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ABSTRACT. 

 
 
Changes in thermokarst lakes have been identified across many high-latitude ecosystems at 

different spatial and temporal scales. With the declassification of the Landsat archive in 2008, it 

is now possible to conduct a near-complete yearly time series of homogenous geospatial imagery 

to assess the trends seen in thermokarst lake surface area. By implementing an automated land-

cover classification algorithm, this study examined the dynamics of lake surface area over 

different spatial and temporal scales in the Tuktoyaktuk Peninsula, Northwest Territories, 

Canada. Due to the presence of a statistically significant structural temporal break between the 

years 1997 and 1998, lake areal trends were estimated at two temporal scales, a longer term scale 

(1985 to 2011) and its component shorter scales (1985 to 1997 and 1998 to 2011). Large lakes 

saw the greatest changes both in lake areal increase and decreases at all temporal scales, and was 

suggested to drive the overall changes in surface area. In addition, regional differences were 

observed in the spatial distribution of individual lake area trends. On the broad scale, a latitudinal 

divide bifurcated the peninsula into two regions of approximately equal area, where the northern 

region exhibited general trends of lake areal decline, while the southern region exhibited general 

trends of lake areal increase. Within these regions, meso- and local hot and cold spots were 

identified, some that exhibited trends in concordance with local surroundings, while others 

represented local spatial heterogeneity in areal trends. The spatiotemporal trends in lake area 

were suggested to be influenced at varying scales by atmospheric and climate variables, and by 

ground characteristics such as coincident permafrost and surficial geology. As the Arctic 

continues to warm, a continued observation of thermokarst lake evolution over both broad 

landscapes and localised regions will be increasingly valuable to future studies that investigate the 

resulting transformation of the Arctic permafrost region.     
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1.  INTRODUCTION. 

 

 

1.1. Rationale. 

 

Arctic tundra ecosystems have experienced substantial warming in recent decades, and are 

projected to continue warming into the future (Serreze et al. 2000). One of the most direct 

manifestations of polar climate warming on land is the thawing of permafrost, which in turn 

directly alters the landscape terrain of the tundra ecosystem, for example, through the changes 

seen in thermokarst thaw lake cover (Osterkamp et al. 2000, Jorgenson et al. 2010). In particular, 

thermokarst lakes are a primary mechanism of permafrost modification as they change in size, 

coalesce with nearby lakes, or migrate across the landscape (Kozlenko and Jeffries 2000).  

 

A variety of remote sensing approaches have been previously implemented to monitor lake 

change in Arctic permafrost regions (e.g. Yoshikawa and Hinzman 2003, Smith et al. 2005, 

Grosse et al. 2006, Plug et al. 2008); with the declassification of military satellite imagery such as 

the Landsat Archive (Woodcock et al. 2008), these approaches have become increasingly 

automated due to the increase in the amount of input imagery. However, many of these studies 

have not adequately accounted for intra- and inter-annual variability that almost certainly affect 

change measured at multiple scales. Furthermore, many of these studies were conducted over 

several decades with little reference to intra- and inter-annual variation in surface processes, or 

the large-scale atmospheric processes that likely drive such processes. Understanding the 

response of thermokarst lakes to changes in permafrost, and to the direct and indirect effects of 

climate change in a geospatial context will be important in understanding and predicting the 

relationship between permafrost, thermokarst lakes, and the situated climate system (Schuur et al. 

2007).  

 

1.2. Purpose. 

 

The overall goal of this study was to investigate trends in thermokarst lake changes in regions of 

continuous permafrost using new techniques for land cover classification. The study area chosen 

for this study was the Tuktoyaktuk Peninsula, described further in Chapter 3. The study was 

made possible by the declassification of the Landsat archive in 2008, which provided new 
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opportunities for a near-continuous analysis of land and lake cover trends. In this regard, an 

unsupervised automated technique on land cover classification was devised and implemented to 

process substantial amounts of Landsat satellite imagery to provide a multidecadal time series of 

lake coverage. The overall study goal can be separated into three component objectives:  

 

1. To quantify changes in the direction and magnitude of thermokarst lake surface areal 

trends over a multidecadal period; 

2. To determine the spatiotemporal distribution of lake surface areal trends at various 

scales; and 

3. To investigate the influence of meteorological conditions in order to best explain the 

mapped changes in lake area. 

