). Further assessment and screening of individuals with RCC 

presenting with features of heritability uncovered a number of other families and individuals carrying 

constitutional translocations, most of which involved chromosome 3, and suggested specific 

constitutional translocations could confer a risk to RCC development (261). In depth review and 

analysis of RCC-associated translocation cases is performed in Chapter 6. 

Several studies assessed germline RCC cohorts and families for the presence of genetic alterations 

in significantly mutated genes in RCC tumours. Studies of patients with co-occurrence of RCC and 

melanoma demonstrated a missense substitution in MITF are associated with higher risk of RCC 

compared to controls (262). Screening of unrelated probands with features of predisposition revealed 

that, although rare, germline variants in BRCA1 Associated Protein 1 (BAP1) segregated with RCC 

phenotype and demonstrated LOH in several tumours as well as somatic VHL loss (263). In an 

assessment of 35 individuals with unexplained family histories of clear cell RCC, one case was 

shown to have a co-segregating frameshift variant in PBRM1 supporting predisposition to RCC 

(264). It should also be noted that germline FLCN and SDHB mutations may also be detected in a 

subset of patients with apparent non-syndromic inherited predisposition to RCC (214,265). 

Lastly, exome sequencing and targeted resequencing of patients with features of familial RCC 

uncovered candidate pathogenic missense variants in Cyclin Dependent Kinase Inhibitor 2B 

(CDKN2B) (266). While the occurrence of variants in MITF, BAP1, PBRM1, and CDKN2B are 

relatively rare, with only a small number of individuals per cohort being affected, they suggest the 

remaining proportion of heritability is likely to be split across many genes at a low percentage, 

rather than the discovery an unknown VHL-like gene, harbouring a large proportion of the 

remaining risk. 
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1.5 Somatic variation in renal cell carcinoma 

Large scale sequencing studies of RCC tumours have been performed to investigate and elucidate 

the genetic causes of RCC and its histological subtypes. As discussed previously, in alignment with 

their histological disparities, the major histological subtypes are genetically heterogeneous and 

numerous genetic and molecular overlaps exist between somatic and germline alterations in RCC. 

1.5.1 Clear cell renal cell carcinoma 

Clear cell RCC, as the most common subtype of RCC, has been extensively characterised by tumour 

profiling studies utilising multi-omic approaches. Copy number variations in clear cell RCC are large 

scale losses or gains of entire chromosome arms, most frequently 3p which carries multiple inherited 

RCC genes as previously discussed, and very few focal events. Loss of 3p occurred in more than 

90% of tumours assessed, with gains of 5q and loss of 14q seen in 67% and 45% of tumours, 

respectively. Whole exome sequencing of tumours revealed VHL, PBRM1, SET Domain Containing 

2 (SETD2), Lysine Demethylase 5C (KDM5C), PTEN, BAP1, MTOR and Tumour Protein 

P53 (TP53) as the most significantly mutated genes. Of note, approximately 20% of tumours 

assessed had no alterations in any of the highly mutated genes, suggesting alternative drivers in 

combination with chromosomal copy number alterations in 3p and 5q. Epigenetic inactivation of VHL 

was demonstrated in 7% of tumours and was mutually exclusive with somatic VHL SNVs. Network 

analysis showed dysregulation pathways for pVHL and its interacting components and chromatin 

remodelling (including genes PBRM1 and AT-Rich Interaction Domain 1A (ARID1A))(267). 

Systematic sequencing of clear cell RCC recapitulated the pivotal role of VHL and hypoxia in 

sporadic clear cell RCC, with 55% of cases harbouring VHL mutations, 82% having upregulation of 

hypoxia pathways, and 87% demonstrating loss of 3p. Further analysis resulted in the identification 

of multiple somatic truncating mutations in histone modifying genes, containing SETD2 which was 

frequently seen in other studies, including KDM5C, Lysine Demethylase 6A (KDM6A), and Lysine 

Methyltransferase 2D (KMT2D) (268). Comprehensive integrative studies across more than 100 

clear cell RCC tumours reiterated other findings but also identified driver mutations in Elongin C 

(TCEB1), TET2, KEAP1, TP53, and MTOR. Of note, mutations in TCEB1 were mutually exclusive 

with VHL variants, which is significant given they both function as part of the VCB complex (269). 
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More recent spatial and temporal sequencing approaches to understand the somatic variation of 

clear cell RCC have uncovered the range and depth of differences because of tumour heterogeneity 

both within and between tumours. Analysis of multi-site & multi-tumour data from the TRACERx renal 

study uncovered that specific driver events or clusters of events are associated with different clonal 

evolution trajectories, branching potentials, and intra-tumour heterogeneity, each of which have 

different prognosis outcomes and responses to clinical treatments (270). These evolutionary 

trajectories of specific sub-clones mirrors and explains the differences seen at the clonal driver 

mutation resolution (such as PBRM1 loss tumours having poorer survival) and why other tumours 

with different drivers respond differently in both progression and response to treatment. 
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1.5.2 Papillary renal cell carcinoma 

Genetic characterisation of papillary tumours reiterated the distinctions found histologically and 

implicates a different subset of genetic loci in tumour development (158). Type 1 papillary RCC, 

harbour frequent copy number gains of chromosome 7 and 17 whereas Type 2 papillary RCC 

tumours are characterised by significantly less copy number losses but two distinct clusters of cases 

with or without a high degree of chromosomal instability and loss of 9p. Whole exome analysis 

revealed that across all papillary RCC cases the most significantly affected genes included MET, 

SETD2, Neurofibromin 2 (NF2), KDM6A, and SWI/SNF Related, Matrix Associated Actin Dependent 

Regulator of Chromatin Subfamily B, Member 1 (SMARCB1). Additional restriction to genes already 

implicated in cancer demonstrated BAP1, PBRM1, and TP53, among others were associated with 

papillary RCC. Lastly, gene fusions of TFE3 and TFEB with various genes occurred in a proportion 

of papillary RCC tumours (10.6%), including HIF1A. 

In regards to specific papillary RCC subtypes, type 1 papillary RCC tumours more frequently 

harboured variants in MET (18.6%), which clustered with known germline predisposition variants 

found in HPRCC, and had increased levels of MET expression compared to type 2 papillary RCC. 

Collectively, given the amplification of MET in cases with chromosome 7 gains, 83% of type 1 

papillary RCC tumours carried MET alterations. In type 2 papillary tumours, Cyclin Dependent 

Kinase Inhibitor 2A (CDKN2A) alterations were more frequent (25%) with focal losses of 9q21, 

mutations, or hypermethylation as the cause. Additionally, SETD2, BAP1, and PBRM1 were 

frequently altered, but in contrast to clear cell RCC, loss of 3p was infrequent. Additionally, CpG 

island methylator phenotype (CIMP) associated tumours, were designated as a subset of type 2 

papillary tumours driven by somatic mutations in FH. In tumours identified with hypermethylation 

profiles, 55.6% carried alterations in FH as well as decreased mRNA expression of FH and increased 

expression genes associated with glycolysis. This agrees with HLRCC caused by germline 

inactivation of FH, where type 2 papillary RCC is most common (155) seen as well as the inhibition 

of epigenetic factors by accumulated fumarate (174). 
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1.5.3 Chromophobe renal cell carcinoma 

Characterisation of chromophobe RCC by Davis et al. (2014) demonstrated the unique genetic 

features of this RCC subtype. Chromophobe RCC carries a distinctive copy number alteration 

pattern with loss of chromosomes 1, 2, 6, 10, 13, and 17 in most cases (86%), with wide spread non-

focal loss of multiple other chromosomes, including chromosome 3 and was shown to have a low 

mutational rate, even compared to other RCC subtypes (approximately 3-fold less than clear cell 

RCC; 0.4 mutations per Mb). TP53 was reported as the most altered gene being mutated in 32% of 

cases assessed, with variants also being present in PTEN (9%), MTOR (3%), and TSC1 or TSC2 

(6%). In general, chromophobe RCC has fewer hypermethylation events in comparison to clear cell 

RCC and demonstrated epigenetic silencing of CDKN2A in 6% of cases. In relation to gene 

expression patterns, upregulation of genes associated with the TCA cycle and electron transport 

chain were seen, counterintuitively to the shift away from oxidative phosphorylation that may be 

expected due to the Warburg effect. In addition to metabolic expression changes, increased 

expression of genes involved with cell cycle progression was also described. Lastly, analysis of 

structural variation demonstrated a significant portion of chromophobe RCC cases have 

chromosomal break points with the telomerase reverse transcriptase (TERT) promotor, associated 

with telomeric end repair, and expression was shown to be elevated in these cases (271). 

Further assessment of RCC tumours as a collective revealed additional focal losses and 

amplifications of genes with associations to germline predisposition cases including loss of SDHD 

and PTEN, as well as amplifications of PIK3CA and sequestosome 1 (SQSTM1) (272), of which 

SQSTM1 is implicated as the driver gene in 5q amplifications (273). Complementary assessment of 

data from the cancer genome atlas (TCGA) cancer study by Ricketts et al. (2018) recapitulated much 

of the previous work with some additional findings. Both type 2 papillary RCC and its subset CIMP-

RCC have increased copy number loss of chromosome 22, which carries the loci for NF2 and 

SMARCB1 and both chromophobe RCC and CIMP-RCC have loss of 13q, which harbours 

retinoblastoma 1 (RB1) and BRCA2. Furthermore, collective assessment of RCC subtypes together 

revealed that TP53 and PTEN were the only significantly mutated genes shared by all RCC tumour 

types as well as deletion or hypermethylation of CDKN2A (274). 
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1.5.4 Epigenetics of renal cell carcinomas 

Epigenetic inactivation is a well-established mechanism of cancer evolution and development (275) 

and analysis of epigenetic alterations in RCC tumours has also been crucial to understanding the 

molecular mechanisms driving tumourigenesis in RCC and its links to predisposition. Discoveries of 

hypermethylation of several genes on 3p, including VHL and Ras association domain Family 

Member 1 (RASSF1A) in sporadic RCC seen in 19% and 26% of cases, respectively (276,277), 

demonstrated the potential for epigenetic alterations to define somatic tumour development. 

Additional genes in the 3p region were demonstrated to be hypermethylated including family with 

sequence similarity 107 member A (FAM107A) (278) and FHIT (279), with further candidate tumour 

suppressors associated with RCC and other cancers also being identified, such as CDKN2A (280), 

cadherin 1 (CDH1) (281), and Ras association domain family member 5 (RASSF5) (282). Various 

further studies have implicated additional genes as downregulated in RCC through hypermethylation 

such as KLLN which is associated with Cowden syndrome (283), secreted frizzled related protein 1 

(SFRP1) a gene related to the downregulation of the Wingless/Integrated (WNT) signalling pathway 

(284), and mutS homolog 2 (MSH2) which is related to DNA repair (285), as well as further genes 

altered across multiple RCC subtypes are detailed in a review by Shenoy et al. (2015)(286).  

Further comprehensive analysis of epigenetic inactivation in RCC tumours has identified a range of 

different genes associated with hypermethylation in RCC, including the characterisation of CIMP 

tumours described previously (287). Initial genome-wide approaches to discover frequently 

hypermethylated promotor regions in RCC identified 9 genes. Of those genes identified, 6 displayed 

reduction in functional expression and activity in in vitro experiments suggestive of cellular roles as 

tumour suppressors (288) and follow-up methylation array studies identified more than 200 

hypermethylated loci compared to normal tissues, including genes solute carrier family 34 member 

2 (SLC34A2), ovo like transcriptional repressor 1 (OVOL1), and somatostatin (SST) in 64%, 40%, 

and 31% of tumours respectively (289). 
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Hypermethylation, outside of promotor-specific methylation, has also been examined where RCC 

samples were characterised by hypermethylation profiles preferentially occurring within coding 

regions. The hypermethylation disproportionately affected both kidney-specific enhancer regions 

associated with histone methylation as well as genes associated with hypoxia, likely as a 

consequence of ongoing dysregulation of hypoxic pathways (290). Finally, use of methylation 

alterations in RCC has been utilised as a biomarker, both diagnostically and predictively in the 

development and progression of RCC tumours which can act to detect recurrent events or predict 

prognostic features in assessed patient, reviewed by Lasseigne et al. (2018)(291). 
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1.6 Inherited and somatic variants in renal cell carcinoma 

In general, somatic alterations in different RCC subtypes are characteristic of that specific histology 

but clear overlaps at a chromosomal level (e.g. loss of 3p in clear cell RCC), but perhaps more 

importantly, at a gene level occur in which a distinct but interconnected pattern of molecular 

pathways is delineated. Genetic alterations in both germline and somatic analysis can be defined 

broadly to being associated with one of three networks; VHL pathway, PI3K-AKT-mTOR pathway, 

and histone modifying and chromatin remodelling network. In both sporadic and inherited cases of 

RCC, the affected entities appear to map to one of these pathways with common proteins and 

metabolic substrates linking them together. 

HIF-α proteins are one of the primary endpoints of both the VHL-driven pathway and the PI3K-AKT-

mTOR pathway. VHL is found to be both inactivated in VHL disease and frequently lost in sporadic 

RCC through inactivating mutations and loss of 3p in clear cell RCC, both acting to drive tumour 

initiation and progression via HIF upregulation and a pseudo hypoxic gene response. Variants found 

in FH in HLRCC and SDHA, SDHB, SDHC, and SDHD in SDH-RCC, while acting to disrupt cellular 

metabolic processes also converge on the VHL pathway indirectly. Accumulation of both succinate 

and fumarate results in pseudo-hypoxic conditions due to the inhibition of PHD proteins and loss of 

HIF1-α and HIF2-α hydroxylation, consequently reducing HIF protein degradation via VHL (168). 

The PI3K-AKT-mTOR pathway drives HIF upregulation as well as mTOR activity, and multiple 

positive and negative regulators and components are implicated in RCC. Activating variants seen in 

MET, as seen in HPRCC and amplification of chromosome 7 in sporadic papillary RCC result in 

constitutional activation of the PI3K-AKT-mTOR pathway at its origin point on the cell surface, 

causing continuous upregulation of all the downstream components, including HIF2-α and VEGFR 

(292). Inactivation of PTEN which acts as an inhibitor of PI3K signal transduction are observed in 

both Cowden syndrome and somatically in both clear cell and chromophobe RCC subtypes, resulting 

in loss of regulated signal transduction through PI3K proteins. 
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Further components of the PI3K-AKT-mTOR pathway are altered including TSC1 and TSC2 

inactivation, as described in TSC and chromophobe RCC, which act to inhibit RHEB directly 

upstream of mTOR. Indirectly, the pathway is perturbed by variation in MITF and FLCN. Inactivation 

of FLCN in BHD syndrome where loss of FLCN results in both the loss of MITF inhibition and AMPK-

driven upregulation of TSC1 and TSC2, though interestingly FLCN variants do not appear to occur 

somatically. Oncogenic alterations in MITF found in a subset of non-syndromic heritable RCC cases, 

as well as in Xp11.2 and t(6;11) sporadic translocation cases via fusion transcripts, cause direct 

upregulation of HIF-α proteins and increased activity of mTOR. 

Finally, the histone and chromatin remodelling pathways are routinely affected somatically with 

components of the SWI/SNF complex, including PBRM1 which is seen in germline predisposition, 

driving RCC through altered transcript and epigenetic alterations. BAP1 is also seen both somatically 

and in heritable cases, resulting in the dysregulation of histone modifications. This final pathway is 

not decoupled from the others entirely though, with accumulations of fumarate and succinate 

resulting in the inhibition of TET and KDM proteins, and subsequently dysregulation of chromatin 

remodelling an epigenetic functions (175,229). 1.6 Figure 3 provides a diagrammatic overview of 

these overarching pathways, components and links to RCC predisposition and tumour formation, 

though it should be noted that this is not fully inclusive of all the genetic components to be implicated 

in RCC pathogenesis, in germline or somatic cases. 
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1.6 Figure 3 

A diagrammatic representation of the main cellular pathways affected in RCC (adapted from Ricketts et al. 

(2016)(293)). Green components are substrates and/or signalling molecules. Blue components represent 

proteins coded by genes affected somatically in RCC. Orange components represent proteins coded by genes 

affected in germline predisposition to RCC (No key is provided for genes affected in both). Pointed arrows 

demonstrate positive or upregulation of the target component whereas blunted or flat ended arrows demonstrate 

inhibitory or downregulation of the target component. HIF1α and HIF2α are labelled in yellow as the key 

convergence point of multiple RCC-related pathways. 
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1.7 Sequencing in rare diseases 

1.7.1 Sequencing technologies 

The efficiency of identifying genetic alterations that result in disease phenotypes has progressed 

rapidly over the last two decades, with ever decreasing costs and ever-increasing breadth and depth 

of genetic information accurately interrogated by each technological iteration. A milestone in the 

advancement of DNA sequencing was the development of Sanger sequencing (294) and its 

application in automated capillary gel-electrophoresis (295), allowing for the sequencing of the 

complete human genome in 2001 (296).  

Following this breakthrough, rapid development of technologies with greater throughput and lower 

economic and labour costs became the goal of genomic sequencing, culminating in the development 

of high-throughput platforms utilising technologies such as sequencing by synthesis (Illumina, 454, 

Ion Torrent) and sequencing by ligation (Complete Genomics, SOLiD). The widespread adoption of 

2nd generation next generation sequencing (NGS) technologies, particularly Illumina-based 

platforms, resulted in large scale sequencing of thousands of rare disease and oncology cases. 

Additionally, development of sequencing adaptations such as RNA-seq (297), bisulphite sequencing 

(298), ChIP-seq (299), and many others have allowed for the generation of sequencing data in 

numerous “-omics”, leading to multi-dimensional analysis and providing greater biological insights. 

The ability to limit sequencing in 2nd generation NGS technologies to specific target regions (e.g. 

whole exome sequencing and targeted gene panels) has further improved efficacy, increasing the 

biological relevance of the sequenced regions and reducing overall cost compared to whole genome 

sequencing. 

While 2nd generation NGS technologies have revolutionised genomic sequencing, 3rd generation 

sequencing technologies (Pacific Biosciences SMRT sequencing (PacBio SMRT), 10X Genomics 

and Oxford NanoPore Technologies (ONT)) are beginning to move into the spotlight, bringing with 

them unique advantages and disadvantages. Perhaps the greatest disadvantage for 2nd generation 

NGS technologies is the length of reads that are generated. The shorter read lengths limit coverage 

over complex genomic regions, result in difficulties resolving repetitive genomic loci, have poor 

resolution of structural variation, and an inability to perform accurate haplotype phasing. 
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The use of long read lengths overcomes many issues stemming from short reads. Use of long reads 

in all 3rd generation technologies has improved alignment to complex genomic regions and highly 

repetitive loci and has improved the calling and characterising of large structural variations. 

Specifically PacBio SMRT sequencing and 10X Genomics have seen vast improvements in 

haplotype phasing compared to short read sequencing (300,301). Furthermore, 3rd generation 

methods such as PacBio SMRT and ONT have demonstrated the ability to perform innate nucleotide 

base modification detection without the need for prior processing during library preparation 

(302,303), though it is currently restricted to CpG island methylation detection. 

A clear shortcoming of 3rd generation technologies is a large increase in cost for similar sequencing 

throughput, particularly for ONT sequencing, but uptake by the scientific community will drive prices 

down with sufficient demand. A disadvantage to even PacBio and 10X genomic long read 

sequencing is the reliance of genomic centres with the financial and logistical means to provide 

sequencing, each having high costs, maintenance and large machinery requirements to run 

effectively. The development of ONT sequencing provided a reasonably high-throughput, portable 

sequencing option and demonstrated its efficacy in sequencing genomes in infectious disease 

outbreaks such as Ebola and Zika viruses (304,305). Furthermore, read lengths in ONT sequencing 

are only limited on the length of DNA provided to the sequencer after library preparation and physical 

constraints at the sequencing pore, allowing for exceptionally long reads of up to 2 Mb in length 

(306). This advantage has been critical in the use of ONT sequencing for the characterisation of 

structural variation larger than the read lengths of PacBio and 10X genomics (307), and where 

specific loci are known to carry structural variants but the precise nature is not known, including large 

deletions and tandem repeat expansions (308,309). Compared to both 2nd generation short read 

technologies and other 3rd generation methods, ONT has some significant disadvantages, including 

reduced throughput and increased per read error rates, particularly for repetitive regions, but far 

lower cost and ease of use make it highly versatile given the right context. 
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1.7.2 Sequencing technologies - The right tool for the job 

While technologies have rapidly developed and evolved to generate vast quantities of data, no 

technology is without its niche, with Sanger sequencing still seeing ubiquitous use in both clinical 

and research environments for targeted sequencing projects, validation of NGS findings, and clinical 

diagnosis. In all, the selection of a specific sequencing technology relies upon the context in which 

it is being applied. The generation of whole genome sequencing via Sanger sequencing is now an 

absurd idea, resulting in substantially increased economic, labour, and time costs over newer 2nd 

and 3rd generation methods. Conversely, using long read PacBio sequencing for the identification of 

variants in a single exon of one gene is equally unreasoned, providing no practical benefits over 

simple polymerase chain reaction (PCR) amplification and Sanger sequencing. Important selection 

of the most appropriate sequencing method for the question being asked is vital to both maximise 

the biologically relevant data whilst minimising economic, labour, and computational costs. In 1.7 

Table 3, a comparison is made for which sequencing approach is most appropriate to the study 

design being used if only utilising DNA sequencing. 
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1.7 Table 3 

Summary of capabilities of various sequencing technologies for DNA only sequencing given with 

example of case use. Question marks suggest the application is possible but only under specific 

circumstances. 

Sequencing 
technology 

DNA only sequencing 

Example 

SNVs CNVs SVs 
Base 

modifications 
Phasing 

Sanger sequencing      
Sequencing of a single 
exonic region or series of 
SNPs in 50 samples  

Short read sequencing 
(Exome)  ?    

Sequencing of exonic 
regions of 100 genes in 100 
samples 

Short read sequencing 
(Genome)   ?   

Identify coding and non-
coding SNVs and CNVs 
across the entire genome in 
any number of samples 

Pacific Biosciences 
SMRT Sequencing      

Complete characterisation 
of genetic alterations in any 
number of samples 

Oxford Nanopore 
Technologies     ? 

Targeted sequencing of 
SVs and complex regions 
or small genome 
sequencing - single or 
multiple samples 

10X Genomics      

Complete characterisation 
of genetic alterations in any 
number of samples but 
without need for 
methylation 
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1.7.3 Variant detection in rare disease 

The principal function of any sequencing technique is to identify the causal variant or variants 

associated with the disease phenotype being investigated. Given the vast number of variants some 

methods can uncover, filtering and identifying a causal variant can be a substantial challenge. In 

hereditary disease, there are three primary methods for variant identification which are familial 

segregation, trio analysis, and abundance in unrelated probands. Familial segregation is the effective 

presentation of a phenotype within a family pedigree where affected individuals carry the candidate 

genotype, where presentation is variable based on inheritance model and the penetrance of the 

phenotype. For example, in a fully penetrant autosomal dominant pedigree, any given carrier has a 

50% probability of passing the causal variant to their offspring and all carriers are affected.  

A major drawback of segregation analysis is the need for well documented family histories, accurate 

and meaningful phenotype data, as well as issues with identifying segregation in low penetrance or 

complex traits where inheritance patterns may be obfuscated. Use of trio analysis, classically in the 

form of mother-father-offspring trios, are a powerful method for variant detection and segregation. 

Trio analysis can be especially effective when attempting to identify de novo variation in an affected 

offspring, where both parents are unaffected, by removing the variants inherited from the paternal 

and maternal alleles. Trio analysis (or any variation of comparing multiple related individuals) is still 

viable for variants which aren’t de novo provided that phenotypic penetrance is strong enough, as 

unaffected carriers will likely result in the filtering out of the causal variant.  

Assessment of unrelated probands with the same disease can allow for the detection of single 

variants or genes that are associated with the phenotype of interest. By applying statistical 

methodology to allelic frequencies in cases compared to control sets, a calculation can be performed 

as to whether or not a given feature is overrepresented in the case set. This can apply to single loci, 

as is the case in genome-wide association studies (GWAS) studies or utilise more statistically 

complex analyses over fixed genomic regions such as genes, via methods such as variant collapsing 

or burden association tests (310). 
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Lastly, the assumption that any given cancer predisposition phenotype is likely to be autosomal 

dominant, with potentially variable penetrance, is well founded with many cases following this 

inheritance model. Conversely, there is increasing evidence for the role of complex or polygenic 

traits in cancer predisposition, with multiple low risk variants conferring additive cancer risk. In this 

instance, detection of low risk or polygenic traits is restricted to epidemiological studies with large 

enough sample sizes to detect small effect sizes and for rare cancer predisposition, such as those 

seen in RCC, the ability to detect these variants is juxtaposed to the sample size requirements. 
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1.8 Summary 

RCC is complex set of renal neoplasm with distinct morphology, histology, and clinical courses and 

is a prominent cancer in both developing and developed countries, seeing an increased incidence 

globally. While clinical outcomes for stage I and low-grade tumours is favourable, tumours are often 

detected at later stages and as such have a much lower survival rate. Additionally, RCC tumours are 

treatment tolerant, with only moderate efficacies seen without targeted therapies and frequently 

become treatment resistant. Both the early detection, screening frequency and targeted therapies 

hinge on detection and understand the genetic components present both constitutionally and 

somatically. 

Each subtype of RCC are genetically distinct entities with differing somatic and germline mutation 

patterns, as well clear genetic overlaps between causes of inherited RCC and somatic RCC driver 

mutations. While characterisation of somatic mutations across the differing histological subtypes has 

uncovered an array of genes involved in RCC tumourigenesis, understanding of RCC predisposition 

genes has been vital to understanding molecular mechanisms, cellular environments, and genetic 

circumstances which drive sporadic tumours. 

While many genes associated with predisposition to RCC have been discovered, a large proportion 

of the remaining genetic component is currently unknown, with many cases which meet genetic 

screening criteria not carrying pathogenic variation in known RCC predisposition genes. By utilising 

multiple sequencing methodologies on individuals with features of inherited RCC (early onset, 

bilateral or multifocal tumours, and family history), potential candidate genes can be identified as 

associated with RCC predisposition and as such inform investigations in molecular mechanism, 

improve genetic testing and family screening, and provide potential targets for clinical management. 

It is worth noting that while this is a potential source of heritability which is currently not assessed, 

given the historical prior probability of an inherited cases of RCC (2-3%), the power to discover 

additional inherited cases within a cohort with suspected features of predisposition (24-33.7%) has 

low power without large sample numbers. 
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This posterior probability is a frequent challenge in the analysis of rare disease cohorts and 

significantly impacts a studies ability to elucidate new genetic features which are associated with 

RCC predisposition. In spite of this, rare disease studies do not have any robust alternative and a 

failure to perform a given study due to low probability of identifying novel outcomes is not a 

justification for ignoring the clinical and ethical needs of patients and families who present with rare 

diseases, including inherited RCC.  
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1.9 Aims 

 To utilise multiple genomic targets and sequencing technologies to provide evidence to 

support the association of inherited RCC with previously reported genes. 

 Use multiple genomic sequencing approaches and statistical case control analysis methods 

to identify novel genes which are associated with a predisposition to RCC. 
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2.0 Materials and methods 
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2.0.2 Labour contributions 

All methods described in this section were performed by the author with the exception of patient 

recruitment (performed by Professor Eamonn Maher), sample retrieval and extraction (section 2.1), 

and the contributions described in relation to DNA library preparations (section 2.6.5). 
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2.1 Sample preparation 

2.1.1 Sample retrieval and extraction 

Samples were received from various clinical genetic laboratories and DNA extraction methods will 

vary per recruitment site. Most recruited participants had DNA processed and extracted via either 

Cambridge University Hospital Addenbrookes East Anglian Medical Genetics Laboratory or 

Birmingham Women's Hospital West Midlands Regional Genetics Laboratory. Further subsets of 

samples were prepared at Melbourne, Exeter, Newcastle, King’s College London and sent to 

Cambridge University Hospital Addenbrookes East Anglian Medical Genetics Laboratory for storage. 

2.1.2 Sample source and storage 

All but one sample used was blood serum-derived genomic DNA (one sample was buccal-derived 

DNA and was not found to be detrimental to experimental findings). All stock DNA extractions were 

stored in DNA Lo-bind microcentrifuge tubes (Eppendorf, Germany), sealed with Parafilm M (Bemis, 

United States) or tethered screw cap microtubes with rubber sealed lids (STARLAB, United 

Kingdom). Any samples received in containers not conforming to these storage requirements were 

transferred into the appropriate storage containers. DNA sample dilutions were prepared using 

Nuclease-free water (Qiagen, Germany) to required concentrations and quantified using either Qubit 

Broad Range or Qubit High Sensitivity DNA assay (Invitrogen, United States), depending on 

calculated target concentration (see section 2.2). All sample aliquots were stored at -20°C and 

dilutions were used where possible to reduce freeze-thaw cycling of stock DNA samples. 
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2.1.3 Patient cohort description 

 

Flow chart depicting the patient selection procedure, patient filtering parameters, and sequencing 

methodologies used for each chapter described herein. Patient counts for each stage are denoted by [n = 

patient count]. Initialisms – national health service (NHS); renal cell carcinoma (RCC); cancer gene panel 

(CGP); whole exome sequencing (WES); whole genome sequencing (WGS). 
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2.2 Sample quality control and metrics 

2.2.1 DNA quantification 

DNA quantification was performed with Qubit Broad Range DNA assay (Invitrogen, United States) 

in most circumstances following the manufacturer’s protocol for 2 μl DNA input. In a limited number 

of cases where DNA quantity was low/insufficient or DNA quality was questionable or low 

concentration dilutions were required (e.g. DNA sequencing libraries) DNA aliquots were measured 

by Qubit High Sensitivity DNA assay (Invitrogen, United States) to determine concentration (following 

the manufacturer’s protocol for 2 μl DNA input) and NanoDrop 1000 Spectrophotometer 

(Thermofisher, United States) using 1 μl DNA input to determine sample purity from 260/230 nm and 

280/260 nm absorption ratio (311). 

2.2.2 Whole genome amplification of low quantity samples 

In certain instances, low DNA yield samples limited available DNA for downstream experiments. In 

these cases, DNA was whole genome amplified using REPLI-g Mini kit (Qiagen, Germany) following 

manufacturers’ instructions provided for initial input of 5 μl. Whole genome amplified product 

concentrations were measured using the Invitrogen Qubit Broad Range DNA assay (see section 

2.2.1). Whole genome amplified DNA was not used for high throughput sequencing methods due to 

described base replication errors and region-specific amplification (312). 
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2.3 Polymerase chain reaction (PCR) methods 

2.3.1 Primer design 

Target sequences for designed primers were retrieved using University of California, Santa Cruz 

(UCSC) Genome Browser (313) providing target co-ordinates from Human Genome build 

GRCh38/Hg38 (314). Primers were designed using the Primer3 (315). Primer sets were evaluated 

for non-specific binding and secondary structure formation using National Centre for Biotechnology 

Information’s (NCBI) BLAST (Basic Local Alignment Search Tool) PrimerBLAST (316). 

2.3.2 Short range PCR 

PCR amplification was performed using AmpliTaq Gold DNA polymerase utilising GeneAmp10X 

PCR Buffer II with MgCl2 (Applied Biosystems, United States). In most instances, PCR was 

performed as per the manufacture’s protocol with a standard annealing temperature of 58°C and 30 

cycles. In certain reactions, conditions required optimisation to produce a DNA product for 

downstream steps. The annealing temperature was adjusted with a temperature gradient (53-63°C) 

and the quantity of genomic DNA input required varied depending upon the quality of the DNA, 

increasing incrementally from 10ng/reaction up to a maximum of 50ng/reaction. TaqMan Control 

Genomic DNA (Applied Biosystems, United States) was used in place of patient genomic DNA, 

where appropriate, for optimisations and negative control reactions. Standard PCR protocol is given 

below in 2.3 Table 1. 
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2.3.2 Table 1 

Thermocycler conditions and PCR master mix volumes for a standard short-range PCR reaction 

PCR reaction cycle conditions  PCR reaction mixture (25μl) 

95°C for 10 minutes Initial denaturation  Template DNA 10-50 ng 

95°C for 15 seconds 

x 25-35 cycles 

 AmpliTaq Gold polymerase (5U / 

μl) 
0.125 μl 

55-65°C for 30 

seconds 

(Reaction 

Dependent) 

 

Forward primer (10 μm) 0.5 μl 

72°C for 1 minute / 

Kb 

 
Reverse primer (10 μm) 0.5 μl 

72°C for 10 minutes 
Final extension / 

elongation 

 
dNTP mixture (10 mM) 0.5 μl 

Hold at 4°C  End (Optional) 

 Buffer II with MgCl2 2.5 μl 

 
Nuclease-free H2O 

up to 25 

μl 
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2.3.3 Nested PCR 

For a subset of reactions, initial amplification of PCR targets was complicated by local DNA 

structures or sub-optimal primer designs. As such, expanded PCR amplicons were designed to span 

the original target with additional flanking DNA sequence between 500-2000 bp 5’ and 3’ of the initial 

PCR amplicon. Two PCR reactions as described in section 2.3.2 were performed, the first reaction 

utilising the expanded amplicon primers and the second reaction using the original amplicon primers 

but with the PCR product of former as the input DNA. For larger nested amplicons elongation times 

in the PCR cycling conditions were adjusted as necessary. 

2.3.4 Long range PCR primer design 

Long range PCR primers were designed in accordance with the details of section 2.3.1 with the 

alteration that primers should be purified via high performance liquid chromatography (HPLC) to 

ensure the removal of truncated primer sequences and impurities to reduce possible off target 

effects.  

2.3.5 Long range PCR 

Long range PCR amplicons were generated with the SequalPrep™ Long PCR Kit (Applied 

Biosystems, United States). Stringent optimisation was completed to improve amplicon generation 

via modification of the following conditions; Annealing temperature, concentration of enhancer, 

DMSO concentration & number of PCR cycles. TaqMan® Control Genomic DNA (Applied 

Biosystems, United States) was used for optimisation steps. Cycling conditions and reaction mixture 

set up is given in the 2.3 Table 2 below. 
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2.3.5 Table 2 

Thermocycler conditions and PCR master mix volumes for a standard long range SequelPrep PCR 

  

SequelPrep reaction cycle conditions  SequelPrep reaction mixture (20μl) 

94°C for 2 minutes Initial denaturation  Template DNA 20-50 ng 

94°C for 10secs 

x 10 cycles 

 SequelPrep Long 

polymerase (5U / μl) 
0.125 μl 

55-65°C for 30 seconds 

(Reaction Dependent) 

 
Forward primer (10 μm) 0.5 μl 

68°C for 1 minute / Kb  Reverse primer (10 μm) 1 μl 

94°C for 10 minutes 

x 20-30 cycles 

 10X Enhancer (A or B) 1-2 μl 

55-65°C for 30 seconds 

(Reaction Dependent) 

 
DMSO 0.4 μl 

68°C for 1 minute / Kb 

(+20 seconds / cycle) 

 

10X Reaction Buffer 2 μl 
72°C for 5 minutes 

Final extension / 

elongation 

 

Hold at 4°C  End (Optional) 

 

 Nuclease-free H2O up to 20 μl 
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2.3.6 Gel electrophoresis 

Gel electrophoresis was performed on a wide range of DNA products throughout the experiments 

described in this thesis. This describes a generalised protocol used for all instances in which gel 

concentrations, run times, and applied voltages differ between experiments. Prior to preparing a 

agarose gel, 50X Tris Acetate-EDTA (TAE) stock solution was made by dissolving 242 g Tris-base 

(Fisher Scientific, United States) in 500 ml of water (15 MΩ·cm), adding 37.2 g 

Ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA; Sigma Aldrich, United States), 57.2 

ml glacial acetic acid (Sigma Aldrich, United States), and making total volume up to 1 L, after which 

pH was adjusted to 8.5. This was diluted in 4.9 Litres of water (15 MΩ·cm) forming a 1X TAE buffer 

(40mM Tris, 20 mM acetic acid, 2 mM EDTA). Agarose gel was prepared by adding TAE solution to 

agarose (Sigma Aldrich, United States) to a final agarose gel mass concentration of between 5-30 

mg/ml, depending on the weight of agarose and volume of 1X TAE. 

Agarose gel solutions were cooled to approximately 10-15°C above solidifying temperature and 0.5X 

SYBR Safe DNA Gel Stain (10,000X in DMSO; Invitrogen, United States) was evenly mixed into 

solution. Gels were cast and left to set for 30 minutes, placed into a gel electrophoresis tank, and 

submerged in 1X TAE. Typically, 5 μl DNA product was mixed with 1 μl DNA Gel Loading Dye 6X 

(Thermo Scientific, United States) and loaded into each agarose gel well along with a ladder well 

containing either 2.5 μl GeneRuler 100 Bp Plus, FastRuler Low Range (Thermofisher, United 

States), or Quick-Load 1 kb DNA Ladder (New England Biolabs, United States) depending on 

estimated amplicon size. 

Agarose gels were run for 40-80 minutes at 6-8 V/cm, depending on estimated product size and 

agarose concentration. Agarose gels were visualised using transient ultraviolet (UV) illumination on 

the Gel Doc XR+ Gel Documentation System (BioRad, United States) and gel images were saved 

as both BioRad proprietary 1SC format and standard JPEG format with minimal compression. 
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2.4 Sanger sequencing 

2.4.1 PCR product clean-up 

PCR products generated for Sanger sequencing were cleaned using ExoSAP to remove unwanted 

single-strand sequences and residual dNTPs from the PCR reaction. ExoSAP was prepared by 

mixing Exonuclease I (New England Biolabs, United States) and Shrimp Alkaline Phosphatase (SAP; 

Sigma Aldrich, United States) enzymes at a ratio of 1:2, respectively. Each PCR product had 1 μl of 

ExoSAP added directly to the PCR reaction mixture. ExoSAP-treated reaction mixtures were 

incubated for 60 minutes at 37°C, followed immediately by an inactivating incubation of 80°C for 15 

minutes. 

2.4.2 Sanger sequencing termination reaction 

Sanger sequencing was performed using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems, United States). ExoSAP-purified PCR products were sequenced bi-directionally, 

sequencing both the forward and reverse strands, to improve alignment and sequencing quality 

where possible. Reaction mixtures consisted of 2 μl purified PCR product, 0.75 µl BigDye Terminator 

v3.1 Ready Reaction Mix, 1 μl primer (10 pmol; forward or reverse strand), 2µl 5X BigDye 

Sequencing buffer (Applied Biosystems, United States), and 4.25 µl nuclease-free water (Qiagen, 

United States). The reaction cycling conditions are given in 2.4.2 table 3. 
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2.4.2 Table 3 

Thermocycler conditions for BigDye termination sequencing reaction 

 

  

BigDye termination sequencing protocol 

96°C for 10 seconds 

X 25 cycles 50°C for 5 seconds 

60°C for 3 minutes 30 seconds 

Hold at 4°C  Prior to Isopropanol clean-up 
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2.4.3 Isopropanol clean-up and DNA precipitation 

Isopropanol clean-up was used as a sequence precipitation and clean-up method for removing 

unincorporated dyes and residual termination dNTPs left over from BigDye termination sequencing. 

To each Sanger sequencing reaction, 40µl of freshly prepared 75% v/v isopropanol (Sigma Aldrich, 

United States) was added and mixed gently by pipetting up and down twice. Reactions were then 

incubated at room temperature for 30 minutes and the subsequently centrifuged at 2092 relative 

centrifugal force (RCF) for 45 minutes. The reaction plate was then inverted onto absorbent paper 

and tapped to discard isopropanol, centrifuged for 30 seconds at 33 RCF, and left to air dry for 10 

minutes until all isopropanol has evaporated. DNA pellets were re-suspended in 20 µl of Hi-Di 

Formamide (Applied Biosystems, United States). 

2.4.4 Sequencing analysis 

Sanger termination sequences were loaded onto either a 3730 DNA Analyzer or 3130xl DNA 

Analyzer (Applied Biosystems, United States) where dye terminator sequences were separated by 

capillary electrophoresis and dye florescence was recorded for analysis. Fluorescence 

chromatograms were analysed using Sequencher v5.3 (Gene Codes Corporation, United States), 

aligning sequences to a reference sequence of each targeted variant ±500 base pairs extracted from 

UCSC, as described in section 2.3.1. 
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2.5 Pooled amplicon clean-up 

As part of chapter 3, normalisation of pooled long-range PCR amplicons of variable lengths was 

required prior to DNA library preparation for NGS sequencing. An efficient custom clean up method 

was developed in-house to remove unwanted DNA fragments and contaminants whilst retaining 

size-divergent pooled amplicons. Protocol is a hybridisation of the Agencourt AMPure XP PCR 

Purification Beads (Beckman Coulter, United States) and clean up protocol provided in Illumina 

TruSight Rapid Capture Sample Preparation Guide (Illumina, United States). Both systems 

mentioned above use the AMPure XP magnetic beads for the separation of DNA products (named 

“Sample Purification Beads” in the Illumina documentation). 

A volume of each pooled sample amplicon was mixed well with a pipette and added to a deep-well 

storage plate (minimum volume used was 10 µl as lower volumes resulted in issues with sample 

manipulation whilst in contact with magnetic beads). Subsequently, 1.8 volumes of AMPure XP 

magnetic beads (at room temperature and well mixed) were added to each pooled sample amplicon 

well, sealed with an adhesive plate seal, shaken at 507 RCF for one minute, and left to incubate for 

10 minutes at room temperature. 

The deep-well storage plate was spun briefly to ensure no sample was lost and placed onto a 

magnetic stand for 2 minutes. Whilst remaining on the magnetic stand, supernatant was carefully 

removed without disturbing the pellet, to each well 200 μl of freshly prepared 80% v/v ethanol (Sigma 

Aldrich, United States) was added and incubated at room temperature for 30 seconds after which 

the supernatant was removed. This process was repeated twice for a total of two 80% v/v ethanol 

washes. 

Any remaining ethanol was aspirated off using a 20 μl pipette and air dried at room temperature for 

a maximum of 5 minutes. The deep-well storage was removed from the magnetic stand and 40μl of 

nuclease-free water added to each pool sample amplicon well. Elution-bead mix was then shaken 

at 507 RCF for 1 minute. The deep-well storage plate was spun briefly to ensure no sample is lost 

and placed onto a magnetic stand for 2-10 minutes, with the eluate being subsequently transferred 

to a new labelled 96-well plate without disturbing the pellet. 
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Pooled sample concentrations were measured using the Invitrogen Qubit Broad Range DNA assay 

both before and after clean up to measure levels of DNA loss during the clean-up process (see 

section 2.2.1). Loss of DNA during clean-up is unavoidable using this method due to unbound DNA 

fragments. This protocol had to accommodate a broad range of DNA amplicon sizes – the rate loss 

that was seen typically 10-20% less than the original input (by total mass). Retention of all size 

ranges was confirmed by gel electrophoresis (5 mg/ml agarose gel at 6 V/cm for 60 minutes – See 

section 2.3.6). 
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2.6 DNA sequencing and library preparation 

Full details of manufacturer’s protocols are omitted for brevity but are available online 

(http://emea.support.illumina.com/array/protocols.html). 

2.6.1 Illumina Nextera XT Library preparation and sequencing 

Pooled amplicons underwent DNA library preparation using Illumina Nextera XT (Illumina, United 

States) following the manufacturer’s protocol. All samples were diluted to 5ng/μl and processed 

according to the manufacturer’s protocol. Pooled libraries were quantified by quantitative PCR and 

loaded onto an Illumina MiSeq Sequencer using Illumina MiSeq Reagent v.2 – 300 cycle Kit – paired 

end 150 bp (Illumina, United States). 

2.6.2 Illumina TruSight Cancer library preparation and sequencing 

Samples were prepared using the TruSight Cancer library prep kit (Illumina, United States) following 

the manufacturer’s protocol. All samples were diluted to 5ng/μl and processed according to the 

manufacturer’s protocol. Pooled libraries were quantified by quantitative PCR and loaded onto an 

Illumina MiSeq Sequencer using Illumina MiSeq Reagent v.2 – paired end 150 bp (Illumina, United 

States). 

2.6.3 Illumina TruSeq rapid exome library preparation and sequencing 

Samples were prepared using the TruSeq rapid exome library prep kit (Illumina, United States) 

following the manufacturer’s protocol. All samples were diluted to 5ng/μl and processed according 

to the manufacturer’s protocol. Pooled libraries were quantified by quantitative PCR and loaded onto 

an Illumina HiSeq 2500 Sequencer using Illumina HiSeq Reagent v.2 – paired end 150 bp (Illumina, 

United States). 
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2.6.4 Whole genome sequencing by Novogene 

Whole genome sequencing (WGS) data was generated externally by a third-party company 

Novogene (Beijing, China) from submitted blood-extract DNA. DNA was quantified and quality 

checked as described in section 2.2 prior to submission to WGS. DNA underwent library preparation 

using Illumina Nextera DNA library prep kit and sequenced on the Illumina HiSeq X platform. 

Sequencing output was returned in trimmed and de-multiplexed FASTQ format on an external hard 

drive and transferred to departmental hard drives after MD5 checksums. 

2.6.5 Library preparation labour contributions 

Library preparations of various results chapters discussed within this body of work were not solely 

generated by the author and as such contributions are described as accurately as possible below. 

Library preparation for section 2.6.1 were solely generated by the author and libraries were loaded 

into sequencing flow cells and onto the Illumina MiSeq platform by the stratified medicine core 

laboratory (SMCL) sequencing laboratory.  

Library preparations for section 2.6.2 were performed by Dr Hannah West, Dr Andrea Luchetti, and 

the author divided approximately 40%, 20%, 40% of the total libraries, respectively, and libraries 

were loaded onto sequencing flow cells and onto both Illumina MiSeq and Illumina HiSeq 2500 

platforms by the SMCL sequencing laboratory. 

Library preparations for section 2.6.3, including the sequencing flow cell and Illumina HiSeq 2500 or 

Illumina HiSeq 4000 loading were solely performed by the SMCL sequencing laboratory. 
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2.7 Generalised sequencing pipeline 

 

The diagram visualises the main steps and processes involved in the generation of candidate SNV 

variants. Full details of the sequencing pipeline scripts and runtime parameters are in appendix 

section 9.1. 
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2.8 Variant filtering and annotation 

Variant filtering of NGS data for all chapters was performed using a variant filtering bash script 

(variant_filtering.sh) and an accompanying R script (variant_filtering.R) utilising VCFtools (317). An 

overview of the variant filtering steps are provided here and the full script is provided in appendix 

section 9.1.2. 

Using VCFtools variant sites were filtered to the filter cut-offs described in the summary table below 

unless otherwise specified in the results chapters directly. Per site filters included minimum mean 

read depth across a site, maximum cohort minor allele frequency, site QUAL metric, and maximum 

missingness. Per genotype filters were minimum genotype quality. Minimum genotype quality filters 

were applied prior to maximum missingness as per genotype filters set failed genotypes to missing.  

 

Sites retained after the previously described filtering criteria were left aligned and normalised by 

GATK function ‘LeftAlignAndTrimVariants’ to split multi-allelic sites and present minimum 

representative calls for indels (318)(version 3.7-0-gcfedb67). Variants were annotated using 

Annovar (319) with the following databases; refGene, 1000g2015aug_all, exac03, avsnp150, 

dbnsfp35a, clinvar_20180603, cosmic70, nci60, dbscsnv11, and updated annotation databases 

were used when available.  

Minimum mean 
read depth 

Minimum genotype 
quality 

Maximum minor 
allele frequency 

Maximum 
missingness 

Site 
QUAL 

> 10 > 30 < 0.05 < 0.2 > 100 
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The annotated variants were parsed by the variant_filtering.R script and were then filtered by 

genomic feature (restricted to “exonic”, “exonic;splicing”, or “splicing”) and removed variants 

classified as “synonymous” or intergenic, specified by “unknown”. Variants were filtered by global 

minor allele frequencies present in both the 1000 genomes project (320) and ExAC (321) cohorts. 

Variants were retained if present at less than 1% (0.01 allelic frequency) using an ‘AND’ selection, 

specifying variants should be present at less than 1% in both sets to pass filtering criteria. Variants 

occurring with heterozygous call rates greater than 15% of the total cohort were removed as they 

were considered to be either technical artefacts or undocumented common SNPs. Lastly, allelic 

depth information was extracted for each genotype and alternative allelic depth ratios were 

calculated. Sites in which no single non-reference genotype had an alternative allelic ratio (i.e. 

percentage of supporting reads) great than 0.3 were removed. 

In silico predictive metrics where mentioned in the text refer to the use of Sift (322), PolyPhen (323), 

or CADD (324) applied either independently or collectively. Concordance for a variant being likely 

pathogenic between the software predictions was defined by a prediction of ‘likely pathogenic’ by 

Sift and PolyPhen and a CADD score greater than 25. Concordance for a variant being likely benign 

between the software predictions was defined by a prediction of ‘tolerated’ or ‘benign’ by Sift and 

PolyPhen and a CADD score lower than 10. 

American College of Medical Genetics (ACMG) variant classification criteria (325) were automatically 

applied utilising the default parameters of InterVar (version 2.0.2 20180827)(326) and Annovar (as 

previously discussed). InterVar does not accept or output multi-sample VCF files so was provided a 

pseudo single sample VCF containing all variants present in a given multi-sample VCF with all 

genotypes set to heterozygous. Indels annotated by InterVar were right shifted so post-processing 

was used to reapply left shift and normalisation in InterVar results files. 

  



 

92 
 

2.9 Oxford Nanopore Technologies sequencing 

2.9.1 Sample preparation and long-range PCR amplicon 

The sample used in Nanopore long read sequencing was prepared and quality controlled as 

described in section 2.2. PCR products for the specific reactions described in the appropriate 

chapters were performed as described in section 2.3.2 and in accordance with any additional 

alterations specified in the chapter 6 materials and methods section referring to this portion of the 

materials and methods chapter (section 6.2.5). 

2.9.2 Nanopore sequencing library preparation 

PCR amplicons were quantified to between 1-1.5 μg of total DNA, as described in section 2.2 and 

libraries were generated using the manufacturer’s protocol (1D Amplicon by ligation SQK-LSK108), 

with adaptation for reduced input fragment size, and loaded onto a FLO-MIN106 flow cell and 

sequenced on a MinION sequencing platform utilising the MinION control software (version 18.12.9). 

Sequencing was run for 1 hour and data was output in FAST5 format. 

2.9.3 Nanopore bioinformatics 

FAST5 read data from Nanopore sequencing was base called using the ONT Albacore Sequencing 

Pipeline Software (version 2.3.3), generating both base called FAST5 output and FASTQ output 

files. FAST5 and FASTQ data was indexed using Nanopolish (version 0.10.2) (327). Sequencing 

quality was assessed by custom R script nano-qc.R, poretools (version 0.6.0) (328), and NanoStat 

(329). Long read FASTQ data was aligned to GRCh38 using Minmap2 (version 2.10-r761) (330) 

using ONT sequencing parameters. Full ONT Nanopore sequencing pipeline nano-pipe.sh is 

included in appendix section 9.1.3. 
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3.0 Sequencing of candidate genes by Sanger and targeted next 

generation sequencing approaches 
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3.1 Introduction 

Current clinical practice utilises targeted sequencing, either using next generation sequencing (NGS) 

panels such as cancer gene panels or ‘clinical’ exomes, or Sanger sequencing for specific genes 

that have been associated with known diseases. The primary benefits of using Sanger sequencing 

and genomic loci-limited NGS sequencing over more comprehensive NGS sequencing methods is 

both a decrease in financial burden, a reduction in the labour required to perform data generation 

and analysis, and an increase in the efficiency of accurate variant identification and assessment by 

reducing the scope of data generated. Genes that are frequently somatically altered in sporadic RCC 

tumours might be candidate targets for inherited disease. This is exemplified by the VHL TSG (99) 

and most recently by PBRM1 and BAP1 which have been implicated in familial and sporadic RCC 

(263,268,331). Assessment of these candidates allow for the selection of additional targets for 

sequencing that are related to the pathways known to be altered in RCC (98). Here, a subset of 

genes related to RCC predisposition or development were targeted by both Sanger and NGS 

techniques in order to identify potential variants of interest in genes associated with RCC. 

3.1.1 – Candidate gene - CDKN2B 

Cyclin-dependent kinase inhibitor 2B (CDKN2B) is a two-exon gene which encodes the protein 

p15INK4B (i.e. Cyclin-dependent kinase 4 inhibitor B) with both a canonical 138 amino acid transcript 

(NM_004936) and a shorter 78 amino acid transcript (NM_078487). CDKN2B shares its genomic 

positions with Cyclin-dependent kinase inhibitor 2B (CDKN2A), which have overlapping loci on 

chromosome 9 (chr9:22002903-22009363 and chr9:21967752-21995301, respectively), along with 

a third associated protein, p14ARF, which is encoded by CDKN2A utilising an alternative reading 

frame.  
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As its namesake suggests, p15INK4B acts as an inhibitor of cyclin-dependent kinase 4 (CDK4), a 

protein associated with cell cycle progression and regulation of proliferation in a protein complex with 

cyclin-dependent kinase 6. CDK4 or CDK6 bind with Cyclin D1 (CD1) and function in the 

phosphorylation of retinoblastoma (RB) proteins which results in the upregulation of gene 

transcription via E2F proteins. Both p15INK4B and p16INK4A act to bind CDK4/CDK6-CD1 complexes 

and inhibit the phosphorylation of RB proteins, which acts to decrease the activity of E2F transcription 

factors (332,333). While the function of p15INK4B and p16INK4A have clear overlaps they are not 

functionally redundant and p15INK4B has distinct functions as a tumour suppressor in the absence of 

p16INK4A (334). 

CDKN2A is reported to be frequently altered somatically across all RCC histological subtypes via 

either promotor hypermethylation or deletion of 9p, correlated with poorer survival (274) and TCGA 

data suggests copy number losses in RCC cases affect both CDKN2A and CDKN2B similarly (25). 

Though inactivating variants in CDKN2B are rare somatically, with only a single inactivating variant 

reported across all RCC samples in TCGA (25), hypermethylation of CDKN2B has been 

demonstrated in RCC and other cancers, including acute myeloid and lymphoid leukaemia (335), 

parathyroid adenomas (336), and colon cancer (337). Additionally, germline variants in CDKN2B 

(amongst other cyclin-dependent kinase inhibitors) were associated with predisposition to multiple 

endocrine neoplasia type 1 (MEN1), though the occurrence rate was low (338). 

A previous study identified a truncating variant in an individual with familial clear cell RCC, and 

subsequent sequencing of a cohort of individuals with features of inherited RCC, without pathogenic 

variants in known RCC predisposition genes, resulted in candidate deleterious variants in CDKN2B 

in up to 5% of assessed samples (95% CI, 0.21%–9.43%) with a significant enrichment compared 

to dbSNP (0.2%) (266). Given the identification of CDKN2B as a candidate familial RCC cohort, 

replication of these findings in an independent RCC cohort would support the hypothesis that 

germline inactivation variants in CDKN2B is associated with RCC predisposition. 
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3.1.2 – Candidate gene - EPAS1 

EPAS1 (also known as HIF2-α) is an enticing candidate gene for potential predisposition given its 

role in the HIF-driven hypoxia response (141) and direct targeting by VHL-dependent ubiquitination 

(107,138). EPAS1 is a 16 exon coding gene at 2p21 which encodes the protein endothelial PAS 

domain-containing protein 1 (EPAS1). Under hypoxic conditions, EPAS1 together with HIF1A and 

HIF1B act to upregulate angiogenic pathways and increase angiogenesis and cellular growth 

through HRE-linked transcription (See 1.4.2 VHL disease).  

Like many oncogenes, truncating or inactivating variants are not predicted to be pathogenic as they 

do not result in constitutional protein activation or increased transcriptional expression. Publications 

regarding EPAS1 have demonstrated that missense mutations in exons 9 and 12 in PCC/PGL 

tumours are oncogenic (339,340), with EPAS1 variant carrying tumours having significantly higher 

EPAS1 expression. In a subset of these cases, the variants were also shown to be present in the 

germline indicating potential predisposition (339). These exons appear to be mutational hotspots, 

co-localising to the hydroxylation site and reducing pVHL binding affinity, respectively, resulting in 

constitutional activation of EPAS1 (341,342). GWAS studies in RCC have also demonstrated the 

presence of a complex risk locus surrounding EPAS1, suggesting potential linkage to functional 

variants in EPAS1 which may increase an individual’s risk for RCC (108,109). 

Given the distinct genetic overlap between RCC and PCC/PGL through conditions such as VHL 

disease, SDH-deficient tumours, and FH-related predisposition, an EPAS1 genotype association 

with PCC/PGL suggested EPAS1 as a candidate for inherited RCC cases and as such exons 9 and 

12 of EPAS1 were selected as candidate sequencing regions in this series of patients with features 

of possible inherited RCC. 
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3.1.3 – Candidate genes - KMT2C and KMT2D 

Somatic alterations frequently found in sporadic cases of RCC may indicate potential sources of 

undiscovered heritability. Large scale sequencing projects such as TCGA (25), amongst others, 

provide reliable data about which genes are frequently somatically altered in specific cancer types. 

Lysine methyltransferase 2C and 2D (KMT2C and KMT2D), are genes that are altered in sporadic 

RCC at frequencies of 5% and 3% respectively in TCGA renal cancer data set (25), with alteration 

rates in chromophobe RCC up to 15%. Investigations into frequently altered somatic genes may 

resolve the presence of germline alterations in those same genes, as is the case with genes such 

as VHL, PBRM1, BAP1, PTEN, and MET. 

Both KMT2C and KMT2D are large coding genes situated at 7q36.1 and 12q13.12, respectively. 

KMT2C is a 59-exon gene encoding a 4,911 amino acid protein and KMT2D is a 54 exon gene 

encoding a 5,537 amino acid protein. Both genes encode Histone lysine-specific N-

methyltransferase enzymes, which primarily act to catalyse the addition of methyl groups to lysine-

4 residues of histone H3, aptly named KMT2C and KMT2D (343). Both KMT2C and KMT2D are 

frequently mutated in multiple cancers, demonstrating both an array of copy number gains, losses 

and SNVs (25). Originally, they were termed MLL2/4 and MLL3 (corresponding to KMT2D and 

KMT2C, correspondingly) due to being part of a family of proteins known as mixed-lineage leukaemia 

(MLL) associated with multiple cancers, including leukaemia (343). KMT2C and KMT2D form protein 

complexes with a series of common, and complex-specific proteins, including KDM6A, a lysine-

specific demethylase dysregulated in clear cell RCC (344,345) and function in histone regulation 

through the addition of H3K4me1 groups to histones particularly in adipogenesis (346), though 

exactly how this promotes tumourigenesis has not been well established. Several studies have 

suggested H3K4me1 groups allow for open chromatin access to enhancer regions of oncogenic 

transcripts, whereas alternative hypothesises suggest H3K4me1 modifications block DNA 

methylation suggesting a loss of transcriptional repression via promotor methylation (347,348). 

KMT2C and KMT2D also appear to have tumour suppressor functions through co-activation of p53 

in DNA repair via the ASCOM protein complex (349). 
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Given that PBRM1 and BAP1 are histone modifying and chromatin remodelling genes (350,351) 

frequently altered in somatic RCC (274) and have been recently associated with RCC predisposition 

(263,331), assessing other histone modifying or chromatin remodelling genes such as KMT2C or 

KMT2D may uncover new associations in individuals with predisposition to RCC. Finally, 

unpublished data from whole exome sequencing data identified a nonsense variant in KMT2C 

(NM170606.2: c.2263C>T: p.Gln755Ter: rs201234598) in a blood sample from a patent with familial 

RCC in the absence of any other variants in RCC predisposing genes, raising the possibility that 

germline variants in KMT2C or KMT2D might predispose to RCC. 

Given these factors, sequencing of the full coding region of both KMT2C and KMT2D was performed 

to assess for the presence of pathogenic variants that may confer predisposition. Given the total size 

of the targeted regions standard Sanger sequencing was considered inappropriate and as such 

amplicon-based next generation short read sequencing was utilised to achieve complete coverage 

of the coding regions of both genes. 
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3.1.4 Aims 

 To validate findings of pathogenic CDKN2B variants being associated with RCC 

predisposition in individuals with features of inherited RCC 

 Assess hotspot regions of EPAS1 to identify activating variants which may predispose 

individuals to RCC in a manner similar to that seen in PCC/PGL 

 Evaluate the coding regions of KMT2C and KMT2D for pathogenic variants which may 

predispose individuals to RCC utilising long range PCR and NGS sequencing methods 
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3.2 Materials and methods 

3.2.1 Samples 

Samples selected were individuals with RCC who had been referred to research as having features 

of heritability, as described in section 2.1.3. A total of 166 individual germline whole blood DNA was 

utilised for targeted sequencing of CDKN2B and EPAS1 exon 9 and exon 12. For NGS sequencing 

of KMT2C and KMT2D, a subset of 96 individuals were selected for sequencing from the primary 

cohort of 166 due to issues with sequencing relating to both capacity and economic constraints. 

3.2.2 Sanger sequencing primer design and co-ordinates 

Primers for both standard PCR reactions and long-range PCR reactions were designed as described 

in the main materials and methods (sections 2.3.1). PCR primers for all experiments in this chapter 

are reported in appendix section 9.2.1. 

3.2.3 PCR reactions and Sanger sequencing 

PCR reactions, bi-directional Sanger sequencing, and Sanger sequencing was performed as 

described in main material and methods section 2.3.2, section 2.4. Failed reactions were repeated 

with additional optimisation steps to improve PCR reaction parameters and sample DNA underwent 

quality control to assess potential issues as described in main material and methods (section 2.2). 

Reactions were repeated a maximum of 3 times. 

3.2.4 Long range PCR 

Long range PCR reactions were performed as described in section 2.3.5 of materials and methods 

as input amplicons for next generation sequencing. Long range PCR primers were optimised 

iteratively to a maximum of three iterations, after which regions were designated as poorly optimised 

and not included in long range PCRs downstream. Failed reactions were re-optimised and repeated 

an additional two times prior to being assigned ‘failed’ status. 
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3.2.5 Illumina Nextera XT library preparation for amplicon sequencing 

DNA library preparation for KMT2C/KMT2D long range amplicons, including a custom developed 

amplicon normalisation method, was performed as described in the main materials and methods 

(section 2.5 and 2.6.1). Three individual libraries were prepared for 16 pooled samples for batch 1 

and 2, and 21 samples for batch 3. Batches 1 and 2 were performed using a standard MiSeq flow 

cell whereas batch 3 utilised a MiSeq Nano flow cell. Library loading on to the Illumina MiSeq was 

performed by the SMCL sequencing service. 

3.2.6 Primary bioinformatics 

Primary bioinformatics from BCL to VCF was performed as described in the generalised pipeline in 

the material and methods (sections 2.7) from FASTQ to VCF, BCF to FASTQ and sample de-

multiplexing was performed by the SMCL sequencing service. 

3.2.7 Variant filtering, annotation, and classification 

Variant quality filtering, feature annotation and classification was performed as described in the main 

materials and methods (sections 2.8). 

3.2.8 Sequence identity comparison 

Sequence identity comparison was performed using Emboss Matcher pair-wise sequence alignment 

algorithm to assess sequence similarities (352). FASTA sequences were downloads from NCBI 

(https://www.ncbi.nlm.nih.gov/gene/) and sequence identity compared. Conserved regions were 

generated using coordinate positions of matching sequence regions and converted to BED file format 

prior to plotting. Command line details are provided within the pair-wise sequence alignment results 

in appendix section 9.2.2. 

3.2.9 Statistics 

Fishers exact was performed using the fisher.test() function in stat package using R (version 3.5). 

Binomial proportions and confidence intervals were calculated using bionom.test() in the stats 

package using R (version 3.5). 