 

Because thermokarst lakes change in size and number due to regional climatic fluctuations, the 

trends seen in thermokarst lake area and number may be an important signal of more widespread 

changes throughout the Arctic. The results of the project will therefore hopefully add to the 

body of work concerning the interspecific relationships between thermokarst lakes and their 

surrounding environment, and aid in developing methods in processing and classifying large 

amounts of satellite imagery.  
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2.  BACKGROUND.   

 

 

2.1. Properties and dynamics of permafrost. 

 

2.1.1. Description of permafrost. 

 

Permafrost, which is defined as the frozen ground that remains at or below 0 C for two or more 

consecutive years (Zhang et al. 1999), forms a nearly continuous layer in the northern 

hemisphere, covering 25.5 million hectares, or 23% of the total land area (Brown et al. 1997). 

This specified area is traditionally divided into four zones based on the percentage of land area 

underlain by permafrost (Figure 2.1): the continuous permafrost zone (90 to 100%), the 

discontinuous permafrost zone (50 to 90%), the sporadic permafrost zone (10 to 50%), and the 

isolated permafrost zone (0 to 10%; Brown et al. 1997). The temperature, thickness, and 

geographic continuity of permafrost are controlled to a large extent by the surface energy balance, 

and therefore vary strongly with latitude (Schuur et al. 2008). Permafrost thickness spans a wide 

range, where the typical thickness ranges between 100 to 800 metres (m), 25 to 100 m, and 10 to 

50 m in the continuous, discontinuous, and sporadic zones, respectively (Anisimov and Reneva 

2006).  

 

Overlying the permafrost is the active layer, the uppermost layer of soil that undergoes seasonal 

thawing each summer and freezing the following winter. The depth of the active layer ranges 

from a few centimetres in the sporadic permafrost zone to over a metre along the Arctic 

coastline and varies in thickness depending on the season (Figure 2.2; Brown et al. 2000). The 

permafrost table separates the active layer from the permafrost column, and delineates the upper 

boundary of perennially frozen soil depending on seasonality. Therefore, permafrost exhibits 

little to no annual temperature cycle (Anisimov et al. 1997). As the permafrost is essentially 

impermeable to water infiltration, the active layer is often saturated despite the often arid climate 

of the Arctic. On warming tundra terrain, the thawing of the various ground layers and deposits 

of underground ice cause the affected land surface to subside and collapse to form pits and 

hummocks, known as thermokarst (Davis 2003). Although the active layer freezes predominantly 

from the surface downwards, unfrozen water may still be present in the layer at any time during 

the year (Sturm et al. 2005). This process establishes major thermal and hydrological implications, 
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notably forming a liquid water phase system that provides a fast conduit for convective heat and 

water flow to and from the surface (Boike et al. 1998), a phenomenon apparent in the thermal 

regime of thermokarst lakes (explained in Section 2.2.2).   

 

 

 

 

Figure 2.1. Spatial depiction of the latitudinal zonation of permafrost. From Brown et al. (1997).  

 

 

Due to the prolonged cold of the Arctic winter, the active layer is further insulated by layers of 

drift snow largely trapped by tundra shrubs that blanket the tundra in significant amounts for 

two-thirds of the year (Sturm et al. 2005). Thicker snow produces higher winter soil 

temperatures and provides a source for soil moisture recharge during the spring when runoff 

from melt is highest (Sturm et al. 2001). The insulation provides a favourable thermal 

environment for microbes that aid plant survivability through the winter (Buckeridge and 
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Grogan 2008, Gouttevin et al. 2012). Because Arctic shrubs and other vegetation classes were 

found to exert control on both soil temperatures and the amount of water reaching the active 

layer (via evapotranspiration and the presence of a surface organic layer), vegetation dynamics 

may influence permafrost temperatures by altering the composition and thickness of the active 

layer (Runyan and O'Dorico 2012).  