  

https://www.ncbi.nlm.nih.gov/gene/
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3.3 Results 

3.3.1 Targeted Sanger sequencing - PCR product generation 

A cohort of 166 RCC cases were selected for targeted Sanger sequencing of the coding regions of 

CDKN2B and exons 9 and 12 of EPAS1. DNA was amplified to cover all targeted regions described 

prior, two amplicons were used to cover the two exons from CDKN2B and one amplicon for EPAS1 

exon 9 and 12 each (See 3.3 - Table 1). In total 1328 PCR reactions were performed and amplicons 

were successfully generated for 92.7% (154/166), 97.0% (161/166), 80.7% (134/166), and 97.6% 

(162/166) samples for amplicons CDKN2B-1, CDKN2B-2, EPAS1-exon9 and EPAS1-exon12, after 

PCR product generation was confirmed by agarose gel electrophoresis (3.3 - Figure 1 - Example 

gel). Sequencing was generated by Sanger sequencing for successful amplicons of samples. The 

mean success rate for uni-directional and bi-directional sequencing for all targets was 92.0% and 

80.6%, respectively, where uni-directional sequencing was defined as the successful analysis of 

either the forward or reverse Sanger sequencing trace.  

Overall, only 1.2% (2/166) samples failed to generate any usable PCR products for Sanger 

sequencing, 1.8% (3/166) of samples only generated uni-directional sequencing for EPAS1 exon 12, 

4.2% (7/166) of samples only generated usable sequencing for CDKN2B-2 and EPAS1 exon 12, 

1.2% (2/166) of samples generated sequencing for all amplicons except for EPAS1 exon 12, and a 

larger subset of 12.0% (20/166) failed to generate sequencing for EPAS1 exon 9. In total, 79.5% 

(132/166) and 35.5% (59/166) of samples had uni-directional and bi-directional sequencing, 

respectively, for all amplicons for targets of CDKN2B, EPAS1 exon 9, and EPAS1 exon 12. A 

summary of Sanger sequencing product and trace generation is provided graphically in 3.3 - Figure 

2. 
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3.3 - Table 1 

Amplicons used in targeted Sanger sequencing analysis of CDKN2B and EPAS1 exon 9 & 12 

 

3.3 - Figure 1 

An example of an agarose gel used to confirm the generation of a PCR amplicon for each target 

prior to performing Sanger sequencing. 

  

Amplicon Target region Amplicon size (bp) Primer set name 

CDKN2B-1 Exon 1 597 CDKN2B-1B-PS 

CDKN2B-2 Exon 2 600 CDKN2B-2A-PS 

EPAS1-exon9 Exon 9 565 ORF-EPAS1-Ex9-rep 

EPAS1-exon12 Exon 12 829 ORF-EPAS1-Ex12-rep 
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3.3 – Figure 2 

Schematic heat map-style representation of amplicon sequencing visualising successfully analysed 

Sanger sequencing traces. Heat map is contiguous but split into three sections for clarity. X-axis is 

defined by both Amplicon and strand direction (Referred to by ‘F’ and ‘R’ columns). Green cell 

colouration indicates a trace was successfully analysed whereas red cell colouration indicates a 

trace failed to be analysed.  
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3.3.2 Targeted Sanger sequencing – Variant analysis 

Sanger sequencing traces (bi-directional where available) were aligned to reference sequences for 

the corresponding genomic regions. Across the 164 samples assessed with viable Sanger data, 

variants were identified in 21 samples (12.7%), no sample carried more than a single variant, and 

variants were distributed across the targeted regions with a majority of samples carrying variants in 

EPAS1 exon 12 (CDKN2B = 2, EPAS1 exon 9 = 2, EPAS1 exon 12 = 17)(Sanger traces shown in 

3.3 - Figure 3). Most variants occurred more than once across the sample set, with only 5 unique 

sites altered, 1 in CDKN2B, 2 in EPAS1 exon 9, and 2 in EPAS1 exon 12 (See 3.3 - Table 2). Of the 

identified variants, 2 were classified as common SNPs, occurring in gnomAD (353) at an allele 

frequency of more than 1%. Remaining variants were assessed for pathogenicity based on manual 

annotation of criteria including functional consequence, clinical reporting, and in silico predictive 

metrics. Two individuals carried 1 variant in CDKN2B and two individuals carried variants in EPAS1 

exon 9. Filtered variants, including informative annotation, are described in 3.3 - Table 3. 

EPAS1 exon 9 variants were present in 1.49% (2/134) individuals with available sequence 

information. The two variants present in EPAS1 exon 9 (NM_001430:c.1104G>A: p.Met368Ile and 

NM_001430: c.1121T>A: p.Phe374Tyr) are flagged as likely benign according to ClinVar 

submissions, VUS and likely benign by ACMG interpretation, and in-silico tools SIFT, PolyPhen and 

CADD are in consensus that these missense alterations are unlikely to result in protein dysfunction. 

The remaining variant identified in exon 2 of CDKN2B in two individuals (NM_004936: c.256G>A: 

p.Asp86Asn) occurs at a minor allele frequency 1.22E-03 in the gnomAD dataset and falls within a 

functional domain and in-silico predictive metrics used suggest the variant is detrimental. The 

p.Asp86Asn variant is identical to that reported in the original report regarding RCC predisposition 

related to CDKN2B variants (266) which occurred at a rate of 1.19% (1/84; 95% CI 0.03-6.46%). 

Compared to this series, 1.24% (2/161; 95% CI 0.15-4.42%), the variant distributions are not 

statistically different (fishers exact; p = 1.00).  
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3.3 - Figure 3 

Sanger traces of identified variants from targeted Sanger sequencing – Orange arrows indicate the 

position of the variant and each Sanger trace represents a single individual.  



   3
.3

 -
 T

a
b

le
 2

 

T
a
b
le

 o
f 
v
a
ri

a
n
ts

 i
d
e

n
ti
fi
e
d
 f

ro
m

 S
a
n
g

e
r 

s
e
q
u

e
n
c
in

g
 d

a
ta

, 
p
re

d
ic

te
d
 s

e
q

u
e

n
c
e
 a

lt
e

ra
ti
o
n
s
, 

g
lo

b
a

l 
m

in
o
r 

a
lle

le
 f

re
q
u
e

n
c
ie

s
 (

g
n

o
m

A
D

) 
a
n

d
 a

lle
le

 c
o
u
n

ts
 p

e
r 

v
a
ri
a
n
t 

a
c
ro

s
s
 t
h
e
 s

e
ri

e
s
. 

 3
.3

 –
 T

a
b

le
 3

 

T
a
b
le

 o
f 
v
a
ri

a
n
ts

 i
d
e

n
ti
fi
e
d
 i
n
 S

a
n
g
e
r 

s
e

q
u
e

n
c
e
d
 r

e
g
io

n
s
 p

a
s
s
in

g
 g

lo
b
a

l 
m

in
o
r 

a
lle

le
 f

re
q
u

e
n
c
y
 (

g
n
o

m
a
d
) 

fi
lt
e
ri
n
g
 (

A
F

<
0
.0

1
) 

w
it
h
 a

d
d
it
io

n
a
l 
a
n
n

o
ta

ti
o

n
 

in
fo

rm
a
ti
o
n
 f

o
r 

a
ff

e
c
te

d
 p

ro
te

in
 d

o
m

a
in

s
 a

n
d
 i
n

-s
ili

c
o
 p

re
d
ic

ti
o
n
s
. 

  C
h

r 
P

o
s
 

R
e
f 

A
lt

 
rs

ID
 

S
Y

M
B

O
L

 
C

o
n

s
e
q

u
e

n
c
e
 

T
ra

n
s

c
ri

p
t 

E
X

O
N

 
C

D
S

 
p

o
s

it
io

n
 

A
A

 
p

o
s

it
io

n
 

g
n

o
m

A
D

 
A

F
 

A
ll

e
le

 
C

o
u

n
t 

c
h
r2

 
4
6
3
7
6
6
0
8

 
G

 
A

 
rs

6
1
7
5
7
3
7
5
 

E
P

A
S

1
 

m
is

s
e
n
s
e
 

N
M

_
0
0
1
4
3
0

 
e
x
o
n
 9

 
c
.1

1
0
4
G

>
A

 
p
.M

e
t3

6
8
Il
e
 

0
.0

0
0
8
0
8
1
 

1
 

c
h
r2

 
4
6
3
7
6
6
2
5

 
T

 
A

 
rs

1
5
0
7
9
7
4
9
1

 
E

P
A

S
1
 

m
is

s
e
n
s
e
 

N
M

_
0
0
1
4
3
0

 
e
x
o
n
 9

 
c
.1

1
2
1
T

>
A

 
p
.P

h
e
3
7
4
T

y
r 

0
.0

0
4
0
0
8
 

1
 

c
h
r2

 
4
6
3
8
0
5
0
5

 
C

 
T

 
rs

4
1
2
8
1
4
6
9
 

E
P

A
S

1
 

s
y
n
o
n
y
m

o
u
s
 

N
M

_
0
0
1
4
3
0

 
e
x
o
n
 1

2
 

c
.1

8
3
3
C

>
T

 
p
.A

la
6
1
1
A

la
 

0
.0

1
0
2
3
 

5
 

c
h
r2

 
4
6
3
8
0
5
8
0

 
T

 
C

 
rs

3
5
6
0
6
1
1
7
 

E
P

A
S

1
 

s
y
n
o
n
y
m

o
u
s
 

N
M

_
0
0
1
4
3
0
 

e
x
o
n
 1

2
 

c
.1

9
0
8
T

>
C

 
p
.A

s
p
6
3
6
A

s
p
 

0
.0

2
3
6
 

1
2
 

c
h
r9

 
2
2
0
0
6
1
4
8

 
C

 
T

 
rs

1
4
8
4
2
1
1
7
0

 
C

D
K

N
2
B

 
m

is
s
e
n
s
e
 

N
M

_
0
0
4
9
3
6

 
e
x
o
n
 2

 
c
.2

5
6
G

>
A

 
p
.A

s
p
8
6
A

s
n

 
0
.0

0
1
2
2
 

2
 

C
h

r 
P

o
s
 

R
e
f 

A
lt

 
rs

ID
 

S
Y

M
B

O
L

 
C

o
n

s
e
q

. 
T

ra
n

s
c
ri

p
t 

E
X

O
N

 
C

D
S

 
p

o
s

it
io

n
 

A
A

 
p

o
s

it
io

n
 

S
IF

T
 

P
o

ly
P

h
e

n
 

C
A

D
D

 
p

h
re

d
 

In
te

rp
ro

 
d

o
m

a
in

 
g

n
o

m
A

D
 

A
F

 
C

li
n

V
a
r 

c
h
r2

 
4
6
3
7
6
6
0
8

 
G

 
A

 
rs

6
1
7
5
7
3
7
5
 

E
P

A
S

1
 

m
is

s
e
n
s
e
 

N
M

_
0
0
1
4
3
0
 

e
x
o
n
 9

 
c
.1

1
0
4
G

>
A

 
p
.M

e
t3

6
8
Il
e
 

T
 (

0
.3

1
) 

B
 (

0
.0

2
) 

1
4
.6

2
 

- 
0
.0

0
0
8
0
8
1
 

lik
e
ly

 
b
e
n
ig

n
 

c
h
r2

 
4
6
3
7
6
6
2
5

 
T

 
A

 
rs

1
5
0
7
9
7
4
9
1

 
E

P
A

S
1
 

m
is

s
e
n
s
e
 

N
M

_
0
0
1
4
3
0
 

e
x
o
n
 9

 
c
.1

1
2
1
T

>
A

 
p
.P

h
e
3
7
4
T

y
r 

T
 (

0
.1

1
) 

B
 (

0
.0

6
) 

1
6
.3

 
- 

0
.0

0
4
0
0
8
 

lik
e
ly

 
b
e
n
ig

n
 

c
h
r9

 
2
2
0
0
6
1
4
8

 
C

 
T

 
rs

1
4
8
4
2
1
1
7
0

 
C

D
K

N
2
B

 
m

is
s
e
n
s
e
 

N
M

_
0
0
4
9
3
6
 

e
x
o
n
 2

 
c
.2

5
6
G

>
A

 
p
.A

s
p
8
6
A

s
n

 
D

 (
0
.0

0
) 

P
ro

b
 (

0
.9

9
) 

3
2
 

A
n
k
y
ri
n
 

re
p
e
a
t 

0
.0

0
1
2
2
 

u
n
c
e
rt

a
in

 
s
ig

n
if
ic

a
n
c
e
 



 

109 
 

3.3.3 KMT2C & KMT2D targeted sequencing – Long range PCR product generation 

For the targeted sequencing of KMT2C and KMT2D, long range HPLC-purified primer pairs were 

designed to cover the all exons and a proportion of intronic regions of both genes of both genes, 

encompassing exons 1-58 of KMT2C and 1-54 of KMT2C for a total targeted sequencing region size 

of 337 Kb. Amplicons were rejected if they failed to generate distinct or single amplicons and 

application of this filtering criteria resulted in no available coverage of 16/112 exons (14.2%) (See 

3.3 - Table 4). Agarose gel containing all optimised long-range PCR amplicons is shown in 3.3 - 

Figure 4. 

For the remaining optimised primer pairs, long range PCR amplification was carried out across 96 

samples, totalling 1824 long range PCR reactions. After repeating long range PCRs, a total of 82.8% 

of reactions successfully generated suitable PCR products for library preparation. The number of 

successful amplicons was higher in KMT2D amplicons than KMT2C amplicons (87% compared to 

81%), with the worst performing amplicon KMT2C exon 53-58 having 54.2% success rate and the 

best performing amplicon KMT2D exon 12-14 successfully generating long range amplicons in 

94.8% of samples (See 3.3 - Figure 5).  

Samples with complete sets of amplicons were batched into libraries for sequencing utilising Illumina 

NexteraXT kit as described in the methods (Section 3.2). Batch 1 and 2 consisted on amplicons for 

both KMT2C and KMT2D whereas batch 3 only contained amplicons for KMT2D due to 

complications discussed later in this chapter. 
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3.3 - Figure 4 

Agarose gel on control genomic DNA for all 19 viable long range PCR amplicons 

 

3.3 - Table 4 

Details of primer optimisation process detailing reaction requirements for long range PCR and 

exclusion criteria 

  

Gene Exon Covered Optimisation 
Product Size 

(bp) 
Annealing Temp. 

(°C) 
DNA Conc. (ng/μl)  Notes 

KMT2C Exon 3 PASS 7854 61 10  

KMT2C Exon 4 - 6 PASS 7457 60 10  

KMT2C Exon 7 PASS 5668 61 10  

KMT2C Exon 15 - 16 PASS 7243 61 10  

KMT2C Exon 17 - 18 PASS 4806 59 10  

KMT2C Exon 19-20 PASS 6219 60 10  

KMT2C Exon 21 - 23 PASS 8008 60 10  

KMT2C Exon 24 - 27 PASS 9375 59 10  

KMT2C Exon 32 - 37 PASS 9205 59 10  

KMT2C Exon 38 - 41 PASS 9776 58 10  

KMT2C Exon 45 - 52 PASS 9169 58 10  

KMT2C Exon 53 - 58 PASS 9896 62 10  

KMT2C Exon 59 PASS 8076 59 10  

KMT2D Exon 1 - 11 PASS 6579 59 10  

KMT2D Exon 12 - 14 PASS 1623 59 10  

KMT2D Exon 15 - 18 PASS 1518 57 10  

KMT2D Exon 19 - 34 PASS 8433 59 10  

KMT2D Exon 35 - 42 PASS 5064 62 10  

KMT2D Exon 43 - 54 PASS 11,150 59 10  

KMT2C Exon 1 FAIL 7909 NA NA Multiple Bands 

KMT2C Exon 8-9 FAIL 7826 NA NA Multiple Bands 

KMT2C Exon 10-14 FAIL 7986 59 10 Multiple Bands 

KMT2C Exon 42-44 FAIL 9047 58 10 Multiple Bands 

KMT2C Exon 2 FAIL 7950 60 10 Multiple Bands 

KMT2C Exon 28 - 31 FAIL 5512 58 10 Wrong Product size 
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3.3 - Figure 5 

Schematic heat map representation of long-range PCR amplicon generation across 96 samples. 

Columns represent individual amplicons and rows correspond to samples. Numeric values on the x 

and y axis are completion percentages for each row/column/group. Green colouration indicates 

success and red indicates failure. 
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3.3.4 KMT2C & KMT2D targeted sequencing – Library preparation and quality control 

Across each batch, the mean number of reads successfully aligned to human genome build GRCh38 

was 99.87% (SD=0.06), 99.78% (SD=0.20), and 98.92% (SD=1.29) and estimates of PCR 

duplicates were calculated with a mean value of 14.3% (range 8.30-17.5; SD=2.52%), 20.7% (range 

10.5-31.2%; SD=4.99), and 3.16% (range 1.5-5.3%; SD=1.06) for batches 1-3, respectively. 

Significant differences were found in PCR duplicate rates across batches (Kruskal-Wallis rank sum 

test; p=8.68E-10) but was solely related to input amplicons used across batches. 

On-target sequencing rates were calculated based on the number of non-PCR duplicate reads 

intersecting within the genomic span of KMT2C and KMT2D. For batches 1-3, the on-target 

sequencing rates were 63.3% (SD=3.98), 60.3% (SD=5.11), and 89.1% (SD=3.81) of reads aligning 

to either the genomic regions of KMT2C or KMT2D, respectively. Significant differences in on-target 

alignment were seen between batches 1-2 and batch 3 (Kruskal-Wallis rank sum test; p=4.10E-09). 

Mean coverage across targeted exonic regions was 353 (SD=63.2), 435 (SD=72.8), and 40.0 

(SD=5.15) for batches 1-3, providing adequate coverage for variant calling. As mentioned previously, 

batch 3 was sequenced on a lower throughput sequencing flow cell and as such has lower mean 

coverage compared to batches 1 and 2. Overall sequencing metrics were deemed to be adequate 

for variant assessment given the sequence coverage levels. High levels of off-target sequence 

alignment were noted, particularly in batch 1 and 2. Sequence alignment and quality control metrics 

are shown in 3.3 - Figures 6-8 with additional sequencing statistics provided in appendix section 

9.2.3. 
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3.3.5 KMT2C & KMT2D targeted sequencing – Variant analysis 

Variant calling was performed as described in material and methods section and called a total of 

23,644 variants prior to filtering and quality control. After filtering called variants for depth, QUAL, 

and genotype quality a total of 1,773 variants were retained. Missingness filters were not applied 

due to no sequencing data being available for KMT2C in 39.6% of samples due to constraints applied 

to library batch 3. 

Variants were annotated and further filtered as described in the methods and a total of 18 sites 

across 14 individuals were retained. After filtering for variants within the span of the coding region of 

KMT2C and KMT2D, 7 variants in 6 individuals were kept, with the remaining proportion being called 

in off-target regions. Variants were functionally annotated utilising Annovar and assessed for 

pathogenicity (See 3.3 Table 5). All variants identified were missense variants, 1 in KMT2C and 6 in 

KMT2D. Of the 7 variants identified in the coding regions of KMT2C or KMT2D, 3 variants were 

classified as variants of unknown significance (VUS) and 4 were classified as likely benign by ACMG 

criteria (325). No variants identified were classed as known pathogenic variants and only missense 

variant p.Gly1425Ser in KMT2C (NM_170606: c.4273G>A: p.Gly1425Ser) in exon 27 had 

consensus pathogenic or damaging in silico predictive metrics. 
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3.3.6 KMT2C & KMT2D Targeted sequencing – Off-target regions and read mapping 

The initial number of called variants (23,644) compared to final filtered numbers resulted in 

investigations in variant calling metrics and quality control and analysis was performed to assess the 

number of total intragenic (within gene region) variants called across the cohort. As variant calling 

was performed genome-wide, a minor fraction would be expected to be present across off-target 

sites due to both mismapping reads, genomic contaminants, and variant calling errors. As expected, 

low levels (< 10 variants) intragenic variants were identified in 46 genes, the majority of which 

occurred within non-coding space but an apparent enrichment of variants was identified in BAGE 

Family Member 2 (BAGE2)(See 3.3 Figure 9). 

Given that called variants are present due to mapped reads supporting a specific allele, analysis of 

read mapping was performed across the BAGE2 coding regions to identify the total proportion of 

reads aligning to the region. Mean percentage of reads aligning within BAGE2 in batches 1 and 2 

was 8.35% (SD=1.16) and 7.67% (SD=1.26), respectively, while batch 3 did not contain any reads 

mapping to BAGE2. The mapping results suggest that alignment of reads with BAGE2, and as such 

variant calling, is due to the presence of KMT2C amplicons given that batch 3 consisted only of 

amplicons for KMT2D. Read alignment rates for BAGE2, KMT2C, KMT2D, KMT2C/D are shown in 

appendix section 9.2.3. 
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3.3 Figure 9 

Variant counts for intragenic regions detected in targeted sequencing data of KMT2C/D prior to 

stringent rarity and consequence filters. 

  



 

120 
 

3.3.7 KMT2C & KMT2D Targeted sequencing – BAGE2 gene sequence comparison 

The BAGE family of genes consisting of members BAGE1-5, of which only BAGE2 and BAGE5 have 

genomic positions designated in genome build GRCh38, where all others are unmapped and 

designated in chr21p11.1, in proximity to BAGE2 (See Appendix 9.2.4). Since BAGE2 read 

alignments only occur in samples containing KMT2C amplicons, it is likely sequence similarities exist 

between regions of KMT2C and BAGE2, resulting in off-target alignment. Using Emboss matcher, 

the coding sequences of KMT2C (ENSG00000055609) and BAGE2 (ENSG00000187172) resulted 

in a pair-wise alignment sequence similarity of 86.6% and gap presence of 9%. Inverse pair-wise 

alignments resulted in similar levels of sequence identity between KMT2C and BAGE2 (78.7%). Pair-

wise sequence of mRNA sequences for KMT2C (NM_170606) and BAGE2 (NM_182482) also 

demonstrated significant sequence similarity (73%) but a much greater introduction of sequence 

alignment gaps (25.4%), demonstrating lower identity within coding regions. Comparison of 

conserved sequence regions in BAGE2 plotted across KMT2C demonstrated gene-wide 

conservation (See Appendix 9.2 for sequence comparisons, read alignment rates, and conservation 

plots). 

3.3.8 Validation of KMT2C nonsense variant 

Given the issues regarding KMT2C and multiple mapping of reads to BAGE2 and others, DNA for 

the initial index case harbouring the KMT2C nonsense variant (NM170606.2: c.2263C>T: 

p.Gln755Ter: rs201234598) was acquired and Sanger sequencing was used to amplify the region 

containing the KMT2C variant. Sanger sequencing trace resolved a partial mosaic variant at the 

affected site, with a reduced allelic depth estimated at 0.2-0.3 (See 3.3 Figure 10). 

Additional variant data was extracted from ExAC and gnomAD aggregated datasets to assess 

variant statistics related to the nonsense variant site. Both datasets employ a stringent series of filter 

criteria on variants detected within the cohorts and though rs201234598 is reported, it failed random 

forest filtering in both sets, suggesting the variant is artefactual. In addition to failing random forest 

filtering metrics, the variant is present in a large proportion of genomes reported in gnomAD with 

allele frequency reported in gnomAD greater than that in ExAC by an order of magnitude, 2.17E-03 

compared to 4.1E-02. 
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3.3 - Figure 10 

Sanger sequencing trace from affected individual alleged to carry the KMT2C nonsense variant 

(NM170606.2: c.2263C>T: p.Gln755Ter: rs201234598). 
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3.4 Discussion 

Targeted Sanger sequencing of EPAS1 exon 9 and 12 and CDKN2B revealed several potential 

variants of interest, though none were classified as pathogenic or likely pathogenic. Analysis of rare 

variants in EPAS1 exon 9 and 12 identified two missense variants (NM_001430: c.1104G>A: 

p.Met368Ile and NM_001430: c.1121T>A: p.Phe374Tyr) in exon 9 which have previously been 

assessed in relation to polycythaemia and paragangliomas (342). While ClinVar and ACMG criteria 

regard these variants as likely benign or VUS variants, functional studies have demonstrated that 

EPAS1 p.Phe374Tyr results in a gain-of-function, demonstrating increased stability over wildtype 

EPAS1, and protein interaction simulations suggested p.Phe374Tyr-EPAS1 protein disrupted pVHL 

binding to its complex components (342). The second EPAS1 p.Met368Ile variant does not have 

supporting functional data but occurs at a lower allele frequency in reference datasets and in close 

proximity to the p.Phe374Tyr variant, suggesting that the p.Met368Ile variant may alter EPAS1 in a 

similar manner, though functional confirmation would be required. Germline predisposing variants in 

EPAS1 in RCC would be particularly interesting if proven to be a true association given recent clinical 

trials of EPAS1 inhibitors as a treatment for RCC tumours (84), given the potential to attenuate 

EPAS1 function somatically and improve clinical outcome. 

The remaining variant identified in the targeted Sanger sequencing experiment was in exon 2 of 

CDKN2B in two individuals (NM_004936: c.256G>A: p.Asp86Asn) and occurs at a minor allele 

frequency 1.22E-03 and falls within a Ankyrin repeat domain. All in-silico predictive metrics used 

suggest the variant is detrimental and previous publications determined that the variant resulted in 

diminished function by disrupting the interaction between p15INK4B and CDK4 (354). The CDKN2B 

p.Asp86Asn variant, as well as being seen in parathyroid adenomas (355), is identical to the variant 

found in heritable RCC cases profiled previously (266) and supports the hypothesis that rare 

functionally damaging variants in CDKN2B can confer a risk to RCC. However, given the allele 

frequency in control non-cancer populations, high or complete penetrance is unlikely and variants in 

CDKN2B may act similarly to variants in SDHB genes conferring only a low risk of RCC (221), though 

further association data is required. 
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The issue regarding sequence identity between KMT2C and BAGE2 is the primary issue with the 

outcome of the targeted sequencing of KMT2C and KMT2D. The first BAGE gene was originally 

identified due to encoding an antigen present in melanoma (356), after which further BAGE genes, 

including BAGE2, were identified mapping to both chromosome 9, 13, and 21 in juxtacentromeric 

regions and have reported regions of sequence identity between 92-99% in similarity (357). 

Evolutionary analysis of BAGE2 sequence origin revealed that BAGE2 and its related genes are 

formed due to a reshuffling and duplication of regions of KMT2C on chromosome 7, followed by 

further duplications across the chromosomes mentioned previously resulting in multiple BAGE 

sequences across the genome (358). This, in part, demonstrates why many reads generated by 

targeted sequencing of KMT2C produced off-target mapping to BAGE2. 

The failure of amplicon generation of exons 1, 2, 8, 9, 10-14, 28-31, and 42-44 of KMT2C was 

unexpected during primer optimisation, but no primers failed due to an absence of products. Given 

the information regarding BAGE2 and that all primers failing optimisation did so due to either 

incorrect or multiple primary products would suggest that long range primers are annealing to off 

target sites in BAGE2 and its related genes despite rigorous primer design to minimise those factors. 

It cannot be stated that all amplicon primer sets that failed are as a result of BAGE2 sequence 

similarity though, since primers generating multiple products could also be producing PCR amplicons 

outside of BAGE2. Loss of these amplicons resulted in a restriction in the available coding exons of 

KMT2C available for analysis, which included exon 14 in which the nonsense variant (NM170606.2: 

c.2263C>T: p.Gln755Ter: rs201234598) from the index case occurred.  

For the amplicons that successfully passed optimisation, failure to generate products were either 

due to multiple products (as discussed above) or due to an absence of PCR product. In this instance, 

failure to generate products after iterative optimisation steps is likely due to DNA quality and degree 

of fragmentation which are decreased and increased, respectively, during long-term storage and 

freeze-thaw cycles. While a proportion of reads generated by NGS library preparation will map 

incorrectly to BAGE2 due to sequence similarities, it is probable primer design resulted in the direct 

amplification and sequencing of BAGE2 and KMT2C concurrently, with product sizes being 

indistinguishable on standard gel electrophoresis. This is supported by the primer design process 

which selected intronic regions for primer annealing, which are also highly conserved between the 

two genes. 
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The presence of mismapped reads and resulting variant calls is an important consideration when 

discussing variant calling due to the potential for false positive variant calls and is a documented 

pitfall of short read sequencing (359). If reads are misaligned from KMT2C to BAGE2, logically it 

suggests that reads are being conversely misaligned from BAGE2 to KMT2C. For identical regions, 

this results in no detectable variation but if any read contained a sequence variation and aligned 

incorrectly it would suggest an alternative allele at the misaligned loci. Repeated occurrence of this 

process at the same site would provide enough supporting alternative reads to result in false positive 

variant calling. Presence of false positive calls introduced by low mapping quality reads in simulated 

data demonstrated that increase MAPQ filtering nullifies this concern generally (360) but MAPQ 

filtering in this study was already greater than the suggested threshold to eliminate this issue.  

In the case of exome data and the nonsense variant described previously, it is plausible a false 

positive variant call occurred, given the difference in allelic frequencies between exome and genome 

sequencing data sets and the reduced alternative allelic fraction seen in the Sanger sequencing. 

Taken together, this provides informative data to suggest that the nonsense variant initially identified 

results as a consequence of sequence conformity between KMT2C and BAGE2, where PCR 

amplification from both regions results in the inclusion of sequence regions where differences in 

sequence are limited to only a single base. The increased allelic frequency in gnomAD genomes 

compared to exomes is likely due to the removal of biases introduced by exome target probe 

hybridisation. Moreover, this introduces doubt over the reliability of all variant calling within the 

KMT2C coding regions which share sequence identity with BAGE2, and as such caution should be 

taken when assessing variants in this gene. A vast majority of current sequencing projects, 

particularly somatic, utilise WES or capture-based sequencing to generate somatic variant calls. 

Given that somatic calls are typically made at lower allelic fractions than germline calls, mismapping 

in somatic cases could inadvertently result in an enrichment of false positive calls in genes identified 

to be significantly mutated in tumour datasets. 
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While KMT2C sequencing harboured major issues regarding off-target effects and data 

misalignment, KMT2D did not display these features and performed well by comparison, with no 

amplicons failing to generate sequencing data and on-target sequencing rates above 80% in all 

samples (See appendix section 9.2.3). One identified issue with sequencing of KMT2D was the 

overrepresentation of amplicons KMT2D Exon 12 – 14 and Exon 15 – 18 which sequenced at far 

greater depth than other targets (mean coverage > 20,000 for both) due to the size discrepancy 

between other amplicons. Both KMT2D Exon 12 – 14 and Exon 15 – 18 are less than 2 Kb in length 

(See 3.3 Figure 4 and Table 4), and as such pmol input of each amplicon, even after normalisation, 

resulted in several fold increases in fragment retention prior to library preparation compared to larger 

amplicons. Though this did not impact results generated in this study due to surplus sequence 

coverage, replication in studies with narrower margins of error for targeted coverage may result in 

disproportionate sequencing of these smaller amplicons, resulting in reduced or inadequate 

coverage of other amplicons. 

Targeted NGS of KMT2C and KMT2D identified several rare missense substitution variants in both 

genes, but a majority occurred within KMT2D for the reasons specified previously. The single variant 

in KMT2C (NM_170606: c.G4273A: p.G1425S) was predicted to be pathogenic by SIFT, PolyPhen 

and CADD and reported with an allele frequency of 8.35E-06. The amino acid change glycine to 

serine is non-conservative, therefore more likely to be damaging to protein structure but the variant 

does not appear to affect any known regulatory or functional protein domain. Both variants KMT2D 

p.P2557L (NM_003482: c.C7670T: p.P2557L) and KMT2D p.P692T (NM_003482: c.C2074A: 

p.P692T) had no evidence to support pathogenicity and occurred at allele frequencies in ExAC at 

marginally lower than 1%, suggesting they are unlikely to be disease-causing. One variant in KMT2D 

(NM_003482: c.C1940A: p.P647Q) was predicted to be benign by in silico tools and had conflicting 

interpretation in ClinVar but on review was reported as causal in an individual affected with Kabuki 

syndrome but no case report was provided and multiple additional reports presented conflicting 

evidence (361,362). The remaining KMT2D variants (NM_003482: c.G8765A: p.R2922Q, 

NM_003482: c.C5966T p.T1989M, and NM_003482: c.C2129G: p.P710R) had contradictory or 

unsupportive in silico metrics but occurred at allele frequencies consistent with the potential to be 

disease causing, though none had any additional evidence to suggest pathogenicity. 
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KMT2C and KMT2D are associated with known autosomal dominant genetic disorders Kleefstra 

syndrome 2 and Kabuki syndrome, respectively, and are associated with heterozygous loss-of-

function variants. Kleefstra syndrome 2 is a recently defined syndromic condition resulting in delayed 

psychomotor development, and dysmorphic anatomical features associated with frameshift, 

truncating and deletions of KMT2C (363). Kabuki syndrome is a well characterised syndrome 

causing cognitive impairment, growth restriction, facial dysmorphisms and cardiac and renal 

anomalies as a result of inactivating or truncating variants in KMT2D (364). 

In this series no known pathogenic or loss of function variants were identified to substantiate the 

hypothesis that pathogenic inactivating variants in in KMT2C or KMT2D might be associated with 

RCC predisposition. For variants in KMT2C, presentation of kleefstra syndrome is typically seen with 

sub-telomeric loss of 9q, including loss of EHMT1 or inactivation of KMT2C on chromosome 7 (365). 

In tumours, inactivating mutations or deletions of KMT2C, alterations have been demonstrated to 

downregulate DNA repair pathways (366), as well as mediate responses to oestrogen in breast 

cancers (367). A potential genotype-phenotype could be hypothesised in which variants in KMT2C 

under which loss of KMT2C can results in epigenetic reprogramming that corresponds with the 

phenotype seen in kleefstra syndrome whilst in the context of cancer, impedance of DNA repair and 

alternative epigenetic alterations could drive oncogenesis and cancer predisposition. While the exact 

mechanism and correlation of such a genotype-phenotype correlation is not known it may currently 

be the most likely hypothesis, particularly given functional links between KMT2C, SMARCB1, and 

the SWI/SNF complex of which several genes are already associated with predisposition to RCC 

(264) and the frequency at which KMT2C is altered somatically (25). 
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Moreover, KMT2D has conflicting evidence regarding its function as a tumour suppressor, being 

shown to upregulate p53 and supress tumour development (349,368) but also functions in an 

oncogenic capacity in maintaining tumour cell proliferation (369). Given that KMT2D has the potential 

to act as either a TSG or an oncogene in a tumour-specific manner it could be hypothesised that 

missense variants in KMT2D might predispose to renal cancer in the absence of Kabuki syndrome 

(if the former were activating mutations and the latter resulted from inactivating mutations). 

Additionally, single cell transcriptome and RNA sequencing data on patient-derived Kabuki 

syndrome cell lines carrying a KMT2D nonsense variant displayed reduced cell cycle progression, 

increased cell death, and most intriguingly demonstrated downregulated genes included an 

overrepresentation of genes containing HRE motifs (370), most commonly activated by HIF complex 

binding as discussed in relation to VHL regulation of hypoxia (138,140), proposing that activating 

mutations in KMT2D could cause constitutional upregulation of HRE-containing genes in a manner 

similar to HIF proteins. Only missense variants were identified in this series and no large deletions 

are observed somatically in KMT2D but significant further analysis and functional assessment of 

both the function of KMT2D in RCC and the identified variants are required before any conclusion 

could be made regarding either the pathogenicity of the identified variants or the role of KMT2D in 

RCC tumourigenesis. 

However, an alternative hypothesis would be that missense variants with a partial loss of function 

effect could cause an attenuated (and unrecognised) form of Kabuki syndrome and predispose to 

renal cancer. Interestingly there are some case reports of tumour development in patients with 

Kabuki syndrome, though there is no evidence of clear increased risk of neoplasia (371–373). 

Furthermore, prostate tumour studies identified loss-of-function alterations in KMT2D in 60% of 

assessed patients and demonstrated attenuation of cell proliferation, invasion and migration in 

KMT2D knockout cell lines (374). 
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3.5 Conclusion 

Targeted sequencing, both via Sanger sequencing and NGS techniques, can provide a robust and 

relatively simple way to adequately genotype a small set of genomic regions but it is clear that issues 

regarding pseudo-genes, DNA amplification rates, and DNA quality can give rise to difficulties in 

experimental design and interpretation of sequencing data. Regardless of the pitfalls encountered 

by the investigations present here, potential predisposition variants in both CDKN2B and EPAS1 

could be of interest but cautious interpretation should be applied before drawing causal relationships 

and a lack of an appropriate control group and technical issues regarding experimental design 

confound drawing any firm conclusions. Clear weaknesses of sequencing a limited number of 

genomic targets across a reduced a pre-screened cohort of samples is a reduction in power to detect 

associations, but alternative methodologies are either more financially demanding or requires a more 

complex analysis. Alterations in KMT2C and KMT2D, though occurring frequently in somatic RCC 

cases are difficult to assess accurately, given the issues that were encountered in this study, but 

several rare and potentially damaging variants were identified. No variants in KMT2C or KMT2D had 

evidence to suggest pathogenicity but without additional genetic or molecular data further 

conclusions cannot be made. In all cases, additional confirmation by co-segregation, validation 

sequencing, or tumour sequencing to assess secondary mutations are required to support that 

variants in KMT2D, CDKN2B or EPAS1 exon 9 are associated with germline predisposition to RCC.  
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4.0 Cancer gene sequencing of individuals with features of inherited 

RCC 
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4.1 Introduction 

Of all diagnosed RCC cases, approximately 3% are familial in nature (98). Molecular genetic studies 

have identified multiple genetic causes for RCC predisposition. As discussed previously, the best 

recognised cause of familial RCC is the dominantly inherited familial cancer syndrome von Hippel-

Lindau (VHL) disease caused by germline mutations in the VHL tumour suppressor gene (99,127). 

Additionally, inactivating mutations in tumour suppressor genes (TSGs) BAP1, FH, FLCN, SDHB, 

SDHD, SDHC, SDHA, PBRM1, and CDKN2B, as well as activating mutations in the MET proto-

oncogene have been implicated in predisposition to renal cancers (98). A majority of RCC with 

suspected predisposition do not carry pathogenic variants in known RCC predisposition genes and 

recent studies suggest between 24-33% of individuals presenting with RCC meet referral criteria for 

genetic testing (118). Taken together, there is an unidentified genetic component to non-syndromic 

RCC cases with features of predisposition. 

As the previous chapter demonstrated, the rate of variant detection in single gene or exon 

sequencing is low and as such high throughput sequencing of high priority targets would enable the 

analyse of multiple genes of interest with reduced labour, at the expense of increased cost, 

computational, and bioinformatic requirements. While initially cancer-associated genes were 

described in relation to a single cancer phenotype, a greater number of genes are being associated 

with several or even a spectrum of cancer predispositions, in both syndromic and non-syndromic 

cases, such as BRCA1 in breast, ovarian, and prostate cancers (27,375). Recently, studies in a 

number of human cancer types have identified pathogenic variants in a wide range of cancer 

predisposition genes than have been traditionally associated with the cancer of interest, as 

exemplified by Whitworth et al (2018) (376). A hypothesis can be proposed that adopting a wider 

testing strategy to a cohort of patients with features that might indicate a cancer predisposition gene 

mutation might improve knowledge of the molecular architecture of inherited RCC. 
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In order to identify new genetic components associated with renal cancer predisposition, 118 

probands presenting with features of non-syndromic inherited RCC with no known pathogenic or 

likely pathogenic variants in VHL, MET, FLCN, SDHB, CDKN2B and BAP1 were investigated and 

targeted sequencing was performed using the Illumina TruSight cancer sequencing panel or virtual 

TruSight cancer sequencing panel on available whole exome sequencing data. The sequencing 

technology applied in each instance was only because of a shift from targeted panel sequencing to 

whole exome sequencing as a laboratory standard operating procedure, not a specific experimental 

design choice. 
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4.1.1 Aims 

 Confirm the lack of pathogenic or likely pathogenic variants in known RCC predisposition 

genes. 

 Identify pathogenic or likely pathogenic variants in genes associated with RCC or other 

cancers through targeted cancer gene and SNP sequencing. 
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4.2 Methods 

4.2.1 Patients 

Patients diagnosed with RCC were assessed for eligibility based on the presence of clinical features 

associated with inherited RCC, as described in section 2.1.3. Patients were recruited if they matched 

one of the following criteria 1) Patient had at least one first or second degree relative with RCC 2) 

Presented with no family history but two or more separate primary RCC before age 60 years, or 3) 

Presenting with RCC at age 45 years or less (age of diagnosis corresponding to less than 10% of 

total cases as defined by SEER(377)). Patients with confirmed or likely mutations in BAP1, FH, 

FLCN, MET, SDHB and VHL were excluded from the study. 

4.2.2 DNA extraction and quantification 

DNA extraction from whole blood lymphocytes, quantification and quality control was performed as 

described in material and methods (section 2.1). 

4.2.3 Library preparations and sequencing 

Cancer gene panel library preparations were performed as described in materials and methods 

(section 2.6.2). WES library preparations were performed as described in materials and methods 

(section 2.6.3) performed by the SMCL sequencing service. 

4.2.4 Sequencing bioinformatics 

Primary bioinformatics (BCL to VCF) was performed as described in materials and methods (section 

2.7) by the SMCL sequencing service. Variants from targeted sequencing panel and exome datasets 

were called independently and a ‘virtual’ panel applied to the exome variants via VCFtools, restricting 

the reported variants to the Cancer gene panel target bed intervals (with an additional 3bp padding) 

4.2.5 Variant filtering and prioritisation 

Variant filtering, annotation, and prioritisation was performed as described in the materials and 

methods (section 2.8) including Intervar variant interpretation using ACMG guidelines (325). Targets 

included in the cancer gene panel are given in appendix section 9.3.1 and were used to filter a virtual 

variant panel in the WES sequencing samples. 
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4.2.6 Statistical Analysis 

Proportion confidence intervals were calculated using R base function binom.test() at CI 95%, using 

R (version 3.5). Two-tailed Fishers exact tests and odds ratios were calculated using the 

‘oddsratio.fisher()’ function in epitools package (version 0.5-10), using R (version 3.5). Confidence 

interval for odds ratio calculation was set to 95%. 

4.2.7 Sanger sequencing 

Primer design and PCR amplicon generation for Sanger sequencing was performed as described in 

the main materials and methods (section 2.3). Sanger sequencing of variants was performed as 

described in the main materials and methods (section 2.4). BRIP1 primer sequences are given in 

the appendix (section 9.3.2). 
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4.3 Results 

4.3.1 Clinical features 

The 118 unrelated individuals with RCC eligible for inclusion were subdivided into three clinical 

subsets: 44 cases with a positive family history and 74 sporadic cases comprising 30 cases with 

multifocal or bilateral disease and 44 cases with early onset RCC only). Median age of onset across 

all cases was 42 years (range 10-74) and 52 years (range 29-74) in the familial cases, 48 years 

(range 31-72) in multifocal/bilateral cases and 33 years (range 10-46) in early onset cases). 

Histological subtype was available for 70 of 118 cases (59.3 %) and comprised 68.6% clear cell 

RCC, 27.1% papillary RCC, and 4.29% chromophobe RCC). Summary of the distribution of clinical 

features are given in 4.3 Table 1. 
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4.3 Table 1 

Summary of clinical features of individuals with suspected inherited RCC where available 

Clinical feature Value 

Sex, Num. (%)  

 Male 71 (60.2) 

 Female 47 (39.8) 

Age, median (range)  

 All 43 (10-74) 

 Familial 52 (29-74) 

 Early onset 33 (10-45) 

 Bi/Multi 48 (31-74) 

Case type, Num. (%)  

 Familial 44 (37.2) 

 Early onset 44 (37.2) 

 Bi/Multi 30 (25.4) 

Family history, Num. (%)  

 1st degree 27 (61.4) 

 2nd degree 
8 (18.2)  

 Unspecified 9 (20.5) 

Family history, Num. (%)  

 
clear cell RCC 

48 (68.6) 

 
papillary RCC 

19 (27.1) 

 
chromophobe RCC 

3 (4.29) 

 
non-specified RCC 

48 
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4.3.2 Quality control and variant filtering 

Quality control checks were performed to assess alignment rates, and depth of coverage and PCR 

duplicate rates for both cancer gene panel sequenced samples and WES sequenced samples. Read 

alignment rates a mean of 99.6% (range 92.3 - 99.8%) across all samples, with a mean coverage of 

327X (range 226 - 719) (4.3 Figure 1). Quality control metrics for WES samples match those 

described in chapter 5 section 5.3.2. 

A total of 3,817 variants were called in the targeted sequencing set of 100 samples (3,458 SNVs and 

359 Indels) and 405 variants were called in region-filtered whole exome data of 18 samples (395 

SNVs and 10 Indels). A total of 1,955 and 237 variants passed quality control filtering requirements 

for depth, QUAL, genotype quality, missingness and internal minor allele frequency for targeted 

panel and exome derived data, respectively. After filtering for variants occurring within coding regions 

or splice site consensus sequences, removing synonymous and common variants in 1000 genomes 

and ExAC datasets (>1%), and additional filters, a total of 264 and 38 variants were retained from 

the targeted sequencing and virtual panel sets, respectively. For downstream analysis, variants 

occurring in both sets were merged, consisting of 14 variant genotypes. 

Analysis of the variants identified in this set were divided into three subpanels based on the 

inheritance patterns of the affected genes. 1) Group A genes with a known association with RCC 

predisposition 2) Group B genes in which heterozygous pathogenic variants are known to be 

associated with predisposition to multiple non-RCC tumours and 3) Group C genes which are 

associated with cancer predisposition when there are biallelic pathogenic variants or those which 

have been associated with a single non-RCC tumour phenotype. In broad terms, the three groups 

correspond to differing levels of prior probabilities for detecting an association with RCC (lowest in 

the latter group because non-syndromic RCC is usually inherited in an autosomal dominant manner).  
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Variants passing filtering and meeting selection criteria were then assessed for pathogenicity using 

the InterVar tool (326) for automatic generation of ACMG variant classifications. Of the 288 variants 

assessed, a total of 19 were classified as pathogenic or likely pathogenic (P-LP) variants (5 

pathogenic, 14 likely pathogenic), corresponding to 5 nonsense variants, 3 frameshift deletions, 2 

frameshift insertions, 8 missense substitutions, and 1 splice site variant. The 19 variants were 

observed in a total of 21 individuals, giving an identification rate 21/118 (17.8%; 95% CI: 11.4-25.9) 

across all assessed cases. Pathogenic variants were equally distributed by count across the 

inherited subtypes (8 variants in familial, 6 variants in early onset, and 7 variants in 

bilateral/multifocal). All 19 pathogenic/likely pathogenic variants are described in 4.3 Table 2.  

4.3.3 Detection variants in Group A cancer predisposition genes 

As expected, no P/LP variants were detected in genes that had previously been analysed before 

inclusion in this study (VHL, MET, FLCN, SDHB, CDKN2B or BAP1) and only a single gene identified 

as harbouring a P/LP variant has been previously linked to RCC, either in germline or somatic 

sequencing. A MITF missense variant in (NM_000248: c.952G>A: p.E318K) was identified in an 

individual who presented with clear cell RCC at age 74 years and whose son was reported to have 

presented with clear cell RCC at age 53 years. Sequencing in the individual’s unaffected brother did 

not carry the variant and though this variant had been previously associated with predisposition to 

RCC and melanoma (262), there was no family history of this tumour. 

Three variants in MET (NM_000245: c.T2543C: p.V848A, NM_000245: c.G1406C: p.R469P, and 

NM_000245: c.A1336G: p.I446V) were present at allelic frequencies lower than 8.5E-05, with in 

silico predictions being variable, but none of the variants fall within the tyrosine kinase domain 

associated with constitutional activation of c-MET (204,208), and none had been reported as somatic 

events in sporadic RCC based on data from the catalogue of somatic mutations in cancer 

(COSMIC)(378).  



 

141 
 

Six missense variants were identified in TSC2, associated with tuberous sclerosis complex (MIM: 

613254) which predisposes individuals to renal angiomyolipomas and cysts, as well as hybrid or 

oncocytic RCC in between 2-4% of cases (232,237). Histological information was not available for 

these individuals to assess if they presented with histologies consistent with loss of TSC2. The 

predicted pathogenicity of these missense variants, as well as the allele rarity, is variable but two 

variants (NM_000548 c.G4657T: p.G1553C & NM_000548: c.G5117A: p.R1706H) occur within the 

Rap GTPase activating protein domain implicated in RHEB inhibition (241) and one variant 

(NM_000548: c.C2476A: p.L826M) arises in a Tuberin-type domain, though its direct function is not 

known. None of the 6 variants identified in TSC2 had been reported as somatic events in sporadic 

RCC in COSMIC.  

4.3.4 Detection of variants in Group B cancer predisposition genes  

A total of 6 P/LP variants were detected in the 3 genes in which heterozygous pathogenic variants 

are known to be associated with predisposition to multiple non-RCC tumour types. Two Group B 

genes, BRIP1 and CHEK2, harboured germline P/LP variants in more than one proband. Three 

BRIP1 truncating variants (NM_032043: c.1161dupA: p.Gln388Thrfs*7, NM_032043: c.1871C>A: 

p.Ser624*, and NM_032043: c.2392C>T: p.Arg798*) were identified across four individuals, two of 

which carried a BRIP1 p.Ser624* nonsense variant. The four probands consisted of 2 familial cases 

and 2 multifocal/bilateral cases. Age at diagnosis of RCC was 54, 64, 46, and 39 years and presented 

with papillary, two non-specified, and clear cell RCC, respectively (see 4.3 Table 3). Affected family 

members were available for one individual carrying the NM_032043: c.2698G>A: p.Arg798* and an 

affected second degree relative (clear cell RCC at age 57 years) and also found to harbour the 

NM_032043: c.2698G>A: p.Arg798* nonsense variant. In total, truncating variants in BRIP1 were 

detected in 3.39% (4/118) of sequenced individuals. To compare frequencies to a comparable 

control set the ICR1000UK control set was aligned identically and was analysed for number of 

truncating variants. The ICR1000UK control cohort harboured truncating variants in 0.4% (4/999) 

corresponding to an enrichment of truncating variants in our cases (p=5.92E-03, OR 8.70, 95% CI: 

1.60 – 47.4).  
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Evaluation of rare truncating variants in BRIP1 compared to gnomAD revealed an estimated at 

0.24% (123/51,300 (353); carriers were estimated using median allele number where alternative 

alleles were presumed to be mutually exclusive) which results in a significant enrichment in the case 

set (p=2.19E-04, OR 14.6, 95% CI: 3.85 – 39.35). Finally, statistical comparison to data published 

by Easton et al (2016)(379) also demonstrated a statistical enrichment in this series (p=1.21E-04, 

OR 18.2, 95% CI: 4.55 – 53.1) when compared to truncating variants in BRIP1 in breast cancer, 

found at a rate of 0.19% (28/14,526). The BRIP1 truncating variants were confirmed by Sanger 

sequencing (4.3 Figure 2).
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A frameshift deletion in CHEK2 (NM_007194: c.1263delT: p.Ser422Valfs*15) was identified in two 

individuals, both of whom presented with multifocal RCC at age 56 years, though the histology was 

not specified. The frameshift deletion is considered to be pathogenic and has previously been 

detected in both germline sequencing of breast (380) and prostate cancer (381,382). An additional 

CHEK2 missense variant (NM_007194: c.1427C>T: p.Thr476Met) was also identified in one 

individual classified as likely pathogenic by InterVar (though there have been conflicting reports on 

ClinVar (VUS=7, LP=10). The variant falls within the protein kinase domain of CHEK2 and in vitro 

studies demonstrated a loss of kinase activity and loss of DNA repair function (383,384).  

Finally, an individual carried a BRCA1 frameshift deletion in exon15 (NM_007300: c.4563delA: 

p.Lys1521Asnfs*5) which was novel in ExAC and 1000 genomes, as well as not present in the non-

cancer gnomAD data set. The individual presented with early onset papillary RCC at age 40 years. 

4.3.5 Detection of variants in Group C cancer predisposition genes  

A PMS2 nonsense variant was identified in three individuals, purported to occur within the 4th amino 

acid (PMS2: c.11C>G: p.Ser4*) but on review was found only to affect non-canonical isoform 14 

(NM_001322015), resulting in an intronic substitution within the canonical isoforms of PMS2. A P-

LP missense variant in one individual was identified in PMS2, occurring within the canonical 

transcript (NM_000535: c.2066C>T: p.Thr689Ile). The PMS2 missense substitution occurs within 

exon 12 resulting in a Threonine to Isoleucine substitution in a c-terminal dimerization domain. The 

variant occurs as a singleton in the gnomAD data set (353) and is considered to be highly deleterious 

by multiple in silico predictive tools. 

A patient presenting with early onset clear cell RCC at age 39 years harboured a nonsense variant 

in FANCE (NM_021922: c.265C>T: p.Arg89*) within exon 2. The variant was seen only once in the 

gnomAD data set and due to occurring early in the amino acid sequence presumably leads to loss 

of the entire protein product but no further functional evidence was available. 
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Multiple P-LP variants were identified in genes associated with nucleotide excision repair pathways, 

including ERCC2, XPA, and XPC. Three missense variants were identified in ERCC2 (NM_000400: 

c.2084G>A: p.Arg695His, NM_000400: c.1802G>A: p.Arg601Gln, and NM_000400: c.772C>T: 

p.Arg258Trp). Two of these missense variants were only present as singletons within the non-cancer 

gnomAD data set (353) (NM_000400: c.2084G>A: p.Arg695His; AF = 4.22E-06 & NM_000400: 

c.772C>T: p.Arg258Trp; AF = 4.23E-06), with the remaining variant ERCC2 (NM_000400: 

c.1802G>A: p.Arg601Gln) occurring at minor allele frequency of 1.68E-04. All three variants are 

within conserved functional protein domains, occurring within an ATP-dependent helicase C-terminal 

domain, P-loop containing nucleoside triphosphate hydrolase & ATP-dependent helicase C-terminal 

domain, and a DEAD2-type helicase ATP-binding domain, respectively. A nonsense variant in exon 

4 of XPA (NM_000380: c.464delT: p.Leu155*) and a frameshift deletion in exon 2 of XPC 

(NM_004628: c.219delG: p.Val75Trpfs*4) were also found. Both truncating variants occur early in 

the reading frames of both genes and are novel variants not seen in the non-cancer Gnomad data 

set (353). 

Genetic overlaps have been demonstrated between RCC and Pheochromocytomas (PCC) and 

paragangliomas (PGL), with variants in genes such as VHL, SDHB/C/D, and FH predisposing to 

both tumour types (124,155,215,385). Therefore, analysis of genes associated with PCC/PGLs may 

uncover new associations. One variant was present in SDHAF2 and two in RET which are associated 

with predisposition to Phaeochromocytoma (386,387). The SDHAF2 variant (NM_017841: p.R18G) 

is within exon 2, is present at a minor allele frequency of 2.8E-05 in gnomAD, and predictive in silico 

tools suggested it occurred in a conserved amino acid and therefore likely damaging. Two RET 

variants (NM_020975: c.C166A: p.L56M and NM_020975: c.G973A: p.A325T) occurred in one 

individual each with the first being repeatedly flagged as benign by Clinvar. The latter has conflicting 

interpretations of pathogenicity on Clinvar but SIFT, PolyPhen and CADD all suggest the variant is 

not pathogenic in nature, particularly given that RET activating variants are typically clustered in the 

tyrosine kinase domain (388). 
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4.3.6 Analysis of variants of uncertain significance 

Of the 288 variants passing all quality control and filtering parameters, 134 variants were categorised 

as variants of uncertain significance (VUS) by ACMG guidelines applied by InterVar. Of these 

variants 96.3% (129/134) were missense variants, with 3 non-frameshift deletions, 1 nonsense 

variant, and 1 splice site altering variant composing the remaining percentage. For genes harbouring 

VUSs, 40.6% carried only a single variant (26/64 genes), with 25.0% (16/64 genes), 14.1% (9/64 

genes), and 9.37% (6/64 genes) harbouring two, three and four variants across the sample set, 

respectively. The remaining genes each carried five or more variants classified as VUS (CDKN2A = 

13, ERCC5 = 10, ALK = 9, ATM = 9, TSC2 = 6, ERCC3 = 5 and ERCC4 = 5). VUS variants were 

found at a rate of 1.40 per individual (range 0-4). VUS variants occurred less frequently in samples 

harbouring P-LP variants at 1.05 compared to 1.48 variants per sample, though it did not reach 

statistical significance (p=0.08; Student’s t-test). Comparisons of InterVar-assigned pathogenicity to 

Clinvar status reported in the VUS variants identified 10 variants in which Clinvar indicates clear lack 

of pathogenicity, marked as benign or likely benign. Conversely, no variants designated as VUS by 

InterVar were classified as P-LP variant by Clinvar. 

A single missense variant was found in SMARCB1, a gene encoding a component of the SWI/SNF 

complex which contains PBRM1 (389), which is shown to be altered in papillary RCC (158). The 

variant is located in the 4th exon (NM_001317946: c.C497G: p.T166S) and appears to be relatively 

common compared to other VUSs in the set (AF=1.0E-03 nc-gnomAD) and is predicted to be 

tolerated or benign by all in silico predictive tools.  

Several missense VUS variants were present in genes significantly affected in somatic RCC 

sequencing. The variants include two missense variants in EGFR which is amplified in somatic 

papillary RCC as part of chromosome 7 duplications (274). Neither of the EGFR variants fall within 

functional domains or have evidence to suggest they would result in constitutive activation of the 

epidermal growth factor receptor. EGFR variant p.Pro20Arg (NM_005228: c.C59G: p.P20R) is 

reported only once in gnomAD but is predicted to be tolerated or benign by in silico predictive tools 

whereas the second variant (NM_005228: c.G2024A: p.R675Q) is reported more frequently (AF= 

2.1E-04) but predicted to be deleterious by in silico predictive tools. 
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Two additional VUS variants were identified in TP53 and CDKN2A, both of which are described in 

somatic sequencing. The variant in TP53 (NM_000546: c.G124A: p.D42N) is present as a singleton 

in gnomAD and is located in the Cellular tumour antigen p53, transactivation domain 2 region but in 

silico predictive tools suggest the amino acid change is tolerated. Lastly, a missense variant in 

CDKN2A was present in 13 individuals (NM_000077: c.A221C: p.D74A). While passing all filtering 

and quality control criteria, the inflated allele count for this variant is anomalous given the size of the 

cohort sequenced and the expected rarity of causal variants. Review of data regarding this variant 

suggested that it is present as a sequencing artefact and failed random forest filtering, as part of 

ExAC (390) and as such this variant was not evaluated further.  

Several samples carried non-missense VUS variants across multiple genes. An individual carried 

both a BRCA2 non-frameshift deletion and a MSH6 splice site altering variant. The BRCA2 variant 

(NM_000059:exon11: c.4142_4144del: p.1381_1382del) has multiple conflicting interpretations of 

pathogenicity, reported as both likely benign and a VUS. The variant is reported at an allele 

frequency which conforms with potential pathogenicity (AF=8.E-05) and functional studies have 

demonstrated a loss of function of the BRCA2 protein (391) but additional Clinvar submissions report 

co-occurrence with known pathogenic variants reported in breast cancer. The splice site affecting 

deletion in MSH6 (NM_000179: c.4001+12_4001+15delACTA) is present in gnomAD at an allelic 

frequency of 1.2E-03, which is relatively frequent for a pathogenic variant and expert panel review 

in Clinvar regards it as a true VUS without further evidence to support pathogenic or benign 

classification. 
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Two related genes, FANCL and FANCD2, were shown to be present in one individual each. A non-

frameshift deletion in FANCL (NM_001114636: c.1022_1024del: p.341_342del) was classified as a 

VUS but functional studies have demonstrated the variant results in a null allele (392), and 

subsequent incorporation of this data in ACMG shifts the classification for VUS to likely pathogenic. 

The FANCD2 non-frameshift deletion (NM_033084: c.877_885del: p.293_295del) has no published 

studies regarding its likely effect on protein function but it does result in the loss of 3 amino acids 

within a region suggested to interact with FANCE and the variant is only present as a singleton in 

gnomAD. Lastly, an individual carried a nonsense variant in CEBPA. CEBPA is an intronless gene 

with a complex series of differential initiation codons, including both ATG and non-ATG start sites. 

The variant CEBPA (NM_001287424: exon1: c.C16T: p.R6X), is only a stop gain in isoform C, 

resulting in a 5’-UTR variant in other isoforms, making interpretation difficult (393).
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4.3 Table 3 

RCC samples carrying variants identified as pathogenic or likely pathogenic by ACMG guideline 

classifications assigned by InterVar. 

Variants Sex Subtype Histology Age Gene 

SBDS:NC_000007.13:c.258+2T>C 
XPA:c.464delT:p.Leu155* 

F Early onset ccRCC 46 
SBDS 
XPA 

BRCA1:c.4563delA:p.Lys1521Asnfs*5 M 
Early 
onset 

pRCC 40 BRCA1 

CHEK2:c.1263delT:p.Ser422Valfs*15 F Bi/Multi nsRCC 56 CHEK2 

XPC:c.219delG:p.Val75Trpfs*4 M Familial pRCC 44 XPC 

BRIP1:c.1161dupA:p.Gln388Thrfs*7 F Familial nsRCC 64 BRIP1 

SLX4:c.1406dupC:p.Leu470Ilefs*8 F 
Early 
onset 

nsRCC 15 SLX4 

CHEK2:c.1427C>T:p.Thr476Met M Familial nsRCC 58 CHEK2 

ERCC2:c.2084G>A:p.Arg695His F Bi/Multi ccRCC 40 ERCC2 

ERCC2:c.1802G>A:p.Arg601Gln F Familial nsRCC N/A ERCC2 

ERCC2:c.772C>T:p.Arg258Trp F Bi/Multi nsRCC 61 ERCC2 

MITF:c.952G>A:p.Glu318Lys M Familial ccRCC 74 MITF 

CHEK2:c.1263delT:p.Ser422Valfs*15 
MUTYH:c.1178G>A:p.Gly393Asp 

M Bi/Multi nsRCC 56 
CHEK2 
MUTYH 

MUTYH:c.527A>G:p.Tyr176Cys F 
Early  
onset 

nsRCC 45 MUTYH 

PMS2:c.2066C>T:p.Thr689Ile M 
Early 
onset 

nsRCC 27 PMS2 

BRIP1:c.1871C>A:p.Ser624* M Bi/Multi nsRCC 46 BRIP1 

FANCE:c.265C>T:p.Arg89* M 
Early 
onset 

nsRCC N/A FANCE 

PMS2:c.11C>G:p.Ser4* M Familial nsRCC 38 PMS2 

BRIP1:c.1871C>A:p.Ser624* M Bi/Multi pRCC 54 BRIP1 

PMS2:c.11C>G:p.Ser4* F Familial ccRCC 47 PMS2 

PMS2:c.11C>G:p.Ser4* F 
Early 
onset 

nsRCC 34 PMS2 

BRIP1:c.2392C>T:p.Arg798* M  Familial ccRCC 39 BRIP1 
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4.4 Discussion 

In many centres, individuals presenting with confirmed or indicative features of inherited RCC are 

screened for pathogenic germline variants in a panel of RCC-predisposing syndrome genes that will 

typically include VHL, MET, FLCN, FH, and SDHB and more recent studies have identified further 

genes associate with RCC predisposition (SDHC, SDHA, BAP1, and PBRM1). Despite this, many 

individuals undergoing screening harbour no causative variant in known predisposition genes 

suggesting an undiscovered proportion of heritability for RCC.  

Here, a targeted cancer gene sequencing panel, including 94 genes and 284 cancer-related SNPs, 

was used to assess the presence of pathogenic or likely pathogenic variants in individuals with either 

early onset, familial history, or multiple focal / bilateral presentation of RCC. At least one pathogenic 

or likely pathogenic variant was identified in 21 of 118 patient (17.8%), as classified by InterVar using 

the ACMG guidelines (325) including truncating variants in CHEK2, BRIP1, and BRCA1. The results 

reported here conform with recent assessments of clinically relevant pathogenic variants in cancer 

genes in multiple primary tumour cases which identified a comparable number of variants (15.2%), 

in which 42% of those variants did not occur in genes which correlate with the presenting cancer 

(376). 