 

 

 

 Figure 2.2. Thermophysical model of permafrost in a periglacial environment, relative to 0C. From Dobinski 

(2011).  

 

2.1.2. Permafrost and climate warming. 

 

As permafrost is a thermal system with a delayed response to climate forcing due to the thermal 

and compositional properties of the frozen ground, the present state of permafrost is best 

described as a combination of former climatic conditions and present-day climate (Harris et al. 
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2009). Borehole measurements of ground temperature have produced a unidirectional trend of 

permafrost warming in the past several decades across the Arctic (ACIA 2005, Osterkamp and 

Jorgenson 2006, Osterkamp et al. 2009). The response of tundra permafrost to longer-term 

temperature change is dependent upon a multitude of variables, most importantly thermal 

conductivity, soil ice content, and present permafrost thickness (Dobinski 2011). The process of 

permafrost degradation is inherently complicated, because once initiated, permafrost may either 

persist in disequilibrium with the surrounding warmer climate, or degrade rapidly due to 

saturation along the perimeter of the permafrost table (Vitt et al. 2000).  

 

Permafrost stability is a condition that is principally a product of climate change over various 

periods and magnitudes, causing permafrost to persist for up to thousands of years or to be 

newly formed during cold, snow-poor winters and persist only for several years (Jorgenson et al. 

2010). Although air temperatures increased by as much as 20 C during the Pleistocene-

Holocene transition, as indicated by oxygen isotope analysis of Greenland ice cores (ACIA 2005), 

permafrost temperatures have warmed 2 – 4 C from the Little Ice Age and around 3 C in the 

last 20 years of the 20th century (Lachenbruch and Marshall 1986, Osterkamp and Romanovsky 

1999, Jorgenson et al. 2010), with the highest warming trends located over central Siberia and the 

northwestern American continent (Chapman and Walsh 1993, Serreze et al. 2000). Because 

much of the permafrost around the world (especially zones of discontinuous and sporadic 

permafrost) is within a few degrees of thaw (e.g. Osterkamp 2007), recent Arctic temperature 

warming is expected to have a large impact on these periglacial areas.  

 

It is important to note that the impact of climate change on permafrost is indirect, as permafrost 

is part of a complex geo-ecological system that also plays an important role in the dynamics of 

the pedosphere, the outermost soil layer of the Earth (Shur and Jorgenson 2007). The thermal 

regime of permafrost is mediated by factors such as topography, surface and ground water, soil 

properties, vegetation, and snow, all of which interact with each other to form positive and 

negative feedbacks to affect permafrost stability (Jorgenson et al. 2010).  
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2.2. Thermokarst basin and lake formation. 

 

2.2.1. Thermokarst basin formation and development. 

 

The thawing of permafrost often results in thermokarst terrain, which is characterized by 

irregular basins that forms pits and hummocks over the tundra landscape. Thermokarst basins 

range in size from 0.1 to 15 km in diameter and from 3 to 40 m in depth (Desyatkin et al. 2009), 

and often remain frozen for up to 9 months of the year with an ice thickness of up to 2 m 

(Hinkel et al. 2012). Typical features of thermokarst basins are a steep depression surrounding a 

flattened bottom, grassland vegetation around the perimeter, and often a central lake (French 

2007, Katamura et al. 2007).  

 

Thermokarst development involves several processes: 1. ice thaw and terrain subsidence; 2. 

ponding; 3. surface and subsurface drainage; 4. surface and subsurface subsidence and 

stabilization; and 5. associated surface and subsurface erosion (Yoshikawa and Hinzman 2003). 

As described in Toniolo et al. (2009), thermokarst subsidence occurs when the surface energy 

balance is altered by any of these above processes. Changes in the energy balance increases the 

heat flux downwards into the subsurface, initiating thaw of ice wedges and forming depressions 

in the terrain. The shorelines stabilise as the ground subsides, while the depressions are further 

shaped by erosion and sedimentation.  

 

2.2.2. Thermokarst lake formation and dynamics. 

 

Ponding of thermokarst depressions can occur when conditions are favourable for surface water 

retention. Most lakes formed in thermokarst basins are sufficiently shallow to have a permafrost 

layer beneath their littoral terraces (Burn 2002, 2003). Often, ice-rich permafrost as well as a high 

permafrost table acts as an aquiclude, retaining water at the surface and restricting the ability of 

soil thaw melt to percolate to deeper groundwater zones (Yoshikawa and Hinzman 2003). When 

the lake depth exceeds the maximal winter ice cover thickness, an unfrozen reservoir of water 

persists throughout the year, maintaining a net positive heat flow into the basal sediments (Smith 

1976), and disrupts the thermal stability of near-surface permafrost (Hinkel et al. 2012).  

 

At high latitudes, thermokarst lakes present the greatest thermal departure at the ground surface 

from systematic and spatially coincident climate patterns (Lachenbruch et al. 1962). The findings 
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by Burn (2005), who investigated the thermal regimes of tundra lakes on Richards Island in the 

Mackenzie Delta, Northwest Territories, clearly illustrate the extreme warming influence of lakes 

on surrounding permafrost ground by attributing the thermal phenomenon to within-lake heat 

exchange processes. Although the lakes are uniformly well-mixed and reach similar lake-bottom 

temperatures regardless of depth during the summer, a vertical temperature gradient exists 

during the winter that is dependent on the thickness of the lake ice. This thermal gradient 

increases with depth, where deeper water was found to be substantially warmer (at about 3 C) 

than on shallow terraces within the same lake (at about -2 C). Because the active layer in 

terrestrial permafrost exhibits a similar thermal regime to the seasonal maximum ice thickness in 

an lacustrine environment, a comparison of these two environments throughout their vertical 

profiles reveals three processes of lake influence on surrounding permafrost: 1. the ratio between 

winter  and summer heat transfer coefficients; 2. storage of accumulated summer heat beneath 

lake snow cover; and 3. an asymmetry of lake-ice freezing and thawing geometries (Smith and 

Riseborough 1996, Riseborough 2006). Consequently, the large thermal effect of water bodies in 

permafrost regions may be attributed to the heat exchange processes associated with them 

(Riseborough 2006), and the presence of thermokarst lakes represents a local process of local 

climate warming.  

 

Because thermokarst lakes are sensitive to local processes and regional climate variability, they 

may exhibit: 1. changes in the water balance and level of the lake through three-dimensional 

expansion; 2. increased groundwater outflow due to permafrost melt; and 3. erosion and melting 

of the shoreline by thermokarst processes (Marsh et al. 2008). Lake size is largely dependent on 

ground ice volume, regional relief, and surface age (Sellmann et al. 1975), and may grow or 

shrink in the timespan of between several years to decades. Lakes with an unstable permafrost 

base may be more susceptible to lateral permafrost erosion, which increases the surface area of 

the lake (Jorgenson and Osterkamp 2005). Sub-lacustrine permafrost may also degrade vertically 

through talik expansion, which can proceed until the lake bottom intersects the sub-permafrost 

groundwater systems.  

 

Once the permafrost underneath lakes thaws, the interactions between surface water and 

groundwater drainage networks become largely controlled by the composition of the 

surrounding soil and the presence of topographical and hydraulic gradients (Grosse et al. 2013), 

resulting in either lake shrinkage through subsurface drainage or growth through groundwater 

recharge (Yoshikawa and Hinzman 2003). Coarse-grained sandy soil may promote lake drainage, 
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while fine-grained silty soil may act as an aquiclude similar to permafrost, promoting surface 

water ponding (Burn 2002, Roach et al. 2013). In addition, the presence of ice structures is often 

found in permafrost with silty soil, and the degradation of these structures can promote net 

increases in lake area, particularly in regions of continuous permafrost (Smith et al. 2005, 

Riordan et al. 2006). Sub-lacustrine permafrost degradation can lead to a reduction in lake area 

over annual and decadal periods by increasing water infiltration into the deepening active layer, 

reducing the amount of run-off available to recharge these lakes (Barber et al. 2000, Roach et al. 