CHEK2 and BRCA1 variants have been reported in RCC cases previously but no known association 

has been established between pathogenic variants in these genes and RCC predisposition. Single 

cases have reported pathogenic BRCA1 variants (394) and recent results in a Chinese cohort of 

early onset sporadic cases also identified pathogenic variants in BRCA1 (395). In difference to this 

study, the rate of pathogenic variant detection was only 9.5% though this may be due to a reduced 

scope, in terms of genes assessed, and inclusion of known RCC predisposing genes. 
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CHEK2 has been reported as being a multi-cancer susceptibility gene, with variants predisposing to 

a number of different cancers, including RCC, (396,397) but most strongly associated with breast 

cancer (398), though neither of the affected individuals carrying the CHEK2 variants had a family 

history of breast cancer. Interpretation of either BRCA1 or CHEK2 variants is difficult and should be 

assessed conservatively. The lack of demonstrable enrichment of CHEK2 and BRCA1 variants does 

not support the involvement of these genes in RCC predisposition. In particular, the assessment of 

BRCA1 and BRCA2 mutations in have been demonstrated to drive tumourigenesis in BRCA-

associated cancer lineages but biologically neutral in non-BRCA tumour lineages (399). 

The occurrence of BRIP1 rare truncating variants in this series is an interesting finding given that 

inactivating variants in BRIP1 are not currently associated with RCC but have been previously 

implicated in predisposition to ovarian (400) and breast cancer (401), though more recent studies 

have questioned the legitimacy of the association with breast cancer predisposition (379,402). The 

data reported here suggests an association between rare BRIP1 truncating variants, being 

statistically enriched compared to control and disease datasets, and segregating with affected family 

members in one pedigree. Equally, this finding should be interpreted cautiously given the limited 

statistical power and series size and further validation and follow-up in similarly screened 

independent cohorts would be needed to confirm the association. Interestingly, recent publications 

demonstrated no association between breast cancer and BRIP1 truncations (379) and in comparison 

to the studies described in the aforementioned publication, BRIP1 truncations were statistically 

enriched in our series, but again restrained interpretation is necessary. 
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As with previous studies, the assessment of VUS variants continues to be a challenging endeavour. 

Population minor allele frequencies and in silico predictive tools may aid prediction of pathogenicity 

but are not robust enough to reliably state whether a VUS is of consequence. For variants such as 

the FANCL (NM_001114636: c.1022_1024del: p.341_342del) in-frame deletion identified, 

pathogenicity may be ascertained from analysis of functional studies but this is unruly for all identified 

variants and most do not have any additional supporting information to inform classification. Variants 

in genes related to PCC (SDHAF2 and RET) and variants in TSC2 are potentially interesting 

candidates for further assessment given the genotypic overlaps between PCC/PGLs and RCC and 

the occurrence of RCC in Tubular sclerosis complex (232), caused by inactivating variants in TSC1 

and TSC2 (403), but most are categorised as benign and functional studies would be needed to 

confirm loss of function in those with unknown consequences. The nonsense variant in CEBPA 

(NM_001287424: c.C16T: p.R6X) may also be an interesting candidate given its related function to 

the SWI/SNF complex (404), multiple components of which are mutated somatically in RCC and 

includes PBRM1 which is already associated with RCC predisposition (331). 

Further limitations of the experimental design utilised in this chapter include the systematic 

differences in sequencing sensitivity for the detection of variants, inclusion of individuals with non-

white British/Caucasian ethnographic backgrounds, and estimated tolerance to truncating variants 

seen for BRIP1. Targeted panel sequencing had mean number of variants per sample of 38.2, 

whereas variants generated from whole exome sequencing carried 22.5 variants per sample. For all 

intents and purposes, sequencing methodology and bioinformatic processing for both targeted 

sequencing and whole exome sequencing datasets are equivalent, utilising the same hybridisation 

probes and whole exome data limited to genomic regions defined by targeted sequencing loci. As 

such the primary differentiating factor is the read depth coverage for each methodology; Targeted 

sequencing had a mean read depth across all samples of 327X coverage in comparison to 120X 

coverage for exome samples and differing variant calling sensitivity may contribute to the difference 

detection rates seen between targeted and exome sequencing datasets. This is particularly 

important given the statistical comparison between the variants identified in this chapter to control 

datasets generated from whole exome sequencing data. 
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A further limitation is ethnographic backgrounds in this chapter were not elucidated and statistical 

comparisons of genotype rates between non-concordant ethnic groups can lead to confounding 

results due to geography-specific genotypes and allele frequencies. In this instance, prior knowledge 

from further analysis of exome data analysed in chapter 5 negate this limitation, as all of the identified 

pathogenic variants occurred in individuals of European (non-Finnish) decent, but this is an important 

caveat to consider had this study been performed in isolation. 

Lastly, assessment of the likely impact of pathogenicity of truncating variants identified within BRIP1 

is potentially a limitation on the conclusions that can be drawn from an enrichment of truncating 

variants in BRIP1. Computational assessment of BRIP1 and its tolerance for truncating variants 

(propensity to negatively select truncating variants) is that BRIP1 is highly tolerant of truncating 

variants, suggesting that any given truncating variant in BRIP1 is unlikely to result in a phenotypic 

change (pLI = 0) (321). Conversely, caution should be taken when assessing tolerance to inactivating 

variants across an entire gene loci, as specific residues or features can carry greater or less 

tolerance for alterations than the gene region as a whole, as exemplified by assessment of 

constrained regions across the genome (405). 

This assessment of pathogenic or likely pathogenic variants in inherited RCC also highlights the 

current limitations of automated pipelines for the application of ACMG guidelines. With a number of 

VUS variants being known benign variants through ClinVar consensus and misclassification of a 

variant classified as VUS to likely pathogenic (FANCL: NM_001114636: c.1022_1024del: 

p.341_342del) due to published functional studies (392). Discordance within ClinVar is already well 

noted (406) and without proper integration of both in silico metrics, population minor allele frequency, 

known functional studies, and consensus interpretations by other labs then annotation by automated 

pipelines without robust downstream manual assessment will only compound the issue. 
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4.5 Conclusion 

In conclusion, the targeted next generation sequencing of a series of cancer related genes and risk 

SNPs using a pre-built cancer gene panel has uncovered a series of pathogenic and likely 

pathogenic variants in a range of genes associated with both the monoallelic and biallelic 

predisposition. Assessment of pathogenicity is challenging, particularly for VUS variants, without 

functional follow up and additional evidence but familial segregation and statistical enrichment of 

truncating variants in BRIP1 may suggest a new association between individuals with pathogenic 

truncating variants in BRIP1 and RCC predisposition, though additional validation studies would be 

beneficial to corroborate the evidence provided here. Designing of high-throughput functional 

analyses of identified variants, such as effects on DNA repair function by variants in DNA repair-

related genes. Furthermore, large-scale population wide sequencing cohorts (such as Genomics 

England 100K genomes) will greatly increase the ability to improve confidence in potentially 

pathogenic variants by excluding pathogenicity based on population frequency. 
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5.0 Germline whole exome sequencing of individuals with features of 

inherited renal cell carcinoma 
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5.1 Introduction 

Investigations into the missing heritability seen in RCC have largely involved familial co-segregation 

studies or targeted sequencing of known RCC associated genes and while whole exome sequencing 

(WES) methods can be analytically more complex due to increased genomic coverage, that same 

coverage can be leveraged to investigate the entire coding region and perform analyses which are 

impractical in targeted sequencing panels. Utilising a subset of samples investigated in Chapter 4 

(see section 2.1.3), WES was performed to investigate novel causes of RCC predisposition across 

all coding regions and exploit multiple modes of analysis to discover unreported variants and 

mechanisms associated inherited RCC. 

5.1.1 Single nucleotide variant analysis 

As performed with the cancer gene panel sequencing study (chapter 4), detection of rare pathogenic 

variants across all individuals is a first route of investigation in uncovering new associations with 

RCC predisposition. Analysis in this set will attempt to utilise multiple gene clusters to narrow down 

and isolate potentially causal variants while effectively removing the vast number of non-pathogenic 

variants carried in all individuals. Variant analysis will focus on 3 gene clusters; genes altered 

somatically in RCC (after exclusion of known RCC predisposition genes), genes encoding complex 

components of the tricarboxylic acid (TCA) cycle due to links with HLRCC and succinate 

dehydrogenase deficient RCC (SDH-RCC), as well as phaeochromocytomas (PCC) and 

paragangliomas (PGL) (155,212,214), and variant analysis of ultra-rare (AF < 0.001) truncating 

variants (nonsense, frameshift deletions/insertions, or splice-site affecting) to determine if any novel 

genes harbour variants which are most likely to be pathogenic compared to more frequent truncating 

alterations. An allele frequency of 0.001 was selected as most individuals harbour, on average, 90-

100 truncating variants but most occur at non-pathogenic allele frequencies greater than 0.005 in 

the general population (390). This methodology allows for a robust analysis of candidate variants in 

relevant genes whilst maintaining a systematic and repeatable approach to variant detection. 
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5.1.2 Copy number detection 

While a large proportion of genetic variation is attributable to single base variants, small or single 

base insertions and deletions, there is an array of other genomic alterations that can result in a 

disease phenotype. Cytogenetic or sub-microscopic insertions and deletions, chromosome 

translocations and inversions, and copy number alterations all contribute to genetic variance within 

a genome to varying degrees, some of which are pathogenic in nature. Typically, structural and copy 

number alterations are detected and captured through means other than NGS-based sequencing 

platforms, such as comparative genomic hybridisation arrays, due to NGS-based methods having 

restrictive capture/target regions (i.e. whole exome sequencing or panel sequencing). Whilst many 

of these alterations can be detected from whole genome sequencing with high specificity and 

sensitivity, the prohibitive cost of whole genome sequencing and lower sequencing coverage in 

comparison to targeted approaches makes this approach challenging. While whole exome 

sequencing is restrictive in terms of genomic regions available to interrogate, many algorithms have 

been designed to attempt to utilise and leverage the read depth and single nucleotide variant 

information from this data to predict and make copy number variation (CNV) calls across targeted 

regions. XHMM was chosen as the CNV detection tool of choice based on various metrics and data 

availability, including portability, detection rates, and control requirements as reviewed by Tan et al 

(2014) (407). Copy number alteration detection in this series may uncover unreported losses or gains 

in both genes known to be associated with RCC predisposition or novel genes in which an 

association with inherited RCC has yet to be established.  

5.1.3 Gene burden analysis 

With exome-wide sequencing, the amount of alleles genotyped allows for the opportunity to perform 

relatively robust case-control analysis to identify loci which are statistically associated with cases (in 

this instance individuals with features of inherited RCC) compared to a control set of healthy 

individuals. In addition to inferring statistical associations, statistical testing provides an unbiased 

framework for candidate variant detection without a need for gene lists and complex interpretation 

of in silico predictive metrics and biological relevance.  
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Typically, association studies are performed on a genotype scale where individual variants are 

compared by frequency between cases and controls, particularly in genome-wide association studies 

(GWAS) which focus on common SNPs conferring a low risk for the case phenotype. For rare 

disease, genotype-genotype comparisons are often not effective due to low sample numbers and, in 

the case of WES, poor coverage of non-coding variant sites. More recent approaches to overcome 

these limitations in rare disease is the development of collapsing or clustered statistical ‘burden’ 

testing, in which rare variants are assessed over specified genomic features or loci (e.g. genes, 

pathways) to determine the presence of statistical enrichment (i.e. genetic burden) in comparison to 

control sets, increasing the potential statistical power to detect an association.  

Many bioinformatic tools and statistical models have been developed to perform these analyses such 

as Combined Minor Allele test (CMAT) (408) and Combined Multivariate and Collapsing test (CMC) 

(409) which collapse genotypes over a genomic loci into a single ‘score’, or more complex models 

such as statistical kernel association test (SKAT) (310) which function to identify over-dispersion in 

the calculated variance across a given genomic region. Lastly, statistical models have been 

developed which combine the two approaches and include variant weighting (typically by minor allele 

frequency) to improve modelling in assessing potential gene mutational burden, including tests such 

as the optimal statistical kernel association test (SKAT-O) (410), as reviewed by Lee et al (2014) 

(411). 

Gene burden has been effectively used to identify increased occurrences of rare variants in specific 

genes in both non-cancer syndromes (412,413) and germline cancer predisposition cases (414) and 

may prove useful in the identification of novel genes in RCC predisposition which harbour a greater 

mutational burden compared to healthy controls. In this study, the SKAT-O combined gene burden 

and variance test was selected due to having greater statistical power when assessing variant sets 

where causal direction of a given variant is unknown and a low proportion of variant are presumed 

to be causal, though the SKAT-O test is less statistically powerful than either burden or variance-

based tests independently. 
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5.1.4 Additional detection methods 

While not conventionally considered as causes of genetic disorders, particularly in cancer 

predisposition syndromes, the role of mobile genetic elements (i.e. transposons) and short tandem 

repeat expansions are rarely explored in germline sequencing for their potential involvement in the 

disruption of genes associated with cancer predisposition.  

Transposons are mobile DNA sequences which are capable of ‘jumping’ between different genetic 

loci and form a substantial proportion of the human genome (415). Due to the mobile nature of 

transposons, movement of a transposon into a coding region, exonic or intronic, can result in a 

disease phenotype as seen in haemophilia A (416), retinitis pigmentosis (417), and cancer 

predisposition (418) by disrupting the coding region, affecting exon splicing, or interfering with 

promotor regions upstream of transcription start sites (419). Recent bioinformatics tools, such as 

mobile element locator tool (MELT) (420), allow for the detection of common classes of transposons 

in WES data based on reference positions and subsequent mismapping of reads to mobile elements 

which have reinserted themselves into different genomic loci. 

Short tandem repeats are present throughout the human genome (421) and expansion of these 

repeat motifs has been associated with multiple genetic diseases such as myotonic dystrophy type 

2 (422), myoclonic epilepsy (423), and Huntingdon’s disease (424). Only a small number of studies 

have linked germline short tandem repeat expansions to cancer predisposition or gene regulation 

(425), but disruption of intronic or exonic regions by motif expansion or contraction could lead to 

altered gene function. Tools aimed at leveraging short read data have been developed to model and 

estimate known short tandem repeats, such as gangSTR (426), and detect expansion or contractions 

compared to reference repeat numbers. 
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5.1.5 Aims 

 Identify germline alterations in genes associated with somatic alterations in RCC, genes 

associated with TCA cycle, and investigate rare truncating variants as a cause of RCC 

predisposition. 

 Use a hypothesis-free statistical approach to identify potential associations in both genes 

and pathways in order to determine potential causes of RCC predisposition. 

 Explore underutilised methods of WES data analysis to identify novel causes of RCC 

predisposition caused by copy number alterations, mobile element insertions, and repeat 

expansion changes.  
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5.2 Materials and methods 

5.2.1 Patients 

Samples included as part of this study were selected as a subset of the samples analysed in chapter 

4 and as such were selected for the same clinical features as previously described; Patients were 

recruited if they matched one of the following criteria 1) Patient had at least one first or second 

degree relative with RCC 2) Presented with no family history but two or more separate primary RCC 

before age 60 years, or 3) Presenting with RCC at age 45 years or less. Patients with confirmed or 

likely mutations in BAP1, FH, FLCN, MET, SDHB and VHL were excluded from the study. The subset 

of samples from the primary cohort is described in section 2.13, where patients with clinically relevant 

variants from Chapter 4 were excluded. 

5.2.2 DNA extraction and quantification 

DNA extraction from whole blood lymphocytes, quantification and quality control was performed as 

described in material and methods (section 2.1). 

5.2.3 Library preparations and sequencing 

WES library preparations were performed as described in materials and methods (section 2.6.3) 

performed by the SMCL sequencing service. 

5.2.4 Sequencing bioinformatics 

Primary bioinformatics (BCL to VCF) was performed as described in materials and methods (section 

2.7) by the SMCL sequencing service.  
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5.2.5 Variant filtering and prioritisation 

Variant filtering, annotation, and prioritisation was performed as described in the materials and 

methods (section 2.8) including Intervar variant interpretation using ACMG guidelines (325). Gene 

lists were curated as follows; gene lists for TCA cycle genes were obtained from Reactome pathway 

data (427). Genes frequently altered somatically in RCC tumours were selected from genes with 

alterations occurring at a rate of 3% or greater within the TCGA provisional sample sets for clear cell 

RCC, papillary RCC, and chromophobe RCC (25). The list was then assessed by NCG (version 6.0) 

(428) and false positive genes, as flagged by Bailey et al (2018) (429), were removed as well as 

known RCC predisposing genes retaining 41 genes (see appendix 9.4.1). Analysis of all known 

coding genes was excluded as a SNV investigatory route due to a large proportion of uninformative 

gene annotations for many genes. 

5.2.6 Copy number variation detection 

Copy number alterations were detected from BAM file read depth discrepancies identified utilising 

XHMM (430) across WES aligned and sorted BAM files. Additional WES BAM files from other read 

depth matched (mean depth within 1 Standard deviation) were jointly called to improve call rate and 

identification of common CNVs. CNV calling utilising a modified version of the analysis pipeline was 

also performed on all ICR birth control cohort cases to generate a reference set of commonly called 

CNVs (Allele frequency > 0.05) to filter experimental data against. Default CNV calls were modified 

to provide exon-level copy number calls and calls were filtered based on frequency (allele frequency 

< 0.01) and Q_some quality (Q_some > 60), as described in the XHMM documentation (430). 

CNV pipeline calibration was performed against a subset of samples sequenced as part of the 

HapMap / 1000 genomes project with both comparative genomic hybridisation array-based copy 

number calls and WES data (431) (Sample list provided in appendix section 9.4.2). The primary 

script used to run CNV calling with XHMM, xhmm_CNV.sh, is provided in the appendix section 

9.4.3a. Additional scripts, including pre-processing steps to generate reference files and parameter 

files, annotation steps, and plotting is described in appendix section 9.4.3b. HapMap WES data was 

downloaded in FASTQ format from EBI (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/) and aligned to 

GRCh38 as described in materials and methods (section 2.7), after which the CNV pipeline 

described herein was run across all HapMap WES BAM files. 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/
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Due to the data format of the HapMap calibration set additional pre-processing was required prior to 

CNV analysis. HapMap CNV array data was downloaded from ftp://ftp.ncbi.nlm.nih.gov/hapmap and 

remapped to GRCh38 from hg18 using NCBI remap service, discarding calls that failed to map to 

GRCh38. HapMap CNV array genotypes were called bi-allelically and as such genotypes were 

merged to match the mono-allelic calls provided by XHMM (e.g. -2 to 2 to -1 to 1). Genomic positions 

were merged based on overlapping loci and unique intervals were retained. HapMap CNV data was 

intersected with the genomic exome probe intervals as provided by Illumina to select only CNVs 

overlapping with regions sequenced by WES by 5% or more. Intersected WES targets were then 

filtered to remove regions with only reference or missing calls and the data was coerced into a 

pseudo-XHMM output format for comparison. 

  

ftp://ftp.ncbi.nlm.nih.gov/hapmap/cnv_data/hm3_cnv_submission.txt
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5.2.7 Population stratification and sample concordance 

Sample population structure and genetic background were calculated and assigned from 

ADMIXTURE software (432) modelling, which allows for a higher resolution decomposition of genetic 

ethnic background. Case variants were merged with high quality genotypes from the 1000 Genomes 

data set which was used as the training set. Genotypes were pruned and separated by a minimum 

of 2000 bp to reduced linkage effects, selecting only bi-allelic sites present in a minimum of 2 

samples, and restricted to autosomal chromosomes. Further restrictions for minor allele frequency 

(MAF > 0.05) and missingness per site (missingness < 5%) were subsequently applied. 

ADMIXTURE algorithm was designated k = 5, corresponding to the number of population groups to 

assign, which is equivalent to 1000 Genomes super population groups (320). Population structure 

scripts, including plotting scripts are provided in the appendix (section 9.4.4). For samples in which 

both WES and cancer gene sequencing had been performed, genotype concordance was performed 

to assess if WES data adequately captured the same genotype information as the previously 

sequenced cancer gene panel. The tool bcftools gtcheck (version 1.8) was used to compare 

genotype calls across the pan-cancer gene panel targets (see chapter 4.2) to determine if 

sequencing between WES and cancer gene panel sequencing were in concordance. 
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5.2.8 Burden analysis 

Genomic region burden analysis was performed across all genes containing genetic variants utilising 

sequence kernel association testing (SKAT) R package (version 1.3.2.1), as described by Wu et al 

(310) utilising allele frequency as the weighting criteria after logistic weight conversion with the 

“optimal” implementation. Principle components (PC) 1 and PC2 were generated using the same 

variant pruning and filtering as discussed in 5.2.7 for ADMIXTURE analysis and were used as 

covariates in the regression model. Cases in this series were joint called using GATK Unified 

Genotyper (see materials and methods section 2.7) with control samples from the ICR UK 1000 birth 

control cohort (433). Given that population structures in both sets should be of non-Finnish western 

European origin PCA components PC1, PC2 and PC3 were used as sample exclusion criteria for 

outliers falling outside of the primary PCA cluster (see section 5.3.9). 

Joint called genotypes were filtered for variant consequence type, minor allele frequency (applied 

independently to both cases, controls and both sets to reduce the interference of batch effects and 

sequencing artefacts), minor allele frequency compared to the ExAC data set (390), genotype 

quality, site QUAL, and missingness. Several iterative analyses were performed utilising differing 

filtering and covariate combinations and burden testing results were assessed based on minimum 

achievable p-value (MAP) adjusted Q-Q plot distributions to determine the best performing test, 

where MAP values are generated during resampling of the burden input data as described by Lee 

et al (2016) (434). Q-Q plots are frequently used as a metric of goodness of fit for association tests, 

principally in GWAS studies (435), to determine if inflation of significance levels is presence between 

the observed p values versus the theoretical p value quantiles and observe confounding features 

such as population stratification. Filtering parameters and covariates for the optimised parameters 

are described in 5.2 Table 1. 
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Results were corrected for multiple testing using false discovery rate adjustment (FDR) and genes 

meeting significance thresholds, either p-value or corrected p-values where specified in the text, 

were assessed for gene ontology and pathway enrichment using WebGestalt (436), Gene 

Ontology/Panther analysis (Panther GO-slim biological process set; fishers exact method) (437), 

and Reactome (427) in order to detect biological function or pathway enrichment in genes with 

significant genetic burden compared to controls. Full burden testing script is provided in appendix 

section 9.4.5. Additional comparisons were made to Network of Cancer Genes database set to 

assess the proportion of genes identified as known or candidate cancer genes (428). 
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5.2 Table 1 

Table of optimised parameters used for gene burden association testing including filtering values 

and included covariates. PC1 = principal component 1. PC2 = principal component. 

Metric   Value 

Minor allele frequency (AF < value) 

 Global (ExAC)   0.0025 

 Internal (Both)   0.05 

 Internal (case)   0.2 

 Internal (control)   0.2 

Site metrics (Metric > value) 

 Genotype quality   30 

 Read depth   15 

 QUAL   100 

 Non-missing   0.9 

Consequences included 

frameshift deletions 
nonsense 
frameshift insertions 
splice site variants 
missense variants 

Covariates included 

 PC1    

 PC2    
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5.2.9 Short tandem repeat detection 

Detection of short tandem repeats was performed using the GRCh38 BAM files with GangSTR 

(version 1.4) using the default parameters as described by Mousavi et al (2018)(426), with only 

adjustments made for non-uniform coverage. Repeat expansion calls were filtered for read depth 

(DP > 10) and Quality metric ‘Q’ (Q > 3). Calls were annotated by gene region and only calls falling 

within known RCC predisposing genes and novel genes identified in this thesis were analysed (see 

appendix 9.4.1). 

5.2.10 Mobile element insertion detection 

Mobile element insertions were detected using the mobile element locator tool (MELT; version 2.1.5) 

across all BAM files to determine the presence of non-reference mobile element insertions into 

coding regions. Analysis was performed against LINE1, ALU, HERVK, and SVA mobile element 

reference sets for GRCh38. Variant calls were filtered by “PASS” status and split read support > 2. 

Calls for mobile insertion types were merged into a single VCF file and filtered against known RCC 

predisposing genes and novel genes identified in this thesis (see appendix 9.4.1). 

5.2.11 Statistical methods 

Q values (FDR corrected p values) after SKAT-O burden analysis were generated using p.adjust() 

function with method “fdr” in base R (version 3.5). Fishers exact test was performed using the 

fishers.test() function in base R (version 3.5). Chi-squared test was performed using function 

chisq.test()in base R (version 3.5). 
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5.3 Results 

5.3.1 Clinical features 

A total of 72 unrelated individuals matching the selection criteria for RCC predisposition and were 

grouped clinically as follows: 33 cases with a family history and 39 cases with either early onset or 

bilateral/multifocal disease (23 and 16 cases, respectively). Median age of onset across all cases 

was 41 years (range 23-74). Median age of onset in familial cases was 51 years (range 24-74), 48 

years (range 31-60) in multifocal/bilateral cases and 34 years (range 23-46) in early onset cases 

only cases.  

Histological subtype was available for 36 of 72 cases (50%) and comprised 25 (69.4%) clear cell 

RCC, 8 (22.2%) papillary RCC and 3 (8.3%) chromophobe RCC, approximately consistent with 

previous assessments of histological frequencies. RCC presentation by sex was consistent with 

sporadic and heritable cases across all individuals and subgroups (male to female ratio 1.5-2.2) 

except for early onset which had significantly different distribution (male to female ratio 0.92; fishers 

exact p=0.004). Summary of the distribution of clinical features are given in 5.3 Table 2. 

Population structure analysis by admixture demonstrated that 66/72 individuals were of European 

origin, with the remaining population being African (1/72), East Asian (1/72), and European-south 

Asian (4/72) by admixture proportions (see 5.3 Figure 1).  
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5.3 Table 2 

Table of clinical features associated with the case series in this chapter. Percentages are calculated 

based on the entire cohort apart from histologies. Percentages for ccRCC, pRCC, and chRCC are 

calculated excluding nsRCC cases. 

Feature Number 

Age, Median (range) 
 

 
All 41 (23-74) 

 Familial 51 (24-74) 

 Early onset 34 (23-46) 

 Bi/Multi 48 (31-60) 

Histology, Number (%) 
 

 
nsRCC 36 (50.0%) 

 
pRCC 8 (22.2%) 

 
ccRCC 25 (69.4%) 

 
chRCC 3 (8.33%) 

Sex, Number (%) 
 

 
M 44 (61.1%) 

 
F 28 (38.9%) 

Type, Number (%) 
 

 
Familial 33 (45.8%) 

 
Early onset 23 (31.9%) 

 
Bi/Multi 16 (22.2%) 

Family history, Num. (%)  

 1st degree 21 (63.6) 

 2nd degree 5 (15.2) 

 Unspecified 7 (21.2) 
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5.3.2 Quality control and variant filtering 

Given the number of variants identified by whole exome sequencing, stringent and appropriate 

variant filtering criteria are required, as well as appropriate quality control metrics for read alignment, 

read depth, and variant calls. Read alignment rates a mean of 99.81% across all samples, with a 

mean coverage of 120X. PCR duplicates across all samples were present at a mean rate of 13.7% 

(range 7.2-30.2%) (5.3 Figure 2-3). 

Comparisons for genotype discordance between samples sequenced on both the pan-cancer gene 

sequencing panel and WES was available for 75.0% (54/72) of sequenced cases, of which no 

samples demonstrated genotype discordance between the two sequencing data sets. The remaining 

proportion had WES data but not pan-cancer sequencing panel data available. 

Variant calling was performed and resulted in 337,021 variant calls (304,231 SNVs and 32,790 

indels) including 12,704 multi-allelic sites with a resulting transition/transversion (Ts/Tv) ratio of 2.23. 

After filtering for variant quality metrics (read depth, QUAL, genotype quality, missingness and minor 

allele frequency), as described in the materials and methods section, and left alignment and 

normalisation the number of variants retained was 194,367 (175,756 SNVs and 18,611 indels), 

demonstrating an increased Ts/Tv ratio of 2.43. Indel size distributions, and variant substitution types 

are shown in 5.3 Figure 4. 

Variant filtering, as described in materials and methods (section 2.8) removed 113,663 variants 

occurring in intergenic regions, intronic regions more than 2 bp from splice site consensus 

sequences, and a further 34,445 variants which resulted in synonymous amino acid changes. 

Variants were filtered for global minor allele frequency in both 1000 genomes and ExAC to exclude 

sites present above 1%, resulting in 25,022 rare protein affecting variants being retained. Allelic 

depth was assessed and variants with insufficient alternative allele depth (AD < 0.3) in at least one 

sample per site were removed, reducing the final number of filtered sites to 22,384. Variants 

identified as part of chapter 4 were excluded from reported variants but included in variant counts 

and association testing. 
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Given the volume of genetic alterations called and meeting default filtering parameters, in-depth 

analysis of all sites is an impractical methodology to determine potential candidate variants in RCC 

predisposition. This is exemplified by applying ACMG classifications to the filtered call set which 

categorises 84.4% (18,884/22,384) of the sites as variants of uncertain significance. As such, SNV 

analysis was segregated into distinct analysis sets; Ultra rare truncating or splice site-affecting 

variants, somatically altered genes in RCC, and genes related to the TCA cycle, as described in the 

methods. 

5.3.3 Truncating and splice site-affecting variants across all genes 

Variants were filtered to retain only the most potentially damaging variant consequences (nonsense 

variant, frameshift insertions or deletion, and splice site-affecting variants) in order to determine if 

any rare or novel truncating variants disrupted genes which may function in predisposition to RCC. 

After filtering a total of 1,134 variants were kept (5.1%), which consisted of 450 nonsense variants, 

145 frameshift insertions, 310 frameshift deletions, and 229 splice site-affecting variants. Due to the 

number of truncating variants identified, further filtering criteria were applied to reduce the candidate 

number including removal of variants present in a non-reference homozygous state, variants 

identified as known benign or likely benign alterations by ClinVar, and reducing the minor allele 

frequency in ExAC to 0.001 which retained 758 variants. ACMG criteria (325) were applied to the 

remaining variants utilising InterVar (326) as previously described and assigned 99 variants as 

pathogenic or likely pathogenic (P/LP) and 608 variants as variants of uncertain significance. A 

residual 51 variants failed to be parsed correctly by InterVar and as such were not assigned ACMG 

classifications. 

For sites designated as P/LP, genes were assessed by the Network of Cancer Genes platform (NCG) 

(428) to determine if they have previously been related to cancer and in what capacity. The 99 

variants contained 94 unique genes, of which 20 genes were suggested to be associated with cancer 

as assigned by the NCG v6.0 analysis (428) (4 genes were flagged as potential false positives in 

cancer and were excluded). This resulted in a final set of 21 sites with truncating alteration in 

candidate cancer genes assigned as P/LP (5.3 Table 3). 

  



 

179 
 

All variants categorised as ultra-rare truncating variants were present in only a single individual and 

occurred at allele frequencies in ExAC at 8.00E-04 or lower. Interpretation of these variants is highly 

dependent upon gene function and established associations with other genetic disorders. Most In 

silico predictions for these variants were not designated, except for CADD, which suggested all were 

deleterious in nature. Interestingly, all the genes in which variants were identified in this subset were 

altered somatically in RCC on average 1.83% (range 0.1-9%) of cases, though specific selection of 

genes altered in RCC was not performed. Enrichment analysis biological processes associated with 

the genes in this set using Panther gene ontologies did not identify any significantly enriched groups. 

Several variants are worth noting, including the PKHD1 nonsense variant (NM_138694: c.C5323T: 

p.R1775X) which is a known pathogenic variant associated with autosomal recessive polycystic 

kidney disease. The variant is carried by an individual with early onset clear cell RCC. The variant 

occurs midway through the protein coding sequence and is reported as loss of function intolerant by 

gnomAD classifications (353). Lastly, PKHD1 is reported as a frequently altered (3%) across the 

TCGA renal cancer set, though most are VUS missense variants. The truncating variant in DIAPH1 

(NM_005219: c.C1261T: p.R421X) is associated with autosomal dominant deafness. DIAPH1 is 

highly mutated somatically in RCC (9%) but is nearly exclusively amplified and only one truncating 

variant is reported, occurring concurrently with an broad amplification (25). This would suggest that 

truncating variants in DIAPH1 are unlikely to result in RCC predisposition despite the variant being 

likely pathogenic.  

RNF43 which harbours a frameshift deletion (NM_001305544: c.1410delC: p.P470fs) is also 

reported frequently somatically (1.8%) but with a high degree of amplification though it has been 

demonstrated to have tumour suppressor functions complicating variant interpretation in the context 

of RCC predisposition. The splice site variant identified in NUP93 (NM_014669) affects the first base 

of splice donor site after exon 2, potentially disrupting exon splicing. While no reports implicate 

NUP93 in cancer, NUP93 inactivating variants are associated with autosomal recessive nephrotic 

syndrome. 
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5.3.4 Detection of SNVs in sporadic renal cell carcinoma genes 

After variant filtering and quality control, variants were selected based on gene list incorporating 

genes which are described as being frequently altered in sporadic RCC tumours, as described in the 

materials and methods Assessment of variants passing filter identified 331 variants falling within the 

coding regions of genes associated with sporadic RCC tumours (See appendix 9.4.1; excluding 

known inherited RCC genes). Intervar was used to apply ACMG guidelines to all 331 variants and 

found 3 pathogenic or likely pathogenic variants across 3 genes, all of which were previously 

identified in the previous analysis (COL6A3: NM_004369: c.761delG: p.G254fs, DST: NM_001723: 

c.5832_5838del: p.A1944fs, and PKHD1: NM_170724: c.C5323T: p.R1775X) and 227 VUS 

variants. Variants were cross referenced with ClinVar data to remove conflicting reports and variants 

presenting in a non-reference homozygous state were also removed, resulting in a final count of 202 

variants. 

Protein alterations incurred by the variants identified in this set consisted of 194 missense variants, 

2 frameshift deletions, 2 frameshift insertions, 2 non-frameshifting deletions, 2 nonsense variants, 

and 1 stop loss variant. Variants, excluding missense variants, are in 5.3 Table 4. Overall, few non-

nonsynonynmous variants were identified in genes which are frequently somatically altered in RCC 

and of the 7 genes that were identified, 3 were recapitulations of variants identified without somatic 

RCC-specific gene list filtering. The remaining 5 variants, 3 of which were truncating, only revealed 

one variant of particular interest in SETD2 (NM_014159: c.579_587del: p.193_196del) which is one 

of the most frequently somatically altered genes in RCC, though the pathogenicity of this variant is 

uncertain given it does not result in a premature stop codon or frameshift. The deletion of 3 amino 

acids (p193-196) may result in protein dysfunction but does not occur in any known critical functional 

domain.  
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Analysis of VUS assigned missense variants is difficult, particularly given the number identified in 

this instance (194 sites). Application of restraining in silico predictive metrics to filter variants further 

still resulted in a large set of VUS missense variants being retained where selecting variants only 

predicted to be likely pathogenic by SIFT and PolyPhen, as well as a CADD score greater than 25 

was true for 132 variant sites. For the genes identified in 5.3 Table 4, AHNAK2, COL6A3, DST, 

KIAA1109, PKHD1, SETD2, and XIRP2, also harboured rare VUS missense variants after in silico 

filtering parameters were applied (AHNAK2 = 18, COL6A3 = 4, DST = 5, KIAA1109 = 1, PKHD1 = 

1, SETD2 = 2, and XIRP2 = 7). 

Further sub setting of VUS missense variants in the in silico filtered set uncovered missense variants 

in biologically relevant somatic RCC-linked or cancer-associated genes such as ATM, KDM6A, 

KMT2C, KMT2D, MTOR, NF2, and SMARCA4 in addition to SETD2 (See 5.3 Table 5). 
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5.3.5 Detection of SNVs in metabolic genes associated with Krebs cycle 

Variants from the filtered set were demarcated by genes associated with the TCA cycle (see 

appendix 9.4.1) in order to identify novel or rare likely damaging variants in components the genes 

encoding proteins involved in the TCA cycle and its supporting complexes. After gene list filtering 

(22 genes) a total of 13 sites were retained. All sites identified within the genes present on the TCA 

cycle gene list were nonsynonymous variants and InterVar interpretation of clinical significance 

assigned 76.9% (10/13) as VUS variants, with the remaining categorised as likely benign. 

Of the 13 variants identified, 10 sites occurred within known protein domains or functional sites, 

though variants outside of protein domains did not correlate with variants assigned as likely benign. 

Genes carrying variants included direct components of the TCA cycle complexes (ACO1, ACO2, 

DLST, CS, IDH3A, MDH2,) and genes encoding proteins related to complex scaffolds or TCA 

complex-like functions (SUCLG2, OGDHL, and DLD). 
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5.3.6 Copy number alterations - Calibration of copy number pipeline 

In order to assess the necessary changes to default parameters provided by XHMM for the calling 

of CNVs in unmatched whole exome data, calibration was performed on a subset of HapMap 

samples with both whole exome sequencing and CNV calls from comparative genomic array data 

(see materials and methods 5.2).  

Comparisons in calling rate and genotype for overlapping targets in both whole exome and array 

data were performed across 23 samples to assess the calling efficiency, genotyping accuracy, and 

ability to replicate results found in CGH array data, considered the gold standard for high-throughput 

detection of copy number alterations. Analysis was replicated 95 times utilising differential 

parameters regarding target size, target read depth, sample read depth, read depth standard 

deviation, and PCA variance normalisation. Of 95 replicates attempted, 73 successfully produced 

CNV calls and used to generate summary and comparison data. 

5.3.7 Copy number alterations calibration - Evaluation of call rate, type I, and type II errors 

When comparing exome targets which intersected with genomic regions with available array data, 

the true positive rate was 68.53 ± 2.89% when restricted to all experimental iterations for which 

targets were called in both exome data and array data. False positives occurred at a mean rate of 

5.69 ± 0.63% in which XHMM called an alteration in copy number but array data was discordant. 

The remaining percentage was attributable to false negative calls, where XHMM failed to genotype 

a non-neutral copy number alteration identified by the array data at a rate of 25.77 ± 3.30%. 

Distributions across all samples are given in 5.3 Figure 6A. 

A majority of algorithm parameters, independently, had little to no impact on call rates in the 

calibration set with the exception of ‘minimum mean target read depth’, that is to say the threshold 

below which exome targets are excluded on the basis of mean read depth across the analysed 

samples (5.3 Figure 6B). No analysis was performed to assess call rate effects due to combinatorial 

parameter modifications. 
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5.3 Figure 6 

CNV calibration results across all HapMap WES data sets compared to array data. 6A visualisation of the 

relative proportion of calls and the detection rates by colour. True positives (blue), false positives (red), and 

false negatives (green). 6B Line plot grid for each altered XHMM algorithm metric and the change to TP, FP, 

and FN rates over different iterations.  

A 

B 
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5.3.8 Copy number alterations – RCC copy number analysis 

CNV calling utilising the CNV pipeline was performed on all 72 RCC WES cases with an additional 

74 read depth-matched WES samples. The sample set was normalised on the second principle 

component, removing variance up to the 70% threshold, as specified in the XHMM methodology 

(430).  

Initial calling by XHMM called 9,310 copy number altered regions across all samples. After 

annotation and exon extraction, a total of 13,072 exons were called as having altered copy numbers 

across 146 samples equating to 78,942 altered genotypes over all samples. These calls were split 

evenly between deletions and duplications, with 39,378 duplications and 39,564 deletions (deletion 

to duplication ratio = 1.004). The median number of duplication calls was 249 (range 53-780) per 

sample and the mean number of deletions was 249 (range 116-1085). Stringent call filtering (see 

materials and methods 5.2) filtered 7,418 sites and the removal of 27 samples in which no CNV calls 

remained, resulting in the retention of 5,654 individual genotypes, 3,536 (62.5%) were duplications 

and 2,118 (37.5%) were deletions. The mean duplication and deletion call rates across the retained 

samples were 29.7 (range 0-591) and 17.8 (range 0-437), respectively. 

Lastly, samples were subset to exclude the non-case samples used to improve calling. This caused 

2,275 additional sites to be filtered causing a reduction in genotype calls to 3,379 (2,024 duplications 

and 1,355 deletions). Median CNV calls per sample was 23 (range 1-441), with duplications having 

a median of 15 (range 0-337) and deletions a median of 4 (range 0-437). Of the samples assessed, 

5 individuals harboured call rates exceeding 1 standard deviation from the mean rate across all 

samples, and 3 samples exceeded 2 standard deviations. These samples accounted for 46.6% 

(1,576/3,379) of all CNV calls (See 5.3 Figure 7A). 
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Given that germline CNVs should occur at low rates, samples with an excessive number of CNVs 

were excluded on the premise that the CNV calls were artefactual. Samples with CNV calls 

exceeding one standard deviation greater than the cohort mean were removed. Exclusion of these 

outlier samples resulted in attenuated call rates with a total of 5,654 sites called across 56 samples 

for a total of 1,803 genotype calls (5.3 Figure 7B). Removal of the outlier samples resolved to 

stabilise the CNV call rates across all samples with a median of 21 (range 1-127) CNV calls (1,179 

duplications and 624 deletions). Median duplication and deletion rates in the final sample set were 

12.5 (range 0-103) and 3 (range 0-123), respectively. 
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5.3 Figure 7 

Stacked bar plot of exon call types and counts across all RCC samples where duplication proportion 

is indicated in yellow and deletions in blue. Solid line represents the mean count, dotted represents 

the upper standard deviation, and dashed represents two times the upper standard deviation. 7A 

Stacked bar plot including outlier samples which exceeded 2 standard deviations from mean number 

of target exons called. 7B Stacked bar plot identical to that in 7A but after the removal of the outlier 

samples.  

A 

B 



 

192 
 

Analysis of affected genes was performed by first identifying CNV calls in protein coding genes and 

subsequently the application of gene lists as utilised for SNV analysis. Analysis of CNV calls 

discovered copy number duplications in 274 genes and copy number deletions in 137. A total of 18 

genes had both copy gain and copy loss calls and were excluded on the basis that genes carrying 

both duplications and deletions are unlikely to be associated with the same phenotypic presentation.  

Filtering of CNV calls using a broad pan-cancer gene list (572 cancer-related genes curated from 

the COSMIC cancer consensus gene lists (378) reduced the call set to 75 CNV calls which, when 

exon overlapping calls were merged, collapsed to 10 distinct calls in 10 samples (5.3 Table 7). These 

CNV calls were divided into 5 duplications and 5 deletions, 2 were full coding region alterations and 

the remaining calls were partial. All calls occurred only once, detected in a single individual across 

the entire unfiltered sample set. Many calls were partial duplications of known tumour suppressor 

genes and therefore likely to be false positives or not assumed to have functional effects (TSC2, 

CARD11, PMS2), as well as the full coding region of MUTYH. Deletions were broadly partial in 

nature, resulting in copy number losses of a subset of exonic regions and only a single gene 

demonstrated a copy loss of the entire coding region (EP300).  
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5.3 Table 7 

Table of high quality filtered CNV calls made across the RCC set collapsed by gene and copy 

number alteration type. 

CNV Gene Chr Start End 
Size 
(Bp) 

Q 
Some 

Allele 
frequency 

Allele 
count 

Region 

DEL PDE4DIP chr1 149030194 149030314 120 99 6.90E-03 1 Exon 46 

DEL COL2A1 chr12 47976750 47978819 2069 63 6.90E-03 1 Exon 42-48 

DEL NF1 chr17 31358907 31360764 1857 97 6.90E-03 1 Exon 55-56 

DEL EP300 chr22 41117125 41176589 59464 69 6.90E-03 1 Exon 1-30 

DEL HNRNPA2B1 chr7 26197302 26197908 606 79 6.90E-03 1 Exon 2-4 

DUP MUTYH chr1 45329244 45340348 11104 99 6.90E-03 1 Exon 1-16 

DUP TSC2 chr16 2087801 2088671 870 97 6.90E-03 1 Exon 39-42 

DUP APOBEC3B chr22 38982402 38982522 120 76 6.90E-03 1 Exon 1 

DUP CARD11 chr7 2910037 2947799 37762 94 6.90E-03 1 Exon 3-24 

DUP PMS2 chr7 5986697 5990016 3319 88 6.90E-03 1 Exon 10-11 
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5.3.9 Gene burden analysis 

Gene burden analysis was performed utilising 66 cases with features of RCC predisposition and 999 

control samples from the ICR UK exome (433) (as described in materials and methods 5.2). As such, 

patients identified as not having non-Finnish European admixtures were excluded from downstream 

analysis. Burden analysis was restricted to truncating and nonsynonymous variants (excluding in-

frame deletions and insertions, non-coding, intronic, and synonymous alterations) and after filtering 

resulted in 497,138 variants across 1,071 samples. 

PCA was performed to assess for batch effects and determine appropriate covariates to include the 

gene burden model (See 5.3 Figure 8). Further interrogation of the PCA plot and its variance profile 

demonstrated a likely batch effect due to library and data preparation methods between control and 

case samples, driven by variance in PC1 and intra-case variance from both P1 and PC2 collectively. 

In PCA plots utilising principle components 3 or greater, samples broadly overlapped, suggesting no 

variance between cases and controls, or intra-case variability. 

The magnitude of any variance to a single principle component is an important factor when 

determining the degree to which it will affect downstream analysis. A plot of cumulative variance was 

generated for all computed principle components in order to quantify the contributed variance for 

each principle component (see 5.3 Figure 9). Principle component 1 and 2 contributed 1.03% and 

0.55% of total variance derived from the principle component analysis, respectively. All the remaining 

variance was spread equally across all remaining principle components at percentages between 0 - 

0.47% (mean = 0.09%). Formally, the contributed variance for each principle component broadly 

correlated with the amount of variance contributed individually by each sample. Given the minimal 

about of variance contributed by each principle component, downstream analysis was carried out 

with both principle component 1 and 2 as covariates in the SKAT-O model with all remaining principle 

components contributing an increasingly low amount of variance. 
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5.3 Figure 8 

Scatter plots of principle components 1 – 5 grouped by case and control; cases from this study in 

blue, control samples from ICR1958 birth control cohort in red. A) Scatter plot of principle 

component 1 against principle component 2. B) Scatter plot of principle component 2 against 

principle component 3. C) Scatter plot of principle component 3 against principle component 4. D) 

Scatter plot of principle component 4 against principle component 5. 
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5.3 Figure 9 

Contributed variance across all principle components. X-axis presents all principle components 

generated by principle component analysis; y-axis presents the amount of total variance within the 

data contributed by a given principle component. Graphs A and B display the same data but with 

different y-axis scaling. A) Contributed variance with y-axis scaled to the highest amount of 

variance contributed by a single principle component. B) Contributed variance with y-axis scaled to 

100% contributed variance. 
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5.3 Figure 10 

Q-Q plot for the described SKAT-O implementation depicting the quantile p value spread against 

the theoretical quantiles. Upwards deviation of points from the theoretical distribution (centre line) 

indicate an inflation of p values.  
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SKAT-O burden analysis was performed across all genes containing variants with the optimised 

parameters with covariates (5.3 Figure 10 and 5.2 Table 1). Analysis of SKAT-O output revealed 

532 genes with a significant mutational burden compared to controls at p < 0.05 and 180 genes at 

significance p < 0.01 (See appendix section 9.4.6). A single gene was significant after multiple testing 

correction by FDR (FBLIM1, q value = 0.035). The correction was applied across all assessed genes 

(n = 13,959) and the false discovery rate was set to 5%, as such multiple testing correction was 

statistically conservative for false positive associations. Genes occurring with p values < 0.01 

included 12 known cancer associated genes as defined by network of cancer genes (v6.0) (428), 

including HIF1A (p = 3.28E-04). Analysis of the genes associated with mutational burden (p < 0.01) 

by the Network of Cancer Genes (NCG v6.0; (428)) identified a statistical enrichment of known or 

candidate cancer genes in the burden-associated genes compared to global rates with 6.67% 

(12/180) genes in the burden associated set being known or candidate cancer genes compared to 

12.6% (2372/18833) across the genome (χ² test p = 0.040). 

Gene enrichment analysis was performed on various gene set analysis platforms for genes with p 

values < 0.01 in order to identify enriched biological processes, pathways, or regions. Analysis for 

overrepresented gene ontologies (GOs) using WebGestalt detected no enriched GOs after FDR 

correction. Gene enrichment performed by Reactome to detect statistically overrepresented 

pathways did not detect any pathways in which genes (or their protein products) were enriched. It is 

worth noting that Reactome failed to find matching gene identifiers for 70/180 (38.9%) genes despite 

using multiple gene/protein identifiers (NCBI, Entrez gene, gene symbol, and Uniprot) which may 

have impacted pathway enrichment analysis. Lastly, GO enrichment analysis using Panther and GO-

slim biological process ontology set also did not result in any FDR corrected biological processes 

being enriched in genes with p values < 0.01. 
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5.3.10 Short tandem repeat expansion analysis 

Short tandem repeat expansion (or contraction) (STRE) analysis was performed on BAM files for all 

72 individuals in the case set to determine if known tandem repeat alterations could be detected in 

germline sequencing from WES data, and if those alterations could impact genes known to result in 

RCC predisposition. STREs were called at a mean rate of 34,925 calls per sample (median = 33,343; 

range 20,776-69,571). STRE calls were filtered for both read depth and quality (Q) and restricted to 

calls within known RCC predisposition genes (see appendix 9.4.1), as well as BRIP1, as identified 

in chapter 4. 

After filtering and genomic region restriction the mean number of STRE calls per sample was 1.78 

(median = 1.5; range 1-5). Calls across all samples were collapsed into a single VCF resulting in a 

total of 31 STRE calls passing filtering criteria. A further 24 sites were excluded for occurring at an 

allele frequency greater than 5% (allele frequency > 0.05) and were therefore likely to be either false 

positive calls or natural fluctuations in short tandem repeat lengths.  

The remaining 7 sites (5.3 Table 11) occurred in 6 individual samples, with a single individual 

harbouring both large STRE calls in SDHA and TSC1 (chr5:250296 A/(AGG)272 and chr9:132903602 

C/(CAAAA)163). Of the 7 STRE calls made by gangSTR which passed all filtering criteria, 6 were 

present within gene introns and none occurred in the disruption or in proximity to a spice site 

consensus sequence. A single STRE call was present within exon 20 of BRIP1 (chr17:61684053 

T/TTTGT), occurring at amino acid 998 within the BRCA1 binding domain in an individual with familial 

RCC and no other known candidate variants from previous analysis. 

 



   5
.3

 T
a
b

le
 8

 

S
T

R
E

 c
a

lls
 a

ft
e
r 

fi
lt
e
ri

n
g
 a

n
d
 j
o
in

t 
a
lle

lic
 f

re
q
u
e

n
c
y
 a

s
s
e
s
s
m

e
n
t 

id
e

n
ti
fi
e

d
 i
n
 7

2
 R

C
C

 p
re

d
is

p
o
s
it
io

n
-r

e
la

te
d
 W

E
S

 s
a

m
p

le
s
 

C
h

r 
P

o
s
it

io
n

 
R

E
F

 
A

L
T

 
A

ll
e
le

 
c
o

u
n

t 
A

ll
e
le

 
fr

e
q

u
e
n

c
y

 
G

e
n

e
 

T
y
p

e
 

E
x
o

n
 

In
tr

o
n

 
S

tr
a
n

d
 

c
h
r1

 
1
6
1
3

1
9
2

2
3

 
A

 
A

A
A

T
A

 
1
 

1
.3

7
0
E

-0
2

 
S

D
H

C
 

In
tr

o
n

ic
 

 
1
/5

 
1
 

c
h
r1

7
 

6
1
6
8

4
0
5

3
 

T
 

T
T

T
G

T
 

1
 

1
.3

7
0
E

-0
2

 
B

R
IP

1
 

E
x
o
n
ic

 
2
0
/2

0
 

 
-1

 

c
h
r1

7
 

6
1
7
8

0
7
2

9
 

A
 

A
A

C
A

 
1
 

1
.3

7
0
E

-0
2

 
B

R
IP

1
 

In
tr

o
n

ic
 

 
1
/1

2
 

-1
 

c
h
r3

 
5
2
5
6

6
0
4

9
 

C
A

A
A

A
C

 
C

 
1
 

1
.3

7
0
E

-0
2

 
P

B
R

M
1

 
In

tr
o
n

ic
 

 
 

-1
 

c
h
r5

 
2
5
0
2

9
6

 
A

 
(A

G
G

)X
2
7
2

 
1
 

1
.3

7
0
E

-0
2

 
S

D
H

A
 

In
tr

o
n

ic
 

 
1
/1

1
 

1
 

c
h
r7

 
1
1
6
7

9
2
4

5
7

 
A

C
A

C
A

C
A

C
A

 
A

 
1
 

1
.3

7
0
E

-0
2

 
M

E
T

 
In

tr
o
n

ic
 

 
1
9
/2

0
 

1
 

c
h
r9

 
1
3
2
9

0
3
6

0
2

 
C

 
(C

A
A

A
A

)X
1
6

3
 

1
 

1
.3

7
0
E

-0
2

 
T

S
C

1
 

In
tr

o
n

ic
 

 
1
7
/2

2
 

-1
 



 

201 
 

5.3.11 Mobile element analysis 

Analysis of mobile element insertion was performed using MELT for all 72 samples present in the 

WES data set. Initial calling of mobile element insertions (MEIs) was independently identified per 

sample for each of the 4 transposable element types and jointly genotyped, describe in the materials 

and methods section. Prior to site filtering MEIs the following number of MEIs were detected per 

transposable element type; ALU = 1,645, HERVK = 1, LINE1 = 152, SVA = 73. 

Filtering parameters for MELT calls were applied (PASS status and split read support > 2) to each 

transposable element type resulting in the retention of 35 ALU sites, 0 HERVK sites, 5 LINE1 sites, 

and 1 SVA sites. Transposon-specific VCF files were concatenated and region filtering of calls to 

genes present in known RCC predisposition genes (and BRIP1), as described previously, did not 

result in any sites being retained. Intersection of the sites present in the multi-transposon VCF file 

with all known gene coding regions returned 41 sites with MEI calls. Removal of common (AF > 0.05) 

MEI calls across the sample set retained 18 sites, only 1 of which was within a gene exon, ZNF763 

(5.3 Table 9). 
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5.4 Discussion 

In this study the use of multiple analysis types has been utilised to identify potential candidate genes 

which may be associated with RCC predisposition. Identification of genes with strong associations 

with somatic RCC alterations in histone modifying and chromatin remodelling pathways such as 

SMARCA4, SETD2, KDM6A, KMT2C, and KMT2D are potential candidate genes given the recent 

association of PBRM1 and BAP1 with RCC predisposition (263,264) and in regard to the details 

discussed in chapter 3 section 3.1.3. SMARCA4 encodes a component of the same complex as 

PBRM1 and is frequently somatically altered in RCC and has been reported in predisposition to other 

cancer (439).  

Variants in SETD2, including a non-frameshift deletion, are interesting potential candidates given 

the frequency of somatic alterations in SETD2 seen somatically, with 18% of clear cell RCC cases 

having either copy loss or putative driver mutations (25) and has been demonstrated to act as tumour 

suppressor via epigenetic regulation (440). Histopathological information was available for one of 

the three individuals with SETD2 variants and had multifocal clear cell RCC at age 48 years, which 

would correlate with SETD2 mutational status. Heterozygous loss of function SETD2 mutations have 

been described as a cause of the intellectual disability disorder, Luscan-Lumish syndrome (MIM: 

616831) which is characterised by developmental and speech delay, dysmorphic facial features, 

macrocephaly and autistic features (441,442). Luscan-Lumish syndrome is a rare disorder and 

predisposition to RCC has not been described and, to my knowledge, the individuals in our RCC 

cohort with SETD2 variants did not have features of Luscan-Lumish syndrome. Variants in KMT2C 

and KMT2D have been broadly discussed in previous chapters but they do occur frequently 

somatically and should not be removed from consideration, particularly KMT2C given the sequencing 

issues and potential false positives that may occur, as such further analysis would be necessary.  
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Lastly, KDM6A is a further gene coding a histone modifying protein, lysine demethylase 6A, and is 

also altered somatically, though at a lower rate than the other genes mentioned (1.8%). KDM6A is 

closely linked to KMT2D, both of which are associated with Kabuki syndrome 2 and 1, respectively 

(MIM: 300867 and 147920) and therefore is open to the same points discussed in chapter 3 in regard 

to the inheritance of a variant associated with an autosomal dominant condition. It is worth noting 

that KDM6A is present on chromosome X and demonstrates X linked inheritance which complicates 

variant interpretation. In this case the individual was a female presenting a chromophobe RCC at 

age 27 years so adherence to a two-hit model is still feasible. Overall variants in these genes are 

interesting candidates given the rate of somatic alterations, where 26% of RCC cases across all 

histological subtypes carry at least one alteration in one of the genes discussed. While interesting 

candidates, additional studies to confirm function implication of the variants identified and tumour 

studies to demonstrate LOH which would support their role in RCC predisposition.  

Variants were identified after analysis of genes associated with TCA cycle complex components and 

supporting proteins. Interpretation of these variants in genes such as ACO1 and CS is difficult without 

functional assessment of the variants and effect on the TCA cycle. Variants in these genes may act 

similarly to FH in HLRCC or SDH genes by results in the intracellular accumulation of substrates of 

the TCA cycle and intermediates such as 2-oxoglutarate which result in the disruption of alpha-

ketoglutarate-dependent dioxygenase enzymes such as TET and KDM proteins (229), as well as 

potential inhibition of PHD proteins in a manner similar to that seen with fumarate and succinate 

(175). Histopathology in these cases, where available, was 50% papillary RCC, which would be 

consistent with HLRCC-like tumours if the mechanisms were similar (443). While protein function 

experiments could be labour intensive, metabolic testing of tumours for accumulated metabolites 

has been demonstrated for SDH-deficient and FH-deficient tumours (444) and, in combination with 

immunohistochemistry for the affected TCA complexes, could rapidly confirm or refute the potential 

detrimental nature of the variants in this set. 
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SNV analysis also identified several putative causal variants in genes linked to genetic renal 

diseases known pathogenic variants associated with renal-related autosomal recessive conditions. 

The nonsense variant in PKHD1 (NM_138694: c.C5323T: p.R1775X) which is a known pathogenic 

variant associated with autosomal recessive polycystic kidney disease. While determining if this 

variant is causal for the predisposition seen in this individual, it is interesting that an individual 

harbouring a pathogenic allele for polycystic kidney disease would develop RCC given that cystic 

disease is a risk factor for RCC (36) and a reported increased susceptibility in autosomal dominant 

polycystic kidney disease (445), especially given the rate at which somatic alterations occur across 

RCC tumours (3%). Conversely, whether the loss of the second wild type allele would induce RCC 

or renal cysts only would require further investigation and that this may be an incidental finding of an 

individual who is a carrier for autosomal recessive polycystic kidney disease. Assessed in the same 

manner, the splice variant seen in NUP93 (NM_014669) could, in autosomal dominant inheritance 

pattern, confer a risk to RCC but NUP93 inactivating variants have only been associated with 

autosomal recessive nephrotic syndrome and though nephrotic syndrome has been associated with 

increased cancer risk (446) in affected individuals, carriers have not been assessed for increased 

cancer risk and are infrequently seen somatically. It is also important to note that acquired cystic 

disease can develop in patients with renal failure and is associated with an increased risk of RCC 

(447), as such drawing correlations between inherited renal cystic disease, RCC predisposition and 

renal failure can be difficult. 
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Gene burden association testing demonstrated reasonably robust statistical metrics given the limited 

sample size and case-control size discrepancy. Only a single gene reached statistical significance 

after multiple test correction (FDR) and only a handful of genes were statistically significant prior to 

FDR correction and known to be associated with cancer. Gene ontology analysis of genes with 

significant burden, with or without multiple testing correction, failed to identify any relevant biological 

processes that were enriched in the gene set. The clear limitation in the gene burden analysis is the 

lack of association after multiple testing correction and the presence of an overabundance of genes 

surpassing uncorrected significance level due to the observed p value inflation, seen in 5.3 Figure 

9. Indications from both the gene burden outcomes and gene ontology enrichment suggest that 

underlying issues with statistical power and clear issues regarding control of variance between the 

cases and controls persist. Overall a limited number of conclusions can be drawn from the results 

presented. Conversely, the gene burden analysis was performed on all coding sequence affecting 

variants, utilising differing subsets of variant consequences, such as only missense variants may 

yield different associations though refitting of the model is required. The statistical power of the 

analysis performed here using SKAT-O could be greatly improved with increased sample size which 

may allow for statistical associations to be detected and allow for absolute associations between 

increased gene mutational burden and RCC predisposition. 

Finally copy number, short tandem repeat expansion, and mobile element analyses collectively 

identified very few candidate alterations which could be plausibly linked to RCC predisposition. CNV 

analysis generated only 10 high quality calls, many of which were partial duplications that are unlikely 

to result in an altered phenotype. Remaining calls such as the partial deletion of exons 55 and 56 of 

NF1 are potentially interesting due to links with predisposition to PCC in neurofibromatosis 1 (MIM: 

162200)(448) and the known phenotypic connections between those diseases and RCC (212,385). 

Conversely, the deletion of those specific exons would result in the truncation of the 2nd and 3rd exons 

from the final 57th exon which does not appear to harbour any functional domains, though there are 

two modified phosphoserine residues on the C terminus which may have a function during mitosis 

(449). 
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The full coding region deletion of EP300 due to it encoding the histone acetyltransferase enzyme 

p300 which regulates chromatin structure and truncating mutations are seen relatively frequently in 

somatic RCC (2.8%), although heterozygous inactivating variants in EP300 are associated with 

Rubinstein–Taybi syndrome (450) and offsetting evidence is available for p300 and its function or 

role in cancer. The WES-based CNV pipeline has clear limitations, particularly regarding false 

negatives, which limits this study’s ability to detect CNVs. Additionally, the presence of a significant 

false positive rate means any copy number alteration would need to be validated by conventional 

methods (i.e. array-based of multiplex-ligation dependent probe amplification) and as such should 

be interpreted with caution.  

The exploratory investigations into the potential for short tandem repeat expansions or mobile 

elements to be associated with RCC failed to reveal any substantial results and genetic diseases 

caused by these mechanisms are rare. While these methods did not yield clear and obvious 

associations, exploring all potential avenues to discover the heritability in RCC utilising rare and 

under measured sources of genetic alterations may prove critical to identifying factors linked to 

predisposition which fall outside of the typical paradigms assessed routinely. 
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5.5 Conclusion 

WES analysis of individuals with features of RCC predisposition has uncovered a range of potentially 

pathogenic or likely pathogenic variants outside of those discovered in chapter 4, as well as a series 

of VUS variants in genes associated with somatic RCC, other renal-related diseases, and metabolic 

pathways seen to be altered in both syndromic RCC and PCC. Conversely, case control mutational 

burden analysis and exploration into copy number alterations and other genetic alteration types did 

not reveal strong candidates for causes of inherited RCC. Limitations of reduced genomic coverage, 

poor variant interpretation, and sample sizes have confounded the identification of any robust 

associations. In particular, power to detect associations given the limited sample size and prior 

probability of an individual having a monogenic disorder is the major limiting factor and it is likely that 

only substantially increased sample sizes would be capable of identifying alleles that contribute to 

RCC predisposition at moderate to low risk rates. 
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6.0 Characterisation of RCC-associated constitutional chromosomal 

abnormalities by whole genome sequencing 
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6.1 Introduction 

Constitutional translocations are detected prenatally at a rate of 1 in 109-238 births (0.42-0.92%) 

(451–453), and large structural variants occur relatively frequently in the general population (454). 

Chromosomal translocations are subdivided into 3 primary types; balanced, unbalanced, and 

Robertsonian, each of which result in differential retention or loss of genomic information depending 

upon the size and type of translocation. Though most translocations are not known to cause genetic 

disorders, a subset of translocations, particularly those that are unbalanced, have been associated 

with a number of different diseases including cancer, infertility, neuropsychiatric disorders, and 

Intellectual/developmental disorders (455–458). 

6.1.1 Constitutional translocations in RCC 

Four decades ago, Cohen et al (1979) described a large kindred in which clear cell RCC segregated 

with a constitutional translocation between the short arm of chromosome 3 and the long arm of 

chromosome 8, t(3;8)(p14.2;q24.1) such that the risk of RCC in translocation carriers was estimated 

to be 80% at age 60 years (259). Subsequently, somatic deletions of the short arm of chromosome 

3 (3p) were found to be the most common cytogenetic abnormality in sporadic clear cell RCC 

suggesting the presence of critical renal tumour suppressor genes on 3p (126). These developments 

led to the suggestion that identification of individuals with suspected inherited forms of RCC should 

be screened for constitutional translocations involving 3p and that the characterisation of RCC-

associated translocation breakpoints might lead to the identification of novel inherited RCC genes 

(459). Subsequent research studies have confirmed that chromosome 3p does indeed harbour 

several tumour suppressor genes (TSGs) that are frequently inactivated in sporadic RCC (e.g. VHL, 

PBRM1, BAP1, RASSF1A) (25,128,277,389,460–463).  
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Unlike normal RCC syndromes, which conform to either a two hit hypothesis or constitutional 

activation of an oncogene, constitutional translocations are suggested to cause RCC predisposition 

via a three-hit model. The three-hit model of tumourigenesis in translocation-related renal cell 

carcinomas is theorized as follows: I) presence of constitutional translocations lead to a genomic 

instability, II) Loss of genomic stability results in the loss of the chromosome 3p region on the 

derivative chromosome, III) Secondary loss of an allele from genes on the wildtype 3p region, usually 

VHL, leads to complete loss of one or more tumour suppressor genes. Under this model, initial 

genomic instability is insufficient to induce cancer development and two additional hits are still 

required to induce neoplastic cell growth, frequently including the loss of tumour suppressors (i.e. 

VHL), although the precise mechanism of the genomic instability is not known.  

Translocations may also confer a generalised genomic instability, in which specific loss of 3p is not 

required, and further inactivation of unknown genes are responsible for tumourigenesis. 

Alternatively, translocations may result in positional-effect variegation, resulting in differential 

expression patterns for coding regions under differential chromatin regulation (464). Generalising 

the model to all translocations, particularly those outside of chromosome 3 has proven more 

challenging. The lack of known tumour suppressors, intergenic break points, and no relation to 

commonly lost regions in sporadic RCC cases suggests that other mechanisms are involved in 

predisposition and tumour progression. 
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6.1.2 Constitutional translocations in other cancers 

Constitutional translocations have been documented in leukaemia (465–468). Recently an overlap 

between blood-derived cancers and RCC was described with a report of an individual with both RCC 

and Hodgkin lymphoma concomitantly, in which germline testing identified a constitutional 

t(6;11)(p21;q12) translocation (469), though the clinical significance is difficult to interpret. 

Furthermore, translocations have also been linked with a predisposition to Wilm’s tumours (470–

472) and though translocations are not common in Wilm’s tumours, evidence for a non-stochastic 

mechanism of tumourigenesis via constitutional translocations seems to be present for these cases, 

implicating genes such as HACE1 and BBS9 as a susceptibility genes in Wilm’s tumour development 

(470,472). Many additional studies have shown idiosyncratic presentations of constitutional 

translocations in cases of oncogenesis, including but not limited to, testicular cancer (473), teratomas 

(474), thymomas (475), appendiceal carcinomas (476), rhabdomyosarcomas (477), meningiomas 

(478), retinoblastomas (479), and neuroblastomas (480–482). 

6.1.3 Methods for translocation characterisation 

Classically, translocations have been identified and characterised by performing an admixture of 

techniques (including array painting, comparative genomic hybridisation arrays, flow cytogenetic 

sorting, Fluorescent in-situ hybridisation, and YAC/BAC hybridisation), allowing for a steady increase 

in genomic resolution to a juncture at which break points can be accurately mapped. These 

techniques, whilst reliable, are laborious and have limited utility for further applications outside of 

break point mapping.  

Comparatively, newer techniques utilising next-generation sequencing at whole genome scale have 

been used to identify and characterise constitutional translocations, utilising the increased genomic 

coverage, paired read discordance, and local reassembly to characterise break points (470,483) but 

have been widely underutilised. The significant drawback of these methods is the financial burden 

of parallel sequencing, but further utility is provided in WGS approaches to allow for a greater breadth 

and depth for data interrogation (e.g. single nucleotide variant, structural variation, and copy-number 

aberrations). Clinical diagnostics may well benefit from a personalised but holistic approach to 

genomic analysis by providing a greater volume of genetic information with which to interpret 

disease, including but not limited to detection and analysis of structural rearrangements. 
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6.1.4 Summary 

As discussed above and previously (Introduction section 1.4.10), constitutional translocations have 

previously been associated with a predisposition to RCC having been identified in numerous families 

and individuals harbouring translocations, most frequently chromosome 3 and other chromosome 

partners. Though rare, these translocations have implications for understanding the molecular 

mechanisms of RCC through characterisation of the chromosomal breakpoints, affected genomic 

loci, and subsequent observations in RCC tumours. In this chapter, a review of all known RCC-

associated translocation cases to-date is performed, assessing the clinical and genetic features 

across these cases and characterise the breakpoints and molecular genetics of novel RCC-

associated translocation cases. Lastly, the use of WGS and new bioinformatics approaches is 

explored as a methodology for a robust and efficient method of breakpoint characterisation without 

using techniques used previously in translocation characterisation studies. 

  



 

215 
 

6.1.5 Aims 

 Determine the clinical, genetic, and molecular features and characteristics of known RCC-

associated translocation cases 

 Perform molecular and clinical characterisation of 5 novel RCC-associated translocation 

cases 

 Assess the viability of WGS-based and 3rd generation NGS methods for translocation 

breakpoint characterisation 
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6.2 Materials and methods 

6.2.1 Literature review 

Reports of cases of RCC with a constitutional chromosome rearrangement were identified through 

a search of PubMed using the search terms “renal cell carcinoma” or “renal cancer” or “kidney 

cancer/tumour” and “rearrangement/inversion/translocation or chromosome” and by searching 

previously published reports. When previous reports had suggested candidate genes that were 

either close to or disrupted by the relevant chromosomal breakpoints, evidence to suggest that the 

genes were implicated in human cancer was sought by reviewing curated data from the Network of 

Cancer Genes data portal (NCG; http://ncg.kcl.ac.uk/ version 6) (428). Where genes were classified 

as either ‘known cancer genes’, ‘candidate cancer genes’, or ‘non-cancer genes’. Genes flagged as 

‘false positive cancer genes’ were designated as ‘non-cancer genes’. 

6.2.2 Clinical studies  

Individuals presenting with RCC and with constitutional rearrangements were ascertained through 

Regional Clinical Genetics Units in the United Kingdom. 

6.2.3 Sequence alignment and variant calling 

DNA from four probands was sequenced at Novogene as described in materials and methods 

section 2.6.4. WGS bioinformatics was performed as described in materials and methods section 

2.7.  

DNA from one proband underwent WGS as part of the NIHR BioResource Rare Diseases study with 

sequencing and primary bioinformatics performed as previously described in Whitworth et al (2018) 

(376). Data in this instance had been aligned to genome build GRCh37 and all subsequent analysis 

was performed identically with appropriate adjustments for differences in genome build. All genomic 

coordinates are reported in GRCh38 and GRCh37 coordinates were remapped using the NCBI 

remap tool (https://www.ncbi.nlm.nih.gov/genome/tools/remap). Called SNVs were processed and 

filtered for various quality control metrics and allelic frequency as described in materials and methods 

section 2.8. 
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6.2.4 WGS Analysis: Candidate gene analysis and Breakpoint identification 

The WGS results were analysed for evidence for rare, potentially pathogenic, SNVs and copy 

number abnormalities in previously reported inherited RCC genes (VHL, MET, FH, SDHB, SDHD, 

SDHC, BAP1, CDKN2B) (98,484). Copy number detection was performed using Canvas Copy 

Number Variant Caller (version 1.39.0.1598) (485), copy number variants were filtered to include 

calls only marked as “PASS” (See appendix section 9.51). Structural rearrangements and 

breakpoints were identified using Manta Structural Variant Caller (version 1.3.1) (486). Manta 

structural variants were filtered to include only calls marked as “PASS”, number of supporting 

spanning/split reads > 5, QUAL > 100, and call frequency (See appendix section 9.5.1. Breakpoints 

called on chromosomes matching cytogenetic reports were visually inspected using Integrative 

Genomics Viewer (IGV - version 2.3.93) to confirm the presence of split and spanning reads (See 

appendix section 9.5.2). 

6.2.5 Nanopore sequencing of translocation breakpoints 

Long read sequencing of translocation breakpoint PCR amplicons was performed as described in 

the materials and methods section 2.9. 

6.2.6 Sanger sequencing 

Sanger sequencing was performed as described in materials and methods section 2.4 using 

breakpoint spanning primer pairs (Appendix section 9.5.3). Primer pairs were constructed for each 

chromosomal breakpoint to span the break point region by inversing the primer pairing (i.e. ChrA-

forward → ChrB-reverse & ChrB-forward → ChrA-reverse), in this instance only PCR products 

specific to the translocation break point should be amplified. Sanger traces are provided in appendix 

section 9.5.3. 

6.2.7 Statistical tests 

All statistical tests were performed using R project for statistical computing (version 3.5). Welch’s t-

test was performed using the package BSDA (version 1.2.0) with the function tsum.test(). Kruskal–

Wallis rank sum test was performed using the base R function kruskal.test(). Fisher’s exact test was 

performed using the base R function fisher.test(). Statistical testing was undertaken on data from 

confirmed translocation carriers only. 
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6.3 Results 

6.3.1 Literature review of previously reported cases 

A total of 17 previously published distinct constitutional chromosome rearrangements were identified 

from searches of the biomedical literature (see 6.3 Table 1) (260,459,495–499,487–494). In 15 

cases (88%) chromosome 3 was involved (all of which were reciprocal translocations) and there 

were a variety of partner chromosomes in the 15 translocation cases (e.g. 3 with chromosome 6, 3 

with chromosome 8 – see 6.3 Table 1 and 6.3 Figure 1). For the RCC-associated chromosome 3 

translocation cases, the breakpoints were almost evenly distributed between the long arm (3q), n=8) 

and short arm (3p; n=7) and were heterogeneous (see 6.3 Figure 2).  

Review of the clinical and pathological data in the previously reported cases demonstrated 9 

kindreds with at least 2 related individuals with RCC. In the 4 cases without a family history and 

available clinical information, multiple RCC was described in 2 individuals. The mean age at 

diagnosis of a renal tumour in those cases known to carry a constitutional chromosomal 

rearrangement was 50 years (range 25-82 years). Histopathological details were available for 43 

cases and clear cell RCC was reported in 42 cases (98%). 

Previous studies have demonstrated that cases of sporadic and familial RCC differ by mean age of 

diagnosis, with RCC presenting earlier in familial cases (30,129). Comparison of the mean age of 

diagnosis of RCC in translocation cases to familial and sporadic RCC cases (as reported previously 

by Maher et al. (30)) were 50.2 (SD=12.7), 48.2 (SD=12.3), and 61.8 (SD=10.8) years of age, 

respectively. Translocation cases have a statistically lower age of diagnosis than those with sporadic 

disease (Welch's t-test, p=9.84x10-7) but no significant difference between translocation and familial 

cases was observed (Welch's t-test, p=0.522). Though age of diagnosis across all affected 

translocation carriers is variable there was no significant difference in age when comparing between 

familial (with 2 or more related individuals) translocation families (Kruskal–Wallis test, p=0.174). 
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6.3 Table 1 

Clinical features of RCC in individuals from families with a constitutional chromosome rearrangement. 

Individuals marked (*) were presumed to be carriers of the relevant rearrangement but were not tested.  

Publication(s) Cytology Histology 
Type 
(foci = n) 

Sex Age 

Cohen et al. 
[1979] 

t(3;8)(pl4.2;q24.1) 
clear cell 
RCC 

Bilateral 
(n=2) 

M 37 

  clear cell 
RCC 

Bilateral 
(n=3) 

M 45 

  clear cell 
RCC 

Unilateral 
(n>2) 

M 59 

  clear cell 
RCC 

Unilateral 
(n=3) 

F 46 

  clear cell 
RCC 

Unilateral 
(n=1) 

M 44 

  clear cell 
RCC 

Unilateral 
(n=1) 

F 50 

  clear cell 
RCC 

Bilateral 
(n>3) 

F 41 

  clear cell 
RCC * 

Bilateral 
(n>2) 

M 47 

  clear cell 
RCC * 

Bilateral 
(n=9) 

F 44 

    RCC 
Bilateral 
(n=7) 

F 39 

Kovacs & 
Hoene [1988] 

t(3;12)(q13.2;q24.1) 
clear cell 
RCC 

Unilateral 
(n=1) 

M 50 

Kovacs et al 
[1989] 

t(3;6)(p13;q25.1) 
clear cell 
RCC 

Bilateral 
(n = 5) 

M 53 

Koolen et al. 
[1998] 

t(2;3)(q35;q21) 
clear cell 
RCC 

Bilateral 
(n=3) 

M 54 

  RCC N/a F 53 

  clear cell 
RCC 

Unilateral 
(n=3) 

F 68 

  clear cell 
RCC 

Unilateral 
(n=1) 

M 40 

    
clear cell 
RCC 

Bilateral 
(n=2) 

M 30 

Van Kessel et 
al. [1999] 

t(3;4)(p13;p16) 
clear cell 
RCC 

N/a M 52 

Eleveld et al 
[2001] 

t(3;6)(q11.2;6q13) 
clear cell 
RCC 

Unilateral F 59 

  clear cell 
RCC 

Unilateral F 41 
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  clear cell 
RCC 

Unilateral F 63 

    
clear cell 
RCC 

Unilateral M 67 

Kanayama et al. 
[2001] 

t(1;3)(q32;q13.3) 
clear cell 
RCC 

Unilateral 
(n=1) 

F 79 

  clear cell 
RCC 

Bilateral 
(n=4) 

M 56 

  clear cell 
RCC * 

Unilateral 
(n=1) 

M 70 

    
clear cell 
RCC 

Unilateral 
(n=1) 

M 62 

Podolski et al 
[2001] 

t(2;3)(q33;q21) 
clear cell 
RCC 

N/a M 45 

  clear cell 
RCC 

N/a M 38 

  clear cell 
RCC * 

N/a M 51 

  clear cell 
RCC * 

N/a F 51 

  clear cell 
RCC * 

N/a F 51 

  clear cell 
RCC * 

Bilateral M 51 

    
clear cell 
RCC * 

N/a F 63 

Meléndez et al. 
[2003] 

t(3;8)(p14.1;q24.23) 
clear cell 
RCC 

Bilateral 
(n = 2) 

M 46 

  clear cell 
RCC 

Bilateral 
(n = N/a) 

F 56 

  clear cell 
RCC * 

N/a M 68 

  clear cell 
RCC 

Bilateral 
(n = N/a) 

M 25 

  clear cell 
RCC 

Bilateral 
(n = N/a) 

M 66 

  clear cell 
RCC 

Bilateral 
(n = N/a) 

M 82 

  clear cell 
RCC 

Bilateral 
(n = N/a) 

M 44 

  clear cell 
RCC 

Bilateral 
(n = N/a) 

F 39 

    
clear cell 
RCC 

Unilateral 
(n = N/a) 

F 44 

Bonne et al 
[2007] 

t(3;15)(p11;q21) 
clear cell 
RCC 

N/a F 49 

  ins(3;13)(p24.2;q32q21.2) 
clear cell 
RCC 

N/a N/a 74 
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Foster et al. 
[2007] 

t(3;6)(q22;q16.2) 
clear cell 
RCC 
papillary RCC 

Bilateral 
(n=3) 

M 49 

Poland et al. 
[2007] 

t(3;8)(p14;q24.1) 
clear cell 
RCC 

Bilateral 
(n = N/a) 

F 47 

    
clear cell 
RCC 

Bilateral 
(n = N/a) 

M 39 

Kuiper et al. 
[2009] 

t(3;4)(q21;q31) 
clear cell 
RCC 

N/a N/a 45 

McKay et al 
[2010] 

t(2;3)(q36.3;q13.2) 
clear cell 
RCC 

Bilateral 
(n = 8) 

M 54 

  clear cell 
RCC 

N/a M 50 

    
clear cell 
RCC 

Unilateral 
(n > 1) 

F 35 

Doyen et al 
[2012] 

t(11;22)(q23-24;q11.2-12) 
clear cell 
RCC 

Unilateral 
(n = 1) 

M 72 

Wake et al. 
[2013] 

t(5;19)(p15.3;q12) 
oncocytoma 
chromophobe 
RCC 

Unilateral 
(n = 2) 

F 35 

    

clear cell 
RCC 
chromophobe 
RCC 
oncocytoma 

Bilateral 
(n > 2) 

F 36 
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The chromosomal rearrangement breakpoints had been mapped in 15 of 17 previously reported 

cases and a total of 10 candidate genes had been reported to be disrupted by the relevant 

rearrangement breakpoints (6.3 Table 2). Additionally, 21 genes found to be in the vicinity of 

translocation breakpoints and cited as relevant genes by the authors of the original report were also 

assessed (6.3 Table 3). The evidence for implicating the various genes in RCC predisposition was 

assessed using NCG data portal (6.3 Table 2 & 3).  

Of the 10 genes directly disrupted by translocation breakpoints, 20% (2/10) are classified as known 

cancer genes (of a total of 2372 curated cancer genes), with all remaining genes having no evidence 

supporting their role in cancer. Regarding genes stated to be in the vicinity of translocation 

breakpoint, 2 were designated as known cancer genes and 4 were classified as candidate cancer 

genes. 
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6.3 Table 2 

Reassessment of genes disrupted by translocation breakpoints in RCC-associated translocations 

reported previously. Genes were categorised according to their current status in NCG v6.0 (428) 

Original publication Affected genes Position (GRCh38) Known cancer gene 
(NCG 6.0) 

Cohen et al. [1979] FHIT chr3:59747587-61251459 Known cancer gene 

Cohen et al. [1979] RNF139 (TRC8) chr8:124474738-124488618 Non-cancer gene 

Kovacs et al [1989] STXBP5 chr6:147204358-147390476 Non-cancer gene 

Koolen et al. [1998] SLC49A4 (DIRC2) chr3:122794795-122881139 Non-cancer gene 

van Kessel et al. [1999] KCNIP4 chr4:20728606-21948801 Non-cancer gene 

Kanayama et al. [2001] LSAMP chr3:115802363-117139389 Non-cancer gene 

Kanayama et al. [2001] RASSF5 (NORE1) chr1:206507530-206589448 Non-cancer gene 

Podolski et al [2001] DIRC1 chr2:188733738-188839420 Non-cancer gene 

Kuiper et al. [2009] FBXW7 chr4:152320544-152536095 Known cancer gene 

Wake et al. [2013] UBE2QL1 chr5:6437347-6496721 Non-cancer gene 
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6.3 Table 3 

Reassessment of genes highlighted as being close to translocation breakpoints in RCC-associated 

translocations reported previously. Genes were categorised according to their current status in 

NCG v6.0 (428) 

Original publication Affected genes Position (GRCh38) Known cancer gene 
(NCG 6.0) 

Meléndez et al 2003 LRIG1 chr3:66378797-66501263 Candidate cancer gene 

Wake et al 2013 CCNE1 chr19:29811898-29824312 Known cancer gene 

Kuiper et al 2009 C3orf56 chr3:127193131-127198185 Non-cancer gene 

Foster et al 2007 PPP2R3A chr3:135965673-136147891 Non-cancer gene 

Foster et al 2007 PCCB chr3:136250306-136337896 Non-cancer gene 

Foster et al 2007 STAG1 chr3:136336233-136752403 Known cancer gene 

Foster et al 2007 MSL2 (RNF184) chr3:136148922-136197241 Non-cancer gene 

Foster et al 2007 EPHB1 chr3:134597801-135260467 Non-cancer gene 

Foster et al 2007 EPHA7 chr6:93240020-93419547 Non-cancer gene 

Podolski et al 2001 HIBCH chr2:190189735-190344193 Non-cancer gene 

Podolski et al 2001 INPP1 chr2:190343470-190371665 Non-cancer gene 

Podolski et al 2001 HNRNPC (HNRPC) chr14:21209136-21269494 Non-cancer gene 

Koolen et 1998 HSPBAP1 chr3:122740003-122793824 Non-cancer gene 

Koolen et 1998 SEMA5B chr3:122909082-123028605 Candidate cancer gene 

Yusenko et al 2010 PDZRN3 chr3:73382433-73624940 Candidate cancer gene 

Yusenko et al 2010 CNTN3 chr3:74262568-74521140 Non-cancer gene 

Yusenko et al 2010 NECTIN3 (PVRL3) chr3:111070071-111275563 Non-cancer gene 

Yusenko et al 2010 HSPB8 chr12:119178642-119221131 Candidate cancer gene 

Yusenko et al 2010 CCDC60 chr12:119334712-119541047 Non-cancer gene 

Cohen et al 1979 TRMT12 chr8:124450820-124462150 Non-cancer gene 

Cohen et al 1979 TATDN1 chr8:124488485-124539458 Non-cancer gene 
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6.3.2 Clinical features of previously unreported cases 

Five previously unreported constitutional chromosomal rearrangements ascertained through a 

patient presenting with RCC were identified through UK genetics services. The cytogenetic, clinical 

features and pathological features of the five probands and (when relevant) their affected relatives 

are described in 6.3 Table 4. There were 4 translocations (involving chromosome 3 in two cases) 

and a pericentric inversion of chromosome 3 (see 6.3 Table 4 and 6.3 Figure 1). Two or more 

individuals developed RCC in 3 kindreds: 

In the kindred with the t(3;14)(q13.3;q22) 5 individuals developed RCC (four of whom were confirmed 

or obligate translocation carriers). The proband presented with bilateral RCC at age 75 years, his 

daughter (an obligate carrier) died from RCC at age 36 years, his mother and two of his brothers 

were reported to have developed RCC at ages 51, 41 and 79 years respectively. The proband’s 

mother and brother with RCC at ages 51 and 79 years were also obligate t(3;14)(q13.3;q22) carriers 

and the son of the latter developed RCC at age 67 years and was confirmed to have inherited the 

t(3;14)(q13.3;q22).  

In the kindred with the t(3;6)(p14.2;p12) rearrangement, the proband presented with RCC at age 72 

years and four relatives were demonstrated to also harbour the translocation. Three had not 

developed RCC (age at last follow up 47-52 years) but one (the proband’s brother) had developed 

bilateral clear cell RCC age 55 years with unilateral recurrent disease and an adrenal metastasis 

age 74 years and his son died from RCC at age 40 years without any record of his status for the 

t(3;6)(p14.2;p12).  

The index case carrying the inv(3)(p21.1q12) was unaffected but was ascertained following a report 

that her cousin had developed clear cell RCC at age 39 and harboured the chromosome 3 inversion. 

Other carriers of the inversion in the family who were reported to carry the inversion, but were 

unaffected, included her paternal aunt and father, whilst her grandfather was also a carrier and died 

of carcinomatosis at age 80 years. The proband’s brother was diagnosed with RCC at age 48 but 

was not tested for the inversion. 
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The t(2q21.1; 17q11.2) was identified in a 37 year old man with a poorly differentiated clear cell RCC 

who died from metastatic disease shortly thereafter. The translocation was maternally inherited and 

was detected in three unaffected family members (mother and two siblings) aged between 30 and 

58 years of age.  

In the kindred with the t(10;17)(q11.21;p11.2) the proband and their sibling were found to have 

features of suggestive Birt-Hogg-Dubé syndrome (BHD; OMIM: 135150) (pneumothoraces, and 

fibrofolliculomas in the proband and multiple pulmonary cysts and fibrofolliculomas in his sister) after 

the diagnosis of RCC in the proband and the detection of the translocation. 
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6.3 Table 4  

Clinical details of families harbouring RCC-related translocations cases in this series 

Patient Carrier Sex Age 
RCC 
histology 

Sanger Break points Additional notes 

t(2;17)(q21;q11.2) Yes M 37 Clear cell RCC Yes 
chr2:130693727 
chr17:28031855 

 

t(2;17)(q21;q11.2) 
Grandfather 

Unknow
n 

M ? RCC  N/a  

t(3;6)(p14.2;p12) Yes M 72 N/a Yes 
chr3:66680663 
chr6:54817716 

 

t(3;6)(p14.2;p12) 
Relative 1 

Yes N/a 55 Clear cell RCC No N/a 
Recurrent RCC 
Adrenal metastasis 

t(3;6)(p14.2;p12) 
Relative 2 

Yes N/a ? RCC  N/a  

inv(3)(p21.1q12) Yes F N/a Unaffected No N/a  

inv(3)(p21.1q12) 
Cousin 

Yes N/a 39 Clear cell RCC  N/a  

inv(3)(p21.1q12) 
Brother 

Unknow
n 

M 48 RCC   N/a   

t(3;14)(q13.3;q22) Yes M 75 Clear cell RCC Yes 
chr3:125771297 
chr14:59009871 

Bladder carcinoma 

t(3;14)(q13.3;q22) 
Nephew 

Yes M 67 RCC Yes 
chr3:125771297 
chr14:59009871 

 

t(3;14)(q13.3;q22) 
Brother-obligate 

Obligate M 41 Clear cell RCC  No N/a  

t(3;14)(q13.3;q22) 
Daughter 

Obligate F 36 RCC No N/a  

t(3;14)(q13.3;q22) 
Brother 

Obligate M 79 RCC No N/a  

CAMB-AL-
GM13.12941 Mother 

Obligate F 51 RCC No N/a  

t(10;17)(q11.21;p11.2) Yes M 53 Clear cell RCC Yes N/a 
Fibrofolliculomas 
Pneumothoraces 

t(10;17)(q11.21;p11.2) 
Relative 

Yes F N/a Unaffected  N/a 
Fibrofolliculomas 
Lung cysts 
Renal cysts 
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6.3.3 Whole genome sequencing and bioinformatics 

Sequencing metrics were assessed to confirm data reliability and suitability for downstream SNV, 

SV, and CNV analysis. Mean sequence alignment rates across all samples was 99.7%, indicating a 

high-quality sequence mapping. WGS coverage analysis demonstrated a mean coverage of 28.9X 

across all genomes, though the genome analysed as part of NIHR Rare diseases bioresource study 

had mean coverage of 35X due to a different sequencing methodology. For variant calling, the 

transition / transversion ratio (Ts/Tv) after minimal genotype filtering (depth > 10 and QUAL > 30) 

was reported as 1.93, suggesting no variant calling bias across the genome. 

6.3.4 Characterisation of constitutional rearrangements in previously unreported cases 

WGS did not identify any plausible likely pathogenic or pathogenic SNVs or CNVs variants in 

previously reported inherited RCC genes (VHL, SDHB, SDHC, SDHD, MET, FLCN, TSC1, TSC2, 

FH, PTEN, PBRM1, BAP1, or CDKN2B) in the four probands who were affected by RCC. A novel 

missense variant of uncertain significance by ACMG criteria (325) was identified in PBRM1 

(NM_018313.4:c.2446A>T p.Asn816Tyr) in the t(3;6)(p14.2;p12) translocation case. DNA from an 

affected individual was not available for sequencing in the family carrying the inv(3)(p21.1q12) 

inversion, as such sequencing was performed solely to identify candidate breakpoints. Candidate 

rearrangement breakpoints were identified from the WGS data by the Manta structural variation 

detection algorithm in all five cases: 

Breakpoints for translocation t(3;14)(q13.3;q22) were resolved to be present at the loci 

chr3:125771297 and chr14:59009871. The candidate breakpoints were supported by 7 and 9 

spanning and split reads, respectively (Appendix section 9.5.4). The candidate breakpoint locations 

identified by WGS differed from those suggested previously by cytogenetic studies: the 3q breakpoint 

at chr3:125771297 is within cytoband 3q21 and the WGS-identified 14q breakpoint at 

chr14:59009871 maps to 14q23.1. Sanger sequencing confirmed the presence of the translocation 

breakpoints. Sanger sequencing in a DNA sample from his affected nephew confirmed identical 

breakpoints to the proband. The 3q breakpoint intersects with LOC105374312, an uncharacterised 

non-coding RNA gene and the 14q breakpoint disrupts the last intron of LINC01500, a long intergenic 

non-coding RNA gene, and is predicted to result in a truncated transcript lacking the final exon.  
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WGS in the second chromosome 3 associated translocation case t(3;6)(p14.2;p12) revealed 

candidate breakpoints at chr3:66680663 and chr6:54817716 within an AT-rich repetitive region. 

Breakpoint calls were supported by 4 and 7 spanning and split read calls, respectively (Appendix 

section 9.5.4). Sanger sequencing confirmed the presence of the translocation breakpoints. The 3p 

chromosomal breakpoint identified by WGS mapped within 3p14.1 and disrupted LOC105377142, 

an uncharacterised non-coding RNA. The 6p breakpoint did not disrupt a predicted gene but was 29 

kb upstream of FAM83B. 

The candidate breakpoints in the inv(3)(p21.1q12) were identified by Manta with 11 spanning and 

11 split reads supporting the presence of this inversion, though the number of reference spanning 

reads was only 2 (Appendix section 9.5.4). The two candidate breakpoints mapped to chr3:59964935 

at 3p14.2 (interrupting intron 7 of FHIT) and chr3:98667603 (3q12), 47 kb upstream of ST3GAL6-

AS1, a non-coding RNA gene. Though cytogenetics and Manta calls support the presence of the 

inv(3)(p21.1q12), Sanger sequencing under multiple experimental conditions failed to generate any 

PCR products and the candidate breakpoints could not be independently confirmed.  

WGS in the first of the two non-chromosome 3 translocations (t(2;17)(q21.1;q11.2)) localised the 

breakpoints to chr2:130693728 (2q21.1) and chr17:28030855 (17q11.2). The translocation 

breakpoint was supported by 9 spanning and 10 split reads as called by Manta (Appendix section 

9.5.4). Sanger sequencing confirmed the genomic coordinates and breakpoint as a single base 

translocation without local rearrangement, insertions, or deletions. The breakpoint present on 

chromosome 2 disrupted the coding region of two overlapping pseudogenes KLF2P3 and FAR2P3, 

as well as interrupting a CpG island spanning chr2:130693485-130693839. The nearest coding 

genes were POTEJ, AMER3, and GPR148 which were 35 kb upstream, 34 kb downstream and 62 

kb downstream, respectively. The junction on chromosome 17 did not disrupt any known coding 

region but was 1.7 kb upstream of a reported H3K27Ac element covering chr17:28,033,593-

28,035,092, and 9.9 kb upstream of the NLK gene. 



 

232 
 

The second non-chromosome 3 translocation t(10;17)(q11.22;p12) underwent sequencing as part 

of the NIHR BioResource Rare Diseases BRIDGE project (see methods 6.2) and was analysed 

previously as part of a multiple primary tumour cohort (34) with a history facial fibrofolliculomas, 

recurrent pneumothoraces and RCC. At that time no abnormality was detected but subsequently 

reanalysis identified candidate translocation breakpoints that were supported by two overlapping 

Manta calls for the chromosome 10 and chromosome 17 breakpoints at chr17:17218211-17218214 

(17p11.2) and chr10:43236047-43236050 (10q11.21) that were supported by 22 spanning and 10 

split reads and a secondary call at chr17:17218216-17218217 and chr10:43236058-43236059 by 

15 spanning and 18 split reads (Appendix section 9.5.4). Given the proximity of the assigned 

breakpoint regions, a single translocation was presumed with an additional nested structural 

variation resulting in divided calling. Sanger sequencing confirmed the presence of the translocation 

breakpoint in the proband. The chromosome 17 breakpoint prediction disrupted the coding region of 

FLCN, falling within intron 9 (ENST00000285071). The chromosome 10 breakpoint disrupted the 

first intron of RASGEF1A (the first exon encodes 5’ untranslated region only proximal to the 

translation initiation site (ENST00000395810). Sanger sequencing of DNA from the proband’s sibling 

(who was known to carry the t(10;17)(q11.22;p12)) confirmed that translocation breakpoint and that 

she had evidence of BHD syndrome (multiple lung and renal cysts and facial fibrofolliculomas). 
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6.3.5 Characterisation of translocation breakpoints utilising Nanopore sequencing 

While Sanger sequencing of translocation breakpoints can effectively confirm the presence or 

absence of a breakpoint, and in some instances provide characterisation of breakpoints, many 

translocation break points are complex or involve additional genomic alterations such as deletions 

and insertions of additional bases, particularly in repetitive regions. Herein demonstrates the utility 

of Nanopore sequencing for the base-level characterisation of one of the newly reported 

translocation cases, t(3;14)(q13.3;q22), which contained an ambiguous region at the break site by 

multiple sequence alignment of breakpoint-spanning PCR products due to increased sequencing 

read sizes. 

Assessment of Nanopore sequencing metrics determined the sequencing run generated 46,431 

reads across the translocation breakpoint with a median read length of 815 bp from 474 of 512 active 

sequencing channels from breakpoint-spanning PCR products. Mean read qualities were most 

frequent at 8-12, suggesting high quality sequencing was generated (6.3 Figure 3). Nanopore 

sequencing was aligned to GRCh38 and generated 75,096 mapped reads. Discrepancy between 

number of sequenced reads and the number of mapped reads is due to the presence of 

supplementary read alignments, which are defined as reads with two distinct but split mapping 

positions, as would be expected from a translocation breakpoint. Of those reads 71,927 (95.8%) 

reads intersected the translocation breakpoints (chr3:125771297 and chr14:59009871) determined 

by Manta.  

Read alignments were visualised using IGV (6.3 Figure 4) which demonstrated the translocation 

breakpoint succinctly, showing aligned reads split evenly between chromosome 3 and 14. 

Comparisons between Nanopore alignments and Sanger sequencing alignments allowed for the 

resolution of a 5 bp deletion on chromosome 14 (5’-ATGTGTGG) at the breakpoint site whereas 

chromosome 3 did not appear to have any additional structural rearrangements. 
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6.3 Figure 3 

Quality metrics from Nanopore sequencing metrics for the t(3;14)(q13.3;q22) translocation 

PCR amplicon. 3A Histogram plot binning the mean read quality for all generated Nanopore 

sequencing reads. 3B Plot shows the cumulative number of Kb of sequencing generated over time 

during Nanopore sequencing until the run was stopped. 3C Histogram plot shows the binning of read 

lengths generated by Nanopore sequencing, most reads match the size of the PCR breakpoint 

amplicon. 3D A channel map of the Nanopore sequencing channels depicting the number of Kb 

generated by each pore/channel. All sequencing metrics shown here are suggestive of high-quality 

sequencing data.
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6.3.6 Computational evaluation of breakpoint-related genes  

The five constitutional rearrangements were confirmed or postulated to disrupt three protein coding 

genes (FHIT, FLCN and RASGEF1A) and to map within 50 kb of four more genes (FAM83B, POTEJ, 

AMER3, NLK). Two of these genes, FHIT and FLCN have been previously implicated as renal 

tumour suppressor genes (191,195) and potential evidence for a role of RASGEF1A, FAM83B, 

POTEJ, AMER3 and NLK in hereditary cancer predisposition and/or somatic tumourigenesis was 

sought from the NCG data portal (6.3 Table 5). On the NCG data portal both FHIT and FLCN were 

classified as “known cancer genes”, RASGEF1A as a “candidate cancer gene” and the other genes 

were categorised as “non-cancer genes”. 
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6.3 Table 5 

Assessment of genes disrupted by (*) or close to breakpoints in RCC-associated rearrangement 

reported in the current series. Genes were categorised according to their current status in NCG 

v6.0 (428) 

Affected genes Position (GRCh38) Consensus (NCG 6.0) 

FHIT * chr3:59747587-61251459 Known cancer gene 

FLCN * chr17:17206924-17237188 Known cancer gene 

FAM83B chr6:54846643-54945099 Non-cancer gene 

POTEJ chr2:130611413-130658448 Non-cancer gene 

AMER3 chr2:130755435-130768134 Non-cancer gene 

NLK chr17:28041737-28205140 Non-cancer gene 

RASGEF1A * chr10:43194533-43266919 Candidate cancer gene 
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6.4 Discussion 

This study reports five previously unreported RCC-associated constitutional chromosomal 

rearrangements that increase the total number of rearrangements reported to 22 and the number of 

cases in which the breakpoints have been characterised to 20. WGS enabled both the identification 

of candidate translocation breakpoints and simultaneously excluded coincidental pathogenic SNVs 

and CNVs in known hereditary cancer genes. With the increasing availability and reducing cost of 

WGS it will become increasingly feasible to characterise the molecular pathology of RCC-associated 

constitutional chromosomal rearrangements. This will improve our understanding of the relevance 

to individual RCC-associated constitutional chromosomal rearrangements to the RCC 

tumourigenesis and we found that the breakpoint location reported on routine cytogenetic analysis 

often did not correspond to the breakpoint locations identified by WGS. 

The majority (21/22, 95.5%) of RCC-associated constitutional chromosomal rearrangements 

reported to date have been associated with the clear cell variant of RCC. This is the most common 

histological subtype of sporadic RCC (75-80%) and is characterised by somatic inactivation of VHL 

and deletions of chromosome 3p (25,128,460,500). The mean age at diagnosis of RCC in the cases 

reported to date (51 years, range 25-82, n=57, SD=13.25) is younger than the average age for 

sporadic RCC (61.8 years) (30). Whilst this is a feature of other forms of hereditary RCC (and many 

other inherited cancer types) there may also be an element of ascertainment bias with early onset 

cases more likely to be investigated for a genetic cause. Given the loss of the derivative 

chromosomes is reported as the potential initiator of tumourigenesis in chromosome 3 

translocations, the loss of der(3) in the t(3;14) translocation would also result in the loss of 14q which 

would include the HIF1A coding region, a candidate 14q TSG (501). 
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In both this series and the previously published literature series, most RCC-associated constitutional 

chromosome rearrangements involved chromosome 3. Whilst this is consistent with the high 

frequency of 3p allele loss in sporadic clear cell RCC, the fundamental role of somatic inactivation 

of the VHL TSG in clear cell RCC and the incidence of somatic mutations of PBRM1, BAP1 and 

SETD2 in RCC, to date most RCC-associated constitutional chromosome 3 rearrangements do not 

appear to disrupt known RCC TSGs mapping to 3p. A potential explanation for this is the observation 

that RCC from individuals with a constitutional chromosome 3 translocation can show a somatic VHL 

mutation on the wild-type chromosome 3 and loss of the derivative chromosome containing 3p 

(resulting in biallelic inactivation of the VHL TSG). 

This mechanism of tumourigenesis would imply that the susceptibility to RCC might have resulted 

from instability of the translocated chromosome rather than disruption of a specific RCC TSG at the 

translocation breakpoint on chromosome 3 (261) and would be consistent with the variability of the 

RCC-associated chromosome 3 rearrangement breakpoints described to date (6.3 Table 1). 

However, it is interesting that the chromosome 3 inversion described it was associated with a 

breakpoint within the FHIT gene. Previously it was demonstrated in two apparently unrelated families 

with a RCC-associated t(3;8)(p14.2;q24.1) harboured breakpoints that disrupted FHIT and RNF139 

(TRC8) on 3p and 8q respectively (16,22). FHIT is listed as a Tier 1 known cancer gene in the Cancer 

Gene Census (https://cancer.sanger.ac.uk/cosmic/census) however the presence of a somatic VHL 

mutation and loss of the translocated chromosome 3 in a previous t(3;8)(p14.2;q24.1)-associated 

RCC was unexpected (259,492) indicating multiple routes of pathogenicity for RCC-associated 

translocations. 
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It is possible that the recurrent involvement of FHIT in RCC-associated chromosome 3 

rearrangements reflects the presence of palindromic AT-rich repeats at the t(3;8)(p14.2;q24.1) 

breakpoint and causes a propensity to recurrent rearrangements at this locus (502), but note that 

only a fraction of chromosome 3 translocations are associated with predisposition to RCC (503). It 

is therefore conceivable that both instability of the translocated chromosome and mono-allelic 

inactivation of FHIT contribute to RCC susceptibility. Other genes that have been previously reported 

to be located at or close to the breakpoints of RCC-associated chromosome 3 rearrangements (see 

6.3 Table 2, 3 and 5) were reviewed to determine which were included in recently compiled lists of 

known cancer genes which are based on the results of recent large scale cancer genomics projects 

and 8 genes (FHIT, LRIG1, FBXW7, CCNE1, STAG1, SEMA5B, PDZRN3, HSPB8) were identified 

as known or candidate cancer genes. In addition, genes that were disrupted (FHIT, FLCN, 

RASGEF1A) or close to (FAN83B, POTEJ, AMER3, NLK) the breakpoints of the novel RCC-

associated translocations reported here were also assessed and the three genes that were disrupted 

were classified as known (FLCN and FHIT) or candidate cancer genes (RASGEF1A) (6.3 Table 5). 

Relatively few RCC-associated constitutional translocations not involving chromosome 3 have been 

reported. In addition to the two novel cases reported here, there are two previously reported cases 

(498,499) and the translocation breakpoints were characterised in only one of these cases. It is 

entirely possible that non-chromosome 3 constitutional translocations and RCC may occur 

coincidentally and, though there was an early age at onset (37 years) in the proband with t(2q21.1; 

17q11.2) and an unconfirmed family history of RCC in his paternal grandfather, the translocation 

was also found in his mother and two siblings who were unaffected at ages 58, 40 and 31 years. 

However, identification of a translocation breakpoint that disrupted the FLCN gene in a patient with 

a t(10;17)(q11.22;p12) illustrated the value of characterising all RCC-associated constitutional 

rearrangements. Inactivating mutations in FLCN cause BHD syndrome which is characterised by 

facial fibrofolliculomas, pulmonary cysts and pneumothorax and RCC (191,504). The occurrence of 

fibrofolliculomas is age-dependent and pneumothorax occur in minority of cases and so BHD may 

present with RCC without other features being present (265), although rarely. However in the family 

reported here the t(10;17)(q11.22;p12) was associated with other evidence of BHD syndrome. To 

my knowledge this is the first description of a constitutional translocation causing BHD syndrome.  
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The other novel translocation case did not disrupt a known cancer gene but occurred close to Nemo-

Like Kinase (NLK) a serine/threonine-protein kinase that has been associated with the non-canonical 

WNT and MAPK signalling pathways. Whilst NLK is currently not designated as a known cancer 

gene, evidence of tumour suppressor activity has been reported (505–507) and a role for NLK protein 

in the stabilisation of p53 has been suggested (508). Interestingly, NLK appears to collaborate with 

FBXW7 in the ubiquitination of c-Myb by enhancing ligation of additional ubiquitin molecules via NLK 

phosphorylation, leading to downregulation of cellular proliferation (509) and previously a RCC-

associated constitutional translocation, t(3;4)(q21;q31), was demonstrated to interrupt FBXW7 (496). 

Furthermore, FBXW7 is a designated tumour suppressor gene that is mutated in multiple types of 

primary cancers (25) and encodes an F-box protein that is part of a SCF complex thought to target 

cyclin E and mTOR for ubiquitin-mediated degradation (510,511). Additionally, it was demonstrated 

FBXW7 interacts with Ubiquitin-conjugating enzyme E2Q-like protein 1 (UBE2QL1), the gene of 

which is known to be disrupted in another previously reported RCC translocation case (499), 

suggesting an interesting connection between multiple interacting gene products in translocation-

related RCC. 

While studies demonstrated complete loss of der(3p) in tumours tested (259,496,512–515), partial 

loss (489,516,517) or no loss of der(3p) in assessed tumours (493,495,518) has also been 

documented. Furthermore, studies including assessment for loss of heterozygosity or inactivating 

mutations in the remaining wildtype allele of VHL have also been conflicted with experimental data 

demonstrating presence in all samples (489,495,496,515), some samples (516,517), and no 

demonstrable loss (493,497,518). 
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The lack of known tumour suppressors, intergenic break points, and no relation to commonly lost 

regions in sporadic RCC cases suggests that other mechanisms are involved in predisposition and 

tumour progression. Translocations may confer a generalised genomic instability, in which specific 

loss of 3p is not required, and further inactivation of unknown genes are responsible for 

tumourigenesis. Alternatively, translocations may result in positional-effect variegation, resulting in 

differential expression patterns for coding regions under differential chromatin regulation (464). It is 

reasonable, given the atypical presentations and lack of familial history for non-chromosome 3 

cases, that pathways responsible for oncogenesis in these individuals are case-specific and no 

generalised model exists. Given the atypical presentations and lack of familial history for non-

chromosome 3 cases, that pathways responsible for oncogenesis in these individuals are case-

specific and no generalised model exists. 
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6.5 Conclusion 

In conclusion, this study reports five new cases of RCC-associated constitutional chromosome 

rearrangements characterised by WGS. These include the first example of a chromosome 3 

inversion associated with RCC, the first case of a major inherited RCC gene disrupted by a 

translocation and a third example of an RCC constitutional chromosome rearrangement that disrupts 

FHIT. Review of the five novel cases reported here and previously reported cases demonstrates that 

RCC-associated constitutional chromosome rearrangements: 1) mostly involve chromosome 3 but 

rearrangements that solely involve other chromosomes may also be causally linked to RCC, 2) may 

predispose to RCC by a variety of mechanisms including disruption of a tumour suppressor gene 

(e.g. FLCN) and/or chromosomal instability (as with chromosome 3 translocations), 3) can be 

efficiently characterised by WGS and 4) can identify candidate pathways for RCC tumourigenesis. 

For chromosome 3 translocations it is unclear why most cases that are not ascertained because of 

a personal or family history of RCC appear to be associated with a very low risk of RCC (493). In 

those translocations that do predispose to RCC there may be a combination of factors involved 

including instability of the translocated chromosome during cell division together with disruption of a 

TSG (e.g. FHIT) and/or polygenic effects that increase RCC susceptibility. 
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7.0 Discussion 
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The set of studies presented in this thesis have focused on the heritability of RCC and the proportion 

of undiscovered genetic inheritance which exists in families and individuals with features of 

predisposition (early onset, family history, or multifocal or bilateral presentation), but in which no 

genetic cause can be determined based on known RCC predisposition syndromes and genes. Each 

chapter has concentrated on specific genetic sequencing technique, successively increasing in 

scope and coverage; beginning with single gene and exon sequencing with Sanger sequencing and 

ending with whole genome sequencing and 3rd generation sequencing methods, exploiting the 

advantages of each method when used in the correct context. 

7.1 Results chapters: Consequences, associations, and limitations 

Chapter 3 utilised target Sanger sequencing and small scale amplicon-based WGS in order to 

identify putative pathogenic variants in genes frequently altered in somatic RCC, genes in genetically 

linked phenotypes, and replicate associations seen in more recent germline RCC studies (266). The 

study effectively recapitulated previous findings for CDKN2B and its potential role in RCC 

predisposition and findings of functionally detrimental variants in EPAS1 are strong candidates given 

the role of EPAS1 in PCC and PGL and GWAS SNP associations in RCC, where a phenotypic 

expansion of EPAS1 variants to include RCC would not be unexpected (111,339,342), but limited 

inferences can be made in regard to the variants identified in KMT2C and KMT2D without additional 

functional investigations and replication studies (and detailed clinical phenotyping). The most 

demonstrable limitation of the targeted sequencing studies is the lack of a comparable control sets 

to compare allele frequencies between RCC cases and the general population. Additionally, 

selection criteria for patients recruited into this chapter were more broad than the selection criteria 

for chapters 4, 5, and 6, which allows for individuals with lesser or minimal features of predisposition 

to be present within the case cohort and reduce the detection of potentially pathogenic variants. 

Further limitations include sequencing failures, stemming from methodical limitations or the intrinsic 

nature of DNA sequencing. PCR amplification success rates are typically determined by various 

factors, including primer design, reaction mixture constituents, cycling conditions and DNA template. 

In this study, the limitations were derived from the latter in which the nature of the region assessed 

(KMT2C) or the DNA integrity itself (CDKN2B and EPAS1) prevented optimal application of the 

proposed methods. 
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It is important to note that the methods applied in this chapter are effective and reliable when used 

in conjunction with high quality DNA, genomic regions without increased alignment complexity, such 

as that seen with KMT2C and the BAGE genes (519), and an appropriate comparison to control 

datasets. These methods reduce the necessity for large scale targeted or whole genome sequencing 

which complicate bioinformatic and analytical approaches and make Sanger sequencing or small 

scale amplicon-based NGS sequencing projects ideal for validation studies or clinical genetic testing 

where reliability, replicability, and efficiency are critical. 

Targeted sequencing of a panel of genes and SNPs associated with cancer used in Chapter 4 

unveiled potentially the most intriguing result from the perspective of unreported heritability in RCC. 

Through assessment of 118 individuals, the identification of an enrichment of pathogenic truncating 

variants in BRIP1 indicate that BRIP1 may be a new RCC predisposition gene in subset of rare 

inherited RCC cases. The statistical enrichment of BRIP1 truncation carriers compared to both 

healthy control sets (ICR birth control cohort, gnomAD and ExAC non-tcga (321,433)) and disease 

sets with known associations provide strong evidence for a legitimate genetic link between RCC 

predisposition and BRIP1 which is strengthened further by the co-segregation of the truncating 

variant in one of the assessed families (though extensive kindreds were not available). Though the 

evidence is persuasive for the demonstrated association, caution should still be taken before 

causally implicating heterozygous BRIP1 truncating variants in non-syndromic inherited RCC. As 

BRIP1 functions in DNA double strand break repair (520), and as such acts as a tumour suppressor, 

confirmation of LOH or inactivation of the remaining wildtype allele in tumours from the affected 

carriers would add additional support and demonstration that the initial variants do in fact result in 

protein ablation or functional loss, as not all truncating variant result in complete loss of protein 

function. This especially relevant given that BRIP1 truncating variants were initially associated as 

low penetrance risk alleles in breast cancer (401) but more recent epidemiological studies have cast 

doubt on that affiliation, suggesting truncating BRIP1 variants do not confer any risk to breast cancer 

(379).  
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The investigation into a subset of the same samples selected for matching criteria of features of RCC 

predisposition utilising WES methods in chapter 5 provided an increased scope for the identification 

of novel candidate variants and genes but also introduced additional complications. The study 

identified potentially pathogenic truncating variants, as well as variants in both frequently somatically 

altered genes and genes involved in the TCA cycle but the interpretation of these variants and 

determining their impact in RCC predisposition is difficult without functional studies, segregation 

within large families, or statistical enrichment in comparison to a control data set. Case-control 

analysis performed well based on the model metrics assessed considering the prior assumptions 

and innate limitations of the case data set. The case control testing over genomic regions failed to 

identify any associations after multiple testing correction and genes genes demonstrated a trend 

towards significance failed to demonstrate any enrichment in biological pathways. The major 

limitation to this approach is that given the number of cases, the likely risk associated with variants, 

and the requirement for conservative statistical association mean that the number of cases required 

to have reasonable power to detect a causal variant greatly exceeds the number of cases that could 

be reasonably ascertained from public genetic referral services. For example, given the incidence 

rates of RCC in the general population, estimated occurrence of inherited RCC, and a variant effect 

size (OR) of 2, the number of cases required to be powered at 80% is in excess of 1200 under liberal 

false discovery correction. 

Variants identified within genes associated with TCA cycle components are potentially the most 

viable candidates for functional assessment given the recent use of metabolite concentrations as a 

proxy for SDH complex function (444) and whether or not this could be applied to other TCA cycle 

components is an intriguing and potential clinically useful application of this methodology as well as 

uncovering pathogenicity of missense variants, particularly given most of these variants were not 

classified as pathogenic or likely pathogenic. 
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Exploratory analysis of WES data utilising algorithms and bioinformatic tools for the identification of 

copy number alterations, short tandem repeats, and mobile elements did not result in substantial 

findings across the examined cohort which could be due to several factors. Detection of these genetic 

alterations is limited by the bioinformatic tools, experimental design, and sequencing method used. 

In particular, the copy number calling was limited by complications conferred by unmatched WES 

data without the presence of internal controls to account for read depth variability and a high rate of 

false negative calls, an issue which is compounded by limited genomic coverage in WES data. Copy 

number detection in WGS is more reliable and replicable which was aptly demonstrated in the use 

of WGS copy number analysis in chapter 6 (485). Additionally the tool used, XHMM, is widely utilised 

for copy number calling including in large scale projects such as ExAC (321) but more recently 

developed methods have since improved on calling rates and handling of sample and target 

normalisation, including development of simulation pipelines and comparison benchmarks to 

establish optimal calling parameters (521,522). The alternative hypothesis is that these types of 

genetic alterations are rare causes of RCC predisposition, like that of chromosome 3 translocations, 

and cases are likely to be infrequently detected in unrelated proband studies compared to specific 

analysis of large pedigrees. Compared to copy number alterations, short tandem repeats and mobile 

element insertions are very rarely causes of genetic disorders in general and identification of any 

pathogenic alteration specifically in RCC predisposition was low, especially given the sample size. 

More investigations have continued to sequence unrelated individuals with or without clinical features 

of RCC predisposition utilising cancer gene panels or whole exome sequencing with variable 

outcomes. Assessment of advanced RCC patients without selection for features of heritability 

showed 16% carried germline variants in genes not otherwise associated with RCC predisposition, 

such as CHEK2, APC, MUTYH, BRCA2, and RECQL4, amongst others. Additionally, it reiterated 

previous investigations, identifying pathogenic variants in SDHA and BAP1, which currently have 

limited support and require further validation (523). An investigation in a Chinese cohort of early 

onset RCC cases documented 9.5% carried germline pathogenic variants, most of which (66%) were 

in known RCC predisposition genes (VHL, TSC1, TSC2, FH, FLCN, BAP1, PBRM1), with the 

remaining variants in BRCA2, BRCA1, and CDKN2A, though only BRCA1 demonstrated LOH in the 

tumour (395).  
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These most recent investigations were recapitulated by the results of the cancer gene panel 

sequencing and WES studies described in this thesis. The number of potential new candidates 

identified appears to be limited, particularly when focused on SNVs, and variants identified as 

potentially associated with RCC predisposition are occurring in genes with known associations to 

other cancer predisposition (e.g. BRCA1, BRCA2, CHEK2 with breast cancer (27,383)) or genes 

altered somatically at high frequency, supporting the results described by Whitworth et al (2018)(376) 

in multiple primary malignant tumours which pathogenic variants found in individuals with unrelated 

cancer type suggests a phenotypic expansion, which may be the case in inherited RCC as well.  

Furthermore, while the identification of candidate genes has been limited this is the largest cohort of 

pre-screened individuals with features of inherited RCC to be sequenced and interrogated for 

putative genetic factors that are causal in RCC predisposition. Other sequencing projects have 

utilised selection criteria (e.g. early onset, advanced disease, family history) (395,523) but none 

previously implemented comprehensive pre-screening for known RCC predisposition genes. The 

application and removal of individuals identified with pathogenic variants in known RCC genes is in 

some respects a double-edged sword in that it potentially enriches novel genetic factors linked to 

RCC predisposition but simultaneously reduces the number of available samples for analysis in an 

already rare sample set.  
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Lastly, the study and review of RCC-associated translocation cases both previously published and 

investigated in this thesis in chapter 6 reconfirmed and strengthened the link between specific 

chromosomal alterations and RCC risk and determined the specific clinical characteristics of RCC-

associated translocation cases. While the identification and characterisation of constitutional 

translocations in this study did not identify any likely novel candidate genes associated with RCC 

predisposition, it did discover several novel occurrences not previously reported in other RCC 

translocation studies. Firstly, a translocation interrupting FLCN was the most clinically relevant 

finding which demonstrated BHD syndrome can be because of a translocation break point within the 

FLCN coding region in an individual with classical features of BHD syndrome. This is the first 

reported case of BHD syndrome caused by a translocation and may be important in assessing 

additional individuals with features of BHD who do not demonstrate obvious pathogenic SNVs or 

copy number alterations. Secondly, the identification of a chromosomal inversion, also involving 

chromosome 3, is the first non-reciprocal balanced chromosomal alteration described in RCC-

associated chromosomal alteration cases. Finally, the study established a framework for the 

identification and characterisation of translocation break points utilising WGS and 3rd generation 

sequencing methodologies or Sanger sequencing to reduce the required workload to resolve 

karyotyping reports to the base pair resolution, as well as providing genetic alterations to rule out 

additional causes of inheritance such as pathogenic SNVs, CNVs, or other structural variants. 

Utilising this analytical pipeline should reduce analysis cost and improve interrogation of further 

samples identified as RCC-association chromosomal alteration cases. 
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7.2 General limitations in next generation sequencing projects  

The results of this thesis are limited by a series of features which are common to all genetic 

association studies, as well as limitations which are specific to targeted next generation sequencing 

methodology. Primarily, the sample size in any given rare disease study is a limiting factor in the 

ability to identify novel causes of genetic disorders, particularly in unrelated proband studies which 

are unable to rely on familial segregation. By increasing sample sizes, statistical power and case 

control analyses can be more effectively leveraged and identification of rarer idiosyncratic 

presentations of predisposition can be detected.  

This limitation is present across rare disease studies and germline cancer predisposition but is 

particularly difficult in RCC. In comparison to the assessment of heritability of cancers such as 

colorectal and breast cancers, which are relatively common, RCC is a rarer cancer subtype. Only an 

estimated 12,500 new cases of RCC are diagnosed in the UK per year (31) which, when combined 

with the low prevalence of heritability, currently estimated at 3% of cases (98), it limits the potential 

UK wide cases to less than 400 individuals as a maximum sample size and that is without screening 

for known RCC predisposition genes. Recent studies into the application of genetic referral criteria 

suggest that the number of individuals eligible for genetic testing may be greater than previously 

estimated which may improve the available samples for research study recruitment but closer 

integration of clinical and research studies, as well as global collaboration efforts, are needed to 

facilitate larger sample sizes to improve detection and discovery rates of the factors associated with 

RCC predisposition. Additional benefits could be gained from clinical follow up and detailed 

phenotyping of individuals with candidate variants and use familial segregation to determine if the 

disease phenotype segregates with the putative variant in question. 
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One of the larger issues faced in large scale next generation sequencing projects such as the cancer 

gene panel sequencing study and the whole exome sequencing study is the inability to resolve the 

variant consequences of rare variants occurring across the genome and in candidate RCC 

predisposition genes. This issue is exemplified by the WES study which, as stated in the study 

results, identified more than 18,000 variants of uncertain significance, almost all of which were 

missense variants. Use of ClinVar as a source of additional variant pathogenicity evidence can be 

useful but availability is limited for most variants and many variants consist of conflicting or 

uncorroborated reports (406,524). The development of the ACMG variant classification framework, 

including its improved derivatives, have allowed for a more stringent and systematised approach for 

variant interpretation (325,525). High-throughput tools such as InterVar have allowed for the rapid 

application of those described classification (326), but the framework is limited and often inadequate 

when not accompanied by additional evidence from functional molecular studies, incorporation of 

reliable in silico predictive metrics, and integration of previously published data. Manual classification 

of variants utilising these frameworks can be more effective but manual curation of publications and 

functional studies for thousands of variants is unrealistic.  

While thorough and detailed functional investigations into all known variants present in the human 

genome would be the ultimate resource for variant interpretation, the scale and cost of even a fraction 

of such an endeavour would be unobtainable. Integration of in silico predictive tools such as SIFT, 

PolyPhen, and CADD amongst many others, could improve automated ACMG classifications but 

their prediction accuracy has been shown to be unreliable in certain instances. Outside of variant 

classification based on conservation and function consequence to the amino acid sequence, several 

recently published features of genetic inheritance and mutational selection could prove useful for 

future interpretation of variant pathogenicity and high-throughput functional experiments for subsets 

of variants are being proposed.  



 

254 
 

Use of genomic features like genetic constraint, in which specific regions are under positive or 

negative selection pressure, have been used across genes to predict intolerance or tolerance (353) 

but constraint averages over an entire coding region may mask specific conserved domains or 

regions with the coding space, including intronic regions. More recent developments and increased 

whole genome sequencing datasets have enabled the calculation of base pair scale assessments 

of mutational constraint (405) independent of gene loci, which may be a more representative proxy 

for evolutionary purifying selection in regions that are presumably more critical to gene function. By 

filtering variants in regions of low constraint (i.e. loci not under purifying selection) it may act to reduce 

candidate variants to only those present in regions were constraint is high and identify variants more 

likely to result in a functional alteration and assist in the interpretation of synonymous and intronic 

variants in relation to disease.  

Minor allele frequencies of variants in control populations are commonly used as a first pass filter for 

the removal of SNPs and low-quality variants. This process is effective at removing many biologically 

irrelevant variants but a vast majority of variants in any given individual are rarer than the standard 

allele frequency cut-offs such as 5% and 1% and thus many rare non-pathogenic variants are 

retained (526). Even assessment of ‘ultra-rare’ variants in chapter 5 at a minor allele frequency of 

0.1% discovered many more variants than could be easily assessed for pathogenicity. Furthermore, 

allele frequency filtering cut-offs are not disease specific, the likely allele frequency of a variant 

causing a common disorder is likely different to that of one causing a rare disorder. Use of maximal 

population allele frequencies, described by Whiffin et al (2017), which estimate the maximum 

tolerated allele frequency at which a causal variant could occur in a control population and still be 

disease causing may provide disease-specific allele frequency filtering thresholds (527), though the 

model requires accurate estimates of population prevalence and likely genetic variability, allelic 

variability, and likely penetrance which can be challenging to estimate in rare diseases.  

Lastly, the development of systems such as CRISPR-Cas9 have enabled high capacity, high-

throughput screening libraries using gene specific RNA guides and cell line libraries. More recent 

attempts are aimed at identifying therapeutic targets for specific cancer tumour types but an 

extension of this system would be feasible and may help prioritise candidate genes more effectively 

based on the effect of induced truncation in specific cell lines (528), allowing for the integration of in 

vitro functional data into variant interpretation. 
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7.3 Future directions for the detection of heritability in RCC 

In this series of studies, several interesting candidate variants, genes, and mechanisms were 

discovered in association with RCC predisposition but only a small number of individuals carried 

putative predisposition variants or presented with rare inherited subtypes (i.e. RCC-associated 

translocation). The ability to identify candidate variants in individuals with features of RCC 

predisposition echoes previous studies and results seen in clinical diagnostic labs in which 

pathogenic variants are not identified in most tested individuals. While some of this missing 

heritability could be due to the difficulties in variant interpretation, as described above, a proportion 

may be missed due to not interrogating the genomic regions, variant consequences, or alterations 

that are truly responsible for heritability in RCC and several other factors may help form future studies 

which are able to effectively capture the heritable traits of RCC predisposition. Here I summarise a 

non-exhaustive list of potential research directions and experimental study designs that could be 

utilised to identify these genetic features which does not rely on solely increasing sample numbers, 

which would be the most effective method of improving detection rates. 

This thesis focused on the assessment of protein-affecting variant and excluded synonymous 

variants and intronic variants which are becoming more established as disease causing even in 

known RCC predisposition genes such as VHL (137). Variants in regulatory elements such as 

promotor and enhancer regions, as well as intergenic regions could also be sources of heritability in 

RCC and should be investigated. Use of WGS would allow for the discovery of variants in these 

genomic areas but interpretation of pathogenicity is potentially more difficult than protein-affecting 

variants. The advantage of WGS is that it would allow the exploration of structural and copy number 

alterations with a much greater degree of accuracy and coverage than that provided by targeted 

sequencing.  
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Combinatorial analysis of WES for SNV detection and low coverage WGS, which has been 

demonstrated to be effective in the detection of copy number variants even at coverages as low as 

1X to 5X (529), could provide significant computational and economic savings compared to full 

coverage WGS. Conversely, a more comprehensive sequencing method, such as WGS long read 

sequencing (e.g. PacBio SMRT sequencing), would allow for the examination of multiple DNA 

alterations and remove many of the limitations of 2nd generation short read sequencing methods (see 

Introduction chapter section 1.7) and allow for comprehensive SNV, structural, CNV, and phasing 

data across the entire genome. Additionally, the assumption is that inheritance of RCC predisposition 

is autosomal dominant and the likelihood that a proportion of inheritance is due to low penetrance or 

polygenic traits is becoming relatively high. Investigations into these features, while complex, should 

be performed to ascertain the proportion of heritability which can be attributed to complex polygenic 

traits and risk loci which may help develop methods for assessing polygenic risk scores as utilised 

in breast cancer (530). 