2013). In contrast to the above noted gradual declines in lake area, thermokarst lakes have also 

been noted to drain rapidly due to melting of an outlet channel into shallow superpermafrost 

groundwater systems (Marsh et al. 2008, Marsh et al. 2009). The mechanisms of lake water loss 

through these conduits have been explained by Mackay (1981, 1997), who investigated 

permafrost growth by artificially draining selected lakes around the Mackenzie Delta, Northwest 

Territories; after drainage, the resulting lake basins experienced a reduction in active layer depth 

from water loss and freeze-thaw consolidation, and was accompanied by frost heave and the 

growth of aggradational ice.  

 

 

 

2.3. Spatial and temporal trends in high-latitude lake cover. 

 

Thermokarst lake changes across the Arctic tundra region have been observed by experimental 

field methodologies at the local scale, and confirmed by remote sensing at the regional and the 

circumpolar scale. These observations are reported and summarized in Table 2.1.  

 

A majority of studies have reported unidirectional decreases in lake number and surface area 

worldwide over the entire time series of modern satellite data; these study areas are typically 

located in regions of discontinuous and sporadic permafrost (Yoshikawa and Hinzman 2003, 

Smith et al. 2005, Riordan et al. 2006, Kirpotin et al. 2009, Sannel and Kuhry 2011, Roach et al. 

2013). These changes have all been suggested as ramifications of a warming climate. Conversely, 

areas located in regions of continuous permafrost have experienced decreases in lake surface area 

only within the last three decades (Plug et al. 2008, Labrecque et al. 2009). These trends are 

furthermore considerably weaker than that of the more southerly areas, as other studies in 

continuous permafrost regions have found negligible or even increasing trends (Smith et al. 2005, 

Riordan et al. 2006). Therefore, areas situated within the zone of continuous permafrost are 
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instead better characterised by spatial heterogeneity (Duguay et al. 1999, Smith et al. 2005, 

Riordan et al. 2006), where lake increases have been observed along with lake decreases in the 

same area, highlighting a potential for resiliency at finer spatial scales (Roach et al. 2013).  

 

Changes in the inter-annual variability in lake extent have been attributed to a range of potential 

atmospheric and climate-related drivers, all of which are related to a warming Arctic. A rise in 

Arctic surface temperatures is thought to be the primary source that alters the thermokarst lake 

equilibrium, affecting thermokarst processes and permafrost degradation (Yoshikawa and 

Hinzman 2003, Smith et al. 2005, Jepsen et al. 2013a), increased potential evapotranspiration 

(Riordan et al. 2006, Smol and Douglas 2007), atmospheric teleconnection patterns (Labrecque 

et al. 2009), increased terrestrialisation (Payette 2004, Roach et al. 2011), and/or 

hydrogeomorphic characteristics (Arp et al. 2011). Additionally, because the recharge of Arctic 

lakes is an important component in the lake water balance budget (Gibson and Edwards 2002), 

precipitation has a considerable effect on variations in the areal extent of thermokarst lakes (Plug 

et al. 2008, Tarasenko 2013). The strength of these relationships highlights the dynamic coupling 

between thermokarst lakes and its surrounding ecosystem.  
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Table 2.1. Recent reported studies of thermokarst lake changes in high-latitude ecosystems.  

Region Study Site [permafrost zone] Image source [count] Time period  Observed changes 

Alaska Yoshikawa and Hinzman (2003)  Council, Seward Peninsula 

[Discontinuous]  

Aerial photography, 

IKONOS 

1950 – 2000  Thermokarst developed in areas with high alluvium 

deposits and ice-wedge polygonal terrain from 

1981 to 2000. Thermokarst ponds over ice-wedge 

terrain decreased in area over the entirety of the 

last century through internal drainage in taliks.  

 Riordan et al. (2006) Arctic Coastal Plain 

[continuous]; Boreal forest 

regions [discontinuous] 

Aerial photography 

[35], Landsat 

TM/ETM+ [14] 

1951 – 2002  Shallow closed-basin ponds decreased in area  

(-27%) and number (-49%) in all boreal forest 

regions. Arctic Coastal Plain closed-basin ponds had 

little change in area.  