An alternative to increased genomic coverage is the integration of different “–omics” and tumour 

mutational, metabolic, and expression data to improve variant prioritisation and interpretation. Use 

of epigenetic data, such as promotor methylation, may uncover germline methylation defects in 

known or novel genes which are associated with RCC predisposition. Though inactivation of RCC 

genes is frequently reported somatically (280,283,531), very few investigations have fully assessed 

the methylation status of genes constitutionally. By identifying hypermethylation of promotor regions 

or key regulatory elements which correlate with RCC heritability it may demonstrate new genetic 

features involved in inherited RCC which would not be detected through DNA sequencing alone. 
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Inclusion of tumour SNV data would allow for the validation of candidate variant by assessing 

features such as LOH, which provides support for two-hit hypothesis driven loss of tumour 

suppressors, and tumour mutational signatures which may help identify if putative variants in genes 

involved in DNA repair pathways, among others, result in the mutational signatures associated with 

dysfunction in those pathways (532). The availability of fresh frozen tumour material collected 

prospectively during study recruitment would also enable the use of immunohistochemistry and 

metabolic investigations to determine and assess germline variant pathogenicity, improving 

interpretation and reducing ambiguity when attempting to assess variants in genes with functions in 

metabolism, such as those present in the TCA cycle. Integration of multiple “–omic” types could be 

further expanded to the use of tumour RNA expression data which would enable the correlation of 

transcript and allele-specific expression with the presence of putative pathogenic variants, where 

pathogenicity could be refuted or supported based on whether that allele is expressed in tumours. 

Counterintuitively, a proposal could be made for the reduction of study design from large scale 

genomic sequencing of unrelated probands to family only studies. Studies focused detailed 

phenotyping and genotyping of specific families may uncover pedigree-specific associations which 

may then more readily be detected in unrelated individuals. By exploiting familial analysis and the 

ability to co-segregate variants with disease status candidate variants can be more confidently 

determined, after which unrelated proband cohorts can be screened for the genes identified. In fact, 

several of the last genes associated with RCC predisposition, PBRM1 and BAP1 (263,331), were 

discovered through unrelated proband screening but the variants were discovered in individuals with 

strong family histories of RCC and retrospective analysis demonstrated co-segregation. By reversing 

this approach and assessing individuals with particularly strong family histories, it may more 

efficiently uncover associations which may be missed in unrelated proband studies. 
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7.4 Conclusion 

This study has uncovered limited evidence for further associations with new genetic features and 

RCC predisposition. Though cautious interpretation is needed, once confirmed these findings could 

be utilised to inform clinical management through genetic counselling, increasing screening 

procedures, or the development of targeted therapeutics. Furthermore, progressive molecular 

sequencing methodologies were applied to improve detection and characterisation of causal events 

in RCC predisposition which may act to increase the efficiency and analysis strategies of genomic 

data in both research and clinical environments. While much of the genetic components related to 

predisposition of RCC remains undiscovered, the results of this body of work may act as a foundation 

for follow up studies which might lead to confirmation of the findings, or novel associations derived 

from, those results described within this thesis. 

 



 

259 
 

8.0 Bibliography 

  



 

260 
 

1. Mendel, G. (1865) EXPERIMENTS IN PLANT 
HYBRIDIZATION (1865). EXPERIMENTS IN 
PLANT HYBRIDIZATION (1865); (1865) . 

2. Maher, E. R., Webster, A. R., Richards, F. M., 
et al. (1996) Phenotypic expression in von 
Hippel-Lindau disease: correlations with 
germline VHL gene mutations. J. Med. Genet., 
33, 328–32. 

3. McKusick, V. A. (2000) Ellis-van Creveld 
syndrome and the Amish. Nat. Genet., 24, 
203–204. 

4. López, C., Saravia, C., Gomez, A., et al. (2010) 
Mechanisms of genetically-based resistance to 
malaria. Gene, 467, 1–12. 

5. Forsberg, L. A., Gisselsson, D. and Dumanski, 
J. P. (2017) Mosaicism in health and disease 
— clones picking up speed. Nat. Rev. Genet., 
18, 128–142. 

6. Kong, A., Frigge, M. L., Masson, G., et al. 
(2012) Rate of de novo mutations and the 
importance of father’s age to disease risk. 
Nature, 488, 471–5. 

7. Alderuccio, F., Chan, J., Scott, D. W., et al. 
(2009) Gene therapy and bone marrow stem-
cell transfer to treat autoimmune disease. 
Trends Mol. Med., 15, 344–51. 

8. Relling, M. V. and Evans, W. E. (2015) 
Pharmacogenomics in the clinic. Nature, 526, 
343–350. 

9. Huang, M., Shen, A., Ding, J., et al. (2014) 
Molecularly targeted cancer therapy: some 
lessons from the past decade. Trends 
Pharmacol. Sci., 35, 41–50. 

10. Alton, E. W. F. W., Armstrong, D. K., Ashby, D., 
et al. (2015) Repeated nebulisation of non-viral 
CFTR gene therapy in patients with cystic 
fibrosis: a randomised, double-blind, placebo-
controlled, phase 2b trial. Lancet Respir. Med., 
3, 684–691. 

11. Dai, W.-J., Zhu, L.-Y., Yan, Z.-Y., et al. (2016) 
CRISPR-Cas9 for in vivo Gene Therapy: 
Promise and Hurdles. Mol. Ther. Nucleic Acids, 
5, e349. 

12. Ciccia, A. and Elledge, S. J. (2010) The DNA 
damage response: making it safe to play with 
knives. Mol. Cell, 40, 179–204. 

13. Shaltiel, I. A., Krenning, L., Bruinsma, W., et al. 
(2015) The same, only different - DNA damage 
checkpoints and their reversal throughout the 
cell cycle. J. Cell Sci., 128, 607–20. 

14. Nei, M., Suzuki, Y. and Nozawa, M. (2010) The 
Neutral Theory of Molecular Evolution in the 
Genomic Era. Annu. Rev. Genomics Hum. 
Genet., 11, 265–289. 

15. Knudson, A. (1971) Mutation and cancer: 
statistical study of retinoblastoma. Proc. Natl. 
Acad. Sci. U. S. A., 68, 820–3. 

16. Willis, A., Jung, E. J., Wakefield, T., et al. 
(2004) Mutant p53 exerts a dominant negative 
effect by preventing wild-type p53 from binding 
to the promoter of its target genes. Oncogene, 
23, 2330–2338. 

17. Greaves, M. and Maley, C. C. (2012) Clonal 
evolution in cancer. Nature, 481, 306–313. 

18. Hanahan, D. and Weinberg, R. A. (2011) 
Hallmarks of Cancer: The Next Generation. 
Cell, 144, 646–674. 

19. Yokoyama, A., Kakiuchi, N., Yoshizato, T., et 
al. (2019) Age-related remodelling of 
oesophageal epithelia by mutated cancer 
drivers. Nature, 565, 312–317. 

20. Martincorena, I., Fowler, J. C., Wabik, A., et al. 
(2018) Somatic mutant clones colonize the 
human esophagus with age. Science (80-. )., 
362, 911–917. 

21. Martincorena, I., Roshan, A., Gerstung, M., et 
al. (2015) High burden and pervasive positive 
selection of somatic mutations in normal human 
skin. Science (80-. )., 348, 880–886. 

22. Mitchell, T. J., Turajlic, S., Rowan, A., et al. 
(2018) Timing the Landmark Events in the 
Evolution of Clear Cell Renal Cell Cancer: 
TRACERx Renal. Cell. 

23. National Cancer Registration and Analysis 
Service (2014) Cancer Survivial in England by 
stage 2014. Cancer Survivial in England by 
stage 2014 
http://www.ncin.org.uk/publications/survival_by
_stage (accessed Mar 15, 2019). 

24. Li, F. P. and Fraumeni, J. F. (1969) Soft-tissue 
sarcomas, breast cancer, and other neoplasms. 
A familial syndrome? Ann. Intern. Med., 71, 
747–752. 

25. Network, C. G. A. R., N., J., Weinstein, J. N., et 
al. (2013) The Cancer Genome Atlas Pan-
Cancer analysis project. Nat. Genet., 45, 1113–
20. 

26. Rahman, N. (2014) Realizing the promise of 
cancer predisposition genes. Nature, 505, 302–
8. 

27. Petrucelli, N., Daly, M. B. and Pal, T. (1993) 
BRCA1- and BRCA2-Associated Hereditary 
Breast and Ovarian Cancer. BRCA1- and 
BRCA2-Associated Hereditary Breast and 
Ovarian Cancer; University of Washington, 
Seattle, (1993) . 

28. Fitzmaurice, C., Dicker, D., Pain, A., et al. 
(2015) The Global Burden of Cancer 2013. 
JAMA Oncol., 1, 505. 

29. Noone, A., Howlader, N., Krapcho, M., et al. 
(2017) SEER Cancer Statistics Review, 1975-
2015. SEER Cancer Statistics Review, 1975-
2015; Bethesda, (2017) . 

30. Maher, E. R., Yates, J. R. and Ferguson-Smith, 
M. a (1990) Statistical analysis of the two stage 
mutation model in von Hippel-Lindau disease, 
and in sporadic cerebellar haemangioblastoma 
and renal cell carcinoma. J. Med. Genet., 27, 
311–314. 

31. Smittenaar, C. R., Petersen, K. A., Stewart, K., 
et al. (2016) Cancer incidence and mortality 
projections in the UK until 2035. Br. J. Cancer, 
115, 1147–1155. 

32. Brown, K. F., Rumgay, H., Dunlop, C., et al. 



 

261 
 

(2018) The fraction of cancer attributable to 
modifiable risk factors in England, Wales, 
Scotland, Northern Ireland, and the United 
Kingdom in 2015. Br. J. Cancer, 118, 1130–
1141. 

33. Wang, F. and Xu, Y. (2014) Body mass index 
and risk of renal cell cancer: A dose-response 
meta-analysis of published cohort studies. Int. 
J. Cancer, 135, 1673–1686. 

34. Cumberbatch, M. G., Rota, M., Catto, J. W. F., 
et al. (2016) The Role of Tobacco Smoke in 
Bladder and Kidney Carcinogenesis: A 
Comparison of Exposures and Meta-analysis of 
Incidence and Mortality Risks. Eur. Urol., 70, 
458–466. 

35. Weikert, S., Boeing, H., Pischon, T., et al. 
(2008) Blood Pressure and Risk of Renal Cell 
Carcinoma in the European Prospective 
Investigation into Cancer and Nutrition. Am. J. 
Epidemiol., 167, 438–446. 

36. Matson, M. A. and Cohen, E. P. (1990) 
Acquired cystic kidney disease: occurrence, 
prevalence, and renal cancers. Medicine 
(Baltimore)., 69, 217–26. 

37. Tseng, C.-H. (2015) Type 2 Diabetes Mellitus 
and Kidney Cancer Risk: A Retrospective 
Cohort Analysis of the National Health 
Insurance. PLoS One, 10, e0142480. 

38. Li, C., Balluz, L. S., Ford, E. S., et al. (2011) 
Association Between Diagnosed Diabetes and 
Self-Reported Cancer Among U.S. Adults: 
Findings from the 2009 Behavioral Risk Factor 
Surveillance System. Diabetes Care, 34, 1365–
1368. 

39. Cho, E., Curhan, G., Hankinson, S. E., et al. 
(2011) Prospective evaluation of analgesic use 
and risk of renal cell cancer. Arch. Intern. Med., 
171, 1487–93. 

40. Huang, T., Ding, P., Chen, J., et al. (2014) 
Dietary fiber intake and risk of renal cell 
carcinoma: evidence from a meta-analysis. 
Med. Oncol., 31, 125. 

41. Zhao, J. and Zhao, L. (2013) Cruciferous 
Vegetables Intake Is Associated with Lower 
Risk of Renal Cell Carcinoma: Evidence from a 
Meta-Analysis of Observational Studies. PLoS 
One, 8, e75732. 

42. Kelsh, M. A., Alexander, D. D., Mink, P. J., et 
al. (2010) Occupational Trichloroethylene 
Exposure and Kidney Cancer. Epidemiology, 
21, 95–102. 

43. Boffetta, P., Fontana, L., Stewart, P., et al. 
(2011) Occupational exposure to arsenic, 
cadmium, chromium, lead and nickel, and renal 
cell carcinoma: a case-control study from 
Central and Eastern Europe. Occup. Environ. 
Med., 68, 723–728. 

44. NCD Risk Factor Collaboration (NCD-RisC), N. 
R. F. C. (2017) Worldwide trends in body-mass 
index, underweight, overweight, and obesity 
from 1975 to 2016: a pooled analysis of 2416 
population-based measurement studies in 
128·9 million children, adolescents, and adults. 
Lancet (London, England), 390, 2627–2642. 

45. Swinburn, B. A., Caterson, I., Seidell, J. C., et 
al. (2004) Diet, nutrition and the prevention of 
excess weight gain and obesity. Public Health 
Nutr., 7, 123–46. 

46. Kotchen, T. A. (2010) Obesity-Related 
Hypertension: Epidemiology, Pathophysiology, 
and Clinical Management. Am. J. Hypertens., 
23, 1170–1178. 

47. Hossain, P., Kawar, B. and El Nahas, M. (2007) 
Obesity and Diabetes in the Developing World 
— A Growing Challenge. N. Engl. J. Med., 356, 
213–215. 

48. Motzer, R. J., Bander, N. H. and Nanus, D. M. 
(1996) Renal-Cell Carcinoma. N. Engl. J. Med., 
335, 865–875. 

49. Srigley, J. R., Delahunt, B., Eble, J. N., et al. 
(2013) The International Society of Urological 
Pathology (ISUP) Vancouver Classification of 
Renal Neoplasia. Am. J. Surg. Pathol., 37, 
1469–1489. 

50. Moch, H., Gasser, T., Amin, M. B., et al. (2000) 
Prognostic utility of the recently recommended 
histologic classification and revised TNM 
staging system of renal cell carcinoma: a Swiss 
experience with 588 tumors. Cancer, 89, 604–
14. 

51. Amin, M. B., Amin, M. B., Tamboli, P., et al. 
(2002) Prognostic impact of histologic 
subtyping of adult renal epithelial neoplasms: 
an experience of 405 cases. Am. J. Surg. 
Pathol., 26, 281–91. 

52. Ericsson, J. L., Seljelid, R. and Orrenius, S. 
(1966) Comparative light and electron 
microscopic observations of the cytoplasmic 
matrix in renal carcinomas. Virchows Arch. 
Pathol. Anat. Physiol. Klin. Med., 341, 204–23. 

53. Du, W., Zhang, L., Brett-Morris, A., et al. (2017) 
HIF drives lipid deposition and cancer in 
ccRCC via repression of fatty acid metabolism. 
Nat. Commun., 8, 1769. 

54. Andreiana, B. C., Stepan, A. E., Mărgăritescu, 
C., et al. (2018) Histopathological Prognostic 
Factors in Clear Cell Renal Cell Carcinoma. 
Curr. Heal. Sci. J., 44, 201–205. 

55. Cheville, J. C., Lohse, C. M., Zincke, H., et al. 
(2003) Comparisons of outcome and prognostic 
features among histologic subtypes of renal cell 
carcinoma. Am. J. Surg. Pathol., 27, 612–24. 

56. Ambrosetti, D., Dufies, M., Dadone, B., et al. 
(2018) The two glycolytic markers GLUT1 and 
MCT1 correlate with tumor grade and survival 
in clear-cell renal cell carcinoma. PLoS One, 
13, e0193477. 

57. Kim, H., Inomoto, C., Uchida, T., et al. (2018) 
Verification of the International Society of 
Urological Pathology recommendations in 
Japanese patients with clear cell renal cell 
carcinoma. Int. J. Oncol., 52, 1139–1148. 

58. Muglia, V. F. and Prando, A. (2015) Renal cell 
carcinoma: histological classification and 
correlation with imaging findings. Radiol. Bras., 
48, 166–74. 

59. Lubensky, I. A., Schmidt, L., Zhuang, Z., et al. 



 

262 
 

(1999) Hereditary and Sporadic Papillary Renal 
Carcinomas with c-met Mutations Share a 
Distinct Morphological Phenotype. Am. J. 
Pathol., 155, 517–526. 

60. Kuroda, N., Ohe, C., Kawakami, F., et al. 
(2014) Clear cell papillary renal cell carcinoma: 
a review. Int. J. Clin. Exp. Pathol., 7, 7312–8. 

61. Zhong, M., De Angelo, P., Osborne, L., et al. 
(2012) Translocation Renal Cell Carcinomas in 
Adults. Am. J. Surg. Pathol., 36, 654–662. 

62. Zhao, M., He, X. and Teng, X. (2015) Mucinous 
tubular and spindle cell renal cell carcinoma: a 
review of clinicopathologic aspects. Diagn. 
Pathol., 10, 168. 

63. Adibi, M., Thomas, A. Z., Borregales, L. D., et 
al. (2015) Percentage of sarcomatoid 
component as a prognostic indicator for 
survival in renal cell carcinoma with 
sarcomatoid dedifferentiation. Urol. Oncol. 
Semin. Orig. Investig., 33, 427.e17-427.e23. 

64. Akhtar, M., Tulbah, A., Kardar, A. H., et al. 
(1997) Sarcomatoid renal cell carcinoma: the 
chromophobe connection. Am. J. Surg. Pathol., 
21, 1188–95. 

65. Abrahams, N. A., Ayala, A. G. and Czerniak, B. 
(2003) Chromophobe renal cell carcinoma with 
sarcomatoid transformation. Ann. Diagn. 
Pathol., 7, 296–9. 

66. Jones, T. D., Eble, J. N., Wang, M., et al. 
(2005) Clonal divergence and genetic 
heterogeneity in clear cell renal cell carcinomas 
with sarcomatoid transformation. Cancer, 104, 
1195–1203. 

67. Mittal, V. (2018) Epithelial Mesenchymal 
Transition in Tumor Metastasis. Annu. Rev. 
Pathol. Mech. Dis., 13, 395–412. 

68. Sobin, L. H., Gospodarowicz, M. K. (Mary K. ., 
Wittekind, C. (Christian), et al. (2009) TNM 
classification of malignant tumours. TNM 
classification of malignant tumours; Wiley-
Blackwell, (2009) . 

69. Kim, S. P., Alt, A. L., Weight, C. J., et al. (2011) 
Independent validation of the 2010 American 
Joint Committee on Cancer TNM classification 
for renal cell carcinoma: results from a large, 
single institution cohort. J. Urol., 185, 2035–9. 

70. Hand, J. R. and Broders, A. C. (1932) 
Carcinoma of the Kidney: The Degree of 
Malignancy in Relation to Factors Bearing on 
Prognosis. J. Urol., 28, 199–216. 

71. Fuhrman, S. A., Lasky, L. C. and Limas, C. 
(1982) Prognostic significance of morphologic 
parameters in renal cell carcinoma. Am. J. 
Surg. Pathol., 6, 655–63. 

72. Delahunt, B., McKenney, J. K., Lohse, C. M., et 
al. (2013) A Novel Grading System for Clear 
Cell Renal Cell Carcinoma Incorporating Tumor 
Necrosis. Am. J. Surg. Pathol., 37, 311–322. 

73. Delahunt, B., Sika-Paotonu, D., Bethwaite, P. 
B., et al. (2007) Fuhrman Grading is not 
Appropriate for Chromophobe Renal Cell 
Carcinoma. Am. J. Surg. Pathol., 31, 957–960. 

74. Ljungberg, B., Albiges, L., Abu-Ghanem, Y., et 
al. (2019) European Association of Urology 
Guidelines on Renal Cell Carcinoma: The 2019 
Update. Eur. Urol. 

75. Ferrara, N. (2004) Vascular endothelial growth 
factor as a target for anticancer therapy. 
Oncologist, 9 Suppl 1, 2–10. 

76. Rini, B. I. and Small, E. J. (2005) Biology and 
clinical development of vascular endothelial 
growth factor-targeted therapy in renal cell 
carcinoma. J. Clin. Oncol., 23, 1028–43. 

77. Mendel, D. B., Laird, A. D., Xin, X., et al. (2003) 
In vivo antitumor activity of SU11248, a novel 
tyrosine kinase inhibitor targeting vascular 
endothelial growth factor and platelet-derived 
growth factor receptors: determination of a 
pharmacokinetic/pharmacodynamic 
relationship. Clin. Cancer Res., 9, 327–37. 

78. Abrams, T. J., Lee, L. B., Murray, L. J., et al. 
(2003) SU11248 inhibits KIT and platelet-
derived growth factor receptor beta in 
preclinical models of human small cell lung 
cancer. Mol. Cancer Ther., 2, 471–8. 

79. Sonpavde, G. and Hutson, T. E. (2007) 
Pazopanib: A novel multitargeted tyrosine 
kinase inhibitor. Curr. Oncol. Rep., 9, 115–119. 

80. Podsypanina, K., Lee, R. T., Politis, C., et al. 
(2001) An inhibitor of mTOR reduces neoplasia 
and normalizes p70/S6 kinase activity in 
Pten+/- mice. Proc. Natl. Acad. Sci. U. S. A., 
98, 10320–5. 

81. Albert, S., Serova, M., Dreyer, C., et al. (2010) 
New inhibitors of the mammalian target of 
rapamycin signaling pathway for cancer. Expert 
Opin. Investig. Drugs, 19, 919–930. 

82. Saxton, R. A. and Sabatini, D. M. (2017) mTOR 
Signaling in Growth, Metabolism, and Disease. 
Cell, 168, 960–976. 

83. Wallace, E. M., Rizzi, J. P., Han, G., et al. 
(2016) A Small-Molecule Antagonist of HIF2α Is 
Efficacious in Preclinical Models of Renal Cell 
Carcinoma. Cancer Res., 76, 5491–5500. 

84. Courtney, K. D., Infante, J. R., Lam, E. T., et al. 
(2018) Phase I Dose-Escalation Trial of 
PT2385, a First-in-Class Hypoxia-Inducible 
Factor-2α Antagonist in Patients With 
Previously Treated Advanced Clear Cell Renal 
Cell Carcinoma. J. Clin. Oncol., 36, 867–874. 

85. Ribas, A. (2012) Tumor Immunotherapy 
Directed at PD-1. N. Engl. J. Med., 366, 2517–
2519. 

86. Camacho, L. H. (2015) CTLA-4 blockade with 
ipilimumab: biology, safety, efficacy, and future 
considerations. Cancer Med., 4, 661–672. 

87. Ranieri, G., Patruno, R., Ruggieri, E., et al. 
(2006) Vascular endothelial growth factor 
(VEGF) as a target of bevacizumab in cancer: 
from the biology to the clinic. Curr. Med. Chem., 
13, 1845–57. 

88. Escudier, B., Eisen, T., Stadler, W. M., et al. 
(2007) Sorafenib in Advanced Clear-Cell 
Renal-Cell Carcinoma. N. Engl. J. Med., 356, 
125–134. 



 

263 
 

89. Diamond, J. R., Salgia, R., Varella-Garcia, M., 
et al. (2013) Initial clinical sensitivity and 
acquired resistance to MET inhibition in MET-
mutated papillary renal cell carcinoma. J. Clin. 
Oncol., 31, e254-8. 

90. Rini, B. I. and Atkins, M. B. (2009) Resistance 
to targeted therapy in renal-cell carcinoma. 
Lancet Oncol., 10, 992–1000. 

91. Gottesman, M. M., Fojo, T. and Bates, S. E. 
(2002) Multidrug resistance in cancer: role of 
ATP–dependent transporters. Nat. Rev. 
Cancer, 2, 48–58. 

92. Gotink, K. J., Broxterman, H. J., Labots, M., et 
al. (2011) Lysosomal Sequestration of 
Sunitinib: A Novel Mechanism of Drug 
Resistance. Clin. Cancer Res., 17, 7337–7346. 

93. Casanovas, O., Hicklin, D. J., Bergers, G., et al. 
(2005) Drug resistance by evasion of 
antiangiogenic targeting of VEGF signaling in 
late-stage pancreatic islet tumors. Cancer Cell, 
8, 299–309. 

94. Huang, D., Ding, Y., Zhou, M., et al. (2010) 
Interleukin-8 Mediates Resistance to 
Antiangiogenic Agent Sunitinib in Renal Cell 
Carcinoma. Cancer Res., 70, 1063–1071. 

95. Hirschi, K. K. and D’Amore, P. A. (1997) 
Control of angiogenesis by the pericyte: 
molecular mechanisms and significance. EXS, 
79, 419–28. 

96. Finke, J., Ko, J., Rini, B., et al. (2011) MDSC as 
a mechanism of tumor escape from sunitinib 
mediated anti-angiogenic therapy. Int. 
Immunopharmacol., 11, 856–861. 

97. Hwang, H. S., Go, H., Park, J.-M., et al. (2019) 
Epithelial-mesenchymal transition as a 
mechanism of resistance to tyrosine kinase 
inhibitors in clear cell renal cell carcinoma. Lab. 
Investig., 1. 

98. Maher, E. R. (2013) Genomics and 
epigenomics of renal cell carcinoma. Semin. 
Cancer Biol., 23, 10–7. 

99. Gossage, L., Eisen, T. and Maher, E. R. (2015) 
VHL, the story of a tumour suppressor gene. 
Nat. Rev. Cancer, 15, 55–64. 

100. Gherardi, E., Birchmeier, W., Birchmeier, C., et 
al. (2012) Targeting MET in cancer: rationale 
and progress. Nat. Rev. Cancer, 12, 89–103. 

101. Clague, J., Lin, J., Cassidy, A., et al. (2009) 
Family History and Risk of Renal Cell 
Carcinoma: Results from a Case-Control Study 
and Systematic Meta-Analysis. Cancer 
Epidemiol. Biomarkers Prev., 18, 801–807. 

102. Nguyen, K. A., Syed, J. S., Espenschied, C. R., 
et al. (2017) Advances in the diagnosis of 
hereditary kidney cancer: Initial results of a 
multigene panel test. Cancer, 123, 4363–4371. 

103. Klatte, T., Patard, J.-J., Wunderlich, H., et al. 
(2007) Metachronous Bilateral Renal Cell 
Carcinoma: Risk Assessment, Prognosis and 
Relevance of the Primary-Free Interval. J. Urol., 
177, 2081–2087. 

104. Gudbjartsson, T., Jónasdóttir, T. J., 

Thoroddsen, Á., et al. (2002) A population-
based familial aggregation analysis indicates 
genetic contribution in a majority of renal cell 
carcinomas. Int. J. Cancer, 100, 476–479. 

105. Mucci, L. A., Hjelmborg, J. B., Harris, J. R., et 
al. (2016) Familial Risk and Heritability of 
Cancer Among Twins in Nordic Countries. 
JAMA, 315, 68–76. 

106. Bertout, J. A., Majmundar, A. J., Gordan, J. D., 
et al. (2009) HIF2alpha inhibition promotes p53 
pathway activity, tumor cell death, and radiation 
responses. Proc. Natl. Acad. Sci. U. S. A., 106, 
14391–6. 

107. Ivan, M., Kondo, K., Yang, H., et al. (2001) 
HIFalpha targeted for VHL-mediated 
destruction by proline hydroxylation: 
implications for O2 sensing. Science, 292, 464–
8. 

108. Purdue, M. P., Johansson, M., Zelenika, D., et 
al. (2011) Genome-wide association study of 
renal cell carcinoma identifies two susceptibility 
loci on 2p21 and 11q13.3. Nat. Genet., 43, 60–
5. 

109. Han, S. S., Yeager, M., Moore, L. E., et al. 
(2012) The chromosome 2p21 region harbors a 
complex genetic architecture for association 
with risk for renal cell carcinoma. Hum. Mol. 
Genet., 21, 1190–1200. 

110. Wu, X., Scelo, G., Purdue, M. P., et al. (2012) 
A genome-wide association study identifies a 
novel susceptibility locus for renal cell 
carcinoma on 12p11.23. Hum. Mol. Genet., 21, 
456–62. 

111. Audenet, F., Cancel-Tassin, G., Bigot, P., et al. 
(2014) Germline Genetic Variations at 11q13 
and 12p11 Locus Modulate Age at Onset for 
Renal Cell Carcinoma. J. Urol., 191, 487–492. 

112. Gudmundsson, J., Sulem, P., Gudbjartsson, D. 
F., et al. (2013) A common variant at 8q24.21 is 
associated with renal cell cancer. Nat. 
Commun., 4, 2776. 

113. Henrion, M., Frampton, M., Scelo, G., et al. 
(2013) Common variation at 2q22.3 (ZEB2) 
influences the risk of renal cancer. Hum. Mol. 
Genet., 22, 825–31. 

114. Henrion, M. Y. R., Purdue, M. P., Scelo, G., et 
al. (2015) Common variation at 1q24.1 
(ALDH9A1) is a potential risk factor for renal 
cancer. PLoS One, 10, e0122589. 

115. Schödel, J., Bardella, C., Sciesielski, L. K., et 
al. (2012) Common genetic variants at the 
11q13.3 renal cancer susceptibility locus 
influence binding of HIF to an enhancer of 
cyclin D1 expression. Nat. Genet., 44, 420–5, 
S1-2. 

116. Xue, J., Qin, Z., Li, X., et al. (2017) Genetic 
polymorphisms in cyclin D1 are associated with 
risk of renal cell cancer in the Chinese 
population. Oncotarget, 8, 80889. 

117. Machiela, M. J., Hofmann, J. N., Carreras-
Torres, R., et al. (2017) Genetic Variants 
Related to Longer Telomere Length are 
Associated with Increased Risk of Renal Cell 
Carcinoma. Eur. Urol., 72, 747–754. 



 

264 
 

118. Truong, H., Hegarty, S. E., Gomella, L. G., et 
al. (2017) Prevalence and Characteristics of 
Patients with Suspected Inherited Renal Cell 
Cancer: Application of the ACMG/NSGC 
Genetic Referral Guidelines to Patient Cohorts. 
J. Genet. Couns., 26, 548–555. 

119. Glenn, G. M., Daniel, L. N., Choyke, P., et al. 
(1991) Von Hippel-Lindau (VHL) disease: 
distinct phenotypes suggest more than one 
mutant allele at the VHL locus. Hum. Genet., 
87, 207–10. 

120. Neumann, H. P. and Wiestler, O. D. (1991) 
Clustering of features of von Hippel-Lindau 
syndrome: evidence for a complex genetic 
locus. Lancet (London, England), 337, 1052–4. 

121. Evans, D. G., Howard, E., Giblin, C., et al. 
(2010) Birth incidence and prevalence of tumor-
prone syndromes: Estimates from a UK family 
genetic register service. Am. J. Med. Genet. 
Part A, 152A, 327–332. 

122. Binderup, M. L. M., Galanakis, M., Budtz-
Jørgensen, E., et al. (2017) Prevalence, birth 
incidence, and penetrance of von Hippel-
Lindau disease (vHL) in Denmark. Eur. J. Hum. 
Genet., 25, 301–307. 

123. Maher, E. R., Iselius, L., Yates, J. R., et al. 
(1991) Von Hippel-Lindau disease: a genetic 
study. J. Med. Genet., 28, 443. 

124. Ong, K. R., Woodward, E. R., Killick, P., et al. 
(2007) Genotype-phenotype correlations in von 
Hippel-Lindau disease. Hum. Mutat., 28, 143–
149. 

125. Collins, T. (1894) Intra-ocular growths: Two 
cases, brother and sister, with peculiar vascular 
new growth, probably primarily retinal, affecting 
both eyes. Trans Ophthalmol. 

126. Zbar, B., Brauch, H., Talmadge, C., et al. 
(1987) Loss of alleles of loci on the short arm of 
chromosome 3 in renal cell carcinoma. Nature, 
327, 721–724. 

127. Latif, F., Tory, K., Gnarra, J., et al. (1993) 
Identification of the von Hippel-Lindau disease 
tumor suppressor gene. Science (80-. )., 260, 
1317–1320. 

128. Foster, K., Prowse, A., van den Berg, A., et al. 
(1994) Somatic mutations of the von Hippel-
Lindau disease tumour suppressor gene in 
non-familial clear cell renal carcinoma. Hum. 
Mol. Genet., 3, 2169–73. 

129. Woodward, E. R., Clifford, S. C., Astuti, D., et 
al. (2000) Familial clear cell renal cell 
carcinoma (FCRC): clinical features and 
mutation analysis of the VHL, MET, and CUL2 
candidate genes. J. Med. Genet., 37, 348–53. 

130. Sgambati, M. T., Stolle, C., Choyke, P. L., et al. 
(2000) Mosaicism in von Hippel-Lindau 
disease: lessons from kindreds with germline 
mutations identified in offspring with mosaic 
parents. Am. J. Hum. Genet., 66, 84–91. 

131. Coppin, L., Grutzmacher, C., Crépin, M., et al. 
(2014) VHL mosaicism can be detected by 
clinical next-generation sequencing and is not 
restricted to patients with a mild phenotype. 
Eur. J. Hum. Genet., 22, 1149–52. 

132. Pastore, Y., Jedlickova, K., Guan, Y., et al. 
(2003) Mutations of von Hippel-Lindau Tumor-
Suppressor Gene and Congenital 
Polycythemia. Am. J. Hum. Genet., 73, 412–
419. 

133. Gordeuk, V. R., Sergueeva, A. I., Miasnikova, 
G. Y., et al. (2004) Congenital disorder of 
oxygen sensing: association of the 
homozygous Chuvash polycythemia VHL 
mutation with thrombosis and vascular 
abnormalities but not tumors. Blood, 103, 
3924–3932. 

134. McNeill, A., Rattenberry, E., Barber, R., et al. 
(2009) Genotype-phenotype correlations in 
VHL exon deletions. Am. J. Med. Genet. Part 
A, 149A, 2147–2151. 

135. Chen, F., Kishida, T., Yao, M., et al. (1995) 
Germline mutations in the von Hippel-Lindau 
disease tumor suppressor gene: Correlations 
with phenotype. Hum. Mutat., 5, 66–75. 

136. Nordstrom-O’Brien, M., van der Luijt, R. B., van 
Rooijen, E., et al. (2010) Genetic analysis of 
von Hippel-Lindau disease. Hum. Mutat., 31, 
n/a-n/a. 

137. Lenglet, M., Robriquet, F., Schwarz, K., et al. 
(2018) Identification of a new VHL exon and 
complex splicing alterations in familial 
erythrocytosis or von Hippel-Lindau disease. 
Blood, 132, 469–483. 

138. Maxwell, P. H., Wiesener, M. S., Chang, G.-W., 
et al. (1999) The tumour suppressor protein 
VHL targets hypoxia-inducible factors for 
oxygen-dependent proteolysis. Nature, 399, 
271–275. 

139. Jaakkola, P., Mole, D. R., Tian, Y. M., et al. 
(2001) Targeting of HIF-alpha to the von 
Hippel-Lindau ubiquitylation complex by O2-
regulated prolyl hydroxylation. Science, 292, 
468–72. 

140. Wenger, R. H., Stiehl, D. P. and Camenisch, G. 
(2005) Integration of Oxygen Signaling at the 
Consensus HRE. Sci. Signal., 2005, re12–re12. 

141. Keith, B., Johnson, R. S. and Simon, M. C. 
(2012) HIF1α and HIF2α: sibling rivalry in 
hypoxic tumour growth and progression. Nat. 
Rev. Cancer, 12, 9–22. 

142. Raval, R. R., Lau, K. W., Tran, M. G. B., et al. 
(2005) Contrasting properties of hypoxia-
inducible factor 1 (HIF-1) and HIF-2 in von 
Hippel-Lindau-associated renal cell carcinoma. 
Mol. Cell. Biol., 25, 5675–86. 

143. Shen, C., Beroukhim, R., Schumacher, S. E., et 
al. (2011) Genetic and functional studies 
implicate HIF1α as a 14q kidney cancer 
suppressor gene. Cancer Discov., 1, 222–35. 

144. Morris, M. R., Hughes, D. J., Tian, Y.-M., et al. 
(2009) Mutation analysis of hypoxia-inducible 
factors HIF1A and HIF2A in renal cell 
carcinoma. Anticancer Res., 29, 4337–43. 

145. Roe, J.-S., Kim, H.-R., Hwang, I.-Y., et al. 
(2011) von Hippel–Lindau protein promotes 
Skp2 destabilization on DNA damage. 
Oncogene, 30, 3127–3138. 



 

265 
 

146. Thoma, C. R., Toso, A., Gutbrodt, K. L., et al. 
(2009) VHL loss causes spindle misorientation 
and chromosome instability. Nat. Cell Biol., 11, 
994–1001. 

147. Roe, J.-S., Kim, H., Lee, S.-M., et al. (2006) 
p53 Stabilization and Transactivation by a von 
Hippel-Lindau Protein. Mol. Cell, 22, 395–405. 

148. Haase, V. H., Glickman, J. N., Socolovsky, M., 
et al. (2001) Vascular tumors in livers with 
targeted inactivation of the von Hippel-Lindau 
tumor suppressor. Proc. Natl. Acad. Sci., 98, 
1583–1588. 

149. Kleymenova, E., Everitt, J. I., Pluta, L., et al. 
(2003) Susceptibility to vascular neoplasms but 
no increased susceptibility to renal 
carcinogenesis in Vhl knockout mice. 
Carcinogenesis, 25, 309–315. 

150. Kapitsinou, P. P. and Haase, V. H. (2008) The 
VHL tumor suppressor and HIF: insights from 
genetic studies in mice. Cell Death Differ., 15, 
650–9. 

151. Velickovic, M., Delahunt, B. and Grebe, S. K. 
(1999) Loss of heterozygosity at 3p14.2 in clear 
cell renal cell carcinoma is an early event and 
is highly localized to the FHIT gene locus. 
Cancer Res., 59, 1323–6. 

152. Nargund, A. M., Pham, C. G., Dong, Y., et al. 
(2017) The SWI/SNF Protein PBRM1 Restrains 
VHL-Loss-Driven Clear Cell Renal Cell 
Carcinoma. 18, 2893–2906. 

153. Reed, W. B., Walker, R. and Horowitz, R. 
(1973) Cutaneous leiomyomata with uterine 
leiomyomata. Acta Derm. Venereol., 53, 409–
16. 

154. Launonen, V., Vierimaa, O., Kiuru, M., et al. 
(2001) Inherited susceptibility to uterine 
leiomyomas and renal cell cancer. Proc. Natl. 
Acad. Sci., 98, 3387–3392. 

155. Toro, J. R., Nickerson, M. L., Wei, M.-H., et al. 
(2003) Mutations in the fumarate hydratase 
gene cause hereditary leiomyomatosis and 
renal cell cancer in families in North America. 
Am. J. Hum. Genet., 73, 95–106. 

156. Shuch, B., Vourganti, S., Ricketts, C. J., et al. 
(2014) Defining early-onset kidney cancer: 
implications for germline and somatic mutation 
testing and clinical management. J. Clin. 
Oncol., 32, 431–7. 

157. Grubb, R. L., Franks, M. E., Toro, J., et al. 
(2007) Hereditary Leiomyomatosis and Renal 
Cell Cancer: A Syndrome Associated With an 
Aggressive Form of Inherited Renal Cancer. J. 
Urol., 177, 2074–2080. 

158. Linehan, W. M., Spellman, P. T., Ricketts, C. J., 
et al. (2015) Comprehensive Molecular 
Characterization of Papillary Renal-Cell 
Carcinoma. N. Engl. J. Med., 374, 135–45. 

159. Tomlinson, I. P. M., Alam, N. A., Rowan, A. J., 
et al. (2002) Germline mutations in FH 
predispose to dominantly inherited uterine 
fibroids, skin leiomyomata and papillary renal 
cell cancer. Nat. Genet., 30, 406–410. 

160. Alam, N. A., Rowan, A. J., Wortham, N. C., et 

al. (2003) Genetic and functional analyses of 
FH mutations in multiple cutaneous and uterine 
leiomyomatosis, hereditary leiomyomatosis and 
renal cancer, and fumarate hydratase 
deficiency. Hum. Mol. Genet., 12, 1241–52. 

161. Wei, M.-H., Toure, O., Glenn, G. M., et al. 
(2006) Novel mutations in FH and expansion of 
the spectrum of phenotypes expressed in 
families with hereditary leiomyomatosis and 
renal cell cancer. J. Med. Genet., 43, 18–27. 

162. Alam, N. A., Bevan, S., Churchman, M., et al. 
(2001) Localization of a Gene (MCUL1) for 
Multiple Cutaneous Leiomyomata and Uterine 
Fibroids to Chromosome 1q42.3-q43. Am. J. 
Hum. Genet., 68, 1264–1269. 

163. MASSEY, V. (1953) Studies on fumarase. 4. 
The effects of inhibitors on fumarase activity. 
Biochem. J., 55, 172–7. 

164. Vander Heiden, M. G., Cantley, L. C. and 
Thompson, C. B. (2009) Understanding the 
Warburg effect: the metabolic requirements of 
cell proliferation. Science, 324, 1029–33. 

165. Tong, W.-H., Sourbier, C., Kovtunovych, G., et 
al. (2011) The glycolytic shift in fumarate-
hydratase-deficient kidney cancer lowers 
AMPK levels, increases anabolic propensities 
and lowers cellular iron levels. Cancer Cell, 20, 
315–27. 

166. D’Angelo, G., Duplan, E., Boyer, N., et al. 
(2003) Hypoxia Up-regulates Prolyl 
Hydroxylase Activity. J. Biol. Chem., 278, 
38183–38187. 

167. Isaacs, J. S., Jung, Y. J., Mole, D. R., et al. 
(2005) HIF overexpression correlates with 
biallelic loss of fumarate hydratase in renal 
cancer: Novel role of fumarate in regulation of 
HIF stability. Cancer Cell, 8, 143–153. 

168. Pollard, P. J., Brière, J. J., Alam, N. A., et al. 
(2005) Accumulation of Krebs cycle 
intermediates and over-expression of HIF1α in 
tumours which result from germline FH and 
SDH mutations. Hum. Mol. Genet., 14, 2231–
2239. 

169. Pollard, P., Wortham, N., Barclay, E., et al. 
(2005) Evidence of increased microvessel 
density and activation of the hypoxia pathway 
in tumours from the hereditary leiomyomatosis 
and renal cell cancer syndrome. J. Pathol., 205, 
41–49. 

170. Sudarshan, S., Sourbier, C., Kong, H.-S., et al. 
(2009) Fumarate Hydratase Deficiency in Renal 
Cancer Induces Glycolytic Addiction and 
Hypoxia-Inducible Transcription Factor 
1  Stabilization by Glucose-Dependent 
Generation of Reactive Oxygen Species. Mol. 
Cell. Biol., 29, 4080–4090. 

171. Alderson, N. L., Wang, Y., Blatnik, M., et al. 
(2006) S-(2-Succinyl)cysteine: A novel 
chemical modification of tissue proteins by a 
Krebs cycle intermediate. Arch. Biochem. 
Biophys., 450, 1–8. 

172. Ooi, A., Wong, J.-C., Petillo, D., et al. (2011) An 
Antioxidant Response Phenotype Shared 
between Hereditary and Sporadic Type 2 
Papillary Renal Cell Carcinoma. Cancer Cell, 



 

266 
 

20, 511–523. 

173. Lenaz, G. (1998) Role of mitochondria in 
oxidative stress and ageing. Biochim. Biophys. 
Acta - Bioenerg., 1366, 53–67. 

174. Xiao, M., Yang, H., Xu, W., et al. (2012) 
Inhibition of  -KG-dependent histone and DNA 
demethylases by fumarate and succinate that 
are accumulated in mutations of FH and SDH 
tumor suppressors. Genes Dev., 26, 1326–
1338. 

175. Laukka, T., Mariani, C. J., Ihantola, T., et al. 
(2016) Fumarate and Succinate Regulate 
Expression of Hypoxia-inducible Genes via 
TET Enzymes. J. Biol. Chem., 291, 4256–65. 

176. Bourgeron, T., Chretien, D., Poggi-Bach, J., et 
al. (1994) Mutation of the fumarase gene in two 
siblings with progressive encephalopathy and 
fumarase deficiency. J. Clin. Invest., 93, 2514–
8. 

177. Coughlin, E. M., Christensen, E., Kunz, P. L., et 
al. (1998) Molecular Analysis and Prenatal 
Diagnosis of Human Fumarase Deficiency. Mol. 
Genet. Metab., 63, 254–262. 

178. Benusiglio, P. R., Giraud, S., Deveaux, S., et 
al. (2014) Renal cell tumour characteristics in 
patients with the Birt-Hogg-Dubé cancer 
susceptibility syndrome: a retrospective, 
multicentre study. Orphanet J. Rare Dis., 9, 
163. 

179. Houweling, A. C., Gijezen, L. M., Jonker, M. A., 
et al. Renal cancer and pneumothorax risk in 
Birt–Hogg–Dubé syndrome; an analysis of 115 
FLCN mutation carriers from 35 BHD families. 
Br. J. Cancer, 105, 1912–1919. 

180. Toro, J. R., Wei, M.-H., Glenn, G. M., et al. 
(2007) BHD mutations, clinical and molecular 
genetic investigations of Birt-Hogg-Dubé 
syndrome: a new series of 50 families and a 
review of published reports. J. Med. Genet. 

181. Gatalica, Z., Lilleberg, S. L., Vranic, S., et al. 
(2009) Novel intronic germline FLCN gene 
mutation in a patient with multiple ipsilateral 
renal neoplasms. Hum. Pathol., 40, 1813–
1819. 

182. Pavlovich, C. P., Walther, M. M., Eyler, R. A., et 
al. (2002) Renal tumors in the Birt-Hogg-Dubé 
syndrome. Am. J. Surg. Pathol., 26, 1542–52. 

183. Kuroda, N., Furuya, M., Nagashima, Y., et al. 
(2014) Intratumoral peripheral small papillary 
tufts: a diagnostic clue of renal tumors 
associated with Birt-Hogg-Dubé syndrome. 
Ann. Diagn. Pathol., 18, 171–176. 

184. Benusiglio, P., Gad, S., Massard, C., et al. 
(2014) Case Report: Expanding the tumour 
spectrum associated with the Birt-Hogg-Dubé 
cancer susceptibility syndrome. 
F1000Research, 3. 

185. Dong, L., Gao, M., Hao, W., et al. (2016) Case 
Report of Birt–Hogg–Dubé Syndrome. 
Medicine (Baltimore)., 95, e3695. 

186. Pradella, L. M., Lang, M., Kurelac, I., et al. 
(2013) Where Birt–Hogg–Dubé meets Cowden 
Syndrome: mirrored genetic defects in two 

cases of syndromic oncocytic tumours. Eur. J. 
Hum. Genet., 21, 1169–1172. 

187. Raymond, V. M., Long, J. M., Everett, J. N., et 
al. (2014) An oncocytic adrenal tumour in a 
patient with Birt-Hogg-Dubé syndrome. Clin. 
Endocrinol. (Oxf)., 80, 925–927. 

188. Mota-Burgos, A., Acosta, E. H., Márquez, F. V., 
et al. (2013) Birt-Hogg-Dubé syndrome in a 
patient with melanoma and a novel mutation in 
the FCLN gene. Int. J. Dermatol., 52, 323–326. 

189. Kean Khoo, S., Bradley, M., Wong, F. K., et al. 
(2001) Birt-Hogg-DubeÂ syndrome: mapping of 
a novel hereditary neoplasia gene to 
chromosome 17p12-q11.2. Birt-Hogg-DubeÂ 
syndrome: mapping of a novel hereditary 
neoplasia gene to chromosome 17p12-q11.2; 
(2001) . 

190. Nahorski, M. S., Reiman, A., Lim, D. H. K., et 
al. (2011) Birt Hogg-Dubé syndrome-
associated FLCN mutations disrupt protein 
stability. Hum. Mutat., 32, 921–929. 

191. Nickerson, M. L., Warren, M. B., Toro, J. R., et 
al. (2002) Mutations in a novel gene lead to 
kidney tumors, lung wall defects, and benign 
tumors of the hair follicle in patients with the 
Birt-Hogg-Dubé syndrome. Cancer Cell, 2, 
157–164. 

192. Schmidt, L. S., Nickerson, M. L., Warren, M. B., 
et al. (2005) Germline BHD-Mutation Spectrum 
and Phenotype Analysis of a Large Cohort of 
Families with Birt-Hogg-Dubé Syndrome. 
Germline BHD-Mutation Spectrum and 
Phenotype Analysis of a Large Cohort of 
Families with Birt-Hogg-Dubé Syndrome; 
(2005) ; Vol. 76. 

193. Ding, Y., Zhu, C., Zou, W., et al. (2015) FLCN 
intragenic deletions in Chinese familial primary 
spontaneous pneumothorax. Am. J. Med. 
Genet. Part A, 167, 1125–1133. 

194. Okimoto, K., Sakurai, J., Kobayashi, T., et al. 
(2004) A germ-line insertion in the Birt-Hogg-
Dubé (BHD) gene gives rise to the Nihon rat 
model of inherited renal cancer. Proc. Natl. 
Acad. Sci. U. S. A., 101, 2023–7. 

195. Vocke, C. D., Yang, Y., Pavlovich, C. P., et al. 
(2005) High Frequency of Somatic Frameshift 
BHD Gene Mutations in Birt-Hogg-Dubé-
Associated Renal Tumors. J. Natl. Cancer Inst., 
97. 

196. Van Steensel, M. A. M., Verstraeten, V. L. R. 
M., Frank, J., et al. (2007) Novel Mutations in 
the BHD Gene and Absence of Loss of 
Heterozygosity in Fibrofolliculomas of Birt-
Hogg-Dubé Patients. J. Invest. Dermatol., 127, 
588–593. 

197. Baba, M., Hong, S.-B., Sharma, N., et al. 
(2006) Folliculin encoded by the BHD gene 
interacts with a binding protein, FNIP1, and 
AMPK, and is involved in AMPK and mTOR 
signaling. Proc. Natl. Acad. Sci. U. S. A., 103, 
15552–7. 

198. Hasumi, H., Baba, M., Hong, S.-B., et al. (2008) 
Identification and characterization of a novel 
folliculin-interacting protein FNIP2. Gene, 415, 
60–7. 



 

267 
 

199. Shaw, R. J. (2009) LKB1 and AMP-activated 
protein kinase control of mTOR signalling and 
growth. Acta Physiol. (Oxf)., 196, 65–80. 

200. Hasumi, Y., Baba, M., Ajima, R., et al. (2009) 
Homozygous loss of BHD causes early 
embryonic lethality and kidney tumor 
development with activation of mTORC1 and 
mTORC2. Proc. Natl. Acad. Sci., 106, 18722–
18727. 

201. Hong, S.-B., Oh, H., Valera, V. A., et al. (2010) 
Inactivation of the FLCN tumor suppressor 
gene induces TFE3 transcriptional activity by 
increasing its nuclear localization. PLoS One, 
5, e15793. 

202. Zbar, B., Tory, K., Merino, M., et al. (1994) 
Hereditary papillary renal cell carcinoma. J. 
Urol., 151, 561–6. 

203. Schmidt, L., Junker, K., Weirich, G., et al. 
(1998) Two North American families with 
hereditary papillary renal carcinoma and 
identical novel mutations in the MET proto-
oncogene. Cancer Res., 58, 1719–22. 

204. Schmidt, L., Duh, F.-M., Chen, F., et al. (1997) 
Germline and somatic mutations in the tyrosine 
kinase domain of the MET proto-oncogene in 
papillary renal carcinomas. Nat. Genet., 16, 
68–73. 

205. Zbar, B., Glenn, G., Lubensky, I., et al. (1995) 
Hereditary papillary renal cell carcinoma: 
clinical studies in 10 families. J. Urol., 153, 
907–12. 

206. Ornstein, D. K., Lubensky, I. A., Venzon, D., et 
al. (2000) Prevalence of microscopic tumors in 
normal appearing renal parenchyma of patients 
with hereditary papillary renal cancer. J. Urol., 
163, 431–3. 

207. Schmidt, L., Junker, K., Nakaigawa, N., et al. 
(1999) Novel mutations of the MET proto-
oncogene in papillary renal carcinomas. 
Oncogene, 18, 2343–2350. 

208. Miller, M., Ginalski, K., Lesyng, B., et al. (2001) 
Structural basis of oncogenic activation caused 
by point mutations in the kinase domain of the 
MET proto-oncogene: modeling studies. 
Proteins, 44, 32–43. 

209. Basilico, C., Arnesano, A., Galluzzo, M., et al. 
(2008) A High Affinity Hepatocyte Growth 
Factor-binding Site in the Immunoglobulin-like 
Region of Met. J. Biol. Chem., 283, 21267–
21277. 

210. Trusolino, L. and Comoglio, P. M. (2002) 
Scatter-factor and semaphorin receptors: cell 
signalling for invasive growth. Nat. Rev. 
Cancer, 2, 289–300. 

211. MATSUMURA, A., KUBOTA, T., TAIYOH, H., 
et al. (2013) HGF regulates VEGF expression 
via the c-Met receptor downstream pathways, 
PI3K/Akt, MAPK and STAT3, in CT26 murine 
cells. Int. J. Oncol., 42, 535–542. 

212. Bardella, C., Pollard, P. J. and Tomlinson, I. 
(2011) SDH mutations in cancer. Biochim. 
Biophys. Acta - Bioenerg., 1807, 1432–1443. 

213. Vanharanta, S., Buchta, M., McWhinney, S. R., 

et al. (2004) Early-Onset Renal Cell Carcinoma 
as a Novel Extraparaganglial Component of 
SDHB-Associated Heritable Paraganglioma. 
Am. J. Hum. Genet., 74, 153–159. 

214. Ricketts, C., Woodward, E. R., Killick, P., et al. 
(2008) Germline SDHB mutations and familial 
renal cell carcinoma. J. Natl. Cancer Inst., 100, 
1260–1262. 

215. Ricketts, C. J., Forman, J. R., Rattenberry, E., 
et al. (2010) Tumor risks and genotype-
phenotype-proteotype analysis in 358 patients 
with germline mutations in SDHB and SDHD. 
Hum. Mutat., 31, 41–51. 

216. Malinoc, A., Sullivan, M., Wiech, T., et al. 
(2012) Biallelic inactivation of the SDHC gene 
in renal carcinoma associated with 
paraganglioma syndrome type 3. Endocr. 
Relat. Cancer, 19, 283–290. 

217. McEvoy, C. R., Koe, L., Choong, D. Y., et al. 
(2018) SDH-deficient renal cell carcinoma 
associated with biallelic mutation in succinate 
dehydrogenase A: comprehensive genetic 
profiling and its relation to therapy response. 
npj Precis. Oncol., 2, 9. 

218. Nicolas, E., Demidova, E. V., Iqbal, W., et al. 
(2019) Interaction of germline variants in a 
family with a history of early-onset clear cell 
renal cell carcinoma. Mol. Genet. Genomic 
Med., e556. 

219. Bayley, J.-P., Kunst, H. P., Cascon, A., et al. 
(2010) SDHAF2 mutations in familial and 
sporadic paraganglioma and 
phaeochromocytoma. Lancet Oncol., 11, 366–
372. 

220. Gill, A. J., Hes, O., Papathomas, T., et al. 
(2014) Succinate Dehydrogenase (SDH)-
deficient Renal Carcinoma. Am. J. Surg. 
Pathol., 38, 1588–1602. 

221. Williamson, S. R., Eble, J. N., Amin, M. B., et 
al. (2014) Succinate dehydrogenase-deficient 
renal cell carcinoma: detailed characterization 
of 11 tumors defining a unique subtype of renal 
cell carcinoma. Mod. Pathol., 28, 80–94. 

222. Gill, A. J., Pachter, N. S., Chou, A., et al. (2011) 
Renal tumors associated with germline SDHB 
mutation show distinctive morphology. Am. J. 
Surg. Pathol., 35, 1578–85. 

223. Benn, D. E., Zhu, Y., Andrews, K. A., et al. 
(2018) Bayesian approach to determining 
penetrance of pathogenic SDH variants. J. 
Med. Genet., 55, 729–734. 

224. Maniam, P., Zhou, K., Lonergan, M., et al. 
(2018) Pathogenicity and Penetrance of 
Germline SDHA Variants in 
Pheochromocytoma and Paraganglioma 
(PPGL). J. Endocr. Soc., 2, 806–816. 

225. Andrews, K. A., Ascher, D. B., Pires, D. E. V., 
et al. (2018) Tumour risks and genotype-
phenotype correlations associated with 
germline variants in succinate dehydrogenase 
subunit genes SDHB, SDHC and SDHD. J. 
Med. Genet., 55, 384–394. 

226. Casey, R. T., Warren, A. Y., Rodrigues, J. E., et 
al. (2017) Clinical and Molecular Features of 



 

268 
 

Renal and 
Phaeochromocytoma/Paraganglioma Tumour 
Association Syndrome (RAPTAS): Case Series 
and Literature Review. J. Clin. Endocrinol. 
Metab. 

227. Douwes Dekker, P., Hogendoorn, P., Kuipers-
Dijkshoorn, N., et al. (2003) SDHD mutations in 
head and neck paragangliomas result in 
destabilization of complex II in the 
mitochondrial respiratory chain with loss of 
enzymatic activity and abnormal mitochondrial 
morphology. J. Pathol., 201, 480–486. 

228. Lussey-Lepoutre, C., Hollinshead, K. E. R., 
Ludwig, C., et al. (2015) Loss of succinate 
dehydrogenase activity results in dependency 
on pyruvate carboxylation for cellular 
anabolism. Nat. Commun., 6, 8784. 

229. Xiao, M., Yang, H., Xu, W., et al. (2012) 
Inhibition of α-KG-dependent histone and DNA 
demethylases by fumarate and succinate that 
are accumulated in mutations of FH and SDH 
tumor suppressors. Genes Dev., 26, 1326–
1338. 

230. Van Coster, R., Seneca, S., Smet, J., et al. 
(2003) Homozygous Gly555Glu mutation in the 
nuclear-encoded 70 kDa flavoprotein gene 
causes instability of the respiratory chain 
complex II. Am. J. Med. Genet., 120A, 13–18. 

231. Piruat, J. I. and Millán-Uclés, A. (2014) 
Genetically modeled mice with mutations in 
mitochondrial metabolic enzymes for the study 
of cancer. Front. Oncol., 4, 200. 

232. Yang, P., Cornejo, K. M., Sadow, P. M., et al. 
(2014) Renal cell carcinoma in tuberous 
sclerosis complex. Am. J. Surg. Pathol., 38, 
895–909. 

233. Rakowski, S. K., Winterkorn, E. B., Paul, E., et 
al. (2006) Renal manifestations of tuberous 
sclerosis complex: Incidence, prognosis, and 
predictive factors. Kidney Int., 70, 1777–1782. 

234. McGuire, B. B. and Fitzpatrick, J. M. (2010) The 
diagnosis and management of complex renal 
cysts. Curr. Opin. Urol., 20, 349–54. 

235. Seyam, R. M., Alkhudair, W. K., Kattan, S. A., 
et al. (2017) The Risks of Renal 
Angiomyolipoma: Reviewing the Evidence. J. 
kidney cancer VHL, 4, 13–25. 

236. Ebrahimi-Fakhari, D., Mann, L. L., Poryo, M., et 
al. (2018) Incidence of tuberous sclerosis and 
age at first diagnosis: new data and emerging 
trends from a national, prospective surveillance 
study. Orphanet J. Rare Dis., 13, 117. 

237. Guo, J., Tretiakova, M. S., Troxell, M. L., et al. 
(2014) Tuberous sclerosis-associated renal cell 
carcinoma: a clinicopathologic study of 57 
separate carcinomas in 18 patients. Am. J. 
Surg. Pathol., 38, 1457–67. 

238. Dabora, S. L., Jozwiak, S., Franz, D. N., et al. 
(2001) Mutational analysis in a cohort of 224 
tuberous sclerosis patients indicates increased 
severity of TSC2, compared with TSC1, 
disease in multiple organs. Am. J. Hum. 
Genet., 68, 64–80. 

239. Tyburczy, M. E., Dies, K. A., Glass, J., et al. 

(2015) Mosaic and Intronic Mutations in 
TSC1/TSC2 Explain the Majority of TSC 
Patients with No Mutation Identified by 
Conventional Testing. PLOS Genet., 11, 
e1005637. 

240. Inoki, K., Li, Y., Zhu, T., et al. (2002) TSC2 is 
phosphorylated and inhibited by Akt and 
suppresses mTOR signalling. Nat. Cell Biol., 4, 
648–657. 

241. Zhang, Y., Gao, X., Saucedo, L. J., et al. (2003) 
Rheb is a direct target of the tuberous sclerosis 
tumour suppressor proteins. Nat. Cell Biol., 5, 
578–581. 

242. Long, X., Lin, Y., Ortiz-Vega, S., et al. (2005) 
Rheb Binds and Regulates the mTOR Kinase. 
Curr. Biol., 15, 702–713. 

243. Tan, M.-H., Mester, J. L., Ngeow, J., et al. 
(2012) Lifetime Cancer Risks in Individuals with 
Germline PTEN Mutations. Clin. Cancer Res., 
18, 400–407. 

244. Bubien, V., Bonnet, F., Brouste, V., et al. 
(2013) High cumulative risks of cancer in 
patients with PTEN hamartoma tumour 
syndrome. J. Med. Genet., 50, 255–263. 

245. Nieuwenhuis, M. H., Kets, C. M., Murphy-Ryan, 
M., et al. (2014) Cancer risk and genotype–
phenotype correlations in PTEN hamartoma 
tumor syndrome. Fam. Cancer, 13, 57–63. 

246. Mester, J. L., Zhou, M., Prescott, N., et al. 
(2012) Papillary Renal Cell Carcinoma Is 
Associated With PTEN Hamartoma Tumor 
Syndrome. Urology, 79, 1187.e1-1187.e7. 

247. Bennett, K. L., Mester, J. and Eng, C. (2010) 
Germline Epigenetic Regulation of KILLIN in 
Cowden and Cowden-like Syndrome. JAMA, 
304, 2724. 

248. Orloff, M. S., He, X., Peterson, C., et al. (2013) 
Germline PIK3CA and AKT1 mutations in 
cowden and cowden-like syndromes. Am. J. 
Hum. Genet., 92, 76–80. 

249. Shibata, Y., Yamazaki, M., Takei, M., et al. 
(2015) Early-onset, severe, and recurrent 
primary hyperparathyroidism associated with a 
novel &lt;i&gt;CDC73&lt;/i&gt; mutation. 
Endocr. J., 62, 627–632. 

250. van der Tuin, K., Tops, C. M. J., Adank, M. A., 
et al. (2017) CDC73-Related Disorders: Clinical 
Manifestations and Case Detection in Primary 
Hyperparathyroidism. J. Clin. Endocrinol. 
Metab., 102, 4534–4540. 

251. Haven, C. J., Wong, F. K., van Dam, E. W. C. 
M., et al. (2000) A Genotypic and 
Histopathological Study of a Large Dutch 
Kindred with Hyperparathyroidism-Jaw Tumor 
Syndrome 1. J. Clin. Endocrinol. Metab., 85, 
1449–1454. 

252. Yart, A., Gstaiger, M., Wirbelauer, C., et al. 
(2005) The HRPT2 Tumor Suppressor Gene 
Product Parafibromin Associates with Human 
PAF1 and RNA Polymerase II. Mol. Cell. Biol., 
25, 5052–5060. 

253. Rozenblatt-Rosen, O., Hughes, C. M., 
Nannepaga, S. J., et al. (2005) The 



 

269 
 

Parafibromin Tumor Suppressor Protein Is Part 
of a Human Paf1 Complex. Mol. Cell. Biol., 25, 
612–620. 