 Jones et al. (2011) Northern Seward Peninsula 

[continuous]  

Aerial photography 

[25], IKONOS [2] 

1950 – 2007 Lakes increased in number (+10.7%) but decreased 

in area (-14.9%). Large lakes (>40 ha) decreased in 

number (-24%) and area (-26%). Drainage of lakes 

was due to lateral breaching rather than 

subterranean infiltration.  

 Rover et al. (2012) 

Jepsen et al. (2013b) 

Yukon Flats, central Alaska 

[discontinuous] 

Landsat MSS [3], TM 

[12], ETM+ [5] 

1979 – 2009 3.4% of lakes decreased in area while 86% of lakes 

exhibited no change in extent. 59.9% of lakes 

decreased in area through the growing season. 

Shallow permafrost dynamics have a high degree of 

control over lake area through groundwater flow.  

 Roach (2011)  

Roach et al. (2011)  

Nicol et al. (2013) 

Roach et al. (2013) 

National Wildlife Refuges, 

central Alaska 

[discontinuous] 

Aerial photography 

[82], Landsat 

TM/ETM [78] 

1948 – 2009 Decreases in lake area in the Yukon Flats  

(-2.96%/year), Innoko NWF (-1.54%/year), and 

Kanuti NWR (-1.50%/year). Slight increases in lake 

sarea in the Yukon Flats West (0.31%/year). No 

significant changes in lake area in Tetlin and Yukon 

Flats East areas. Lakes with decreasing areas were 

most likely found in burned area, on coarser, well-

drained soils, and farther from rivers. Spatial 

heterogeneity in lake areal trends were seen in all 

study areas.  

1
1
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Table 2.1 (continued).  

Region Study Site [permafrost zone] Image source [count] Time period  Observed changes 

Canada Duguay et al. (1999) Old Crow Flats, northern 

Yukon Territory 

[continuous]  

Landsat TM 1986 – 1999 While there were both increases and decreases in 

individual lakes, there was an insignificant change 

in overall lake area.  

 Plug et al. (2008) Tuktoyaktuk Peninsula, 

Northwest Territories 

[continuous] 

Landsat MSS [2], TM 

[6], ETM+ [6] 

1978 – 2001 Increases in lake area occurred primarily between 

1978 – 1992, and decreases between 1992 – 2001, 

and were dependent on total precipitation for the 

12 months preceding the growing season.  

 Labrecque et al. (2009) Old Crow Basin, northern 

Yukon Territory 

[continuous]  

Aerial photography 

[2], Landsat ETM+ [1] 

1951 – 2001 General increases in lake area occurred primarily 

between 1951 to 1972, and decreases between 

1972 – 2001. Overall decrease in lake area (-3.5%) 

occurred during entire study period. These 

decreases typically occurred in large lakes, whereas 

smaller lakes generally increased in area.  

 Marsh et al. (2009) Eastern Mackenzie Delta 

and Southern Tuktoyaktuk 

Peninsula, Northwest 

Territories [continuous]  

Aerial photography 1950 – 2000 Highest rate of lake drainage occurred between 

1950 – 1973 (~1 lake/year). The rate of drainage 

decreased over the following time periods 1973 – 

1985 and 1985 – 2000 (to ~0.3 lakes/year), related 

to the effect of a warming climate.  

 Carroll et al. (2011) Canadian Arctic (50 N - 

70N) [various] 

MODIS 2000 – 2009 A total of ~0.8 million lakes were mapped to cover 

the study area. Small gains in lake area occurred in 

the southern regions were offset by larger losses in 

the North, which resulted in a net decrease in lake 

area during the entire time period (-6,700 km2).  

      

 

  

1
2
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Table 2.1 (continued).  

Region Study Site [permafrost zone] Image source [count] Time period  Observed changes 

Fennoscandia Sannel and Kuhry (2011) Hudson Bay Lowlands, 

Canada; Tavvavuoma, 

Sweden; Rogovaya, 

European Russia 

[various] 

Aerial photography 

(5), Quickbird (2), 

IKONOS (1) 

1954 – 2003 High rate of lake drainage occurred in the peat 

plateau of Tavvavuoma (sporadic permafrost zone), 

along with infilling of fen vegetation. Low rates of 

lake drainage in the Hudson Bay Lowlands and 

Rogovaya (continuous and discontinuous 

permafrost zones).  