254. Woodard, G. E., Lin, L., Zhang, J.-H., et al. 
(2005) Parafibromin, product of the 
hyperparathyroidism-jaw tumor syndrome gene 
HRPT2, regulates cyclin D1/PRAD1 
expression. Oncogene, 24, 1272–1276. 

255. Lin, L., Zhang, J.-H., Panicker, L. M., et al. 
(2008) The parafibromin tumor suppressor 
protein inhibits cell proliferation by repression of 
the c-myc proto-oncogene. Proc. Natl. Acad. 
Sci., 105, 17420–17425. 

256. Zhang, C., Kong, D., Tan, M.-H., et al. (2006) 
Parafibromin inhibits cancer cell growth and 
causes G1 phase arrest. Biochem. Biophys. 
Res. Commun., 350, 17–24. 

257. Zhao, J., Yart, A., Frigerio, S., et al. (2007) 
Sporadic human renal tumors display frequent 
allelic imbalances and novel mutations of the 
HRPT2 gene. Oncogene, 26, 3440–3449. 

258. Hahn, M. A., Howell, V. M., Gill, A. J., et al. 
(2010) CDC73/HRPT2 CpG island 
hypermethylation and mutation of 5′-
untranslated sequence are uncommon 
mechanisms of silencing parafibromin in 
parathyroid tumors. Endocr. Relat. Cancer, 17, 
273–282. 

259. Cohen, A. J., Li, F. P., Berg, S., et al. (1979) 
Hereditary renal-cell carcinoma associated with 
a chromosomal translocation. N. Engl. J. Med., 
301, 592–595. 

260. Gemmill, R. M., West, J. D., Boldog, F., et al. 
(1998) The hereditary renal cell carcinoma 3;8 
translocation fuses FHIT to a patched-related 
gene, TRC8. Proc. Natl. Acad. Sci. U. S. A., 95, 
9572–7. 

261. Bodmer, D., Eleveld, M. J., Ligtenberg, M. J. L., 
et al. (1998) An Alternative Route for Multistep 
Tumorigenesis in a Novel Case of Hereditary 
Renal Cell Cancer and a t(2;3)(q35;q21) 
Chromosome Translocation. Am. J. Hum. 
Genet, 62, 1475–1483. 

262. Bertolotto, C., Lesueur, F., Giuliano, S., et al. 
(2011) A SUMOylation-defective MITF germline 
mutation predisposes to melanoma and renal 
carcinoma. Nature, 480, 94–98. 

263. Farley, M. N., Schmidt, L. S., Mester, J. L., et 
al. (2013) A novel germline mutation in BAP1 
predisposes to familial clear-cell renal cell 
carcinoma. Mol. Cancer Res., 11, 1061–71. 

264. Benusiglio, P. R., Couvé, S., Gilbert-
Dussardier, B., et al. (2015) A germline 
mutation in PBRM1 predisposes to renal cell 
carcinoma. J. Med. Genet., 52, 426–430. 

265. Woodward, E. R., Ricketts, C., Killick, P., et al. 
(2008) Familial Non-VHL Clear Cell 
(Conventional) Renal Cell Carcinoma: Clinical 
Features, Segregation Analysis, and Mutation 
Analysis of FLCN. Clin. Cancer Res., 14, 5925–
5930. 

266. Jafri, M., Wake, N. C., Ascher, D. B., et al. 
(2015) Germline Mutations in the CDKN2B 
Tumor Suppressor Gene Predispose to Renal 

Cell Carcinoma. Cancer Discov., 5, 723–9. 

267. Creighton, C. J., Morgan, M., Gunaratne, P. H., 
et al. (2013) Comprehensive molecular 
characterization of clear cell renal cell 
carcinoma. Nature, 499, 43–49. 

268. Dalgliesh, G. L., Furge, K., Greenman, C., et al. 
(2010) Systematic sequencing of renal 
carcinoma reveals inactivation of histone 
modifying genes. Nature, 463, 360–3. 

269. Sato, Y., Yoshizato, T., Shiraishi, Y., et al. 
(2013) Integrated molecular analysis of clear-
cell renal cell carcinoma. Nat. Genet., 45, 860–
7. 

270. Turajlic, S., Xu, H., Litchfield, K., et al. (2018) 
Deterministic Evolutionary Trajectories 
Influence Primary Tumor Growth: TRACERx 
Renal. Cell. 

271. Davis, C. F., Ricketts, C. J., Wang, M., et al. 
(2014) The somatic genomic landscape of 
chromophobe renal cell carcinoma. Cancer 
Cell, 26, 319–30. 

272. Chen, F., Zhang, Y., Şenbabaoğlu, Y., et al. 
(2016) Multilevel Genomics-Based Taxonomy 
of Renal Cell Carcinoma. Cell Rep., 14, 2476–
89. 

273. Li, L., Shen, C., Nakamura, E., et al. (2013) 
SQSTM1 is a pathogenic target of 5q copy 
number gains in kidney cancer. Cancer Cell, 
24, 738–50. 

274. Ricketts, C. J., De Cubas, A. A., Fan, H., et al. 
(2018) The Cancer Genome Atlas 
Comprehensive Molecular Characterization of 
Renal Cell Carcinoma. Cell Rep., 23, 313-
326.e5. 

275. Tsai, H.-C. and Baylin, S. B. (2011) Cancer 
epigenetics: linking basic biology to clinical 
medicine. Cell Res., 21, 502–517. 

276. Herman, J. G., Latif, F., Weng, Y., et al. (1994) 
Silencing of the VHL tumor-suppressor gene by 
DNA methylation in renal carcinoma. Proc. Natl. 
Acad. Sci. U. S. A., 91, 9700–4. 

277. Morrissey, C., Martinez, A., Zatyka, M., et al. 
(2001) Epigenetic inactivation of the RASSF1A 
3p21.3 tumor suppressor gene in both clear cell 
and papillary renal cell carcinoma. Cancer 
Res., 61, 7277–7281. 

278. Awakura, Y., Nakamura, E., Ito, N., et al. 
(2008) Methylation-associated silencing of 
TU3A in human cancers. Int. J. Oncol., 33, 
893–9. 

279. Kvasha, S., Gordiyuk, V., Kondratov, A., et al. 
(2008) Hypermethylation of the 5′CpG island of 
the FHIT gene in clear cell renal carcinomas. 
Cancer Lett., 265, 250–257. 

280. Dulaimi, E., Ibanez de Caceres, I., Uzzo, R. G., 
et al. (2004) Promoter hypermethylation profile 
of kidney cancer. Clin. Cancer Res., 10, 3972–
9. 

281. Costa, V. L., Henrique, R., Ribeiro, F. R., et al. 
(2007) Quantitative promoter methylation 
analysis of multiple cancer-related genes in 
renal cell tumors. BMC Cancer, 7, 133. 



 

270 
 

282. Morris, M. R., Hesson, L. B., Wagner, K. J., et 
al. (2003) Multigene methylation analysis of 
Wilms’ tumour and adult renal cell carcinoma. 
Oncogene, 22, 6794–6801. 

283. Bennett, K. L., Campbell, R., Ganapathi, S., et 
al. (2011) Germline and somatic DNA 
methylation and epigenetic regulation of KILLIN 
in renal cell carcinoma. Genes, Chromosom. 
Cancer, 50, 654–661. 

284. Gumz, M. L., Zou, H., Kreinest, P. A., et al. 
(2007) Secreted Frizzled-Related Protein 1 
Loss Contributes to Tumor Phenotype of Clear 
Cell Renal Cell Carcinoma. Clin. Cancer Res., 
13, 4740–4749. 

285. Yoo, K. H., Park, Y.-K., Kim, H.-S., et al. (2010) 
Epigenetic inactivation of HOXA5 and MSH2 
gene in clear cell renal cell carcinoma. Pathol. 
Int., 60, 661–666. 

286. Shenoy, N., Vallumsetla, N., Zou, Y., et al. 
(2015) Role of DNA methylation in renal cell 
carcinoma. J. Hematol. Oncol., 8, 88. 

287. McRonald, F. E., Morris, M. R., Gentle, D., et 
al. (2009) CpG methylation profiling in VHL 
related and VHL unrelated renal cell carcinoma. 
Mol. Cancer, 8, 31. 

288. Morris, M. R., Ricketts, C. J., Gentle, D., et al. 
(2011) Genome-wide methylation analysis 
identifies epigenetically inactivated candidate 
tumour suppressor genes in renal cell 
carcinoma. Oncogene, 30, 1390–401. 

289. Ricketts, C. J., Morris, M. R., Gentle, D., et al. 
(2012) Genome-wide CpG island methylation 
analysis implicates novel genes in the 
pathogenesis of renal cell carcinoma View 
supplementary material. Epigenetics, 7, 278–
290. 

290. Hu, C. Y., Mohtat, D., Yu, Y., et al. (2014) 
Kidney Cancer Is Characterized by Aberrant 
Methylation of Tissue-Specific Enhancers That 
Are Prognostic for Overall Survival. Clin. 
Cancer Res., 20, 4349–4360. 

291. Lasseigne, B. N. and Brooks, J. D. (2018) The 
Role of DNA Methylation in Renal Cell 
Carcinoma. Mol. Diagn. Ther., 22, 431–442. 

292. Dodd, K. M., Yang, J., Shen, M. H., et al. 
(2015) mTORC1 drives HIF-1α and VEGF-A 
signalling via multiple mechanisms involving 
4E-BP1, S6K1 and STAT3. Oncogene, 34, 
2239–2250. 

293. Ricketts, C. J., Crooks, D. R., Sourbier, C., et 
al. (2016) SnapShot: Renal Cell Carcinoma. 
Cancer Cell, 29, 610-610.e1. 

294. Sanger, F., Nicklen, S. and Coulson, A. R. 
(1977) DNA sequencing with chain-terminating 
inhibitors. Proc. Natl. Acad. Sci. U. S. A., 74, 
5463–7. 

295. Swerdlow, H., Wu, S. L., Harke, H., et al. 
(1990) Capillary gel electrophoresis for DNA 
sequencing. Laser-induced fluorescence 
detection with the sheath flow cuvette. J. 
Chromatogr., 516, 61–7. 

296. Consortium, I. H. G. S. (2001) Initial 
sequencing and analysis of the human 

genome. Nature, 409, 860–921. 

297. Morin, R. D., Bainbridge, M., Fejes, A., et al. 
(2008) Profiling the HeLa S3 transcriptome 
using randomly primed cDNA and massively 
parallel short-read sequencing. Biotechniques, 
45, 81–94. 

298. Li, Y. and Tollefsbol, T. O. (2011) DNA 
methylation detection: bisulfite genomic 
sequencing analysis. Methods Mol. Biol., 791, 
11–21. 

299. Robertson, G., Hirst, M., Bainbridge, M., et al. 
(2007) Genome-wide profiles of STAT1 DNA 
association using chromatin 
immunoprecipitation and massively parallel 
sequencing. Nat. Methods, 4, 651–657. 

300. Cretu Stancu, M., van Roosmalen, M. J., 
Renkens, I., et al. (2017) Mapping and phasing 
of structural variation in patient genomes using 
nanopore sequencing. Nat. Commun., 8, 1326. 

301. Choi, Y., Chan, A. P., Kirkness, E., et al. (2018) 
Comparison of phasing strategies for whole 
human genomes. PLOS Genet., 14, e1007308. 

302. Flusberg, B. A., Webster, D. R., Lee, J. H., et 
al. (2010) Direct detection of DNA methylation 
during single-molecule, real-time sequencing. 
Nat. Methods, 7, 461–5. 

303. Simpson, J. T., Workman, R. E., Zuzarte, P. C., 
et al. (2017) Detecting DNA cytosine 
methylation using nanopore sequencing. Nat. 
Methods, 14, 407–410. 

304. Hoenen, T., Groseth, A., Rosenke, K., et al. 
(2016) Nanopore Sequencing as a Rapidly 
Deployable Ebola Outbreak Tool. Emerg. 
Infect. Dis., 22, 331–4. 

305. Quick, J., Grubaugh, N. D., Pullan, S. T., et al. 
(2017) Multiplex PCR method for MinION and 
Illumina sequencing of Zika and other virus 
genomes directly from clinical samples. Nat. 
Protoc., 12, 1261–1276. 

306. Payne, A., Holmes, N., Rakyan, V., et al. 
(2018) BulkVis: a graphical viewer for Oxford 
nanopore bulk FAST5 files. Bioinformatics. 

307. Coster, W. De, Roeck, A. De, Pooter, T. De, et 
al. (2018) Structural variants identified by 
Oxford Nanopore PromethION sequencing of 
the human genome. bioRxiv, 434118. 

308. Kraft, F., Wesseler, K., Begemann, M., et al. 
(2019) Novel familial distal imprinting centre 1 
(11p15.5) deletion provides further insights in 
imprinting regulation. Clin. Epigenetics, 11, 30. 

309. Mitsuhashi, S., Frith, M. C., Mizuguchi, T., et al. 
(2018) Robust detection of tandem repeat 
expansions from long DNA reads. bioRxiv, 
356931. 

310. Wu, M. C., Lee, S., Cai, T., et al. (2011) Rare-
variant association testing for sequencing data 
with the sequence kernel association test. Am. 
J. Hum. Genet., 89, 82–93. 

311. Tataurov, A. V., You, Y. and Owczarzy, R. 
(2008) Predicting ultraviolet spectrum of single 
stranded and double stranded deoxyribonucleic 
acids. Biophys. Chem., 133, 66–70. 



 

271 
 

312. Borgström, E., Paterlini, M., Mold, J. E., et al. 
(2017) Comparison of whole genome 
amplification techniques for human single cell 
exome sequencing. PLoS One, 12, e0171566. 

313. Kent, W. J., Sugnet, C. W., Furey, T. S., et al. 
(2002) The Human Genome Browser at UCSC. 
Genome Res., 12, 996–1006. 

314. Lander, E. S., Linton, L. M., Birren, B., et al. 
(2001) Initial sequencing and analysis of the 
human genome. Nature, 409, 860–921. 

315. Untergasser, A., Cutcutache, I., Koressaar, T., 
et al. (2012) Primer3--new capabilities and 
interfaces. Nucleic Acids Res., 40, e115. 

316. Ye, J., Coulouris, G., Zaretskaya, I., et al. 
(2012) Primer-BLAST: a tool to design target-
specific primers for polymerase chain reaction. 
BMC Bioinformatics, 13, 134. 

317. Danecek, P., Auton, A., Abecasis, G., et al. 
(2011) The variant call format and VCFtools. 
Bioinformatics, 27, 2156–2158. 

318. McKenna, A., Hanna, M., Banks, E., et al. 
(2010) The Genome Analysis Toolkit: a 
MapReduce framework for analyzing next-
generation DNA sequencing data. Genome 
Res., 20, 1297–303. 

319. Wang, K., Li, M. and Hakonarson, H. (2010) 
ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. 
Nucleic Acids Res., 38, e164–e164. 

320. Auton, A., Abecasis, G. R., Altshuler, D. M., et 
al. (2015) A global reference for human genetic 
variation. Nature, 526, 68–74. 

321. Ruderfer, D. M., Hamamsy, T., Lek, M., et al. 
(2016) Patterns of genic intolerance of rare 
copy number variation in 59,898 human 
exomes. Nat. Genet., 48, 1107–1111. 

322. Kumar, P., Henikoff, S. and Ng, P. C. (2009) 
Predicting the effects of coding non-
synonymous variants on protein function using 
the SIFT algorithm. Nat. Protoc., 4, 1073–1081. 

323. Adzhubei, I., Jordan, D. M. and Sunyaev, S. R. 
(2013) Predicting Functional Effect of Human 
Missense Mutations Using PolyPhen-2. Current 
Protocols in Human Genetics, John Wiley & 
Sons, Inc., Hoboken, NJ, USA, Vol. Chapter 7, 
pp. 7.20.1-7.20.41. 

324. Kircher, M., Witten, D. M., Jain, P., et al. (2014) 
A general framework for estimating the relative 
pathogenicity of human genetic variants. Nat. 
Genet., 46, 310–315. 

325. Richards, S., Aziz, N., Bale, S., et al. (2015) 
Standards and guidelines for the interpretation 
of sequence variants: a joint consensus 
recommendation of the American College of 
Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet. 
Med., 17, 405–423. 

326. Li, Q. and Wang, K. (2017) InterVar: Clinical 
Interpretation of Genetic Variants by the 2015 
ACMG-AMP Guidelines. Am. J. Hum. Genet., 
100, 267–280. 

327. Loman, N. J., Quick, J. and Simpson, J. T. 

(2015) A complete bacterial genome 
assembled de novo using only nanopore 
sequencing data. Nat. Methods, 12, 733–735. 

328. Loman, N. J. and Quinlan, A. R. (2014) 
Poretools: a toolkit for analyzing nanopore 
sequence data. Bioinformatics, 30, 3399–3401. 

329. De Coster, W., D’Hert, S., Schultz, D. T., et al. 
(2018) NanoPack: visualizing and processing 
long-read sequencing data. Bioinformatics, 34, 
2666–2669. 

330. Li, H. (2018) Minimap2: pairwise alignment for 
nucleotide sequences. Bioinformatics, 34, 
3094–3100. 

331. Benusiglio, P. R., Couvé, S., Gilbert-
Dussardier, B., et al. (2015) A germline 
mutation in PBRM1 predisposes to renal cell 
carcinoma. J. Med. Genet., 52, 426–430. 

332. Ortega, S., Malumbres, M. and Barbacid, M. 
(2002) Cyclin D-dependent kinases, INK4 
inhibitors and cancer. Biochim. Biophys. Acta - 
Rev. Cancer, 1602, 73–87. 

333. Roussel, M. F. (1999) The INK4 family of cell 
cycle inhibitors in cancer. Oncogene, 18, 5311–
5317. 

334. Krimpenfort, P., IJpenberg, A., Song, J.-Y., et 
al. (2007) p15Ink4b is a critical tumour 
suppressor in the absence of p16Ink4a. Nature, 
448, 943–946. 

335. Boultwood, J. and Wainscoat, J. S. (2007) 
Gene silencing by DNA methylation in 
haematological malignancies. Br. J. Haematol., 
138, 3–11. 

336. Arya, A. K., Bhadada, S. K., Singh, P., et al. 
(2017) Promoter hypermethylation inactivates 
CDKN2A, CDKN2B and RASSF1A genes in 
sporadic parathyroid adenomas. Sci. Rep., 7, 
3123. 

337. Spisák, S., Kalmár, A., Galamb, O., et al. 
(2012) Genome-Wide Screening of Genes 
Regulated by DNA Methylation in Colon Cancer 
Development. PLoS One, 7, e46215. 

338. Agarwal, S. K., Mateo, C. M. and Marx, S. J. 
(2009) Rare Germline Mutations in Cyclin-
Dependent Kinase Inhibitor Genes in Multiple 
Endocrine Neoplasia Type 1 and Related 
States. J. Clin. Endocrinol. Metab., 94, 1826–
1834. 

339. Welander, J., Andreasson, A., Brauckhoff, M., 
et al. (2014) Frequent EPAS1/HIF2α exons 9 
and 12 mutations in non-familial 
pheochromocytoma. Endocr. Relat. Cancer, 21, 
495–504. 

340. Toledo, R. A., Qin, Y., Srikantan, S., et al. 
(2013) In vivo and in vitro oncogenic effects of 
HIF2A mutations in pheochromocytomas and 
paragangliomas. Endocr. Relat. Cancer, 20, 
349–59. 

341. Yang, C., Sun, M. G., Matro, J., et al. (2013) 
Novel HIF2A mutations disrupt oxygen sensing, 
leading to polycythemia, paragangliomas, and 
somatostatinomas. Blood, 121, 2563–2566. 

342. Lorenzo, F. R., Yang, C., Ng Tang Fui, M., et 



 

272 
 

al. (2013) A novel EPAS1/HIF2A germline 
mutation in a congenital polycythemia with 
paraganglioma. J. Mol. Med. (Berl)., 91, 507–
12. 

343. Rao, R. C. and Dou, Y. (2015) Hijacked in 
cancer: the KMT2 (MLL) family of 
methyltransferases. Nat. Rev. Cancer, 15, 334–
46. 

344. Ibragimova, I., Maradeo, M. E., Dulaimi, E., et 
al. (2013) Aberrant promoter hypermethylation 
of PBRM1, BAP1, SETD2, KDM6A and other 
chromatin-modifying genes is absent or rare in 
clear cell RCC. Epigenetics, 8, 486–93. 

345. Gossage, L., Murtaza, M., Slatter, A. F., et al. 
(2014) Clinical and pathological impact of VHL, 
PBRM1, BAP1, SETD2, KDM6A , and JARID1c 
in clear cell renal cell carcinoma. Genes, 
Chromosom. Cancer, 53, 38–51. 

346. Lee, J.-E., Wang, C., Xu, S., et al. (2013) H3K4 
mono- and di-methyltransferase MLL4 is 
required for enhancer activation during cell 
differentiation. Elife, 2, e01503. 

347. Rada-Iglesias, A. (2018) Is H3K4me1 at 
enhancers correlative or causative? Nat. 
Genet., 50, 4–5. 

348. Ooi, S. K. T., Qiu, C., Bernstein, E., et al. 
(2007) DNMT3L connects unmethylated lysine 
4 of histone H3 to de novo methylation of DNA. 
Nature, 448, 714–717. 

349. Lee, J., Kim, D.-H., Lee, S., et al. (2009) A 
tumor suppressive coactivator complex of p53 
containing ASC-2 and histone H3-lysine-4 
methyltransferase MLL3 or its paralogue MLL4. 
Proc. Natl. Acad. Sci. U. S. A., 106, 8513–8. 

350. Buck, M. J., Raaijmakers, L. M., Ramakrishnan, 
S., et al. (2013) Alterations in chromatin 
accessibility and DNA methylation in clear cell 
renal cell carcinoma. Oncogene, 33, 4961–
4965. 

351. Nishikawa, H., Wu, W., Koike, A., et al. (2009) 
BRCA1-associated protein 1 interferes with 
BRCA1/BARD1 RING heterodimer activity. 
Cancer Res., 69, 111–119. 

352. Waterman, M. S. and Eggert, M. (1987) A new 
algorithm for best subsequence alignments with 
application to tRNA-rRNA comparisons. J. Mol. 
Biol., 197, 723–8. 

353. Karczewski, K. J., Francioli, L. C., Tiao, G., et 
al. (2019) Variation across 141,456 human 
exomes and genomes reveals the spectrum of 
loss-of-function intolerance across human 
protein-coding genes. bioRxiv, 531210. 

354. Costa-Guda, J., Soong, C. P., Parekh, V. I., et 
al. (2013) Germline and Somatic Mutations in 
Cyclin-Dependent Kinase Inhibitor Genes 
CDKN1A, CDKN2B, and CDKN2C in Sporadic 
Parathyroid Adenomas. Horm. Cancer, 4, 301–
307. 

355. Lindberg, D., Åkerström, G. and Westin, G. 
(2007) Evaluation of CDKN2C/p18, 
CDKN1B/p27 and CDKN2B/p15 mRNA 
expression, and CpG methylation status in 
sporadic and MEN1-associated pancreatic 
endocrine tumours. Clin. Endocrinol. (Oxf)., 0, 

070907134102003-??? 

356. Boël, P., Wildmann, C., Sensi, M. L., et al. 
(1995) BAGE: a new gene encoding an antigen 
recognized on human melanomas by cytolytic T 
lymphocytes. Immunity, 2, 167–75. 

357. Ruault, M., van der Bruggen, P., Brun, M.-E., et 
al. (2002) New BAGE (B melanoma antigen) 
genes mapping to the juxtacentromeric regions 
of human chromosomes 13 and 21 have a 
cancer/testis expression profile. Eur. J. Hum. 
Genet., 10, 833–840. 

358. Ruault, M., Ventura, M., Galtier, N., et al. 
(2003) BAGE genes generated by 
juxtacentromeric reshuffling in the Hominidae 
lineage are under selective pressure. 
Genomics, 81, 391–399. 

359. Claes, K. B. M. and Leeneer, K. De (2014) 
Dealing with Pseudogenes in Molecular 
Diagnostics in the Next-Generation Sequencing 
Era. 303–315. 

360. Ribeiro, A., Golicz, A., Hackett, C. A., et al. 
(2015) An investigation of causes of false 
positive single nucleotide polymorphisms using 
simulated reads from a small eukaryote 
genome. BMC Bioinformatics, 16, 382. 

361. Li, Y., Bögershausen, N., Alanay, Y., et al. 
(2011) A mutation screen in patients with 
Kabuki syndrome. Hum. Genet., 130, 715–724. 

362. Makrythanasis, P., van Bon, B., Steehouwer, 
M., et al. (2013) MLL2 mutation detection in 86 
patients with Kabuki syndrome: a genotype-
phenotype study. Clin. Genet., 84, 539–545. 

363. Koemans, T. S., Kleefstra, T., Chubak, M. C., et 
al. (2017) Functional convergence of histone 
methyltransferases EHMT1 and KMT2C 
involved in intellectual disability and autism 
spectrum disorder. PLOS Genet., 13, 
e1006864. 

364. Niikawa, N., Kuroki, Y., Kajii, T., et al. (1988) 
Kabuki make-up (Niikawa-Kuroki) syndrome: A 
study of 62 patients. Am. J. Med. Genet., 31, 
565–589. 

365. Kleefstra, T., Kramer, J. M., Neveling, K., et al. 
(2012) Disruption of an EHMT1-associated 
chromatin-modification module causes 
intellectual disability. Am. J. Hum. Genet., 91, 
73–82. 

366. Rampias, T., Karagiannis, D., Avgeris, M., et al. 
(2019)  The lysine‐specific methyltransferase 
KMT 2C/ MLL 3 regulates DNA repair 
components in cancer . EMBO Rep., 20. 

367. Gala, K., Li, Q., Sinha, A., et al. (2018) KMT2C 
mediates the estrogen dependence of breast 
cancer through regulation of ERα enhancer 
function. Oncogene, 37, 4692–4710. 

368. Ortega-Molina, A., Boss, I. W., Canela, A., et al. 
(2015) The histone lysine methyltransferase 
KMT2D sustains a gene expression program 
that represses B cell lymphoma development. 
Nat. Med., 21, 1199–208. 

369. Guo, C., Chen, L. H., Huang, Y., et al. (2013) 
KMT2D maintains neoplastic cell proliferation 
and global histone H3 lysine 4 



 

273 
 

monomethylation. Oncotarget, 4, 2144–53. 

370. Carosso, G. A., Boukas, L., Augustin, J. J., et 
al. (2018) Transcriptional suppression from 
KMT2D loss disrupts cell cycle and hypoxic 
responses in neurodevelopmental models of 
Kabuki syndrome. bioRxiv, 484410. 

371. de Billy, E., Strocchio, L., Cacchione, A., et al. 
(2019) Burkitt lymphoma in a patient with 
Kabuki syndrome carrying a novel KMT2D 
mutation. Am. J. Med. Genet. Part A, 179, 113–
117. 

372. Teranishi, H., Koga, Y., Nakashima, K., et al. 
(2018) Cancer Management in Kabuki 
Syndrome. J. Pediatr. Hematol. Oncol., 40, 1. 

373. Karagianni, P., Lambropoulos, V., Stergidou, 
D., et al. (2016) Recurrent giant cell 
fibroblastoma: Malignancy predisposition in 
Kabuki syndrome revisited. Am. J. Med. Genet. 
A, 170A, 1333–8. 

374. Lv, S., Ji, L., Chen, B., et al. (2018) Histone 
methyltransferase KMT2D sustains prostate 
carcinogenesis and metastasis via 
epigenetically activating LIFR and KLF4. 
Oncogene, 37, 1354–1368. 

375. Beebe-Dimmer, J. L., Zuhlke, K. A., Johnson, 
A. M., et al. (2018) Rare germline mutations in 
African American men diagnosed with early-
onset prostate cancer. Prostate, 78, 321–326. 

376. Whitworth, J., Smith, P. S., Martin, J.-E., et al. 
(2018) Comprehensive Cancer-Predisposition 
Gene Testing in an Adult Multiple Primary 
Tumor Series Shows a Broad Range of 
Deleterious Variants and Atypical Tumor 
Phenotypes. Am. J. Hum. Genet., 103, 3–18. 

377. Duggan, M. A., Anderson, W. F., Altekruse, S., 
et al. (2016) The surveillance, epidemiology, 
and end results (SEER) program and 
pathology: Toward strengthening the critical 
relationship. Am. J. Surg. Pathol., 40, e94–
e102. 

378. Forbes, S. A., Beare, D., Gunasekaran, P., et 
al. (2015) COSMIC: Exploring the world’s 
knowledge of somatic mutations in human 
cancer. Nucleic Acids Res., 43, D805–D811. 

379. Easton, D. F., Lesueur, F., Decker, B., et al. 
(2016) No evidence that protein truncating 
variants in BRIP1 are associated with breast 
cancer risk: implications for gene panel testing. 
J. Med. Genet., 53, 298–309. 

380. Byers, H., Wallis, Y., van Veen, E. M., et al. 
(2016) Sensitivity of BRCA1/2 testing in high-
risk breast/ovarian/male breast cancer families: 
little contribution of comprehensive RNA/NGS 
panel testing. Eur. J. Hum. Genet., 24, 1591–
1597. 

381. Leongamornlert, D., Saunders, E., Dadaev, T., 
et al. (2014) Frequent germline deleterious 
mutations in DNA repair genes in familial 
prostate cancer cases are associated with 
advanced disease. Br. J. Cancer, 110, 1663–
72. 

382. Wu, Y., Yu, H., Zheng, S. L., et al. (2018) A 
comprehensive evaluation of CHEK2 germline 
mutations in men with prostate cancer. 

Prostate, 78, 607–615. 

383. Desrichard, A., Bidet, Y., Uhrhammer, N., et al. 
(2011) CHEK2 contribution to hereditary breast 
cancer in non-BRCA families. Breast Cancer 
Res., 13, R119. 

384. Roeb, W., Higgins, J. and King, M.-C. (2012) 
Response to DNA damage of CHEK2 missense 
mutations in familial breast cancer. Hum. Mol. 
Genet., 21, 2738–44. 

385. Clark, G. R., Sciacovelli, M., Gaude, E., et al. 
(2014) Germline FH mutations presenting with 
pheochromocytoma. J. Clin. Endocrinol. 
Metab., 99, E2046-50. 

386. Hao, H.-X., Khalimonchuk, O., Schraders, M., 
et al. (2009) SDH5, a gene required for 
flavination of succinate dehydrogenase, is 
mutated in paraganglioma. Science, 325, 
1139–42. 

387. Bausch, B., Schiavi, F., Ni, Y., et al. (2017) 
Clinical Characterization of the 
Pheochromocytoma and Paraganglioma 
Susceptibility Genes SDHA, TMEM127, MAX, 
and SDHAF2 for Gene-Informed Prevention. 
JAMA Oncol., 3, 1204–1212. 

388. Huang, K., Mashl, R. J., Wu, Y. Y., et al. (2018) 
Pathogenic Germline Variants in 10,389 Adult 
Cancers. Cell, 173, 355-370.e14. 

389. Varela, I., Tarpey, P., Raine, K., et al. (2011) 
Exome sequencing identifies frequent mutation 
of the SWI/SNF complex gene PBRM1 in renal 
carcinoma. Nature, 469, 539–542. 

390. The Exome Aggregation Consortium (ExAC) 
(2015) Analysis of protein-coding genetic 
variation in 60,706 humans. bioRxiv, 030338. 

391. Wu, K., Hinson, S. R., Ohashi, A., et al. (2005) 
Functional evaluation and cancer risk 
assessment of BRCA2 unclassified variants. 
Cancer Res., 65, 417–26. 

392. Ali, A. M., Kirby, M., Jansen, M., et al. (2009) 
Identification and characterization of mutations 
in FANCL gene: a second case of Fanconi 
anemia belonging to FA-L complementation 
group. Hum. Mutat., 30, E761-70. 

393. Calkhoven, C. F., Müller, C. and Leutz, A. 
(2000) Translational control of C/EBPalpha and 
C/EBPbeta isoform expression. Genes Dev., 
14, 1920–32. 

394. Rashid, M. U., Gull, S., Faisal, S., et al. (2011) 
Identification of the deleterious 2080insA 
BRCA1 mutation in a male renal cell carcinoma 
patient from a family with multiple cancer 
diagnoses from Pakistan. Fam. Cancer, 10, 
709–712. 

395. Wu, J., Wang, H., Ricketts, C. J., et al. (2018) 
Germline mutations of renal cancer 
predisposition genes and clinical relevance in 
Chinese patients with sporadic, early‐onset 
disease. Cancer, cncr.31908. 

396. Cybulski, C., Górski, B., Huzarski, T., et al. 
(2004) CHEK2 is a multiorgan cancer 
susceptibility gene. Am. J. Hum. Genet., 75, 
1131–5. 



 

274 
 

397. Näslund-Koch, C., Nordestgaard, B. G. and 
Bojesen, S. E. (2016) Increased Risk for Other 
Cancers in Addition to Breast Cancer for 
CHEK2*1100delC Heterozygotes Estimated 
From the Copenhagen General Population 
Study. J. Clin. Oncol., 34, 1208–16. 

398. Nevanlinna, H. and Bartek, J. (2006) The 
CHEK2 gene and inherited breast cancer 
susceptibility. Oncogene, 25, 5912–5919. 

399. Jonsson, P., Bandlamudi, C., Cheng, M. L., et 
al. (2019) Tumour lineage shapes BRCA-
mediated phenotypes. Nature, 571, 576–579. 

400. Rafnar, T., Gudbjartsson, D. F., Sulem, P., et 
al. (2011) Mutations in BRIP1 confer high risk 
of ovarian cancer. Nat. Genet., 43, 1104–1107. 

401. Seal, S., Thompson, D., Renwick, A., et al. 
(2006) Truncating mutations in the Fanconi 
anemia J gene BRIP1 are low-penetrance 
breast cancer susceptibility alleles. Nat. Genet., 
38, 1239–1241. 

402. Weber-Lassalle, N., Hauke, J., Ramser, J., et 
al. (2018) BRIP1 loss-of-function mutations 
confer high risk for familial ovarian cancer, but 
not familial breast cancer. Breast Cancer Res., 
20, 7. 

403. DiMario, F. J., Sahin, M. and Ebrahimi-Fakhari, 
D. (2015) Tuberous Sclerosis Complex. 
Pediatr. Clin. North Am., 62, 633–648. 

404. Müller, C., Calkhoven, C. F., Sha, X., et al. 
(2004) The CCAAT enhancer-binding protein 
alpha (C/EBPalpha) requires a SWI/SNF 
complex for proliferation arrest. J. Biol. Chem., 
279, 7353–8. 

405. Havrilla, J. M., Pedersen, B. S., Layer, R. M., et 
al. (2019) A map of constrained coding regions 
in the human genome. Nat. Genet., 51, 88–95. 

406. Shah, N., Hou, Y.-C. C., Yu, H.-C., et al. (2018) 
Identification of Misclassified ClinVar Variants 
via Disease Population Prevalence. Am. J. 
Hum. Genet., 102, 609–619. 

407. Tan, R., Wang, Y., Kleinstein, S. E., et al. 
(2014) An evaluation of copy number variation 
detection tools from whole-exome sequencing 
data. Hum. Mutat., 35, 899–907. 

408. Zawistowski, M., Gopalakrishnan, S., Ding, J., 
et al. (2010) Extending rare-variant testing 
strategies: analysis of noncoding sequence and 
imputed genotypes. Am. J. Hum. Genet., 87, 
604–17. 

409. Li, B. and Leal, S. M. (2008) Methods for 
Detecting Associations with Rare Variants for 
Common Diseases: Application to Analysis of 
Sequence Data. Am. J. Hum. Genet., 83, 311–
321. 

410. Lee, S., Emond, M. J., Bamshad, M. J., et al. 
(2012) Optimal unified approach for rare-variant 
association testing with application to small-
sample case-control whole-exome sequencing 
studies. Am. J. Hum. Genet., 91, 224–37. 

411. Lee, S., Abecasis, G. R., Boehnke, M., et al. 
(2014) Rare-variant association analysis: study 
designs and statistical tests. Am. J. Hum. 
Genet., 95, 5–23. 

412. Shaw, K. A., Cutler, D. J., Okou, D., et al. 
(2019) Genetic variants and pathways 
implicated in a pediatric inflammatory bowel 
disease cohort. Genes Immun., 20, 131–142. 

413. Klein, K., Tremmel, R., Winter, S., et al. (2019) 
A New Panel-Based Next-Generation 
Sequencing Method for ADME Genes Reveals 
Novel Associations of Common and Rare 
Variants With Expression in a Human Liver 
Cohort. Front. Genet., 10, 7. 

414. Leongamornlert, D. A., Saunders, E. J., 
Wakerell, S., et al. (2019) Germline DNA 
Repair Gene Mutations in Young-onset 
Prostate Cancer Cases in the UK: Evidence for 
a More Extensive Genetic Panel. Eur. Urol. 

415. Bourque, G., Burns, K. H., Gehring, M., et al. 
(2018) Ten things you should know about 
transposable elements. Genome Biol., 19, 199. 

416. Ganguly, A., Dunbar, T., Chen, P., et al. (2003) 
Exon skipping caused by an intronic insertion of 
a young Alu Yb9 element leads to severe 

hemophilia�A. Hum. Genet., 113, 348–352. 

417. Schwahn, U., Lenzner, S., Dong, J., et al. 
(1998) Positional cloning of the gene for X-
linked retinitis pigmentosa 2. Nat. Genet., 19, 
327–332. 

418. Teugels, E., De Brakeleer, S., Goelen, G., et al. 
(2005) De novo Alu element insertions targeted 
to a sequence common to the BRCA1 and 
BRCA2 genes. Hum. Mutat., 26, 284–284. 

419. Lanikova, L., Kucerova, J., Indrak, K., et al. 
(2013) β-Thalassemia Due to Intronic LINE-1 
Insertion in the β-Globin Gene (HBB): 
Molecular Mechanisms Underlying Reduced 
Transcript Levels of the β-GlobinL1 Allele. 
Hum. Mutat., 34, 1361. 

420. Gardner, E. J., Lam, V. K., Harris, D. N., et al. 
(2017) The Mobile Element Locator Tool 
(MELT): population-scale mobile element 
discovery and biology. Genome Res., 27, 
1916–1929. 

421. Vergnaud, G. and Denoeud, F. (2000) 
Minisatellites: mutability and genome 
architecture. Genome Res., 10, 899–907. 

422. Liquori, C. L., Ricker, K., Moseley, M. L., et al. 
(2001) Myotonic Dystrophy Type 2 Caused by 
a CCTG Expansion in Intron 1 of ZNF9. 
Science (80-. )., 293, 864–867. 

423. Ishiura, H., Doi, K., Mitsui, J., et al. (2018) 
Expansions of intronic TTTCA and TTTTA 
repeats in benign adult familial myoclonic 
epilepsy. Nat. Genet., 50, 581–590. 

424. Pringsheim, T., Wiltshire, K., Day, L., et al. 
(2012) The incidence and prevalence of 
Huntington’s disease: A systematic review and 
meta-analysis. Mov. Disord., 27, 1083–1091. 

425. Grünewald, T. G. P., Bernard, V., Gilardi-
Hebenstreit, P., et al. (2015) Chimeric EWSR1-
FLI1 regulates the Ewing sarcoma susceptibility 
gene EGR2 via a GGAA microsatellite. Nat. 
Genet., 47, 1073–1078. 

426. Mousavi, N., Shleizer-Burko, S., Yanicky, R., et 
al. (2019) Profiling the genome-wide landscape 



 

275 
 

of tandem repeat expansions. bioRxiv, 361162. 

427. Sidiropoulos, K., Viteri, G., Sevilla, C., et al. 
(2017) Reactome enhanced pathway 
visualization. Bioinformatics, 33, 3461–3467. 

428. Repana, D., Nulsen, J., Dressler, L., et al. 
(2019) The Network of Cancer Genes (NCG): a 
comprehensive catalogue of known and 
candidate cancer genes from cancer 
sequencing screens. Genome Biol., 20, 1. 

429. Bailey, M. H., Tokheim, C., Porta-Pardo, E., et 
al. (2018) Comprehensive Characterization of 
Cancer Driver Genes and Mutations. Cell, 174, 
1034–1035. 

430. Fromer, M., Moran, J. L., Chambert, K., et al. 
(2012) Discovery and statistical genotyping of 
copy-number variation from whole-exome 
sequencing depth. Am. J. Hum. Genet., 91, 
597–607. 

431.  (2003) The International HapMap Project. 
Nature, 426, 789–796. 

432. Zhou, H., Alexander, D. and Lange, K. (2011) A 
quasi-Newton acceleration for high-dimensional 
optimization algorithms. Stat. Comput., 21, 
261–273. 

433. Ruark, E., Münz, M., Renwick, A., et al. (2015) 
The ICR1000 UK exome series: a resource of 
gene variation in an outbred population. 
F1000Research, 4, 883. 

434. Lee, S., Fuchsberger, C., Kim, S., et al. (2016) 
An efficient resampling method for calibrating 
single and gene-based rare variant association 
analysis in case-control studies. Biostatistics, 
17, 1–15. 

435. Ehret, G. B. (2010) Genome-Wide Association 
Studies: Contribution of Genomics to 
Understanding Blood Pressure and Essential 
Hypertension. Curr. Hypertens. Rep., 12, 17. 

436. Wang, J., Vasaikar, S., Shi, Z., et al. (2017) 
WebGestalt 2017: a more comprehensive, 
powerful, flexible and interactive gene set 
enrichment analysis toolkit. Nucleic Acids Res., 
45, W130–W137. 

437. Mi, H., Muruganujan, A., Ebert, D., et al. (2019) 
PANTHER version 14: more genomes, a new 
PANTHER GO-slim and improvements in 
enrichment analysis tools. Nucleic Acids Res., 
47, D419–D426. 

438. Gao, J., Aksoy, B. A., Dogrusoz, U., et al. 
(2013) Integrative Analysis of Complex Cancer 
Genomics and Clinical Profiles Using the 
cBioPortal. Sci. Signal., 6, pl1–pl1. 

439. Hasselblatt, M., Nagel, I., Oyen, F., et al. 
(2014) SMARCA4-mutated atypical 
teratoid/rhabdoid tumors are associated with 
inherited germline alterations and poor 
prognosis. Acta Neuropathol., 128, 453–456. 

440. Li, J., Duns, G., Westers, H., et al. (2016) 
SETD2: an epigenetic modifier with tumor 
suppressor functionality. Oncotarget, 7, 50719–
50734. 

441. Luscan, A., Laurendeau, I., Malan, V., et al. 
(2014) Mutations in SETD2 cause a novel 

overgrowth condition. J. Med. Genet., 51, 512–
517. 

442. Lumish, H. S., Wynn, J., Devinsky, O., et al. 
(2015) Brief Report: SETD2 Mutation in a Child 
with Autism, Intellectual Disabilities and 
Epilepsy. J. Autism Dev. Disord., 45, 3764–
3770. 

443. Smit, D. L., Mensenkamp, A. R., Badeloe, S., et 
al. (2011) Hereditary leiomyomatosis and renal 
cell cancer in families referred for fumarate 
hydratase germline mutation analysis. Clin. 
Genet., 79, 49–59. 

444. Casey, R. T., McLean, M. A., Madhu, B., et al. 
(2018) Translating In Vivo Metabolomic 
Analysis of Succinate Dehydrogenase–
Deficient Tumors Into Clinical Utility. JCO 
Precis. Oncol., 1–12. 

445. Cachat, F. and Renella, R. (2016) Risk of 
cancer in patients with polycystic kidney 
disease. Lancet. Oncol., 17, e474. 

446. Christiansen, C. F., Onega, T., Sværke, C., et 
al. (2014) Risk and Prognosis of Cancer in 
Patients with Nephrotic Syndrome. Am. J. 
Med., 127, 871-877.e1. 

447. Kondo, T., Sasa, N., Yamada, H., et al. (2018) 
Acquired cystic disease-associated renal cell 
carcinoma is the most common subtype in 
long-term dialyzed patients: Central pathology 
results according to the 2016 WHO 
classification in a multi-institutional study. 
Pathol. Int., 68, 543–549. 

448. Ferner, R. E. (2007) Neurofibromatosis 1. Eur. 
J. Hum. Genet., 15, 131–138. 

449. Olsen, J. V, Vermeulen, M., Santamaria, A., et 
al. (2010) Quantitative phosphoproteomics 
reveals widespread full phosphorylation site 
occupancy during mitosis. Sci. Signal., 3, ra3. 

450. Hennekam, R. C. M. (2006) Rubinstein–Taybi 
syndrome. Eur. J. Hum. Genet., 14, 981–985. 

451. Van Dyke, D. L., Weiss, L., Roberson, J. R., et 
al. (1983) The frequency and mutation rate of 
balanced autosomal rearrangements in man 
estimated from prenatal genetic studies for 
advanced maternal age. Am. J. Hum. Genet., 
35, 301–8. 

452. Vasilevska, M., Ivanovska, E., Kubelka Sabit, 
K., et al. (2013) The incidence and type of 
chromosomal translocations from prenatal 
diagnosis of 3800 patients in the republic of 
macedonia. Balkan J. Med. Genet., 16, 23–8. 

453. Jacobs, P. A., Browne, C., Gregson, N., et al. 
(1992) Estimates of the frequency of 
chromosome abnormalities detectable in 
unselected newborns using moderate levels of 
banding. J. Med. Genet., 29, 103–8. 

454. Collins, R. L., Brand, H., Karczewski, K. J., et 
al. (2019) An open resource of structural 
variation for medical and population genetics. 
bioRxiv, 578674. 

455. Brand, H., Pillalamarri, V., Collins, R. L., et al. 
(2014) Cryptic and complex chromosomal 
aberrations in early-onset neuropsychiatric 
disorders. Am. J. Hum. Genet., 95, 454–61. 



 

276 
 

456. Mohamed, A. M., Kamel, A., Mahmoud, W., et 
al. (2015) Intellectual disability secondary to a 
16p13 duplication in a 1;16 translocation. 
Extended phenotype in a four-generation 
family. Am. J. Med. Genet. Part A, 167, 128–
136. 

457. Minouk J, S., Michael E, J., Craig D, H., et al. 
(2018) Mortality and Cancer Incidence in 
Carriers of Balanced Robertsonian 
Translocations: a National Cohort Study. Am. J. 
Epidemiol. 

458. Martin, R. H. (2008) Cytogenetic determinants 
of male fertility. Hum. Reprod. Update, 14, 
379–390. 

459. Boldog, F. L., Gemmillt, R. M., Wilkes, C. M., et 
al. (1993) Positional cloning of the hereditary 
renal carcinoma 3;8 chromosome translocation 
breakpoint (suppresor gene/fagile 
site/polycystic kidney diease/lung 
cancer/thyroid cancer). Genetics, 90, 8509–
8513. 

460. Gnarra, J. R., Tory, K., Weng, Y., et al. (1994) 
Mutations of the VHL tumour suppressor gene 
in renal carcinoma. Nat. Genet., 7, 85–90. 

461. Young, A. C., Craven, R. A., Cohen, D., et al. 
(2009) Analysis of VHL Gene Alterations and 
their Relationship to Clinical Parameters in 
Sporadic Conventional Renal Cell Carcinoma. 
Clin. Cancer Res., 15, 7582–7592. 

462. Peña-Llopis, S., Vega-Rubín-de-Celis, S., Liao, 
A., et al. (2012) BAP1 loss defines a new class 
of renal cell carcinoma. Nat. Genet., 44, 751–9. 

463. Dreijerink, K., Braga, E., Kuzmin, I., et al. 
(2001) The candidate tumor suppressor gene, 
RASSF1A, from human chromosome 3p21.3 is 
involved in kidney tumorigenesis. Proc. Natl. 
Acad. Sci. U. S. A., 98, 7504–9. 

464. Weiler, K. S. and Wakimoto, B. T. (1995) 
Heterochromatin and Gene Expression in 
Drosophila. Annu. Rev. Genet., 29, 577–605. 

465. Panani, A. D., Pappa, V. and Raptis, S. A. 
(2004) Novel constitutional translocations 
t(3;5)(p25;q22) and t(1;14)(p31;q21) in patients 
with acute leukemia. Ann. Hematol., 83, 156–
159. 

466. Ganly, P., McDonald, M., Spearing, R., et al. 
(2004) Constitutional t(5;7)(q11;p15) 
rearranged to acquire monosomy7q and 
trisomy 1q in a patient with myelodysplastic 
syndrome transforming to acute myelocytic 
leukemia. Cancer Genet. Cytogenet., 149, 
125–130. 

467. Li, Y., Schwab, C., Ryan, S. L., et al. (2014) 
Constitutional and somatic rearrangement of 
chromosome 21 in acute lymphoblastic 
leukaemia. Nature, 508, 98–102. 

468. Russel, J., Dutta, U., Wand, D., et al. (2009) 
The 9p24.3 Breakpoint of a Constitutional 
t(6;9)(p12;p24) in a Patient with Chronic 
Lymphocytic Leukemia Maps Close to the 
Putative Promoter Region of the DMRT2 Gene. 
Cytogenet. Genome Res., 125, 81–86. 

469. Elsaid, M. Y., Gill, K. G., Gosain, A., et al. 
(2017) Synchronous Presentation of Renal Cell 

Carcinoma and Hodgkin Lymphoma in an 
Adolescent. J. Pediatr. Hematol. Oncol., 39, 
e399–e402. 

470. Slade, I., Stephens, P., Douglas, J., et al. 
(2010) Constitutional translocation breakpoint 
mapping by genome-wide paired-end 
sequencing identifies HACE1 as a putative 
Wilms tumour susceptibility gene. J. Med. 
Genet., 47, 342–347. 

471. Hoban, P. R., Cowen, R. L., Mitchell, E. L., et 
al. (1997) Physical localisation of the 
breakpoints of a constitutional translocation 
t(5;6)(q21;q21) in a child with bilateral Wilms’ 
tumour. J. Med. Genet., 34, 343–5. 

472. Vernon, E. G., Malik, K., Reynolds, P., et al. 
(2003) The parathyroid hormone-responsive B1 
gene is interrupted by a t(1;7)(q42;p15) 
breakpoint associated with Wilms’ tumour. 
Oncogene, 22, 1371–1380. 

473. Saikevych, I. A., Mayer, M., Brooks, V. P., et al. 
(1987) Cytogenetic study of a testicular tumor 
in a translocation (13;14) carrier. Cancer 
Genet. Cytogenet., 26, 299–307. 

474. Veltman, I. M., Vreede, L. A., Cheng, J., et al. 
(2005) Fusion of the SUMO/Sentrin-specific 
protease 1 gene SENP1 and the embryonic 
polarity-related mesoderm development gene 
MESDC2 in a patient with an infantile teratoma 
and a constitutional t(12;15)(q13;q25). Hum. 
Mol. Genet., 14, 1955–1963. 

475. Nicodème, F., Geffroy, S., Conti, M., et al. 
(2005) Familial occurrence of thymoma and 
autoimmune diseases with the constitutional 
translocation t(14;20)(q24.1;p12.3). Genes, 
Chromosom. Cancer, 44, 154–160. 

476. Koorey, D., Basha, N. J., Tomaras, C., et al. 
(2000) Appendiceal carcinoma complicating 
adenomatous polyposis in a young woman with 
a de novo constitutional reciprocal translocation 
t(5;8)(q22;p23.1). J. Med. Genet., 37, 71–5. 

477. Savaşan, S., Lorenzana, A., Williams, J. A., et 
al. (1998) Constitutional balanced 
translocations in alveolar rhabdomyosarcoma. 
Cancer Genet. Cytogenet., 105, 50–4. 

478. Niazi, M., van Dijken, P. J. and al Moutaery, K. 
(1998) A patient with meningioma showing 
multiple cytogenetic abnormalities and a 
constitutional translocation (3;9)(q13.3;q22). 
Cancer Genet. Cytogenet., 105, 11–3. 

479. Triviño, E., Guitart, M., Egozcue, J., et al. 
(1997) Characterization by FISH of a t(5;13) in 
a patient with bilateral retinoblastoma. Cancer 
Genet. Cytogenet., 96, 23–5. 

480. Sossey-Alaoui, K., Su, G., Malaj, E., et al. 
(2002) WAVE3, an actin-polymerization gene, 
is truncated and inactivated as a result of a 
constitutional t(1;13)(q21;q12) chromosome 
translocation in a patient with 
ganglioneuroblastoma. Oncogene, 21, 5967–
5974. 

481. Vandepoele, K., Andries, V., Van Roy, N., et al. 
(2008) A Constitutional Translocation 
t(1;17)(p36.2;q11.2) in a Neuroblastoma 
Patient Disrupts the Human NBPF1 and 
ACCN1 Genes. PLoS One, 3, e2207. 



 

277 
 

482. Roberts, T., Chernova, O. and Cowell, J. K. 
(1998) NB4S, a member of the TBC1 domain 
family of genes, is truncated as a result of a 
constitutional t(1;10)(p22;q21) chromosome 
translocation in a patient with stage 4S 
neuroblastoma. Hum. Mol. Genet., 7, 1169–78. 

483. Thibodeau, M. L., Steinraths, M., Brown, L., et 
al. (2017) Genomic and Cytogenetic 
Characterization of a Balanced Translocation 
Disrupting 
&lt;b&gt;&lt;i&gt;NUP98&lt;/i&gt;&lt;/b&gt; 
Cytogenet. Genome Res., 152, 117–121. 

484. Shuch, B. and Zhang, J. (2018) Genetic 
Predisposition to Renal Cell Carcinoma: 
Implications for Counseling, Testing, 
Screening, and Management. J. Clin. Oncol., 
36, 3560–3566. 

485. Roller, E., Ivakhno, S., Lee, S., et al. (2016) 
Canvas: versatile and scalable detection of 
copy number variants. Bioinformatics, 32, 
2375–2377. 

486. Chen, X., Schulz-Trieglaff, O., Shaw, R., et al. 
(2016) Manta: rapid detection of structural 
variants and indels for germline and cancer 
sequencing applications. Bioinformatics, 32, 
1220–1222. 

487. Yusenko, M. V., Nagy, A. and Kovacs, G. 
(2010) Molecular analysis of germline t(3;6) 
and t(3;12) associated with conventional renal 
cell carcinomas indicates their rate-limiting role 
and supports the three-hit model of 
carcinogenesis. Cancer Genet. Cytogenet., 
201, 15–23. 

488. Chen, J., Lui, W.-O., Vos, M. D., et al. (2003) 
The t(1;3) breakpoint-spanning genes LSAMP 
and NORE1 are involved in clear cell renal cell 
carcinomas. Cancer Cell, 4, 405–413. 

489. Eleveld, M. J., Bodmer, D., Merkx, G., et al. 
(2001) Molecular analysis of a familial case of 
renal cell cancer and a t(3;6)(q12;q15). Genes, 
Chromosom. Cancer, 31, 23–32. 

490. Druck, T., Podolski, J., Byrski, T., et al. (2001) 
The DIRC1 gene at chromosome 2q33 spans a 
familial RCC-associated t(2;3)(q33;q21) 
chromosome translocation. 46, 583–589. 

491. Bodmer, D., Eleveld, M., Kater-Baats, E., et al. 
(2002) Disruption of a novel MFS transporter 
gene, DIRC2, by a familial renal cell carcinoma-
associated t(2;3)(q35;q21). Hum. Mol. Genet., 
11, 641–9. 

492. Meléndez, B., Rodríguez-Perales, S., Martínez-
Delgado, B., et al. (2003) Molecular study of a 
new family with hereditary renal cell carcinoma 
and a translocation t(3;8)(p13;q24.1). Hum. 
Genet., 112, 178–85. 

493. Poland, K. S., Azim, M., Folsom, M., et al. 
(2007) A constitutional balanced 
t(3;8)(p14;q24.1) translocation results in 
disruption of theTRC8 gene and predisposition 
to clear cell renal cell carcinoma. Genes, 
Chromosom. Cancer, 46, 805–812. 

494. Foster, R. E., Abdulrahman, M., Morris, M. R., 
et al. (2007) Characterization of a 3;6 
translocation associated with renal cell 
carcinoma. Genes. Chromosomes Cancer, 46, 

311–7. 

495. Bonne, A., Vreede, L., Kuiper, R. P., et al. 
(2007) Mapping of constitutional translocation 
breakpoints in renal cell cancer patients: 
identification of KCNIP4 as a candidate gene. 
Cancer Genet. Cytogenet., 179, 11–18. 

496. Kuiper, R. P., Vreede, L., Venkatachalam, R., 
et al. (2009) The tumor suppressor gene 
FBXW7 is disrupted by a constitutional 
t(3;4)(q21;q31) in a patient with renal cell 
cancer. Cancer Genet. Cytogenet., 195, 105–
11. 

497. McKay, L., Frydenberg, M., Lipton, L., et al. 
(2011) Case report: renal cell carcinoma 
segregating with a t(2;3)(q37.3;q13.2) 
chromosomal translocation in an Ashkenazi 
Jewish family. Fam. Cancer, 10, 349–353. 

498. Doyen, J., Carpentier, X., Haudebourg, J., et al. 
(2012) Renal cell carcinoma and a 
constitutional t(11;22)(q23;q11.2): case report 
and review of the potential link between the 
constitutional t(11;22) and cancer. Cancer 
Genet., 205, 603–607. 

499. Wake, N. C., Ricketts, C. J., Morris, M. R., et al. 
(2013) UBE2QL1 is disrupted by a 
constitutional translocation associated with 
renal tumor predisposition and is a novel 
candidate renal tumor suppressor gene. Hum. 
Mutat., 34, 1650–61. 

500. Banks, R. E., Tirukonda, P., Taylor, C., et al. 
(2006) Genetic and epigenetic analysis of von 
Hippel-Lindau (VHL) gene alterations and 
relationship with clinical variables in sporadic 
renal cancer. Cancer Res., 66, 2000–11. 

501. Shen, C., Beroukhim, R., Schumacher, S. E., et 
al. (2011) Genetic and Functional Studies 
Implicate HIF1  as a 14q Kidney Cancer 
Suppressor Gene. Cancer Discov., 1, 222–235. 

502. Kato, T., Franconi, C. P., Sheridan, M. B., et al. 
(2014) Analysis of the t(3;8) of hereditary renal 
cell carcinoma: a palindrome-mediated 
translocation. Cancer Genet., 207, 133–40. 

503. Woodward, E. R., Skytte, A.-B., Cruger, D. G., 
et al. (2010) Population-based survey of cancer 
risks in chromosome 3 translocation carriers. 
Genes, Chromosom. Cancer, 49, 52–58. 

504. Menko, F. H., van Steensel, M. A., Giraud, S., 
et al. (2009) Birt-Hogg-Dubé syndrome: 
diagnosis and management. Lancet Oncol., 10, 
1199–1206. 

505. Emami, K. H., Brown, L. G., Pitts, T. E. M., et 
al. (2009) Nemo-like kinase induces apoptosis 
and inhibits androgen receptor signaling in 
prostate cancer cells. Prostate, 69, 1481–1492. 

506. Yasuda, J., Tsuchiya, A., Yamada, T., et al. 
(2003) Nemo-like kinase induces apoptosis in 
DLD-1 human colon cancer cells. Biochem. 
Biophys. Res. Commun., 308, 227–33. 

507. Han, Y., Kuang, Y., Xue, X., et al. (2014) NLK, 
a novel target of miR-199a-3p, functions as a 
tumor suppressor in colorectal cancer. Biomed. 
Pharmacother., 68, 497–505. 

508. Zhang, H.-H., Li, S.-Z., Zhang, Z.-Y., et al. 



 

278 
 

(2014) Nemo-like kinase is critical for p53 
stabilization and function in response to DNA 
damage. Cell Death Differ., 21, 1656–63. 

509. Kanei-Ishii, C., Nomura, T., Takagi, T., et al. 
(2008) Fbxw7 acts as an E3 ubiquitin ligase 
that targets c-Myb for nemo-like kinase (NLK)-
induced degradation. J. Biol. Chem., 283, 
30540–8. 

510. Koepp, D. M., Schaefer, L. K., Ye, X., et al. 
(2001) Phosphorylation-Dependent 
Ubiquitination of Cyclin E by the SCFFbw7 
Ubiquitin Ligase. Science (80-. )., 294, 173–
177. 

511. Mao, J.-H., Kim, I.-J., Wu, D., et al. (2008) 
FBXW7 targets mTOR for degradation and 
cooperates with PTEN in tumor suppression. 
Science, 321, 1499–502. 

512. Kovacs, G. and Hoene, E. (1988) Loss of 
der(3) in renal carcinoma cells of a patient with 
constitutional t(3;12). Hum Genet, 78, 148–150. 

513. Kovacs, G., Brusa, P. and De Riese, W. (1989) 
Tissue-specific expression of a constitutional 
3;6 translocation: Development of multiple 
bilateral renal-cell carcinomas. Int. J. Cancer, 
43, 422–427. 

514. Podolski, J., Byrski, T., Zajaczek, S., et al. 
(2001) Characterization of a familial RCC-
associated t(2;3)(q33;q21) chromosome 
translocation. J. Hum. Genet., 46, 685–693. 

515. Kanayama, H., Lui, W. O., Takahashi, M., et al. 
(2001) Association of a novel constitutional 
translocation t(1q;3q) with familial renal cell 
carcinoma. J. Med. Genet., 38, 165–70. 

516. Koolen, M. I., van der Meyden, A. P. M., 
Bodmer, D., et al. (1998) A familial case of 
renal cell carcinoma and a t(2;3) chromosome 
translocation. Kidney Int., 53, 273–275. 

517. Valle, L., Cascón, A., Melchor, L., et al. (2005) 
About the origin and development of hereditary 
conventional renal cell carcinoma in a four-
generation t(3;8)(p14.1;q24.23) family. Eur. J. 
Hum. Genet., 13, 570–578. 

518. van Kessel, A. G., Wijnhoven, H., Bodmer, D., 
et al. (1999) Renal cell cancer: chromosome 3 
translocations as risk factors. J. Natl. Cancer 
Inst., 91, 1159–60. 

519. Ruault, M., Ventura, M., Galtier, N., et al. 
(2003) BAGE genes generated by 
juxtacentromeric reshuffling in the hominidae 
lineage are under selective pressure. 
Genomics, 81, 391–399. 

520. Cantor, S. B., Bell, D. W., Ganesan, S., et al. 
(2001) BACH1, a novel helicase-like protein, 
interacts directly with BRCA1 and contributes to 
its DNA repair function. Cell, 105, 149–160. 

521. Tolhuis, B. and Karten, H. (2018) Validation of 
an ultra-fast CNV calling tool for Next 
Generation Sequencing data using MLPA-
verified copy number alterations. bioRxiv, 
340505. 

522. Sadedin, S. P., Ellis, J. A., Masters, S. L., et al. 
(2018) Ximmer: a system for improving 
accuracy and consistency of CNV calling from 

exome data. Gigascience, 7. 

523. Carlo, M. I., Mukherjee, S., Mandelker, D., et al. 
(2018) Prevalence of Germline Mutations in 
Cancer Susceptibility Genes in Patients With 
Advanced Renal Cell Carcinoma. JAMA Oncol., 
4, 1228. 

524. Landrum, M. J., Lee, J. M., Benson, M., et al. 
(2016) ClinVar: public archive of interpretations 
of clinically relevant variants. Nucleic Acids 
Res., 44, D862–D868. 

525. Nykamp, K., Anderson, M., Powers, M., et al. 
(2017) Sherloc: a comprehensive refinement of 
the ACMG–AMP variant classification criteria. 
Genet. Med., 19, 1105–1117. 

526. Bodian, D. L., McCutcheon, J. N., Kothiyal, P., 
et al. (2014) Germline variation in cancer-
susceptibility genes in a healthy, ancestrally 
diverse cohort: implications for individual 
genome sequencing. PLoS One, 9, e94554. 

527. Whiffin, N., Minikel, E., Walsh, R., et al. (2017) 
Using high-resolution variant frequencies to 
empower clinical genome interpretation. Genet. 
Med., 19, 1151–1158. 

528. Behan, F. M., Iorio, F., Picco, G., et al. (2019) 
Prioritization of cancer therapeutic targets using 
CRISPR–Cas9 screens. Nature, 1. 

529. Zhou, B., Ho, S. S., Zhang, X., et al. (2018) 
Whole-genome sequencing analysis of CNV 
using low-coverage and paired-end strategies 
is efficient and outperforms array-based CNV 
analysis. J. Med. Genet., 55, 735–743. 

530. Mavaddat, N., Michailidou, K., Dennis, J., et al. 
(2019) Polygenic Risk Scores for Prediction of 
Breast Cancer and Breast Cancer Subtypes. 
Am. J. Hum. Genet., 104, 21–34. 

531. Clifford, S. C., Prowse, A. H., Affara, N. A., et 
al. (1998) Inactivation of the von Hippel-Lindau 
(VHL) tumour suppressor gene and allelic 
losses at chromosome arm 3p in primary renal 
cell carcinoma: evidence for a VHL-
independent pathway in clear cell renal 
tumourigenesis. Genes. Chromosomes Cancer, 
22, 200–9. 

532. Alexandrov, L. B., Kim, J., Haradhvala, N. J., et 
al. (2018) The Repertoire of Mutational 
Signatures in Human Cancer. bioRxiv, 322859. 



 

279 
 

9.0 Appendix 

  



 

280 
 

9.0.1 Table of contents 

9.0.1 TABLE OF CONTENTS ....................................................................................................................... 280 

9.0.2 NOTES ON APPENDIX DATA ............................................................................................................. 281 

9.1 CHAPTER 2 MATERIALS AND METHODS ........................................................................................... 282 

9.1.1 NEXT GENERATION SEQUENCING PIPELINE – FASTQ TO VCF .................................................................. 282 

9.1.2 NEXT GENERATION SEQUENCING PIPELINE – VCF FILTERING AND ANNOTATION .......................................... 285 

9.1.3 ONT NANOPORE SEQUENCING PIPELINE ................................................................................................ 295 

9.2 CHAPTER 3 TARGETED SANGER AND AMPLICON SEQUENCING .................................................. 308 

9.2.1 SANGER SEQUENCING AND LONG RANGE PCR PRIMERS .......................................................................... 308 

9.2.2 SEQUENCE IDENTITY COMPARISONS ...................................................................................................... 310 

9.2.3 SEQUENCE ALIGNMENT AND QUALITY METRICS – KMT2C/KMT2C SEQUENCING ........................................ 311 

9.2.4 BAGE-FAMILY GENES TABLE ................................................................................................................ 312 

9.2.5 KMT2C/BAGE2 CONSERVATION .......................................................................................................... 313 

9.3 CHAPTER 4 CANCER GENE PANEL SEQUENCING ........................................................................... 314 

9.3.1 CANCER GENE PANEL TARGET LIST ........................................................................................................ 314 

9.3.2 SANGER SEQUENCING PRIMERS – BRIP1 ............................................................................................... 316 

9.4 CHAPTER 5 WHOLE EXOME SEQUENCING .................................................................................... ...317 

9.4.1 WES GENE LISTS ................................................................................................................................ 317 

9.4.2 HAPMAP SAMPLE LIST .......................................................................................................................... 320 

9.4.3A CNV PIPELINE - MAIN ......................................................................................................................... 321 

9.4.3B CNV PIPELINE - REFERENCE INTERVAL FILE GENERATION ...................................................................... 331 

9.4.4 MISCELLANEOUS SCRIPTS ..................................................................................................................... 335 

9.4.5 BURDEN TESTING SCRIPTS .................................................................................................................... 338 

9.4.6 BURDEN TESTING RESULTS ................................................................................................................... 347 

9.5 CHAPTER 6 RCC-ASSOCIATED TRANSLOCATIONS ......................................................................... 351 

9.5.1 COPY NUMBER AND STRUCTURAL VARIANT CALLING SCRIPTS .................................................................... 351 

9.5.2 IGV VISUALISATIONS OF TRANSLOCATION BREAK POINT ........................................................................... 353 

9.5.3 SANGER SEQUENCING OF TRANSLOCATION BREAK POINTS ........................................................................ 358 

9.5.4 TRANSLOCATION MANTA STRUCTURAL VARIANT CALLS ............................................................................. 360 

 

  



 

281 
 

9.0.2 Notes on appendix data 

The appendix figures, tables, lists, and data provided in this chapter are given in a context-free 

format and are intended to be read as supplemental components to the other chapters in this 

thesis. For scripts and code, script language is given in square brackets (e.g. [BASH]) and scripts 

are provided in a minimally functional state and as such most code comments, user interface 

components, software and server environment variables, and help utilities are removed for reduce 

the number of pages generated by indiscriminate copying of scripts and pipelines into the 

appendix. 
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9.1 Chapter 2 materials and methods 

9.1.1 Next generation sequencing pipeline – FASTQ to VCF 

FASTQ alignment - BWA mem (version 0.7.15-r1140) [BASH] 

bwa mem -c ${BWAC} \ 

    -r ${BWAR} \ 

    -t ${CORES} -R "@RG\tID:${RG}\tLB:WGS_RCC\tSM:${SAMPLE}\tPL:ILLUMINA" \ 

    ${SAMPLE}_1.fq.gz ${SAMPLE}_2.fq.gz | samtools sort -O bam -l 0 -T . \ 

    -o ${SAMPLE}.sorted.bam 

Remove duplicates - samtools (version 1.6-12-gc7b2f4f) [BASH] 

samtools rmdup ${SAMPLE}.sorted.bam ${SAMPLE}.sorted.rmdup.bam 

samtools index ${SAMPLE}.sorted.rmdup.bam 

Indel realignment - GATK IndelRealigner (version 3.7-0-gcfedb67) [BASH] 

java -Xmx40g -jar GenomeAnalysisTK.jar \ 

 -T RealignerTargetCreator \ 

 -R ${REFERENCE}.fa \ 

 -o ${SAMPLE}.merge.sorted.list \ 

 -I ${SAMPLE}.merge.sorted.bam \ 

 -nt ${CORES} \ 

 --allow_potentially_misencoded_quality_scores 

 

java -Xmx40g -jar /data/Resources/Software/Javas/GenomeAnalysisTK.jar \ 

 -I ${SAMPLE}.merge.sorted.bam \ 

 -R ${REFERENCE}.fa \ 

 -T IndelRealigner \ 

 -targetIntervals ${SAMPLE}.merge.sorted.list \ 

 -o ${SAMPLE}.merge.sorted.realigned.bam \ 

 --allow_potentially_misencoded_quality_scores 

Base quality recalibration - GATK BaseRecalibrator (version 3.7-0-gcfedb67) [BASH] 

java -Xmx40g -jar GenomeAnalysisTK.jar -l INFO \ 

 -R ${REFERENCE}.fa \ 
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 -I ${SAMPLE}.merge.sorted.realigned.bam \ 

 -T BaseRecalibrator \ 

 -o ${SAMPLE}.merge.sorted.realigned.table \ 

 -knownSites All.vcf.gz \ 

 -nct ${CORES} \ 

 --allow_potentially_misencoded_quality_scores 

java -Xmx40g -jar GenomeAnalysisTK.jar -l INFO \ 

 -R ${REFERENCE}.fa \ 

 -I ${SAMPLE}.merge.sorted.realigned.bam \ 

 -T PrintReads \ 

 -BQSR ${SAMPLE}.merge.sorted.realigned.table \ 

 -o ${SAMPLE}.merge.sorted.realigned.recal.bam \ 

 -nct ${CORES} \ 

 --allow_potentially_misencoded_quality_scores 

Final sort and index - samtools (version 1.6-12-gc7b2f4f) [BASH] 

samtools sort -@ ${CORES} \ 

 -m 4G \ 

 -O bam -l 9 \ 

 -T . \ 

 -o ${SAMPLE}.sorted.final.bam ${SAMPLE}.merge.sorted.realigned.recal.bam 

samtools index ${i}.sorted.final.bam 

Variant calling - GATK unified genotyper (version 3.7-0-gcfedb67) [BASH] 

java -Xmx60g -jar GenomeAnalysisTK.jar -glm BOTH -R ${REFERENCE}.fa \ 

 -T UnifiedGenotyper \ 

 -D All.vcf.gz \ 

 -o ${COHORT}.vcf \ 

 -stand_call_conf 30.0 \ 

 -A Coverage \ 

 -A AlleleBalance \ 

 --max_alternate_alleles 46 \ 

 -nt ${CORES} \ 

 -I bam.list \ 

 --allow_potentially_misencoded_quality_scores \ 

 -ip 100 \ 
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 -dcov 1500 \ 

 -rf MappingQuality \ 

 --min_mapping_quality_score 30 
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9.1.2 Next generation sequencing pipeline – VCF filtering and annotation 

Variant filtering – variant_filtering.config [BASH] 

MEANDP 30 

MAF 0.2 

GQ 30 

MISSING 0.8 

G1000 0.01 

EXAC 0.01 

CADD 0 

HET 15 

ADEPTH 0.30 

QUAL 30 

SAMP_NUM 1400 

Variant filtering – variant_filteringsh [BASH] 

#!/bin/bash 

BUILD="hg38" 

ANNO="/home/pss41/resources/annovar/" 

GATK="/data/Resources/Software/Javas/GenomeAnalysisTK.jar" 

REF="/data/Resources/References/hg38.bwa/hg38.bwa.fa" 

## config argument settings 

MEANDP=$(grep MEANDP ${CONFIG} | cut -f2) 

MAF=$(grep MAF ${CONFIG} | cut -f2) 

GQ=$(grep GQ ${CONFIG} | cut -f2) 

MISSING=$(grep MISSING ${CONFIG} | cut -f2) 

G1000=$(grep G1000 ${CONFIG} | cut -f2) 

EXAC=$(grep EXAC ${CONFIG} | cut -f2) 

CADD=$(grep CADD ${CONFIG} | cut -f2) 

HET=$(grep HET ${CONFIG} | cut -f2) 

ADEPTH=$(grep ADEPTH ${CONFIG} | cut -f2) 

QUAL=$(grep QUAL ${CONFIG} | cut -f2) 

SAMP_NUM=$(grep SAMP_NUM ${CONFIG} | cut -f2) 

 

## Run folder setup and config file availability 

if [[ ! -d ${OUTPUT}${PROJECT}_variantfiltering ]]; then 

 mkdir ${OUTPUT}${PROJECT}_variantfiltering 
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else 

 echo -e `date +[%D-%R]` "## Variant Filter Script ## - Project folder already 

exists - Overwritting content" | tee -a variantfilter.log 

fi 

## Migrate required ref files, config and logs to working directory 

cp ${CONFIG} ${OUTPUT}${PROJECT}_variantfiltering/variant_filtering.config 

cp variant_filtering.R ${OUTPUT}${PROJECT}_variantfiltering/variant_filtering.R 

cp RVIS_Unpublished_ExACv2_March2017.tsv \ 

 ${OUTPUT}${PROJECT}_variantfiltering/RVIS_Unpublished_ExACv2_March2017.tsv 

cp GDI_full_10282015.tsv \ 

 ${OUTPUT}${PROJECT}_variantfiltering/GDI_full_10282015.tsv 

mv variantfilter.log \ 

 ${OUTPUT}${PROJECT}_variantfiltering/variantfilter.log 

cd ${OUTPUT}${PROJECT}_variantfiltering 

 

## Filter all sites containing ref/ref for all positions & on provided filters 

cp ${INPUT} variant_orig.vcf 

vcftools --vcf variant_orig.vcf \ 

  --non-ref-ac-any 1 \ 

  --min-meanDP ${MEANDP} \ 

   --max-maf ${MAF} \ 

  --minGQ ${GQ} \ 

  --max-missing ${MISSING} \ 

  --recode --out variant_orig  

mv variant_orig.recode.vcf variant_filtered.vcf 

 

## Splitting of multi-allelic sites 

java -jar ${GATK} -T LeftAlignAndTrimVariants -R ${REF} \ 

  --variant variant_filtered.vcf \ 

  -o variant_filtered.bi.vcf \ 

  --splitMultiallelics > /dev/null 2>&1 

 

## Removing header command & generating intermediate files with bcftools 

vcftools --vcf variant_filtered.bi.vcf \ 

  --max-indv 0 \ 

  --recode --out annotate > /dev/null 2>&1 

sed -n '/#CHROM/,${p}' annotate.recode.vcf > variant.table 
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## bcftools to extract depth/genotype/INFO_field information 

bcftools query --print-header \ 

  -f '%CHROM\t%POS\t%REF\t%ALT[\t%GT]\n'  

  -o genotype.table variant_filtered.bi.vcf 

sed -i 's/\[[0-9]\+\]//g' genotype.table 

 

bcftools query --print-header  

  -f '%CHROM\t%POS\t%REF\t%ALT[\t%DP]\n' \ 

  -o sitedepth.table variant_filtered.bi.vcf 

sed -i 's/\[[0-9]\+\]//g' sitedepth.table 

 

 

bcftools query --print-header \ 

  -f '%CHROM\t%POS\t%REF\t%ALT[\t%AD]\n' \ 

  -o allelicdepth.table variant_filtered.bi.vcf 

sed -i 's/\[[0-9]\+\]//g' allelicdepth.table 

 

bcftools query --print-header \ 

  -f '%CHROM\t%POS\t%REF\t%ALT[\t%GQ]\n'  

  -o genoqual.table variant_filtered.bi.vcf 

sed -i 's/\[[0-9]\+\]//g' genoqual.table 

 

## Removing incorrect #CHROM to CHROM for R input 

sed -i 's/# CHROM/CHROM/' genotype.table 

sed -i 's/# CHROM/CHROM/' sitedepth.table 

sed -i 's/# CHROM/CHROM/' allelicdepth.table 

sed -i 's/# CHROM/CHROM/' genoqual.table 

sed -i 's/#CHROM/CHROM/' variant.table 

 

## Removing bcftools tags 

sed -i 's/:GT//g' genotype.table 

sed -i 's/:DP//g' sitedepth.table 

sed -i 's/:AD//g' allelicdepth.table 

sed -i 's/:GQ//g' genoqual.table 

 

## Generating annovar-annotation file for use as table 
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${ANNO}convert2annovar.pl -format vcf4old annotate.recode.vcf \ 

  --outfile annovarform > /dev/null 2>&1 

 

${ANNO}table_annovar.pl annovarform ${ANNO}humandb/ \ 

  -buildver ${BUILD} \ 

  -out annotated \ 

  -remove \ 

  -protocol 

refGene,1000g2015aug_all,exac03,avsnp150,dbnsfp35a,clinvar_20180603,cosmic70,nci60,dbscs

nv11 \ 

  -operation g,f,f,f,f,f,f,f,f \ 

  -nastring -9 > /dev/null 2>&1 

mv annotated.${BUILD}_multianno.txt annovar.table 

 

## Index all the files with header ID followed by var1-var(nrows-1) 

awk -F'\t' -v OFS='\t' 'NR == 1 {print "ID", $0; next} {print "Var"(NR-1), $0}' \ 

  variant.table > awk.table 

mv awk.table variant.table 

 

awk -F'\t' -v OFS='\t' 'NR == 1 {print "ID", $0; next} {print "Var"(NR-1), $0}' \ 

  genotype.table > awk.table 

mv awk.table genotype.table 

 

awk -F'\t' -v OFS='\t' 'NR == 1 {print "ID", $0; next} {print "Var"(NR-1), $0}' \ 

 genoqual.table > awk.table 

mv awk.table genoqual.table 

 

awk -F'\t' -v OFS='\t' 'NR == 1 {print "ID", $0; next} {print "Var"(NR-1), $0}' \ 

  allelicdepth.table > awk.table 

mv awk.table allelicdepth.table 

 

awk -F'\t' -v OFS='\t' 'NR == 1 {print "ID", $0; next} {print "Var"(NR-1), $0}' \ 

  sitedepth.table > awk.table 

mv awk.table sitedepth.table 

 

awk -F'\t' -v OFS='\t' 'NR == 1 {print "ID", $0; next} {print "Var"(NR-1), $0}' \ 

  annovar.table > awk.table 
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mv awk.table annovar.table 

 

###Run R script to filter variants  

wd=$(pwd) 

Rscript variant_filtering.R ${wd} > /dev/null 2>&1 

Variant filtering – variant_filtering.R [R] 

args = commandArgs(trailingOnly=TRUE) 

setwd(args[1])  

require("stringr") 

 

## Import data tables from bash script 

ad <- read.table("allelicdepth.table", 

  header = TRUE, 

  stringsAsFactors = FALSE) 

anno <- read.table("annovar.table", 

  header = TRUE, 

  sep = "\t", 

  stringsAsFactors = FALSE, quote="") 

gt <- read.table("genotype.table", 

  header = TRUE, 

  stringsAsFactors = FALSE) 

dp <- read.table("sitedepth.table", 

  header = TRUE, 

  stringsAsFactors = FALSE) 

config <- read.table("variant_filtering.config", 

  stringsAsFactors = FALSE) 

vv <- read.table("variant.table", 

  comment.char = "", 

  header = TRUE, 

  stringsAsFactors = FALSE) 

## Read in genetic intolerance lists 

rvis <- read.table("RVIS_Unpublished_ExACv2_March2017.tsv", 

  sep="\t", 

  header = TRUE, 

  stringsAsFactors = FALSE, 
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  quote="") 

gdis <- read.table("GDI_full_10282015.tsv", 

  sep = "\t", 

  header = TRUE, 

  stringsAsFactors = FALSE) 

 

## Remove columns that aren't needed 

ad <- ad[,-(2:5)] 

gt <- gt[,-(2:5)] 

dp <- dp[,-(2:5)] 

vv <- vv[,-(8:10)] 

rvis <- rvis[c(1,4)] 

gdis <- gdis[c(1,3)] 

 

## Rename rs id col to something other than "ID" for safety - Rename cols in genetic 

intolerance data 

names(vv)[4] <- "rsID" 

names(rvis) <- c("GENE","RVIS_Pct") 

names(gdis) <- c("GENE","GDIS_Phred") 

 

## Add annotation cols to variant file 

vv$GENE <- anno$Gene.refGene 

vv$TYPE <- anno$Func.refGene 

vv$AA <- anno$AAChange.refGene 

vv$CONSEQUENCE <- anno$ExonicFunc.refGene 

vv$X1000G <- anno$X1000g2015aug_all 

vv$EXAC <- anno$ExAC_ALL 

vv$CADD <- anno$CADD_phred 

vv$SIFT <- anno$SIFT_pred 

vv$POLYPHEN <- anno$Polyphen2_HVAR_pred 

vv$CLINVAR <- anno$CLNSIG 

 

## AF - making novel results = 0 and not -9 for freq calculations 

vv$X1000G[vv$X1000G == "-9"] <- 0 

vv$EXAC[vv$EXAC == "-9"] <- 0 

 

## Import config file settings 
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X1000g <- config$V2[config$V1 == "G1000"] 

exac <- config$V2[config$V1 == "EXAC"] 

CADD <- config$V2[config$V1 == "CADD"] 

HET <- config$V2[config$V1 == "HET"] 

ADEPTH <- config$V2[config$V1 == "ADEPTH"] 

QUAL <- config$V2[config$V1 == "QUAL"] 

SAMP_NUM <- config$V2[config$V1 == "SAMP_NUM"] 

 

## Filter variants to those occuring in exonic regions and splice sites 

exonic.ft <- as.data.frame(anno$ID[grepl("^exonic$",anno$Func.refGene) 

                 | grepl("^splicing$",anno$Func.refGene) 

                 | grepl("^exonic;splicing$",anno$Func.refGene)]) 

## rename col to match other ID cols 

names(exonic.ft)[1] <- "ID" 

## filter by functional consequence 

vv.ft <- vv[vv$ID %in% exonic.ft$ID,] 

 

## filtering on functional consequnce - ExonicFunction.refGene 

func.ft <- as.data.frame(vv.ft$ID[!grepl("^synonymous SNV$",vv.ft$CONSEQUENCE) 

                 & !grepl("^unknown$",vv.ft$CONSEQUENCE)]) 

                  

## rename col to match other ID cols 

names(func.ft)[1] <- "ID" 

## filter by functional consequence 

vv.ft <- vv.ft[vv.ft$ID %in% func.ft$ID,] 

 

## filter by qual 

qual.ft <- as.data.frame(vv.ft$ID[vv.ft$QUAL > QUAL]) 

names(qual.ft)[1] <- "ID" 

vv.ft <- vv.ft[vv.ft$ID %in% qual.ft$ID,] 

 

## corce gt data.frame into a matrix and replace non-numeric format with numeric 

genotypes 

gt <- gt[gt$ID %in% vv.ft$ID,] 

gtm <- as.matrix(gt) 

gtm[gtm == "0/0"] <- 0 

gtm[gtm == "0/1"] <- 1 
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gtm[gtm == "1/1"] <- 2 

gtm[gtm == "./."] <- -9 

gt <- as.data.frame(gtm) 

 

## apply function to sum the number of missing, het, hom and ref sites 

refHOM <- apply(gtm,1, function(x) sum(x == 0)) 

HETp <- apply(gtm,1, function(x) sum(x == 1)) 

nonHOM <- apply(gtm, 1, function(x) sum(x == 2)) 

miss <- apply(gtm, 1, function(x) sum(x == -9)) 

## addition of raw counts of HET/HOM 

vv.ft$HET_val <- HETp 

vv.ft$HOM_val <- nonHOM 

## form matrix for pct calculations 

calc <- cbind(refHOM,HETp,nonHOM,miss) 

 

## calculate hetpct & hompct (excluding missing sites) and missingness over all sites 

hetpct <- ((calc[,2] / (calc[,1] + calc[,2] + calc[,3]))*100) 

hompct <- ((calc[,3] / (calc[,1] + calc[,2] + calc[,3]))*100) 

misspct <- ((calc[,4] / length(gt[1,-1])*100)) 

## append values to new columns in vv.ft  

vv.ft$HET_rate <- hetpct 

vv.ft$HOM_rate <- hompct 

vv.ft$MISS_rate <- misspct 

 

## filter variant ids that are below values for both 1000g & exac_all 

rarity.ft <- as.data.frame(anno$ID[anno$X1000g2015aug_all < X1000g & anno$ExAC_ALL < 

exac]) 

names(rarity.ft)[1] <- "ID" 

 

## filter variant ids that are above cadd 

cadd.ft <- as.data.frame(anno$ID[anno$CADD_phred > CADD | anno$CADD_phred < 0]) 

names(cadd.ft)[1] <- "ID" 

 

## filter by rarity 

vv.ft <- vv.ft[vv.ft$ID %in% rarity.ft$ID,] 

 

## filter by cadd score 
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vv.ft <- vv.ft[vv.ft$ID %in% cadd.ft$ID,] 

 

###filter by het/hom ratio and het rate (het > 0 & no het rate in cohort above 15%) 

hethom.ft <- as.data.frame(vv.ft$ID[vv.ft$HET_rate < HET]) 

names(hethom.ft)[1] <- "ID"  

#log number of variants - Het/Hom 

varcount <- paste("##Variant Filter Script ## R-script Log - Variants matching Het/Hom 

thresholds:",nrow(hethom.ft)) 

write(varcount, file = "R_log.txt", append = TRUE) 

 

###Extract variants based on filtered list 

vv.ft <- vv.ft[vv.ft$ID %in% hethom.ft$ID,] 

###tidy variables and tables 

###performing allelic depth transformation to allele percent 

###make copy of allelicdepth(ad) 

af <- ad[ad$ID %in% vv.ft$ID,] 

af[af == "."] <- NA 

## Indexing and generation of percent allelic depth info 

af_index <- af[1] 

af_mat1 <- as.data.frame(apply(af[2:ncol(af)], c(1,2), 

  FUN = function(x) str_split_fixed(x, ",",2)[,1])) 

af_mat2 <- as.data.frame(apply(af[2:ncol(af)], c(1,2), 

  FUN = function(x) str_split_fixed(x, ",",2)[,2])) 

af_mat1[af_mat1 == ""] <- NA 

af_mat2[af_mat2 == ""] <- NA 

## conversion to matrix and perform matrix arithematic 

af_mat1 <- as.matrix(apply(af_mat1,2,function(x) as.numeric(x))) 

af_mat2 <- as.matrix(apply(af_mat2,2,function(x) as.numeric(x))) 

ad_pct <- af_mat2 / (af_mat1 + af_mat2) 

af <- cbind(af_index, ad_pct) 

## filter on variants with no af rate above threshold 

af.ft <- data.frame(x=rep(0,nrow(af))) 

for(i in 1:nrow(af)){ 

  if(max(af[i,2:ncol(af)], na.rm = TRUE) > ADEPTH){ 

    af.ft[i,1] <- af[i,1]} 

  else{ 

    af.ft[i,1] <- NA 
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  } 

} 

names(af.ft)[1] <- "ID" 

af.ft <- subset(af.ft, (!is.na(af.ft[,1]))) 

vv.ft <- vv.ft[vv.ft$ID %in% af.ft$ID,] 

 

## Add genotype information for remaining variants 

if(ncol(gt) > SAMP_NUM){ 

 gt.ft <- gt[gt$ID %in% vv.ft$ID,] 

 vvgt <- vv.ft 

 clock <- as.character(Sys.time()) 

 names(gt.ft)[1] <- "Id" 

 write.table(gt.ft,file = "variant_filtering_results_GT.tsv", 

  sep = "\t", 

  row.names = FALSE, 

  quote = FALSE) 

} else { 

 gt.ft <- gt[gt$ID %in% vv.ft$ID,] 

 vvgt <- merge(vv.ft,gt.ft, sort = FALSE) 

} 

## rename ID col - issues with opening files in excel with "ID" as the first value 

names(vvgt)[1] <- "Id" 

names(af)[1] <- "Id" 

 

## Col trimming for final tables 

drop_col <- c("HET_rate","HOM_rate") 

vvgt <- vvgt[ , !(names(vvgt) %in% drop_col)] 

## write filtered table out 

write.table(vvgt,file = "variant_filtering_results.tsv", 

  sep = "\t", 

  row.names = FALSE, 

  quote = FALSE) 

write.table(af,file = "variant_filtering_results_AD.tsv", 

  sep = "\t", 

  row.names = FALSE, 

  quote = FALSE) 

 

  



 

295 
 

9.1.3 ONT Nanopore sequencing pipeline  

ONT Nanopore pipeline – nano-pipe.sh [BASH] 

#!/bin/bash 

## BED HANDLING 

if [[ ! -z "$BED" ]]; then 

 if [[ -f "$BED" ]]; then 

     #echo -e "${BED} is a file" 

     if [[ $(cat "$BED" | wc -l) -lt 2 ]]; then 

         #echo -e "${BED} is a file with one region" 

         BED=$(cat ${BED} | sed 's/\(\S\+\)\t\(\S\+\)\t\(\S\+\)/\1:\2-\3/') 

   BED_TYPE="SINGLE" 

  else 

   BED_TYPE="BED" 

  fi 

 fi 

else 

 BED_TYPE="REF" 

fi 

 

## Output directory structure and overwrite protection 

cd ${OUTPUT_FOLDER} 

 

## Base calling 

if [[ "$BASE_CALLING" == "TRUE" ]]; then 

 cd ${OUTPUT_FOLDER}${PROJECT} 

 if [[ ! -d "base_calls" ]]; then 

  mkdir base_calls  

 fi 

 cd base_calls 

 

 

 

 

## Albacore base calling 

 if [[ "$BASE_CALLER" == "ALBACORE" ]]; then 

 read_fast5_basecaller.py --flowcell ${FLOWCELL} \ 
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   --recursive \ 

   --kit ${KIT} \ 

   -n 0 \ 

   --output_format fast5,fastq \ 

   --input ${INPUT_FOLDER}/ \ 

   --save_path ${OUTPUT_FOLDER}${PROJECT}/base_calls/ \ 

   --worker_threads ${CORES} \ 

   --disable_pings 

   cat workspace/pass/*.fastq > ${PROJECT}_merged.fastq 

   if [[ ! -d "fast5_syms" ]]; then 

       mkdir fast5_syms 

         cd fast5_syms 

         find ${OUTPUT_FOLDER}${PROJECT}/base_calls/workspace/ -type f \ 

    -name "*.fast5" | xargs -n1 -I {} ln -s {} . 

         cd .. 

      fi 

 fi 

## Indexing FAST files for variant calling 

 ${NANOPOLISH_PATH}nanopolish index \ 

  -s ${OUTPUT_FOLDER}${PROJECT}/base_calls/sequencing_summary.txt \ 

  -d ${OUTPUT_FOLDER}${PROJECT}/base_calls/fast5_syms/ \ 

  ${OUTPUT_FOLDER}${PROJECT}/base_calls/${PROJECT}_merged.fastq  

fi 

 

## Base calling QC 

if [[ "$BASE_QC" == "TRUE" ]]; then 

    if [[ "$LOCAL_PYTHON" == "TRUE" ]];then 

        source ${PYTHON_ENV}activate 

    fi 

 cd ${OUTPUT_FOLDER}${PROJECT}/base_calls 

    if [[ ! -d "base_QC" ]]; then 

        mkdir base_QC 

    fi 

    cd ${OUTPUT_FOLDER}${PROJECT}/base_calls/base_QC 

 Rscript ${INSTALL_FOLDER}nano-qc.R \ 

  ${OUTPUT_FOLDER}${PROJECT}/base_calls/fast5_syms ${PROJECT} \ 

  ${OUTPUT_FOLDER}${PROJECT}/base_calls/base_QC 
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 if [[ -f "${OUTPUT_FOLDER}${PROJECT}/base_calls/sequencing_summary.txt" ]]; then 

  NanoStat --summary \ 

   ${OUTPUT_FOLDER}${PROJECT}/base_calls/sequencing_summary.txt \ 

   --readtype 1D 

 fi 

 

## Alignment 

if [[ "$ALIGNMENT" == "TRUE" ]]; then 

 cd ${OUTPUT_FOLDER}${PROJECT} 

    if [[ ! -d "alignment" ]]; then 

  mkdir alignment 

 fi 

    cd alignment 

##MINIMAP2 Alignment 

 if [[ "$ALIGNMENT_TYPE" == "MINIMAP" ]]; then 

 minimap2 -ax map-ont \ 

   ${REFERENCE} \ 

   ${OUTPUT_FOLDER}${PROJECT}/base_calls/${PROJECT}_merged.fastq > \ 

   ${PROJECT}_basecalled.sam 

 samtools view -b \ 

   -q ${MAP_Q} \ 

   ${PROJECT}_basecalled.sam | samtools sort \ 

   -O bam -l 0 -T . -o ${PROJECT}_basecalled.sorted.bam 

 samtools index ${PROJECT}_basecalled.sorted.bam 

 fi 

fi 

ONT Nanopore pipeline – nano-qc.R [R] 

args = commandArgs(trailingOnly=TRUE) 

library(rhdf5) 

library(poRe) 

library(ggplot2) 

library(reshape2) 

library(dplyr) 

library(gridExtra) 

## Set environment  
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setwd(dir = args[3]) 

project <- args[2] 

reads_info <- read.fast5.info(dir = args[1]) 

## Set Nanopore channel layout 

layout <- function(){ 

 p1 = data.frame(channel=33:64, row=rep(1:4, each=8), col=rep(1:8, 4)) 

 p2 = data.frame(channel=481:512, row=rep(5:8, each=8), col=rep(1:8, 4)) 

 p3 = data.frame(channel=417:448, row=rep(9:12, each=8), col=rep(1:8, 4)) 

 p4 = data.frame(channel=353:384, row=rep(13:16, each=8), col=rep(1:8, 4)) 

 p5 = data.frame(channel=289:320, row=rep(17:20, each=8), col=rep(1:8, 4)) 

 p6 = data.frame(channel=225:256, row=rep(21:24, each=8), col=rep(1:8, 4)) 

 p7 = data.frame(channel=161:192, row=rep(25:28, each=8), col=rep(1:8, 4)) 

 p8 = data.frame(channel=97:128, row=rep(29:32, each=8), col=rep(1:8, 4)) 

 q1 = data.frame(channel=1:32, row=rep(1:4, each=8), col=rep(16:9, 4)) 

 q2 = data.frame(channel=449:480, row=rep(5:8, each=8), col=rep(16:9, 4)) 

 q3 = data.frame(channel=385:416, row=rep(9:12, each=8), col=rep(16:9, 4)) 

 q4 = data.frame(channel=321:352, row=rep(13:16, each=8), col=rep(16:9, 4)) 

 q5 = data.frame(channel=257:288, row=rep(17:20, each=8), col=rep(16:9, 4)) 

 q6 = data.frame(channel=193:224, row=rep(21:24, each=8), col=rep(16:9, 4)) 

 q7 = data.frame(channel=129:160, row=rep(25:28, each=8), col=rep(16:9, 4)) 

 q8 = data.frame(channel=65:96, row=rep(29:32, each=8), col=rep(16:9, 4)) 

 map = rbind(p1, p2, p3, p4, p5, p6, p7, p8, q1, q2, q3, q4, q5, q6, q7, q8) 

 map.matrix = acast(map, row ~ col, value.var = "channel") 

 return(map.matrix) 

} 

channel.layout <- layout() 

channel.layout <- melt(channel.layout) 

## functions 

## qual_plot fucntion 

qual_plot <- function(input){ 

 dat <- input[which(colnames(input) %in% c("tmq","cmq","mq2d"))] 

 #dat <- dat[!is.na(dat$tmq),] 

 

 qual_melt <- melt(as.matrix(dat)) 

 qual_melt$Var2 <- as.character(qual_melt$Var2) 

  

 names(qual_melt) <- c("Var1","read type","mean quality") 
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 qual_melt$`read type`[qual_melt$`read type` == "tmq"] <- "template" 

 qual_melt$`read type`[qual_melt$`read type` == "cmq"] <- "complement" 

 qual_melt$`read type`[qual_melt$`read type` == "mq2d"] <- "2d" 

  

 qual_melt$`read type` <- factor(qual_melt$`read type`, 

     levels = c("template","complement","2d")) 

  

 lim <-round(max(hist(qual_melt$`mean quality`[qual_melt$`mean quality` > 0])$counts),-

3) 

  

 

 ggplot(data = qual_melt,aes(x = `mean quality`,fill = `read type`)) +  

 geom_histogram(bins = 30,color = "grey25") + 

   facet_grid(. ~ `read type`) + 

   labs(title = "Distribution of mean read qualities", 

   fill = "Read type", 

   y = "Frequency", 

   x = "Mean quality") + 

   theme_light() + 

   scale_y_continuous(limits = c(0,lim),expand = c(0,0)) + 

   scale_fill_manual(values=c("#53B400", "#C49A00","#F8766D")) + 

   scale_x_continuous(limits = c(0,NA))  

} 

 

## length_plot fucntion 

rlength_plot <- function(input){ 

 dat <- input[which(colnames(input) %in% c("tlen","clen","len2d"))] 

 dat <- dat[!is.na(dat$tlen),] 

  

 rlength_melt <- melt(as.matrix(dat)) 

 rlength_melt$Var2 <- as.character(rlength_melt$Var2) 

 #qual_melt <- qual_melt[qual_melt$value > 0,] 

  

 names(rlength_melt) <- c("Var1","read type","read length") 

 rlength_melt$`read type`[rlength_melt$`read type` == "tlen"] <- "template" 

 rlength_melt$`read type`[rlength_melt$`read type` == "clen"] <- "complement" 

 rlength_melt$`read type`[rlength_melt$`read type` == "len2d"] <- "2d" 
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 rlength_melt$`read type` <- factor(rlength_melt$`read type`, 

     levels = c("template","complement","2d")) 

 lim <- round(max(hist(rlength_melt$`read length`[rlength_melt$`read length` > 

0])$counts),-3) 

  

 ggplot(data = rlength_melt) +  

  geom_histogram(aes(x = `read length`,fill = `read type`), 

   bins = 50,color = "grey25") + 

    facet_grid(. ~ `read type`) + 

    labs(title = "Distribution of read length", 

   fill = "Read type", 

   y = "Frequency", 

   x = "Mean length") + 

     theme_light() + 

    scale_y_continuous(limits = c(0,lim),expand = c(0,0)) + 

    scale_fill_manual(values=c("#53B400","#C49A00","#F8766D")) + 

    scale_x_continuous(limits = c(0,NA)) 

} 

##yield plot fucntion 

yield_plot <- function(input){ 

 dat <- input[!is.na(input$read_start_time),] 

 

 dat$TIME_SUM <- (as.numeric(dat$exp_start +  

   dat$read_start_time) –  

   min(as.numeric(dat$exp_start + dat$read_start_time))) 

 dat <- dat[order(dat$read_start_time),] 

 dat <- dat[which(colnames(dat) %in% c("tlen","clen","len2d","read_start_time"))] 

 dat$len2d <- cumsum(dat$len2d) / 1000 

 dat$tlen <- cumsum(dat$tlen) / 1000 

 dat$clen <- cumsum(dat$clen) / 1000 

  

 yield_melt <- melt(data = dat,id.vars = c("read_start_time")) 

 yield_melt$variable <- as.character(yield_melt$variable) 

  

 names(yield_melt) <- c("time","read type","cumulative kbs") 

 yield_melt$`read type`[yield_melt$`read type` == "tlen"] <- "template" 
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 yield_melt$`read type`[yield_melt$`read type` == "clen"] <- "complement" 

 yield_melt$`read type`[yield_melt$`read type` == "len2d"] <- "2d" 

  

 yield_melt$`read type` <- factor(yield_melt$`read type`, 

    levels = c("template","complement","2d")) 

 ggplot(data = yield_melt) +  

  geom_line(aes(x = `time`,y = `cumulative kbs`,color = `read type`)) + 

    facet_grid(. ~ `read type`,scales = "free") + 

    labs(title = "Cummulative kbases / time", 

   x = "Time", 

   y = "Cumulative data (Kbases)", 

   color = "Read type") + 

    theme_light() + 

    scale_y_continuous(expand = c(0.01,0)) + 

    scale_color_manual(values=c("#53B400","#C49A00","#F8766D")) + 

    scale_x_continuous(limits = c(0,NA)) 

} 

## channel kb function 

channel_stats_plot_tkb <- function(input){ 

 numeric_cols_sum <- c("len2d","tlen","clen","tcevents","channel") 

 dat_sum <- input[which(colnames(input) %in% numeric_cols_sum)] 

 dats <- dat_sum %>% group_by(channel) %>% summarise_all(sum) 

 merged_channel <- merge(channel.layout,dats,by.x = "value",by.y = "channel",all.x = T) 

 merged_channel$tlen <- merged_channel$tlen / 1000 

 merged_channel$len2d <- merged_channel$len2d / 1000 

 merged_channel$clen <- merged_channel$clen / 1000 

 names(merged_channel) <- c("channel","Var1","Var2","2d kbases (total)", 

    "template kbases (total)", 

    "complement kbases (total)", 

    "template events (total)") 

 merged_out <- melt(merged_channel,id.vars = c("channel","Var1","Var2")) 

 ggplot(merged_out[merged_out$variable=="template kbases (total)",],aes(x = Var2,y = 

Var1)) + 

    geom_point(shape = 21,size = 9, 

   color = "grey25",stroke = 0.5, 

   aes(fill = value)) + 

    geom_text(aes(label=channel),size = 3) +  
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    scale_y_reverse() + 

    scale_fill_continuous(low = "grey95", high = "#53B400",na.value = "white", 

     limits = c(0, 

    max(merged_out$value[which(merged_out$variable %in%  

    c("2d kbases (total)", 

     "template kbases (total)", 

     "complement kbases (total)"))]) 

   )) + 

    labs(title = "Template reads - KBases / channel",y = "Channel number", 

   fill="Kbases") + theme_light() + 

    theme(panel.background = element_blank(),plot.background = 

element_blank(), 

       panel.grid = element_blank(),axis.line = element_blank(), 

       axis.title.x = element_blank(),axis.ticks = element_blank(), 

       axis.text = element_blank(),panel.border = element_blank() 

     ) 

} 

## channel events function 

channel_stats_plot_tevn <- function(input){ 

 numeric_cols_sum <- c("len2d","tlen","clen","tcevents","channel") 

 dat_sum <- input[which(colnames(input) %in% numeric_cols_sum)] 

 dats <- dat_sum %>% group_by(channel) %>% summarise_all(sum) 

  

 merged_channel <- merge(channel.layout,dats,by.x = "value", 

   by.y = "channel", 

   all.x = T) 

 merged_channel$tlen <- merged_channel$tlen 

 merged_channel$len2d <- merged_channel$len2d 

 merged_channel$clen <- merged_channel$clen 

 names(merged_channel) <- c("channel","Var1","Var2", 

    "2d kbases (total)", 

    "template kbases (total)", 

    "complement kbases (total)", 

    "template events (total)") 

 merged_out <- melt(merged_channel,id.vars = c("channel","Var1","Var2")) 

  

ggplot(merged_out[merged_out$variable == "template events (total)",], 
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  aes(x = Var2,y = Var1)) + 

    geom_point(shape = 21, 

   size = 9, 

   color = "grey25", 

   stroke = 0.5,  

   aes(fill = value)) + 

    geom_text(aes(label=channel),size = 3) +  

    scale_y_reverse() + 

    scale_fill_continuous(low = "grey95",high = "blue2",na.value = "white") + 

    labs(title = "Events / channel",y = "Channel number", fill="Events") + 

    theme_light() + 

    theme(panel.background = element_blank(), 

   plot.background = element_blank(), 

       panel.grid = element_blank(), 

   axis.line = element_blank(), 

   axis.title.x = element_blank(), 

   axis.ticks = element_blank(), 

   axis.text = element_blank(), 

   panel.border = element_blank() 

  ) 

  

} 

## Chnanel mean kb function 

channel_stats_plot_tmeankb <- function(input){ 

 numeric_cols_mean <-c("len2d","tlen","clen","channel") 

 dat_mean <- input[which(colnames(input) %in% numeric_cols_mean)] 

 datm <- dat_mean %>% group_by(channel) %>% summarise_all(mean) 

  

 merged_channel <- merge(channel.layout,datm,by.x = "value",by.y = "channel",all.x = T) 

 merged_channel$tlen <- merged_channel$tlen / 1000 

 merged_channel$len2d <- merged_channel$len2d / 1000 

 merged_channel$clen <- merged_channel$clen / 1000 

 

 names(merged_channel) <- c("channel","Var1","Var2", 

    "2d kbases (mean)", 

    "template kbases (mean)", 

    "complement kbases (mean)") 
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 merged_out <- melt(merged_channel,id.vars = c("channel","Var1","Var2")) 

  

 ggplot(merged_out[merged_out$variable == "template kbases (mean)",],aes(x = Var2,y = 

Var1)) + 

  geom_point(shape = 21,size = 9,color = "grey25",stroke = 0.5, aes(fill = value)) + 

  geom_text(aes(label=channel),size = 3) +  

  scale_y_reverse() + 

  scale_fill_continuous(low = "white",high = "#53B400",na.value = "white", 

             limits = c(0,max(merged_out$value[which(merged_out$variable %in%  

    c("2d kbases (mean)", 

     "template kbases (mean)", 

     "complement kbases (mean)"))],na.rm = T))) + 

  labs(title = "Template reads - mean KBases / channel", 

   y = "Channel number", 

   fill="Kbases") + 

  theme_light() + 

  theme(panel.background = element_blank(), 

  plot.background = element_blank(), 

      panel.grid = element_blank(), 

  axis.line = element_blank(), 

      axis.title.x = element_blank(), 

  axis.ticks = element_blank(), 

      axis.text = element_blank(), 

  panel.border = element_blank() 

  ) 

} 

 

## channel temp function 

channel_stats_plot_temp <- function(input){ 

 

 numeric_cols_mean <-c("channel","heatsink_temp") 

 dat_mean <- input[which(colnames(input) %in% numeric_cols_mean)] 

 datm <- dat_mean %>% group_by(channel) %>% summarise_all(mean) 

  

 merged_channel <- merge(channel.layout,datm,by.x = "value", 

    by.y = "channel", 



 

305 
 

    all.x = T) 

 

 names(merged_channel) <- c("channel","Var1","Var2","temp (C)") 

  

 merged_out <- melt(merged_channel,id.vars = c("channel","Var1","Var2")) 

  

 ggplot(merged_out[merged_out$variable == "temp (C)",],aes(x = Var2,y = Var1)) + 

  geom_point(shape = 21, 

   size = 9, 

   color = "grey25", 

   stroke = 0.5, 

   aes(fill = value)) + 

  geom_text(aes(label=channel),size = 3) +  

  scale_y_reverse() + 

  scale_fill_continuous(low = "green", 

  high = "red", 

  na.value = "white", 

  limits = c(0,60)) + 

  labs(title = "Mean temperature / channel", 

  y = "Channel number", 

  fill="Temp (C)") + 

  theme_light() + 

  theme(panel.background = element_blank(), 

  plot.background = element_blank(), 

      panel.grid = element_blank(), 

  axis.line = element_blank(), 

      axis.title.x = element_blank(), 

  axis.ticks = element_blank(), 

      axis.text = element_blank(), 

  panel.border = element_blank() 

  ) 

} 

## Channel quality function 

channel_stats_plot_tmeanq <- function(input){ 

 

 numeric_cols_mean <-c("tmq","cmq","mq2d","channel") 

 dat_mean <- input[which(colnames(input) %in% numeric_cols_mean)] 
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 dat_mean[is.na(dat_mean)] <- 0 

 datm <- dat_mean %>% group_by(channel) %>% summarise_all(mean) 

 merged_channel <- merge(channel.layout,datm,by.x = "value", 

   by.y = "channel", 

   all.x = T) 

 names(merged_channel) <- c("channel","Var1","Var2", 

    "template quality (mean)", 

    "complement quality (mean)", 

    "2d quality (mean)") 

  

 merged_out <- melt(merged_channel,id.vars = c("channel","Var1","Var2")) 

  

 ggplot(merged_out[merged_out$variable == "template quality (mean)",], 

   aes(x = Var2,y = Var1)) + 

  geom_point(shape = 21,size = 9,color = "grey25", 

  stroke = 0.5, aes(fill = value)) + 

  geom_text(aes(label=channel),size = 3) +  

  scale_y_reverse() + 

  scale_fill_continuous(low = "grey95",high = "#53B400",na.value = "white", 

  limits = c(0,max(merged_out$value[which(merged_out$variable %in%  

  c("2d quality (mean)", 

  "template quality (mean)", 

  "complement quality (mean)"))], 

  na.rm = T))) + 

  labs(title = "Template reads - mean quality / channel", 

  y = "Channel number", fill="Quality") + 

  theme_light() + 

  theme(panel.background = element_blank(), 

  plot.background = element_blank(), 

      panel.grid = element_blank(), 

  axis.line = element_blank(), 

      axis.title.x = element_blank(), 

  axis.ticks = element_blank(), 

      axis.text = element_blank(), 

  panel.border = element_blank() 

  ) 

} 
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## Plotting 

png(filename = paste(project,"_channelQC_kb_events.png",sep = ""),width = 23.5, 

  height = 10, 

  units = "in", 

  res = 600) 

grid.arrange(channel_stats_plot_tkb(reads_info),channel_stats_plot_tevn(reads_info),ncol

=2) 

dev.off() 

png(filename = paste(project,"_channelQC_meanKB.png",sep = ""),width = 17.5, 

  height = 10, 

  units = "in", 

  res = 600) 

grid.arrange(channel_stats_plot_tmeankb(reads_info),ncol=1) 

dev.off() 

png(filename = paste(project,"_channelQC_meanQuality.png",sep = ""),width = 17.5, 

  height = 10, 

  units = "in", 

  res = 600) 

grid.arrange(channel_stats_plot_tmeanq(reads_info), ncol=1) 

dev.off() 

png(filename = paste(project,"_channelQC_temp.png",sep = ""),width = 6, 

  height = 10, 

  units = "in", 

  res = 600) 

channel_stats_plot_temp(reads_info) 

dev.off() 

png(filename = paste(project,"_readQC.png",sep = ""),width = 16, 

  height = 10, 

  units = "in", 

  res = 600) 

grid.arrange(qual_plot(reads_info),yield_plot(reads_info),rlength_plot(reads_info),nrow=

3) 

dev.off() 

write.table(reads_info,paste(project,"_qcdata.txt",sep = ""),append = FALSE, quote = F, 

  sep = "\t", 

  na = "NA", 

  row.names = T, col.names = T) 
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9.2 Chapter 3 Targeted Sanger and amplicon sequencing 

9.2.1 Sanger sequencing and long range PCR primers 

Gene Name Primer Name Forward Primer Reverse Primer TmF (°C) 
TmR 
(°C) 

PCR size (bp) Exons 

KMT2C KMT2C-Exon 1 
GTCACCATGCCA
GGCTAATT 

TTGCTGGTCCTTGT
AATGACA 

58.23 57.5 7909 1 

KMT2C KMT2C-Exon 2 
GCAAAACATGGG
TCTGAGAGA 

AGGAGTATGTTTGG
TGGGCT 

58.22 58.63 7950 2 

KMT2C KMT2C-Exon 3 
GATGATGAGGTT
GCGCAGTT 

CAGGAGAATCGCGC
GAAC 

58.91 59 7854 3 

KMT2C KMT2C-Exon 4-6 
CTGGTCTCGAAC
TTCCACCT 

TTTGAAAGCTTTGC
CTATGTTCT 

59.03 57.21 7457 4-6 

KMT2C KMT2C-Exon 7 
AAATTTGGAGCAT
GGGGAGC 

GAGGCAGGAGAAAT
CGCATG 

58.8 59.06 5668 7 

KMT2C KMT2C-Exon 8-9 
CCACCACACCCT
GCTAATTT 

AGGGGAGACAGAA
CAAGCT 

58.08 57.83 7826 8-9 

KMT2C KMT2C-Exon 10-14 
GTGCAGATTTTGT
GAGGCCA 

GCTTACCGTTCTAC
TAGTTGGC 

59.04 58.81 7896 10-14 

KMT2C KMT2C-Exon 15-16 
CCCCACTGCCTA
CCACTAAA 

CCCCACAAAGAAAA
TTTCAGGC 

59.01 58.6 7243 15-16 

KMT2C KMT2C-Exon 17-18 
TCGAACTCCTGA
TCCACCTG 

GAGGAGAGAGAATG
CGGGAA 

58.81 58.88 4806 17-18 

KMT2C KMT2C-Exon 19-20 
GCCAAAAGAAAC
AAAACAAGTGT 

TTACGTAGGGAGGG
CAGAAG 

57.39 58.52 6219 19-20 

KMT2C KMT2C-Exon 21-23 
TTCTTGGGACTCT
GGCTACT 

TGCAGGCCCACTTA
CATACA 

57.67 59.01 8008 21-23 

KMT2C KMT2C-Exon 24-27 
GGTGGGGAACTA
GATAGGAGC 

TGCCCACCAAAACC
AAAAGG 

59.03 59.46 9375 24-27 

KMT2C KMT2C-Exon 28-31 
GGATTGAAATTG
GACAGAGAACA 

TCCTTGAAACTGGT
CCCTGG 

57.04 59.23 7832 28-31 

KMT2C KMT2C-Exon 32-37 
GTTCACACCCTG
GGCTTTTG 

CTCCTGAGTAGCCG
CGAATA 

59.61 59.05 9205 32-37 

KMT2C KMT2C-Exon 38-41 
TCCCATCATCAAA
CCTGTGC 

GGGACCCCTGCAAA
TAACTAG 

58.16 58.07 9776 38-41 

KMT2C KMT2C-Exon 42-44 
ATGTAGTTTGGCT
TGTGGGTT 

TACCACCACGCCCA
GTAAAT 

58.04 59.01 9047 42-44 

KMT2C KMT2C-Exon 45-52 
ACTGTTAAGCTG
GGAGAGGT 

TCCCCAATGCAAAT
GACAGG 

57.97 58.44 9169 45-52 

KMT2C KMT2C-Exon 53-58 
AGTATGTGGAGC
TGCTTTCTT 

CCACACCTGAACTG
CTGAAG 

57.29 58.77 8924 53-58 

KMT2C KMT2C-Exon 59 
TCCTGGAAAGCT
GTCACTGA 

AACAAACTGCAAGC
ACCTGT 

58.58 58.81 8076 59 

KMT2D KMT2D-Exon 1-14 
GCACAGACTGGC
CTCTAGAA 

CACGATGGTCCTGA
ACTCCT 

59.1 59.1 8151 1-14 

KMT2D KMT2D-Exon 15-18 
GGAGGCCTAGTC
TCTGCATT 

AGACCATGGTGCCT
GATGAA 

57 57 1518 15-18 
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Gene Name Primer Name Forward Primer Reverse Primer TmF (°C) 
TmR 
(°C) 

PCR size (bp) Exons 

KMT2D KMT2D-Exon 19-34 
TTCACCGTGTTA
GCCAGGAT 

TCAATCAACTCTCCT
GCCTCA 

59.02 58.74 8880 19-34 

KMT2D KMT2D-Exon 35-47 
AGATCGCCTCAT
TGCACTCC 

CGCCTGGCTACTGT
TTTGTT 

58 56 8064 35-47 

KMT2D KMT2D-Exon 48-54 
AGATTGTGCCAC
TGGATCCA 

CCTGCGCTCTCAAA
CCTCTA 

59.01 59.47 9125 48-54 

CDKN2B CDKN2B-1A-PS 
TAGCATCTTTGG
GCAGGCTT 

CACCTTCTCCACTA
GTCCCC 

59.67 58.8 598 1 

CDKN2B CDKN2B-1B-PS 
CTAGGAAGGAGA
GAGTGCGC 

TCGTTGAAAGCAGA
CAGACA 

59.62 57.4 597 1 

CDKN2B CDKN2B-2A-PS 
GAGACCTGAACA
CCTCTGCA 

GTCGAGGGCCAGAT
AAGACA 

59.32 58.89 600 2 

CDKN2B CDKN2B-2B-PS 
CCGCCCACAACG
ACTTTATT 

CAGGGCTTCCAGAG
AGTGT 

58.84 58.63 595 2 

EPAS1 ORF-EPAS1-Ex12 
TGACACAGCCAA
GTCTGAGG 

ACATGGCTTGAGGT
GATTCC 

60.02 59.93 829 12 

EPAS1 ORF-EPAS1-Ex9 
TCCATGGCTCAC
ACACTTCT 

GGAGCGTGTGGTGT
TCTTTT 

58.94 58.98 565 9 
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9.2.2 Sequence identity comparisons 

KMT2C-BAGE2 gene 

Command line:  

matcher –auto –stdout –asequence emboss_matcher-I20160128-160222-0718-19876421-

oy.asequence –bsequence emboss_matcher-I20160128-160222-0718-19876421-oy.bsequence –

datafile EDNAFULL –gapopen 16 –gapextend 4 –alternatives 1 -aformat3 pair –snucleotide1 –

snucleotide2 

 Align format: pair | Aligned sequences: 2 

 ENSG00000055609 

 ENSG00000187172 

 Matrix: EDNAFULL | Gap penalty: 16 | Extend penalty: 4 | Length: 93385 | Identity: 80878/93385 

(86.6%) | Similarity: 80878/93385 (86.6%) | Gaps: 8361/93385 (8.0%) 

KMT2C-BAGE2 mRNA 

Command line:  

matcher –auto –stdout –asequence emboss_matcher-I20190325-143621-0347-48066866-
p2m.asequence –bsequence emboss_matcher-I20190325-143621-0347-48066866-
p2m.bsequence –datafile EDNAFULL –gapopen 16 –gapextend 4 –alternatives 1 -aformat3 pair –
snucleotide1 –snucleotide2 

Align format: pair | Aligned sequences: 2 

 NM_170606.3 

 NM_182482.2 

Matrix: EDNAFULL | Gap penalty: 16 | Extend penalty: 4 

Length: 2109 | Identity: 1539/2109 (73.0%) | Similarity: 1539/2109 (73.0%) | Gaps: 535/2109 

(25.4%) 
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9.2.3 Sequence alignment and quality metrics – KMT2C/KMT2C sequencing 

Read mapping percentages for KMT2C and KMT2D (orange) compared to off target mapping (blue). Figure A shows read 

mapping proportion of both KMT2C and KMT2D. Figure B shows read mapping proportion for KMT2C only. Figure C shows 

the read mapping proportion for KMT2D only and Figure D shows the read mapping proportion for BAGE2. 
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9.2.4 BAGE-family genes table 

 

 

  

Gene Loci 
Location/Scaffold 
(GRCh38) 

Lenth 
(bp) 

Length 
(AA) 

Aliases Notes 

BAGE 21p11.1 
NW_001839676.1 
Not in current 
release 

1,004 43 

BAGE1 
CT2.1 
B Melanoma Antigen 
Family, Member 1 

No full gene length - cDNA 
(132bp) reported far smaller than 
mRNA - 2 reported exons 

BAGE2 21p11.2 
chr21:10,413,477-
10,516,431 

102,955 109 

Cancer/Testis Antigen 
2.2 
CT2.2 
B Melanoma Antigen 
Family, Member 2 

Reported as protein producing, 
processed transcript & unknown 
locus type; 10 reported exons; 3 
Transcripts 

BAGE3 21p11.2 

NC_000021.8 
(Hg37) 
Not in current 
release 

1,891 109 

Cancer/Testis Antigen 
2.3 
CT2.3 
B Melanoma Antigen 
Family, Member 3 

8 exons reported - Full gene 
length unknown - orientation 
unknown - cDNA (330bp) far 
smaller than mRNA 

BAGE4 21p11.1 
AC_000153.1 
Not in current 
release 

1,840 39 

Cancer/Testis Antigen 
2.4 
CT2.4 
B Melanoma Antigen 
Family, Member 4 

2 exons reported - No full gene 
length - cDNA (120bp) far smaller 
than reported mRNA - protein 
coding (inference) 

BAGE5 13cen 
chr13:76,210-
170,143 
(NW_011332699.1) 

1,589 43 

Cancer/Testis Antigen 
2.5 
CT2.5 
B Melanoma Antigen 
Family, Member 5 

9 exons reported - Split build 
information for loci - mRNA 
sequence longer than reported 
gene 
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9.3 Chapter 4 Cancer gene panel sequencing 

9.3.1 Cancer gene panel target list 

SNPs (287) 

rs17401966 rs710521 rs3117582 rs4242384 rs110419 rs7176508 rs1327301 

rs9430161 rs2131877 rs204999 rs7837688 rs1945213 rs8034191 rs5945572 

rs7538876 rs798766 rs9268542 rs9642880 rs11228565 rs1051730 rs5945619 

rs11249433 rs1494961 rs6903608 rs2019960 rs7931342 rs8042374 rs5919432 

rs7412746 rs12500426 rs2395185 rs10088218 rs10896449 rs3803662 rs1321311 

rs3790844 rs17021918 rs2858870 rs891835 rs7130881 rs4784227 rs3824999 

rs6691170 rs1229984 rs674313 rs4295627 rs7105934 rs3112612 rs5934683 

rs6687758 rs971074 rs28421666 rs2294008 rs614367 rs9929218 rs2283873 

rs801114 rs7679673 rs2647012 rs7040024 rs1393350 rs391525 rs807624 

rs1465618 rs10069690 rs10484561 rs755383 rs1801516 rs258322 rs1027643 

rs7579899 rs2242652 rs9275572 rs3814113 rs3802842 rs1805007 rs3755132 

rs1432295 rs2736100 rs210138 rs7023329 rs498872 rs4785763 rs790356 

rs721048 rs2853676 rs10484761 rs2157719 rs735665 rs4795519 rs5955543 

rs10187424 rs4635969 rs339331 rs1412829 rs2900333 rs4430796 rs10974944 

rs17483466 rs4975616 rs2180341 rs1011970 rs718314 rs7501939 rs1210110 

rs12621278 rs401681 rs9485372 rs4977756 rs10875943 rs7210100 rs7555566 

rs2072590 rs31489 rs2046210 rs965513 rs11169552 rs1859962 rs1364054 

rs13016963 rs12653946 rs651164 rs865686 rs902774 rs17674580 rs6734275 

rs13393577 rs2255280 rs9364554 rs505922 rs995030 rs7238033 rs7584993 

rs3768716 rs13361707 rs7758229 rs10795668 rs3782181 rs4939827 rs17272796 

rs6435862 rs2121875 rs4487645 rs11012732 rs4474514 rs8170 rs1155741 

rs13387042 rs4415084 rs11978267 rs3123078 rs11066015 rs8102137 rs161792 

rs966423 rs889312 rs4132601 rs10993994 rs671 rs10411210 rs11940551 

rs13397985 rs10052657 rs6465657 rs10821936 rs4767364 rs8102476 rs9293511 

rs7584330 rs20541 rs1495741 rs7089424 rs2074356 rs11083846 rs9352613 

rs2292884 rs4624820 rs1512268 rs10822013 rs11066280 rs2735839 rs685449 

rs757978 rs10058728 rs2439302 rs10995190 rs4765623 rs961253 rs7808249 

rs4973768 rs872071 rs16892766 rs224278 rs1572072 rs910873 rs1106334 

rs1052501 rs12210050 rs1016343 rs704010 rs9510787 rs4925386 rs11017876 

rs2660753 rs4712653 rs1456315 rs3765524 rs753955 rs6010620 rs9572094 

rs9284813 rs6939340 rs16901979 rs2274223 rs9600079 rs4809324 rs4905366 

rs17181170 rs4324798 rs2456449 rs3781264 rs9573163 rs372883 rs4775699 

rs9841504 rs29232 rs16902094 rs17119461 rs9543325 rs2014300 rs1528601 

rs10934853 rs3129055 rs445114 rs12413624 rs7335046 rs45430 rs11655512 

rs6763931 rs2860580 rs13281615 rs11199874 rs944289 rs1547374 rs4793172 

rs6774494 rs2517713 rs1562430 rs2981579 rs116909374 rs738722 rs242076 

rs10936599 rs6457327 rs10505477 rs2981575 rs4444235 rs36600 rs6603251 

rs10936632 rs130067 rs6983267 rs1219648 rs4779584 rs2284063 AMG_mid100 

rs4488809 rs2894207 rs7014346 rs2981582 rs4924410 rs1014971 rs149617956 

rs10937405 rs2596542 rs1447295 rs3817198 rs4775302 rs5759167  

rs17505102 rs2248462 rs4242382 rs7127900 rs8030672 rs5768709 rs138213197 
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Genes (94) 

AIP CEBPA FANCA KIT PRF1 SLX4 

ALK CEP57 FANCB MAX PRKAR1A SMAD4 

APC CHEK2 FANCC MEN1 PTCH1 SMARCB1 

ATM CYLD FANCD2 MET PTEN STK11 

BAP1 DDB2 FANCE MLH1 RAD51C SUFU 

BLM DICER1 FANCF MSH2 RAD51D TMEM127 

BMPR1A DIS3L2 FANCG MSH6 RB1 TP53 

BRCA1 EGFR FANCI MUTYH RECQL4 TSC1 

BRCA2 EPCAM FANCL NBN RET TSC2 

BRIP1 ERCC2 FANCM NF1 RHBDF2 VHL 

BUB1B ERCC3 FH NF2 RUNX1 WRN 

CDC73 ERCC4 FLCN NSD1 SBDS WT1 

CDH1 ERCC5 GATA2 PALB2 SDHAF2 XPA 

CDK4 EXT1 GPC3 PHOX2B SDHB XPC 

CDKN1C EXT2 HNF1A PMS1 SDHC  

CDKN2A EZH2 HRAS PMS2 SDHD  
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9.3.2 Sanger sequencing primers – BRIP1 

Position 
(GRCh38) 

Variant 
(BRIP1) 

Forward primer Reverse primer 
Tm-F 

(°C) 
Tm-R 

(°C) 
Size 
(bp) 

chr17:61716051 p.Arg798* 
ACCAGTTCCTAT
GGTTCCAGT 

TGCTTGAGATCAC
ACAGCTG 

58.37 58.2 462 

chr17:61799278 
p.Gln388Thrfs*
7 

TCCCAAGAAGCC
TAGTTAACCA 

TGTAGAGCTGATAT
TTGGTTGGC 

58.75 58.8 498 

chr17:61780325 p.Ser624* 
TGCATCCCAAGT
GACTGGAT 

CAGACTCCTAGAC
TCAAGCGA 

59.01 58.64 467 

 

  



 

317 
 

9.4 Chapter 5 Whole exome sequencing 

9.4.1 WES gene lists 

Frequently somatically altered 

Gene Chr Start (bp) End (bp) Gene description 

ABCA13 chr7 48171458 48647497 ATP binding cassette subfamily A member 13 

ADGRV1 chr5 90529344 91164437 adhesion G protein-coupled receptor V1 

AHNAK2 chr14 104937244 104978374 AHNAK nucleoprotein 2 

ANK2 chr4 112818109 113383740 ankyrin 2 

ANK3 chr10 60026298 60733490 ankyrin 3 

ARID1A chr1 26693236 26782104 AT-rich interaction domain 1A 

ATM chr11 108222484 108369102 ATM serine/threonine kinase 

COL6A3 chr2 237324003 237414375 collagen type VI alpha 3 chain 

DNAH2 chr17 7717354 7833744 dynein axonemal heavy chain 2 

DNAH8 chr6 38715341 39030529 dynein axonemal heavy chain 8 

DNAH9 chr17 11598470 11969748 dynein axonemal heavy chain 9 

DST chr6 56457987 56954649 dystonin 

FAT1 chr4 186587794 186726722 FAT atypical cadherin 1 

HERC1 chr15 63608618 63833948 
HECT and RLD domain containing E3 
ubiquitin protein ligase family member 1 

KDM5C chrX 53191321 53225422 lysine demethylase 5C 

KDM6A chrX 44873177 45112602 lysine demethylase 6A 

KIAA1109 chr4 122152333 122362758 KIAA1109 

KIF1B chr1 10210805 10381603 kinesin family member 1B 

KMT2C chr7 152134922 152436005 lysine methyltransferase 2C 

KMT2D chr12 49018975 49059774 lysine methyltransferase 2D 

LRP1 chr12 57128493 57213351 LDL receptor related protein 1 

MACF1 chr1 39081316 39487177 microtubule-actin crosslinking factor 1 

MTOR chr1 11106535 11262507 mechanistic target of rapamycin kinase 

MUC17 chr7 101020072 101058745 mucin 17, cell surface associated 

NF2 chr22 29603556 29698598 neurofibromin 2 

NFE2L2 chr2 177227595 177392697 nuclear factor, erythroid 2 like 2 

OBSCN chr1 228208130 228378874 
obscurin, cytoskeletal calmodulin and titin-
interacting RhoGEF 

PIK3CA chr3 179148114 179240093 
phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha 

PKHD1 chr6 51615300 52087625 PKHD1, fibrocystin/polyductin 

RANBP2 chr2 108719482 108785809 RAN binding protein 2 

RYR1 chr19 38433699 38587564 ryanodine receptor 1 

RYR3 chr15 33310945 33866121 ryanodine receptor 3 

SETD2 chr3 47016429 47163967 
SET domain containing 2, histone lysine 
methyltransferase 

SMARCA4 chr19 10960825 11079426 
SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily a, 
member 4 
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Gene Chr Start (bp) End (bp) Gene description 

SMARCB1 chr22 23786931 23838008 
SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily b, 
member 1 

SRRM2 chr16 2752626 2772538 serine/arginine repetitive matrix 2 

STAG2 chrX 123960212 124422664 stromal antigen 2 

SYNE2 chr14 63852983 64226433 
spectrin repeat containing nuclear envelope 
protein 2 

TP53 chr17 7661779 7687550 tumor protein p53 

UBR4 chr1 19074510 19210266 
ubiquitin protein ligase E3 component n-
recognin 4 

XIRP1 chr3 39183210 39192620 xin actin binding repeat containing 1 
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TCA cycle genes 

Gene Chr Start (bp) End (bp) Gene description 

ACO1 chr9 32384603 32454769 aconitase 1 

ACO2 chr22 41469117 41528989 aconitase 2 

CS chr12 56271699 56300391 citrate synthase 

DLD chr7 107891162 107931730 dihydrolipoamide dehydrogenase 

DLST chr14 74881891 74903743 dihydrolipoamide S-succinyltransferase 

FH chr1 241497603 241519761 fumarate hydratase 

IDH1 chr2 208236227 208266074 
isocitrate dehydrogenase (NADP(+)) 1, 
cytosolic 

IDH2 chr15 90083045 90102504 
isocitrate dehydrogenase (NADP(+)) 2, 
mitochondrial 

IDH3A chr15 78131498 78171945 isocitrate dehydrogenase 3 (NAD(+)) alpha 

IDH3B chr20 2658395 2664219 isocitrate dehydrogenase 3 (NAD(+)) beta 

IDH3G chrX 153785766 153794523 isocitrate dehydrogenase 3 (NAD(+)) gamma 

MDH1 chr2 63588609 63607197 malate dehydrogenase 1 

MDH2 chr7 76048051 76067508 malate dehydrogenase 2 

OGDH chr7 44606572 44709066 oxoglutarate dehydrogenase 

OGDHL chr10 49734641 49762379 oxoglutarate dehydrogenase like 

SDHA chr5 218241 257082 succinate dehydrogenase complex subunit A 

SDHB chr1 17018722 17054170 succinate dehydrogenase complex subunit B 

SDHC chr1 161314257 161375340 succinate dehydrogenase complex subunit C 

SDHD chr11 112086824 112120013 succinate dehydrogenase complex subunit D 

SUCLA2 chr13 47745736 48037968 succinate-CoA ligase ADP-forming beta subunit 

SUCLG1 chr2 84423528 84460045 succinate-CoA ligase alpha subunit 

SUCLG2 chr3 67360460 67654614 
succinate-CoA ligase GDP-forming beta 
subunit 
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Known RCC genes 

Gene Chr Start (bp) End (bp) Gene description 

BAP1 chr3 52401013 52410350 BRCA1 associated protein 1 

BRIP1 chr17 61681266 61863521 BRCA1 interacting protein C-terminal helicase 1 

CDKN2B chr9 22002903 22009363 cyclin dependent kinase inhibitor 2B 

FH chr1 241497603 2.42E+08 fumarate hydratase 

FLCN chr17 17212212 17237188 folliculin  

MET chr7 116672390 1.17E+08 MET proto-oncogene, receptor tyrosine kinase 

MITF chr3 69739435 69968337 melanocyte inducing transcription factor 

PBRM1 chr3 52545352 52685917 polybromo 1 

PTEN chr10 87863113 87971930 phosphatase and tensin homolog 

SDHA chr5 218241 256700 
succinate dehydrogenase complex flavoprotein 
subunit A 

SDHB chr1 17018722 17054170 
succinate dehydrogenase complex iron sulfur 
subunit B 

SDHC chr1 161314257 1.61E+08 succinate dehydrogenase complex subunit C 

SDHD chr11 112086773 1.12E+08 succinate dehydrogenase complex subunit D 

TSC1 chr9 132891348 1.33E+08 TSC complex subunit 1 

TSC2 chr16 2047465 2089487 TSC complex subunit 2 

VHL chr3 10141008 10152220 von Hippel-Lindau tumor suppressor 

 

9.4.2 HapMap sample list 

Sample ID 

NA06985 NA07051 NA11832 NA11918 

NA06986 NA07056 NA11840 NA11919 

NA06989 NA10847 NA11881 NA11920 

NA06994 NA11829 NA11892 NA11931 

NA07000 NA11830 NA11893 NA11992 

NA07037 NA11831 NA11894  
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9.4.3a CNV pipeline - main 

Primary pipeline – xhmm_CNV.sh [BASH] 

CNV_xhmm.sh acts as a wrapper bash script for the XHMM C++ binary executable that acts to 

pass tar-get BAM alignment files in batches to GATK DepthOfCoverage and subsequently XHMM 

sub-programmes ‘xhmm –matrix’, ‘xhmm –normalize’, ‘xhmm –PCA’, ‘xhmm –discover’, and ‘xhmm 

–genotype’. 