Siberia Smith et al. (2005) Yamalo-Nenets 

Autonomous Okrug, Siberia  

[various]  

Landsat MSS (38), 

MODIS 

1973 – 2004 Decreases in large lake area (-11%) and total lake 

area (-6%) between 1972 – 1998. Increases in total 

lake area (+12%) and number (+4%) in areas of 

continuous permafrost, with decreases in total lake 

area (-9%, -5%, -6%) and number (-13%, -12%,  

-11%) in areas of discontinuous, sporadic, and 

isolated permafrost zones, respectively.  

 Kirpotin et al. (2008) 

Kirpotin et al. (2009) 

Yamalo-Nenets 

Autonomous Okrug, Siberia 

[various] 

Landsat MSS, TM, 

ETM+, Resurs-F2, 

Spot-5, ERS-2, ALOS 

1973 – 2007 Increases in lake area in areas of continuous 

permafrost (+10 – +12%), but decreases in lake 

area in areas of discontinuous permafrost  

(-21 – -29%).  

 Kravtsova and Bystrova (2009) 

Kravtsova and Tarasenko (2010) 

Tarasenko (2013) 

Central Yakutia, Siberia 

[continuous]  

Landsat TM/ETM+ 2000 – 2009 Decreases in lake area during summer periods 

(June to August). Increases in large lake area from 

1976 – 2000 due to the water phase cycle from low 

to high during this period.  

1
3
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2.4. Remote Sensing of land cover and the advent of free satellite imagery. 

 

2.4.1. History of land cover remote sensing.  

 

A key component to large-scale global change research is the use of satellite imagery and remote 

sensing techniques to assess and monitor the state of the changing surface of the Earth. Remote 

sensing is an increasingly attractive option to depict and classify land cover, as it represents the 

Earth’s surface in a consistent and continuous approach over large scales (Foody 2002). 

Importantly, remote sensing provides an efficient means of obtaining spatial and temporal trends 

in dangerous or inaccessible areas, such as the majority of the Arctic region.  

 

Past studies that examined lake change through time have used a combination of historical aerial 

photography and modern satellite imagery, and often have determined change in lake surface 

area by a combination of manually delineating lake extent from these sources (Yoshikawa and 

Hinzman 2003, Riordan et al. 2006). Although manual lake delineation of satellite imagery 

generally produces accurate results, it is inherently subjective and labour intensive, and 

increasingly time consuming depending on the amount of data (Bolstad et al. 1990). Therefore, 

automated methods of terrain and lake cover classification are becoming increasingly favoured, 

given two primary pretexts: 1. the launch of several new satellite platforms within the turn of the 

new millennium; and 2. the recent declassification of Landsat satellite imagery by the United 

States Geological Survey (USGS). The latter pretext is important to the context of the study, and 

is discussed further in the following section (Section 2.4.2.) 

 

While lakes and other water bodies may be obvious to the image interpreter, the process of land 

cover classification using automated methods is difficult because automated classification 

techniques do not possess the pattern recognition capabilities of the human brain (Hudak and 

Brockett 2004).  

 

2.4.2. The Landsat Program 

 

The Landsat Program, a series of Earth-observing satellite missions run jointly between the 

United States Geological Survey (USGS) and the National Aeronautics and Space Administration 

(NASA), has been running continuously since 1972 and provides the longest time series of 

remote sensing imagery data on record. With a spatial resolution of 30 metres and a 16-day 
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sampling frequency, Landsat observations provide an often ideal balance between coarse but 

high temporal resolution data for global monitoring and sub-metre observations for localized 

studies (Goward et al. 2001). As a result, these images are a crucial dataset for characterizing and 

detecting land cover and land use change at multiple spatial scales (e.g. Cohen and Goward 2004, 

Wulder et al. 2012, Goodwin et al. 2013).  