#!/bin/bash 

## Generating work-environment folder 

if [ -d "${outputfolder}cnv_analysis" ]; then 

 echo -e "## CNV Pipeline ## - Root folder exists - folder not generated" 

else 

 mkdir ${outputfolder}cnv_analysis 

fi 

cp cnvPCA.R ${outputfolder}cnv_analysis/ 

cp cnvANNO.R ${outputfolder}cnv_analysis/ 

cp cnvPLOTS.R ${outputfolder}cnv_analysis/ 

cp ref_CNVs.txt ${outputfolder}cnv_analysis/ 

cd ${outputfolder}cnv_analysis 

 

### Output directory 

if [ -d "xhmm_analysis_${cohort}" ]; then 

 echo -e "## CNV Pipeline ## - Analysis folder exists - folder not generated" 

else 

 mkdir xhmm_analysis_${cohort} 

fi 

mv cnvPCA.R xhmm_analysis_${cohort}/temp 

mv cnvANNO.R xhmm_analysis_${cohort} 

mv cnvPLOTS.R xhmm_analysis_${cohort} 

mv ref_CNVs.txt xhmm_analysis_${cohort} 

cd xhmm_analysis_${cohort}/temp 

 

 

## folder setup 

cp ${int} xhmm.intervals 

vim -c "%s/\(\S\+\)\t\(\S\+\)\t\(\S\+\)\t\(\S\+\)/\1:\2-\3/g|wq" xhmm.intervals 
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interval="xhmm.intervals" 

ls ${inputfolder}*.bam > bam_list_xhmm 

 

## XHMM Analysis 

echo -e "## CNV Pipeline ## - XHMM started..." 

if [[ ${call} = "FALSE" ]]; then 

 echo -e "## XHMM ANALYSIS ## - Bam files split into 6 sets...(Stage 1 of 10)" 

 split -a 1 --numeric-suffixes=1 --additional-suffix=.list -n l/6 bam_list_xhmm 

 bam_chunk 

 

 

java -Xmx30g -jar ${gatk} -T DepthOfCoverage \   | 

 -I bam_chunk1.list \       | 

 -L ${interval} \       | 

 -R ${ref} \        | 

 -dt BY_SAMPLE \       | 

 -dcov 5000 \        | 

 -l INFO \       | 

 --omitDepthOutputAtEachBase \     | 

 --omitLocusTable \      | Process replicated 

6 

 --minBaseQuality 0 \      | times for 6 sample  

 --minMappingQuality 20 \     | chucks (one shown) 

 --start 1 \       | 

 --stop 5000 \       | 

 --nBins 200 \       | 

 --includeRefNSites \      | 

 --countType COUNT_FRAGMENTS \     | 

 --allow_potentially_misencoded_quality_scores \  | 

 -o bam_chunkOUT1 > /dev/null 2>&1 &    | 

## Allow for all child processes in parallel to complete 

 wait 

 sleep 5 

## Combines GATK Depth-of-Coverage outputs for multiple samples (at same loci): 

 xhmm --mergeGATKdepths -o xhmmCNV.mergeDepths.txt \ 

 --GATKdepths bam_chunkOUT1.sample_interval_summary \ 

 --GATKdepths bam_chunkOUT2.sample_interval_summary \ 
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 --GATKdepths bam_chunkOUT3.sample_interval_summary \ 

 --GATKdepths bam_chunkOUT4.sample_interval_summary \ 

 --GATKdepths bam_chunkOUT5.sample_interval_summary \ 

 --GATKdepths bam_chunkOUT6.sample_interval_summary > /dev/null 2>&1 

 

## calculates the GC Content of the exome intervals 

java -Xmx30g -jar ${gatk} -T GCContentByInterval \ 

 -L ${interval} \ 

 -R ${ref} \ 

 -o DATA_GC_percent.txt > /dev/null 2>&1 

 

## Concatenates and assess GC content (if less than 0.1 or more than 0.9 

cat DATA_GC_percent.txt | \ 

awk '{if ($2 < 0.1 || $2 > 0.9) print $1}' > extreme_gc_targets.txt 

 

## Centres the data about the mean and filters high/low GC intervals 

xhmm --matrix -r xhmmCNV.mergeDepths.txt --centerData --centerType target \ 

 -o xhmmCNV.filtered_centered.RD.txt \ 

 --outputExcludedTargets xhmmCNV.filtered_centered.RD.txt.filtered_targets.txt \ 

 --outputExcludedSamples xhmmCNV.filtered_centered.RD.txt.filtered_samples.txt \ 

 --excludeTargets extreme_gc_targets.txt --minTargetSize ${minTargetSize} \ 

 --maxTargetSize ${maxTargetSize} --minMeanTargetRD ${minMeanTargetRD} \ 

 --maxMeanTargetRD ${maxMeanTargetRD} --minMeanSampleRD ${minMeanSampleRD} \ 

 --maxMeanSampleRD ${maxMeanSampleRD} \ 

 --maxSdSampleRD ${maxSdSampleRD} > /dev/null 2>&1 

 

## Performs PCA to generate component variation 

xhmm --PCA -r xhmmCNV.filtered_centered.RD.txt \ 

 --PCAfiles xhmmCNV.mergeDepths_PCA > /dev/null 2>&1 

 

 

wd=$(pwd) 

Rscript cnvPCA.R ${wd} ${PVE_mean_factor} > /dev/null 2>&1 

 

## Normalises the mean centered data using the PCA data 

xhmm --normalize -r xhmmCNV.filtered_centered.RD.txt \ 

 --PCAfiles xhmmCNV.mergeDepths_PCA \ 
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 --normalizeOutput xhmmCNV.PCA_normalized.txt \ 

 --PCnormalizeMethod PVE_mean \ 

 --PVE_mean_factor ${PVE_mean_factor} > /dev/null 2>&1 

 

## Generates and asseses z-score distribution of mean centered-normalised 

## read depth data and filters inappropriate intervals 

xhmm --matrix -r xhmmCNV.PCA_normalized.txt \ 

 --centerData --centerType sample --zScoreData \ 

 -o xhmmCNV.PCA_normalized.filtered.sample_zscores.RD.txt \ 

 --outputExcludedTargets xhmmCNV.PCA_normalized.filtered_targets.txt \ 

 --outputExcludedSamples xhmmCNV.PCA_normalized..filtered_samples.txt \ 

 --maxSdTargetRD ${maxSdTargetRD} > /dev/null 2>&1 

 

 

 

## applies the normalisation and z-scoring to the standard non-normalised 

xhmm --matrix -r xhmmCNV.mergeDepths.txt \ 

 --excludeTargets xhmmCNV.filtered_centered.RD.txt.filtered_targets.txt \ 

 --excludeTargets xhmmCNV.PCA_normalized.sample_zscores.filtered_targets.txt \ 

 --excludeSamples xhmmCNV.filtered_centered.RD.txt.filtered_samples.txt \ 

 --excludeSamples xhmmCNV.PCA_normalized.sample_zscores.filtered_samples.txt \ 

 -o xhmmCNV.same_filtered.RD.txt > /dev/null 2>&1 

 

## assessment of the z-score to identify high levels of statistical deviation 

xhmm --discover -p ${params} \ 

 -r xhmmCNV.PCA_normalized.filtered.sample_zscores.RD.txt \ 

 -R xhmmCNV.same_filtered.RD.txt -c xhmmCNV.xcnv \ 

 -a xhmmCNV.aux_xcnv -s xhmmCNV > /dev/null 2>&1 

 

## genotypes indentified CNV during prior discovery steps 

xhmm --genotype -p ${params} \ 

 -r xhmmCNV.PCA_normalized.filtered.sample_zscores.RD.txt \ 

 -R xhmmCNV.same_filtered.RD.txt -g xhmmCNV.xcnv -F ${ref} \ 

 -v xhmmCNV.vcf > /dev/null 2>&1 

 

if (( $(cat xhmmCNV.xcnv | wc -l) < '2' )); then 

    echo -e "## CNV Pipeline ## - ERROR: No CNVs called" 
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    echo -e "## CNV Pipeline ## - XHMM analysis exiting" 

    exit 

fi 

mv xhmmCNV.xcnv ../xhmmCNV.xcnv 

mv xhmmCNV.vcf ../xhmmCNV.vcf 

mv bam_list_xhmm ../xhmm_samplelist.txt 

if [[ ${PCA_plot} == "TRUE" ]]; then 

 mv PCA_Scree.png ../PCA_Scree.png 

 mv PCA_summary.txt ../PCA_summary.txt 

fi 

mv xhmmCNV.aux_xcnv ../xhmmCNV.aux_xcnv 

mv cnv.log ../cnv.log 

cd ../ 

Rscript cnvANNO.R ${int} > /dev/null 2>&1 

XHMM annotation – cnvPCA.R [R] 

cnvPCA.R script uses GATK DepthOfCoverage output to generate a principle component graph 

used for dimensional reduction of variance in read depth across the read depth matrix, where the 

value of the i-th row and j-th column of the matrix correspond to the mean read depth at genomic 

target i in sample j. 

args = commandArgs(trailingOnly=TRUE) 

setwd(args[1]) 

PCA <- args[2] 

PCA <- as.numeric(PCA) * 100 

library(ggplot2) 

library(data.table) 

## read in filtered and centered read depth data from xhmm 

t <- fread("xhmmCNV.filtered_centered.RD.txt",sep = "\t",header = TRUE) 

t1 <- t[,-1]  

p <- prcomp(t1)  

 

## generate SVD eigen values from SD data in PCA output 

## Coerce into a dataframe with index values for each PC 

scr <- as.data.frame(p$sdev^2/sum(p$sdev^2)*100) 

scr$PC <- seq.int(nrow(scr)) 
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names(scr)[1] <- "Eigen" 

for(i in 1:nrow(scr)){ 

 c <- sum(scr$Eigen[1:i]) 

 if(c >= PCA){ 

  val <- i 

  break 

  } 

} 

 

## plot the data of eigen value against PC 

png("PCA_Scree.png", width = 5, height = 5, units = 'in', res = 600) 

ggplot(scr, aes(x=PC, y=Eigen)) + geom_line() + geom_point() +  

 geom_vline(xintercept=val, linetype = "dashed", color="red") + 

  scale_y_continuous(name="Eigen Value - Contributed Variance (%)", 

 breaks = pretty(scr$Eigen, n = 10)) + 

 scale_x_continuous(name="Princple Component", 

 breaks = pretty(scr$PC, n = 10)) + 

 ggtitle(label="PCA Scree Plot", subtitle="Cummulative Contributed Variance") + 

 geom_text(data=NULL, x=val+3, y=max(scr$Eigen),label="Contributed Variance cut off", 

 size=2.5) + 

 theme(panel.border = element_blank(),axis.line = element_line(colour="black")) + 

 theme(panel.background = element_blank(), 

 panel.grid.major = element_line(size = 0.1,colour = "grey50")) 

dev.off() 

XHMM annotation – cnvANNO.R [R] 

The cnvANNO.R script performs a secondary calling, annotation, and filtering steps on the default 

output files from XHMM. Utilising the .xcnv output file, the .aux_xcnv auxiliary calling file, and the 

target bed file, calling data from ‘xhmm –PCA’, ‘xhmm –discover’, and ‘xhmm –genotype’ sub-

programmes, cnvANNO.R converts from genomic region calls to target region resolution calls. 

Target calls are then annotated using the initial bed file to allow for gene/exon mapping and 

analysis. A series of filtering steps are also applied during this process to remove upstream and 

downstream targets with neutral copy changes, remove low quality calls (using the Q_SOME 

metric), and CNV allele frequency (internal and external). 
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Output is an 11+N column tab-delimited file (where N is the number of samples in the analysis set), 

each call being annotated with originating CNV identification number, original CNV call region, 

name of affected exon, genomic positions of target, non-normalised read depth and mean read 

depths, Quality score and mean quality score, and internal minor allele frequency for the 

associated call. 

args = commandArgs(trailingOnly=TRUE) 

options(digits=3) 

require(methods) 

library(ggplot2) 

library(stringr) 

library(tidyr) 

library(dplyr) 

 

int_af_value <- 0.05 

ref_af_value <- 0.05 

 

## Read in files for CNV annotation script 

cnv <- read.table("xhmmCNV.xcnv", sep = "\t", header = TRUE, stringsAsFactors = FALSE) 

intv <- read.table(args[1], sep = "\t", stringsAsFactors = FALSE) 

colnames(intv) <- c("chr","start","stop","exon") 

aux <- read.table("xhmmCNV.aux_xcnv", sep = "\t", header = TRUE, stringsAsFactors = 

FALSE) 

 

ref.list <- read.table("ref_CNVs.txt", sep = "\t", stringsAsFactors = FALSE) 

colnames(ref.list) <- c("EXON","CNV","AF_ref") 

f.aux <- aux[!aux$TARGET_IND == "U-2" & !aux$TARGET_IND == "U-1" & 

     !aux$TARGET_IND == "D+1" & !aux$TARGET_IND == "D+2",] 

intv$id <- paste(intv$chr,":", intv$start, "-", intv$stop, sep="") 

x <- merge(f.aux, intv, by.x = "TARGET", by.y = "id", all.x = TRUE) 

x$cnv_id <- as.numeric(as.factor(x$FULL_INTERVAL)) 

x <- cbind(x$cnv_id,x$SAMPLE,x$CHR,x$TARGET, 

 x$FULL_INTERVAL,x$CNV,x$exon,x[,8:10]) 

 

colnames(x) <- c("CNV_ID","SAMPLE","CHR","TARGET", 

"FULL_INTERVAL","CNV","EXON","POSTERIOR","RD","ORIG_RD") 

## Remove unmapped exons from interval files 
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x <- x[!is.na(x$EXON),] 

x <- droplevels.data.frame(x) 

 

## Add Q_SOME field from CNV file and number of targets per full interval 

q.value <- data.frame(x=rep(0,nrow(x))) 

for(i in 1:nrow(x)){ 

  q <- cnv[cnv$SAMPLE == as.character(x[i,2]) & 

     cnv$INTERVAL == as.character(x[i,5]),] 

  q.value[i,] <- q[10] 

} 

q.tar <- q.value 

colnames(q.tar) <- "Q_SOME" 

x <- cbind(x,q.tar) 

rm(q.value,q.tar,q,i) 

 

## Remove redundant columns 

x <- x[,-c(5,8:9)] 

 

## Conversion to vcf sytyle genotype annotation 

t <- unique(x[c("EXON","CNV")]) 

t <- cbind(t,seq.int(1,nrow(t),1)) 

colnames(t)[3] <- "EXON_CNV_ID" 

x <- merge(x,t,by.y = c("CNV","EXON"), all.x = TRUE) 

x$GT <- 1 

x <- x[!duplicated(x),] 

x <- spread(x,SAMPLE,GT,fill=0) 

x %>% mutate_if(is.factor, as.character) -> x 

#na replaced as 0 in ref genotype field 

x[is.na(x)] <- 0 

 

## Selecting columns with constant values across rows & collapsing 

x_const <- x[,c(8,1,2,4,5)] 

x_const <- x_const %>% group_by(EXON_CNV_ID) %>% 

       summarise_all(funs(paste(unique(.), collapse=","))) 

 

## Selecting columns with variable values and concatenating them into cells 

x_var <- x[,c(8,3,6,7)] 
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x_var <- x_var %>% group_by(EXON_CNV_ID) %>% 

      summarise_all(funs(paste(., collapse=","))) 

 

## Collapsing genotype information into single row for each unique "site" 

x_geno <- x[,c(8:ncol(x))] 

x_geno <- as.data.frame(x_geno %>% group_by(EXON_CNV_ID) %>% 

       summarise_all(funs(sum(as.numeric(.))))) 

## Confirming only 1 or 0 present 

x_geno[-1][x_geno[-1] > 0] <- 1 

 

## Reconstructing db into single dataframe 

x <- cbind(x_const,x_var,x_geno) 

x <- x[-c(6,10)] 

 

## Adding mean Q_some for each row 

x$Mean_Q_Some <- sapply(str_split(x$Q_SOME, ","), 

          function(x) mean(as.numeric(x))) 

x$Mean_Orig_RD <- sapply(str_split(x$ORIG_RD, ","), 

          function(x) mean(as.numeric(x))) 

x <- cbind(x[1:7],x[ncol(x)],x[9:ncol(x)-1]) 

x <- cbind(x[1:9],x[ncol(x)],x[11:ncol(x)-1]) 

 

## Addition of AF internal to file 

AF_all <- apply(x[11:ncol(x)],1, function(y) (sum(y == 1)/sum(y == 0))) 

x <- cbind(x[1:10],AF_all,x[11:ncol(x)]) 

 

## Adding REF_AF 

x <- merge(x, ref.list, by = c("EXON","CNV"), all.x = TRUE, fill = 0) 

x[is.na(x)] <- 0 

x <- cbind(x[1:11],x[ncol(x)],x[13:ncol(x)-1]) 

#remove commonly altered exons in ref Cohort 

x <- x[x$AF_ref < ref_af_value,] 

 

## String split Exon into gene and exon 

gene_exon <- as.data.frame(str_split(as.character(x$EXON), 

                    "_", 

                    simplify = TRUE), 
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              stringsAsFactors = FALSE) 

gene_exon <- gene_exon[-3] 

colnames(gene_exon) <- c("GENE","EXON") 

x <- x[-1] 

x <- cbind(gene_exon,x[1:ncol(x)]) 

 

## Make sure chr positions are unified as numeric - not containing "chr" 

x$CHR <- gsub("chr","",x$CHR) 

x$TARGET <- gsub("chr","",x$TARGET) 

## write output 

write.table(x, file="cnv_xhmm_annotated.tsv", sep="\t", 

       quote = FALSE, row.names = FALSE, col.names = TRUE, na = "-9") 

save.image(file="cnvANNO.RData") 
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9.4.3b CNV pipeline - Reference interval file generation 

While implemented in its standard deployment, XHMM was limited in its ability to call CNVs at the 

exon-level resolution and provided no reference files for exome target regions. Generation of an 

accurate and curated target file is critical to calculating accurate CNV calls from therefore a series 

of selection criteria were applied to all exome target regions. 

Reference intervals 

Exon bed file was downloaded from BioMart (1) in TSV format, returning unique entries for the 

following fields: 

 "Chromosome/scaffold name" 

 "Exon region start (bp)" 

 "Exon region end (bp)" 

 "Gene name" 

 "Exon rank in transcript" 

Exon intervals were reformatted to fit BED4 (chr, chromStart, chromEnd, Label) specifications. 
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Repeat region filtering 

An important component of the interval file used is that is appropriately filtered for regions that are 

of interest; this excludes regions overlapping low-complexity regions of the genome. These regions 

act to add excessive noise to CNV calling due to systemic sequencing bias and technical issue, so 

can be justifiably removed from genomic target lists. The site repeatmasker.org provides 

categorical fasta files for each type and span of these regions. 

Fasta files containing the type and genomic position of repeat-masked regions can be downloaded 

from repeatmasker.org. The repeat-mask fasta is not immediately appropriate for use so some 

minor pre-processing steps were required to allow for interval comparisons (i.e. delimiter 

alterations, repeat type selection, and sorting by chromosome and position). 

Generating list of overlapping intervals 

Filtering out intervals with any amount of repeat-mask overlap would be overly stringent so only 

exome intervals harbouring an overlap of 25% or more are excluded. The command below 

compares the exome interval set to the repeat-masked interval set generating a list of exons that 

are overlapped by repeat-masked regions by > 25% 

Nextera probe positions were downloaded from Illumina to match library preparation kit used for 

sequencing run and regions overlapping with 50% of matching targets from the library preparation 

probes were retained using Bedtools intersect. The preceding files are loaded into R for filtering 

and target merging, after which 10bp padding is applied to each target interval. This is intended to 

increase the fidelity of calls over target sets by incorporating more reads that align to the edges of 

target regions. The subsequent file is then sorted and merged to collapse overlapping intervals into 

a single interval, resulting in a final exome interval bed file containing only targets of interest. 
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XHMM reference interval – Exome_CNV_reference_intervals_1.sh [BASH] 

sed -i '1d' exons.txt 

sed -i 's/\(\S\+\)\t\(\S\+\)\t\(\S\+\)\t\(\S\+\)\t\(\S\+\)/\1\t\2\t\3\t\4_\5/g' > 

exons.txt 

 

sort -k1,1 -k2,2n exons.txt > exons.sorted.bed 

wget -c LINK_TO_REPEATMASKER_FA_FILE 

gunzip REPEATMASKER.fa.out.gz 

 

awk -v OFS="\t" '$1=$1' REPEATMASKER.fa.out > REPEATMASKER _tab.fa.out 

grep "Simple_repeat" REPEATMASKER _tab.fa.out >> lowcomplex_simpreps.REPEATMASKER.bed 

grep "Low_complexity" REPEATMASKER _tab.fa.out >> lowcomplex_simpreps.REPEATMASKER.bed 

cut -f5-7 lowcomplex_simpreps.REPEATMASKER.bed > 

lowcomplex_simpreps.cut.REPEATMASKER.bed 

 

sort -k1,1 -k2,2n lowcomplex_simpreps.cut.REPEATMASKER.bed > \ 

   lowcomplex_simpreps.sorted.REPEATMASKER.bed 

bedtools intersect -wb -v -F 0.25 -a exons.sorted.bed  

   -b lowcomplex_simpreps.sorted.REPEATMASKER.bed > exons.masked.bed 

sort -k1,1 -k2,2n exons.masked.bed > exons.masked.sorted.bed 

bedtools intersect -loj -wb -F 0.5 -b exons.masked.sorted.bed \ 

          -a nextera_exome_targets.bed > intersect.txt  

XHMM reference interval – Exome_CNV_reference_interval.R [R] 

library(dplyr) 

library(stringr) 

options(scipen = 999) 

 

# Load data and remove empty fields 

bed <- read.table("intersect.txt",sep="\t",comment.char = "",quote = "",fill = T, 

          stringsAsFactors = F) 

bed <- bed[bed$V1 != ".",] 

bed <- bed[bed$V4 != ".",] 

bed <- bed[,-c(4:6)] 

 

# Keep unique and remove misencoded exons 
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bed <- unique(bed) 

bed <- bed[which(!grepl(bed$V7,perl = T,pattern = "\\S+_\\S+_\\S+")),] 

 

 

# Collapse on genomic position 

bed_col <- bed %>% group_by(V1,V2,V3) %>% 

      summarise_all(funs(paste(unique(.),collapse = ","))) 

# Add padding 

bed_col$V2 <- bed_col$V2 - 10 

bed_col$V3 <- bed_col$V3 + 10 

# Write output 

write.table(bed_col, "cnv_targets_masked_pad_.bed",sep="\t",quote=FALSE, 

row.names=FALSE, 

      col.names=FALSE)  

XHMM reference interval – Exome_CNV_reference_intervals_2.sh [BASH] 

sort -k1,1 -k2,2n cnv_targets_masked_pad.bed > cnv_targets_masked_pad_sort.bed 

bedtools merge -i cnv_targets_masked_pad_sort.bed -c 4 \ 

   -o collapse > COLLAPSE.cnv_targets_masked_pad_sort.bed 

mv COLLAPSE.cnv_targets_masked_pad_sort.bed cnv_targets_masked_pad_sort.bed  
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9.4.4 Miscellaneous scripts 

Discordance – genotype_discord.sh [BASH] 

#!/bin/bash 

## Compress and index for bcftools format 

bgzip INPUT_1.vcf; tabix INPUT_1.vcf.gz 

bgzip INPUT_2.vcf ;tabix INPUT_2.vcf.gz 

 

## Calculate discordance with bcftools 

bcftools gtcheck -R ${REGION} -G 1 -g INPUT_1.vcf.gz INPUT_2.vcf.gz | \ 

  cut -f2,4 | tail -n1 > discord_out 

 

## Convert and calculate percentage of GTs discordant 

SCI_NUMER=$(cut -f1 discord_out) # removes scientific notation for calculations 

NUMER=$(printf "%.0f\n" ${SCI_NUMER}) 

DENOM=$(cut -f2 discord_out) 

PCT=$(bc <<< "scale=4; $NUMER / $DENOM * 100" | sed -r 's/^(-?)\./\10./' | \ 

   awk ' sub("\\.*0+$","") ') 

 

## Convert target file paths to useable sample names 

ECHO_1=$(echo ${INPUT1} | sed 's%\S\+/\(\S\+\)_\S\+%\1%') 

ECHO_2=$(echo ${INPUT2} | sed 's%\S\+/\(\S\+\)_\S\+%\1%') 

Population scripts – population.sh [BASH] 

#!/bin/bash 

cat ${VCF} | grep -m 1 "#C" | tr '\t' '\n' | sed -e '1,9d' > sample_list_pop 

bcftools view -h ${REF_VCF} | grep -m 1 "#C" | tr '\t' '\n' | \ 

sed -e '1,9d' >> sample_list_pop 

 

bgzip -c ${VCF} > ${NAME}.vcf.gz 

tabix ${NAME}.vcf.gz 

bcftools merge -Oz -o ${NAME}_REF.vcf.gz ${NAME}.vcf.gz ${REF_VCF} 

 

vcftools --gzvcf ${NAME}_REF.vcf.gz --thin 2000 --chr chr1 --chr chr2 --chr chr3 --chr 

chr4 \ 

  --chr chr5 --chr chr6 --chr chr7 --chr chr8 --chr chr9 --chr chr10 --chr 

chr11 \ 
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  --chr chr12 --chr chr13 --chr chr14 --chr chr15 --chr chr16 --chr chr17 \ 

  --chr chr18 --chr chr19 --chr chr20 --chr chr21 --chr chr22 --chr chrX \ 

  --min-alleles 2 --max-alleles 2 --non-ref-ac 2 --recode --out ${NAME}_REF 

 

plink1.90 --vcf ${NAME}_REF.recode.vcf --out ${NAME}_REF.maf0.05 --make-bed --maf 0.05 \ 

  --vcf-half-call 'm' --const-fid --biallelic-only --geno 0.05 

 

${ADMIXTURE} ${NAME}_REF.maf0.05.bed 5 

Rscript admixture_plotting.R ${NAME}_REF.maf0.05.5.Q 

Population scripts – admixture_plot.R [R] 

rm(list = ls()) 

## Enable cmd line args 

args = commandArgs(trailingOnly=TRUE) 

 

library(ggplot2) 

library(reshape2) 

library(plotly) 

library(RColorBrewer) 

 

q.table <- read.table(args[1]) 

colnames(q.table) <- c("SAS","EUR","EAS","AFR","AMR") 

 

sample.table <- read.table("sample_list_pop") 

colnames(sample.table) <- c("Sample") 

 

pop.table <- read.table("1KG_samplePopulations.tsv",header = T) 

 

plot.table <- cbind(sample.table,q.table) 

 

merge.table <- merge(plot.table,pop.table[,c(2,4)], 

by = "Sample",all.x = T,all.y = F,sort = F) 

merge.table$pred <- apply(merge.table[2:6],1,function(x) names(which.max(x))) 

 

lapply(sort(unique(merge.table$pred)), 

function(x){print(table(merge.table$Super_population[merge.table$pred == x]))}) 



 

337 
 

 

merge.table <- merge.table[with(merge.table, order(pred)),] 

merge.table$Sample <- factor(merge.table$Sample,levels = merge.table$Sample) 

 

merge.table.cases <- merge.table[is.na(merge.table$Super_population),] 

write.table(merge.table.cases[,-7],"admixture_unknowns.tsv", 

sep = "\t",quote = F,col.names = T,row.names = F) 

 

data.json <- t(merge.table.cases[,1:6]) 

data.json <- cbind(rownames(data.json),data.json) 

save(data.json,file = "admixture_pop.RData") 

 

melt.table <- melt(merge.table,id.vars = c("Sample","Super_population","pred")) 

names(melt.table) <- c("Sample","SuperPop","Pred","Population","Admixture") 

 

P <- ggplot(melt.table[is.na(merge.table$Super_population),], 

    aes(x = Sample, y = Admixture, fill = Population)) + 

       geom_bar(stat = "identity") + 

       ggtitle("Admixture population proportions") + 

       scale_fill_brewer(palette = "Set1") + 

       theme(panel.grid = element_blank(), 

       panel.background = element_blank(), 

       axis.line = element_line(), 

       axis.text.x = element_blank(),axis.ticks.x = element_blank()) + 

       scale_y_continuous(expand = c(0,0)) + 

       scale_x_discrete(expand = c(0,0)) 

png("admixture_unknowns.png",width = 12,height = 3,units = "in",res = 600) 

P 

dev.off() 
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9.4.5 Burden testing scripts 

Burden testing - Association_tests.sh [BASH] 

#!/bin/bash 

if [[ ! -d ${OUTPUT}${PROJECT} ]]; then 

 mkdir ${OUTPUT}${PROJECT} 

fi 

 

if [[ "$MODE" != "no_prep" ]]; then 

 cp tests/* ${OUTPUT}${PROJECT}/ 

 cp ${VCF} ${OUTPUT}${PROJECT}/input_file.vcf 

 mv assoc_log.txt ${OUTPUT}${PROJECT}/ 

 cd ${OUTPUT}${PROJECT}/ 

 VCF="input_file" 

 

## Further vcf filtering removing sites with >10% missing particularly 

 vcftools --vcf ${VCF}.vcf --hwe 0.05 --non-ref-ac-any 1 --minGQ ${MINGQ} \ 

    --minDP ${MINDP} --max-missing ${MISS} --minQ ${MINQ} \ 

   --recode --out ${VCF} 

 mv ${VCF}.recode.vcf ${VCF}.filt.vcf 

 

## Spliting multiallelics 

 java -Xmx30g -jar ${GATK} \ 

  -T LeftAlignAndTrimVariants \ 

  -R /data/Resources/References/${REFERENCE}/${REFERENCE}.fa \ 

  --variant ${VCF}.filt.vcf \ 

  -o ${VCF}.filt.bi.vcf \ 

  --splitMultiallelics 

 

## Generate list of chr files for 

 sed -n '/#CHROM/,$p' ${VCF}.filt.bi.vcf | cut -f1 | sort -u | \ 

   grep -v '#CHROM' > chr_list 

 cat chr_list | xargs -n1 -P${CORES} -I {} mkdir temp_{} 

 cat chr_list | xargs -n1 -P${CORES} -I {} vcftools --vcf ${VCF}.filt.bi.vcf \ 

        --chr {} --recode --recode-INFO-all 

\ 

       --out temp_{}/${VCF}.splt.{} 
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 cat chr_list | xargs -n1 -P${CORES} \ 

   -I {} ${ANNO}table_annovar.pl temp_{}/${VCF}.splt.{}.recode.vcf \ 

   ${ANNO}humandb/ -vcfinput -buildver hg38 -out temp_{}/${VCF}_{} \ 

   -remove -protocol refGene,exac03,dbnsfp30a -operation g,f,f -nastring . 

 

 cat chr_list | xargs -n1 -P${CORES} \ 

   -I {} mv temp_{}/${VCF}_{}.hg38_multianno.vcf 

${VCF}_{}.hg38_multianno.vcf 

 rm -r temp_* 

 sed '/#CHROM/,$d' ${VCF}.filt.bi.vcf > header 

 

 for i in `cat chr_list`; do 

  cat header ${VCF}_${i}.hg38_multianno.vcf > \ 

      ${VCF}_${i}.hg38_multianno.header.vcf 

 done 

 

 ls *.header.vcf > vcf_list 

 

 bcftools concat -o ${VCF}.FINAL.vcf -Ov -f vcf_list 

 

 rm *_multianno*.vcf 

 

## Remove header 

 sed -i -n '/#CHROM/,$p' ${VCF}.FINAL.vcf 

else 

 ## Run vcf processing script 

 mv assoc_log.txt ${OUTPUT}${PROJECT}/ 

 cd ${OUTPUT}${PROJECT}/ 

 VCF="input_file" 

fi 

 

Rscript vcf_prep.R ${VCF}.FINAL.vcf ${PED} ${CORES} ${AF_ref} ${AF_all} \ 

${AF_case} ${AF_cont} ${CONSEQS} 

 

 

Rscript SKAT_test.R 
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Burden testing – vcf_prep.R [R] 

args = commandArgs(trailingOnly=TRUE) 

library(stringr) 

library(stringi) 

library(tidyr) 

library(dplyr) 

library(data.table) 

library(parallel) 

options(scipen=999) 

 

## Load list of excluded samples 

samples_rm <- c() 

CONSEQS <- c("nonframeshift_deletion","nonframeshift_insertion", 

       "frameshift_deletion","stopgain","frameshift_insertion", 

       "splicing","nonsynonymous_SNV","synonymous_SNV","stoploss") 

CONSEQS <- CONSEQS[CONSEQS %in% as.character(unlist(strsplit(args[8],",")))] 

 

## Load column header from vcf file 

col_headers <- fread(args[1],nrows = 1,header = F,sep="\t") 

col_headers <- gsub(pattern = "#",replacement = "",col_headers) 

 

## Load vcf data and append to column headers 

vcf_file <- fread(input = args[1],skip = 1,stringsAsFactors = F, 

         header = F,,sep="\t") 

names(vcf_file) <- col_headers 

vcf_file <- as.data.frame(vcf_file) 

 

## Load case/control T/F data - Sort them into the same order as vcf 

samples <- read.table(args[2]) 

samples <- samples[match(names(vcf_file[10:ncol(vcf_file)]),samples$V1),] 

samples <- samples[!samples$V1 %in% samples_rm,] 

af_unaf <- as.logical(samples[,2]) 

 

## Converting genotypes 

out <- mclapply(vcf_file[10:ncol(vcf_file)],mc.preschedule = T,mc.cores = 2, 

function(x){ 

 x <- stri_replace_all_regex(x,pattern = "^0/0.*",replacement = 0) 
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 x <- stri_replace_all_regex(x,pattern = "^0/1.*",replacement = 1) 

 x <- stri_replace_all_regex(x,pattern = "^1/1.*",replacement = 2) 

 x <- stri_replace_all_regex(x,pattern = "^\\./\\..*",replacement = -9) 

}) 

vcf_file[10:ncol(vcf_file)] <- do.call(cbind.data.frame, out) 

 

## Coerce all genotype columns as.numeric 

vcf_file[,10:ncol(vcf_file)]<-as.data.frame(sapply(vcf_file[,10:ncol(vcf_file)], 

          function(f) as.numeric(as.character(f))),stringsAsFactors=F) 

 

## Adding internal AFs 

cases <- as.character(samples$V1[samples$V2 == TRUE]) 

controls <- as.character(samples$V1[samples$V2 == FALSE]) 

 

intAF <- data.frame(intAF_cases=as.numeric(seq_len(nrow(vcf_file))), 

          intAF_controls=as.numeric(seq_len(nrow(vcf_file))), 

          intAF_set=as.numeric(seq_len(nrow(vcf_file)))) 

 

intAF$intAF_cases <- signif(apply(vcf_file[, 

           which(names(vcf_file) %in% cases)], 

           1,function(x) sum(x != 0) / length(cases)),digits = 2) 

intAF$intAF_controls <- signif(apply(vcf_file[, 

           which(names(vcf_file) %in% controls)], 

           1,function(x) sum(x != 0) / length(controls)),digits = 2) 

intAF$intAF_set <- signif(apply(vcf_file[, 

           which(names(vcf_file) %in% c(cases,controls))], 

           1,function(x) sum(x != 0) / length(c(cases,controls))), 

           digits = 2) 

 

vcf_file <- cbind(intAF,vcf_file) 

## Retrieving annotation information on Allele freq, region function, and mutation 

consequence 

info_split <- as.data.frame( 

 str_split(string = 

 gsub(".*Func\\.refGene=(.*?);.*Gene\\.refGene=(.*?); 

 .*ExonicFunc\\.refGene=(.*?);.*ExAC_ALL=(.*?);.*", 

             replacement = "\\1#\\2#\\3#\\4", 
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             x = vcf_file$INFO), 

      pattern = "#", 

      simplify = T), 

 stringsAsFactors = F) 

 

## Naming annoation information - replacing uncoded 

names(info_split) <- c("FUNC","GENE","CONSEQ","AF") 

info_split$FUNC <- gsub(pattern = "\\\\x3b",replacement = ";",info_split$FUNC) 

info_split$GENE <- gsub(pattern = "\\\\x3b",replacement = ";",info_split$GENE) 

info_split$AF[info_split$AF == "."] <- 0 

info_split$AF <- as.numeric(info_split$AF) 

 

## bind new columns to vcf data 

vcf_file <- cbind(info_split,vcf_file) 

 

## Adding chr:pos ids to rsID column and replacing "." missing value 

vcf_file$ID[vcf_file$ID == "."] <- paste(vcf_file$CHROM[vcf_file$ID == "."], 

                  vcf_file$POS[vcf_file$ID == "."],sep = ":") 

calcID <- paste(vcf_file$ID,vcf_file$REF,vcf_file$ALT,sep = "_") 

vcf_file <- cbind(calcID,vcf_file) 

 

## Add splicing anntation to CONSEQ field 

vcf_file$CONSEQ[vcf_file$FUNC == "splicing" | 

               vcf_file$FUNC == "exonic;splicing"] <- "splicing" 

 

## PCA analysis 

vcf_file_PCA <- vcf_file[vcf_file$AF > 0.05,18:ncol(vcf_file)] 

vcf_file_PCA_t <- as.data.frame(t(vcf_file_PCA)) 

vcf_file_PCA_t <- vcf_file_PCA_t[,which(apply(vcf_file_PCA_t,2,var)!=0)] 

 

PCA.out <- prcomp(vcf_file_PCA_t,center = T, scale. = T) 

PCAs <- as.data.frame(PCA.out$x[,1:5]) 

rm(vcf_file_PCA,vcf_file_PCA_t,PCA.out) 

 

colours <- ifelse(af_unaf == T,"blue","grey") 

colours[which(abs(PCAs$PC1) > sd(PCAs$PC1)*3 & 

      abs(PCAs$PC2) > sd(PCAs$PC2)*3)] <- "red" 
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colours[which(abs(PCAs$PC2) > sd(PCAs$PC2)*3 & 

      abs(PCAs$PC3) > sd(PCAs$PC3)*3)] <- "red" 

 

png(filename = "association_test_PCA.png",width = 16, 

  height = 8,units = "in",res = 600) 

layout(matrix(c(1,2), 1, 2, byrow = TRUE)) 

plot(abs(PCAs$PC1),abs(PCAs$PC2),col=colours,xlab = "PC1", 

  ylab = "PC2", 

  main = "Association tests - PC1 ~ PC2",sub = "Red = Excluded") 

abline(v=sd(PCAs$PC1)*3, col="red") 

abline(h=sd(PCAs$PC2)*3, col="red") 

 

plot(abs(PCAs$PC2),abs(PCAs$PC3),col=colours,xlab = "PC2", 

  ylab = "PC3", 

  main = "Association tests - PC2 ~ PC3",sub = "Red = Excluded") 

abline(v=sd(PCAs$PC2)*3, col="red") 

abline(h=sd(PCAs$PC3)*3, col="red") 

dev.off() 

 

PCA_excluded <- unique(c(rownames( 

    PCAs[abs(PCAs$PC1) > sd(PCAs$PC1)*3 & abs(PCAs$PC2) > sd(PCAs$PC2)*3,]), 

    rownames( 

    PCAs[abs(PCAs$PC2) > sd(PCAs$PC2)*3 & abs(PCAs$PC3) > sd(PCAs$PC3)*3,])) 

    ) 

 

writeLines(PCA_excluded,sep = "\n",con = "PCA_excluded.samples") 

## Adjust Samples and data to remove samples 

PCAs <- PCAs[!rownames(PCAs) %in% PCA_excluded,] 

samples <- samples[!samples$V1 %in% PCA_excluded,] 

 

af_unaf <- as.logical(samples[,2]) 

 

vcf_file <- vcf_file[!colnames(vcf_file) %in% PCA_excluded] 

 

## Filtering vcf data on various traits - Rarity, Function, Consequence 

vcf_file <- vcf_file[vcf_file$CONSEQ %in% CONSEQS,] 

vcf_file <- vcf_file[vcf_file$AF < args[3],] # 0.005 
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vcf_file <- vcf_file[vcf_file$intAF_set < args[4],] # 0.05 

vcf_file <- vcf_file[vcf_file$intAF_cases < args[5],] # 0.2 

vcf_file <- vcf_file[vcf_file$intAF_controls < args[6],] #0.2 

 

save(vcf_file,PCAs,samples,af_unaf,file="association.RData") 

Burden testing – skat_test.R [R] 

## Script for SKAT-O implementation 

rm(list=ls()) 

library(stringr) 

library(stringi) 

library(tidyr) 

library(dplyr) 

library(data.table) 

library(parallel) 

library(SKAT) 

 

## Load data 

load("association.RData") 

## Set missing to 9 

vcf_file[vcf_file == -9] <- 9 

 

## Split by gene 

split_region <- split(vcf_file,as.factor(vcf_file$GENE)) 

 

## Weights 

allele_Freq <- vcf_file$AF 

weights <- Get_Logistic_Weights_MAF(MAF = allele_Freq) 

 

## Setting binary phenotype 

binary <- af_unaf 

binary[binary == T] <- 1 

binary[binary == F] <- 0 

 

## Generating matrix_list 

gene_matrix_list <- mapply(function(x, i){ 
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 mat <- as.data.frame(x) 

 if(nrow(mat) > 1){ 

 col.n <- colnames(mat[c(18:ncol(mat))]) 

 row.n <- as.character(mat[,1]) 

 mat <- as.matrix(t(mat[c(18:ncol(mat))])) 

 rownames(mat) <- col.n 

 colnames(mat) <- row.n 

 return(mat) 

 } 

}, split_region, names(split_region),SIMPLIFY = F) 

 

## SKAT null model 

obj <- SKAT_Null_Model(binary ~ PCAs$PC1, out_type="D") 

## Performing binary SKAT 

out <- mapply(function(x, i){ 

 tryCatchAdv({ 

 cat(paste("[ASSOCIATION TESTS][SKAT] Testing ",i," \n",sep = "")) 

 SKATBinary(as.matrix(x), obj, method = "SKAT", kernel = "linear.weighted") 

 }) 

}, gene_matrix_list, names(gene_matrix_list),SIMPLIFY = F) 

 

skat_results <- do.call(rbind,mapply(function(x, i){ 

  if(length(x$value) == 1){ 

   data.frame(gene=i,pvalue=NA,warning=x$status,description=x$message$message) 

  } else { 

  unique(data.frame(gene=i,pvalue=x$value$p.value,warning=x$status, 

      description=ifelse(!is.na(x$message),x$message$message,NA))) 

  } 

}, out, names(out),SIMPLIFY = F)) 

 

skat_results <- skat_results[order(skat_results$pvalue),] 

skat_results$q.value <- p.adjust(skat_results$pvalue,"fdr") 

 

write.table(skat_results,"skat_output.results", 

      quote=F,row.names=F,col.names=T,sep="\t") 

png(filename = "SKAT_QQ_PC1_MAFw.png", 

   width = 8, 
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   height = 8, 

   units = "in",res = 600) 

QQPlot_Adj( 

Pval = as.numeric(unlist( 

    lapply(out,function(x) if(length(x$value) > 1 ){x$value$p.value}))), 

MAP = as.numeric(unlist( 

    lapply(out,function(x) if(length(x$value) > 1 ){x$value$MAP})))) 

dev.off() 
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9.4.6 Burden testing results 

SKAT-O Burden association testing results (p < 0.01) 

Gene p value q value (FDR corrected) 

FBLIM1 2.55E-06 0.03563319 

SNX30 1.08E-05 0.054276049 

CTSV 1.17E-05 0.054276049 

SLPI 4.89E-05 0.170566669 

PNRC2 0.000134573 0.264815975 

FAM151B 0.000156261 0.264815975 

OR5K1 0.000173994 0.264815975 

SLC23A2 0.000188126 0.264815975 

PRAP1 0.000203361 0.264815975 

SLC19A2 0.000242856 0.264815975 

GPR65 0.000247932 0.264815975 

TBX19 0.000267781 0.264815975 

DPRX 0.000271117 0.264815975 

LILRB3 0.000292 0.264815975 

GFAP 0.00034382 0.264815975 

GSK3B 0.00038061 0.264815975 

OR10P1 0.000399109 0.264815975 

SMPD4 0.000402619 0.264815975 

SC5D 0.000412803 0.264815975 

FBXW4 0.000412876 0.264815975 

PACS1 0.000426772 0.264815975 

COX6A1 0.000433019 0.264815975 

TONSL 0.000436333 0.264815975 

ZNF346 0.000458236 0.266521319 

PRG3 0.000518547 0.289535762 

KCNJ8 0.000654497 0.349503469 

DMRTC2 0.000701635 0.349503469 

LAMTOR5 0.000728328 0.349503469 

CORO1C 0.000735446 0.349503469 

NGDN 0.000751136 0.349503469 

PRSS22 0.000979471 0.413986965 

TMED3 0.001010605 0.413986965 

SLC6A11 0.001012629 0.413986965 

KCNK7 0.001104079 0.413986965 

ZNF250 0.001152795 0.413986965 

CCL4,CCL4L1,CCL4L2 0.001154802 0.413986965 

SLC8B1 0.001170377 0.413986965 

TIGD3 0.001238785 0.413986965 

SH3RF2 0.001254344 0.413986965 

HMGB4 0.001261796 0.413986965 

ZFP57 0.001263514 0.413986965 

LFNG 0.001275334 0.413986965 

RP1L1 0.001323406 0.413986965 

FNDC5 0.001330022 0.413986965 

OR13C4 0.001334581 0.413986965 

VPS33A 0.001388261 0.420908624 

PTGR1 0.001429968 0.420908624 

TBX15 0.001447354 0.420908624 

PSMD8 0.001497021 0.424130617 

KCNN2 0.001519201 0.424130617 

KSR1 0.001570575 0.428019911 

TM9SF4 0.00166613 0.428019911 

ZNF714 0.00173174 0.428019911 

DET1 0.001735973 0.428019911 
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Gene p value q value (FDR corrected) 

ZNF416 0.001737172 0.428019911 

CALHM2 0.001738639 0.428019911 

XPNPEP1 0.00180327 0.428019911 

PANK1 0.001834203 0.428019911 

CLCA4 0.001867313 0.428019911 

CHRAC1 0.001882703 0.428019911 

DUSP6 0.001898997 0.428019911 

CD1E 0.001922296 0.428019911 

HCFC2 0.001931747 0.428019911 

KRTAP4-7 0.001991673 0.434402518 

SERPINB6 0.002032936 0.436580907 

CST8 0.002468087 0.522000314 

DMPK 0.002524601 0.525983717 

IFT88 0.002583276 0.530293297 

HIPK2 0.002741558 0.540888182 

HBP1 0.002774881 0.540888182 

GABRA3 0.002779539 0.540888182 

UBN1 0.002843189 0.540888182 

TEAD1 0.002881216 0.540888182 

PLEKHO1 0.002904529 0.540888182 

ZNF705A 0.002906126 0.540888182 

PKDREJ 0.002966456 0.544852105 

MRPL40 0.003009531 0.545585057 

KPTN 0.003255227 0.5750819 

HIF1A 0.003286868 0.5750819 

NUDT16 0.003322268 0.5750819 

MEDAG 0.00337031 0.5750819 

LRRC74B 0.003418878 0.5750819 

KBTBD4 0.003419428 0.5750819 

LYSMD4 0.003488999 0.579796832 

CTTN 0.003531331 0.579927579 

RRP15 0.003663402 0.580204652 

VAV2 0.003726035 0.580204652 

ITCH 0.00377388 0.580204652 

OR4F4 0.003802435 0.580204652 

FAAH 0.003879128 0.580204652 

PKNOX2 0.003890677 0.580204652 

PHF20L1 0.003900951 0.580204652 

C1QTNF7 0.003969547 0.580204652 

GIMAP7 0.003998001 0.580204652 

ACMSD 0.004026266 0.580204652 

OIT3 0.004037775 0.580204652 

MRPL39 0.004119993 0.580204652 

CLEC17A 0.004121411 0.580204652 

KRTAP5-8 0.004220275 0.580204652 

C17orf78 0.004270211 0.580204652 

PREP 0.004306123 0.580204652 

PPM1A 0.004327817 0.580204652 

SLC22A15 0.004388291 0.580204652 

HOXC10 0.004395015 0.580204652 

C4orf27 0.004403175 0.580204652 

LGALS12 0.004405881 0.580204652 

SLC5A1 0.004775543 0.618382577 

SPEG 0.004802565 0.618382577 

FYTTD1 0.004828691 0.618382577 

AMDHD1 0.004920644 0.621823193 

MS4A2 0.004982337 0.621823193 

CPA2 0.004989197 0.621823193 

CA14 0.005035638 0.622057282 
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Gene p value q value (FDR corrected) 

C10orf12 0.005226798 0.633847033 

ADGRD1 0.005236317 0.633847033 

AKR1C4 0.005269664 0.633847033 

TAOK3 0.005319086 0.633847033 

ZNF430 0.005409051 0.633847033 

KIF5C 0.005501874 0.633847033 

GPD1L 0.005573342 0.633847033 

REEP6 0.005585432 0.633847033 

SH2B2 0.005632483 0.633847033 

ST6GAL1 0.005812554 0.633847033 

B3GALT2 0.005854457 0.633847033 

SPAG16 0.005854845 0.633847033 

MYH1 0.005855493 0.633847033 

SEC22C 0.005857836 0.633847033 

PDE12 0.005923886 0.633847033 

FGD5 0.005942027 0.633847033 

ENTPD4 0.005963749 0.633847033 

RPUSD2 0.005966535 0.633847033 

SCGN 0.005993825 0.633847033 

ASB18 0.00607613 0.637719549 

TGFBI 0.006237223 0.646677384 

LRIT1 0.006254133 0.646677384 

ZFP42 0.006335164 0.647966604 

DMTF1 0.00635944 0.647966604 

DAPK2 0.006461977 0.65364307 

ARMC7 0.006550323 0.657812621 

A1CF 0.006613826 0.659445725 

NAV3 0.006892369 0.682344512 

CDCA3 0.007109488 0.698882698 

ADCY7 0.007281647 0.710800775 

DDX54 0.00742003 0.715038593 

RBM15 0.007427509 0.715038593 

SAMD7 0.007565645 0.720872629 

C5orf60 0.007591395 0.720872629 

TMA16 0.007668263 0.723251946 

STT3B 0.007736165 0.724759272 

BROX 0.00785703 0.72911864 

GOLIM4 0.007887163 0.72911864 

PADI1 0.008077093 0.733139724 

TRMT2A 0.008090709 0.733139724 

SLC36A4 0.008095321 0.733139724 

OR2AG1 0.008142547 0.733139724 

ADAMTS2 0.00825169 0.733139724 

MYL2 0.008371296 0.733139724 

CXCL1 0.008418193 0.733139724 

EPHB4 0.008434813 0.733139724 

APITD1,APITD1-CORT 0.008535441 0.733139724 

FCRL2 0.008538744 0.733139724 

LCN12 0.008551669 0.733139724 

CWC27 0.008560912 0.733139724 

MAEL 0.008794906 0.747131388 

CHPF 0.00883134 0.747131388 

VSIG10L 0.009300606 0.764899502 

AXIN1 0.009328601 0.764899502 

FPR3 0.009450124 0.764899502 

ZNF202 0.009477217 0.764899502 

SGPP2 0.009572906 0.764899502 

SLC35F1 0.009585344 0.764899502 

GAN 0.009703024 0.764899502 
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Gene p value q value (FDR corrected) 

WLS 0.009774578 0.764899502 

KCNB1 0.009842355 0.764899502 

LIPF 0.009844052 0.764899502 

PIGA 0.009867894 0.764899502 

OR1S2 0.009888138 0.764899502 

CHCHD2 0.009898729 0.764899502 

CNN1 0.009907776 0.764899502 

ENAH 0.009977957 0.764899502 
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9.5 Chapter 6 RCC-associated translocations 

9.5.1 Copy number and structural variant calling scripts 

Copy number calling – CANVAS.sh [BASH] 

Canvas CNV Caller (version 1.38.0.1598) was used to call copy number variation from WGS BAM 

files. Reference genomes and required supporting files were downloaded from http://canvas-cnv-

public.s3.amazonaws.com/ for GRCh38. The following command was used to generate copy 

number alterations; 

#!/bin/bash 

 

for SAMPLE in `cat /home/pss41/translocs_rcc/canvas_samples.list`; do 

 mkdir ${OUTPUT}${SAMPLE}_canvas 

 cd ${OUTPUT}${SAMPLE}_canvas 

##decoy VCF files 

 echo –e “${DECOY_VCF_HEADER" > ploidy.vcf 

dotnet ${CANVAS} SmallPedigree-WGS -b ${INPUT}${SAMPLE}${SUFFIX} \ 

   --population-b-allele-vcf ${CANVAS_RESOURCES}${BUILD}/dbsnp.vcf \ 

   -o ${OUTPUT}${SAMPLE}_canvas \ 

       -g ${CANVAS_RESOURCES}${BUILD}/Sequence/WholeGenomeFasta/ \ 

   -r ${CANVAS_RESOURCES}${BUILD}/Sequence/WholeGenomeFasta/genome.fa 

\ 

   -f ${CANVAS_RESOURCES}${BUILD}/filter13.bed \ 

   --ploidy-vcf ploidy.vcf 

 tabix CNV.vcf.gz 

 bcftools view -f "PASS" -o ${SAMPLE}_canvas.vcf -Ov CNV.vcf.gz 

 

sed -n '/#CHROM/,$p' ${SAMPLE}_canvas.vcf | grep -v '#CHROM' | \ 

 sed 's%\(\S\+\)[10]%\3\t\1|\2|\3|\4|\5|\6|\7|\8|\9%g' | \ 

 sed -r 's%Canvas:GAIN:%%g' | sed -r 's%Canvas:LOSS:%%g' | \ 

 sed -r 's%Canvas:REF:%%g' | \ 

 sed 's%\(\S\+\):\(\S\+\)-\(\S\+\)\t\(\S\+\)%\1\t\2\t\3\t\4%g' > 

${SAMPLE}_canvas.bed 

bedtools intersect -wa -wb -a ${SAMPLE}_canvas.bed -b ${BED} > 

${SAMPLE}_annotated_canvas.bed 

done 
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Structural variant calling – MANTA.sh [BASH] 

Manta Structural variant caller (version 1.3.1) was used to identify candidate chromosomal break 

points matching cytogenetic banding and assess if structural variants had impacted on known RCC 

predisposition genes (VHL, MET, FH, SDHB, SDHD, SDHC, BAP1, CDKN2B). The following 

command was used to generate SV calls using Manta; 

#!/bin/bash 

 

configManta.py --bam=${SAMPLE}.bam \ 

 --referenceFasta=${REFERENCE}.fa \ 

 --runDir=${OUTPUT_FOLDER} 

 

${OUTPUT_FOLDER}/runWorkflow.py -m local -j 8 
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9.5.2 IGV visualisations of translocation break point 

t(2;17)(q21;q11.2) 
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t(3;6)(p14.2;p12) 
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inv(3)(p21.1q12) 
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t(3;14)(q13.3;q22) 
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t(10;17)(q11.22;p12) 
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9.5.3 Sanger sequencing of translocation break points 

Translocation break point primers 

 

 

Translocation 

Pair one (5’ to 3’) Pair two (5’ to 3’) 

Left Right Left Right 

t(2;17)(q21;q11
.2) 

TTCTGGCAGCGGGTCC
A 

CAAAAGGGCAGCAATG
AACCA 

TTCAATGATGTCATACTAG
CAGCTT 

GTGGACTTCAGGGAGA
TGCG 

t(3;6)(p14.2;p1
2) 

TCACCTGAAGTCTCTTC
TTTCTT 

CTCCAGGAAGTGATAC
ATGGAA 

GTCCTGTTTCCCTAGTCC
TGC 

AGGGAGGCAAGAAGGA
AGTG 

inv(3)(p21.1q1
2) 

Failed to generate PCR products – 3 independent primer sets and nested primers 

t(3;14)(q13.3;q
22) 

CCCCAACAAACCCCAC
AACA 

TGGACTCTGTATTCTGT
TCCGT 

GAGCTGAGATCATGCCAT
TGT 

CTGAGTGGAGTCTGTAT
TTCCCA 

t(10;17)(q11.22
;p12) 

GGCCACAATACTATGT
CTCACC 

ATACATGCGCACACAA
GGTC 

GGGACAGTGGAGAACGC
AT 

AAATTAGCTGGGCATGG
TGG 
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