 

Throughout the history of the Landsat Program, the high cost and limited access of image 

acquisition and processing (between USD 600 to USD 4000) have continually limited the scope 

and extent of geospatial research, particularly during the Earth Observation Satellite Company 

(EOSAT) privatisation period from 1984 to 1999. In 2008, NASA and the USGS implemented a 

new Landsat Data Distribution Policy that provides Level 1 corrected data for the entirety of the 

United States Landsat Archive held by the USGS and all future data through the Earth 

Resources Observation and Science (EROS) Center (Woodcock et al. 2008). The new open 

access policy has subsequently increased the distribution of the images from approximately 

25,000 images in 2001 to 2.5 million images in 2010 (Wulder et al. 2012). Free access to Landsat 

imagery, coupled with technological advancements in computer memory capacity and processing 

speed have presented an opportunity for long-term time series applications and large area studies 

(Goodwin et al. 2013).  

 

Previous studies involving land cover classification have shown that Landsat imagery with a 

spatial resolution at or below 30 metres can accurately classify a large variety of landscapes, from 

the tropics to the polar regions (e.g. Guerschman et al. 2003, Rozenstein and Karnieli 2011, Zhu 

et al. 2012). In addition, Landsat imagery has become increasingly used in time series studies 

investigating thermokarst lake changes (Table 2.1).  
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3.  LOCATION AND STUDY AREA. 

 

 

The study area comprises the Tuktoyaktuk Peninsula, which represents the wetland regions 

surrounding the Mackenzie Delta region on the northern coast of the Northwest Territories, 

Canada. The Tuktoyaktuk Peninsula is located above the Arctic Circle on the Arctic Coastal 

Plain directly east of the Mackenzie River, and forms part of the southeast coast of the Beaufort 

Sea (Figure 3.1).  These geographical boundaries form the spatial extent of the study area, along 

with the Arctic treeline ecotone to the south. The Peninsula is around 40 km wide, and extends 

northeast for 200 km from the hamlet of Tuktoyaktuk to Cape Dalhousie at its northernmost 

point. The topography of the Tuktoyaktuk Peninsula is characterized by relatively low relief, of 

which the highest point does not extend past 205 m. The area is dominated by oriented thaw 

lakes and tundra vegetation, which include sedge, moss, and low-shrub tundra (>40 cm; Côté 

and Burn 2002, CAVM 2003). The Tuktoyaktuk Peninsula is located within the zone of 

continuous permafrost, with permafrost thicknesses ranging from less than 100 m to over 740 m 

(Judge 1986). Ground ice is abundant beneath the soil surface (Mackay 1971, Pollard and French 

1980), and in terms of global permafrost, the amount of ground ice in the Tuktoyaktuk 

Coastlands appears to be excessively high (Murton 1996).  

 

The Tuktoyaktuk Peninsula was selected as the area of study for 3 reasons: 1. the high 

percentage of thermokarst lakes covering the landscape; 2. a reasonable quantity of previous 

studies on the region; 3. the relatively high percentage of cloud-free Landsat imagery.  

 

3.1. Thermokarst lakes in the Tuktoyaktuk Peninsula. 

 

An important feature of the Tuktoyaktuk Peninsula is the large number of freshwater lakes, 

which occupy between 15 to 50 percent of any given landscape subsection. The lakes are frozen 

and ice-covered from mid-October until June, and reach a maximum ice thickness of between 

1.5 to 2.0 metres during late April or May (Côté and Burn 2002). Although ice breakup in this 

region starts as early as late May, and only start to refreeze in late August (Pienitz et al. 1997), 

central ice pans may remain in the centre of the lakes until late June or July (Côté and Burn 2002).  
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Although there exists many different types of lakes in the area, most originate from the flooding 

of thermokarst basins (Rampton and Bouchard 1975). Thermokarst lakes in the Tuktoyaktuk 

Peninsula are prone to catastrophic damage, and many lakes have drained in the past, having 

partial former shorelines, misfit lakes, and/or residual pondage (Mackay 1979, 1988, Murton 

1996).  

 

Many of the lake basins on the Tuktoyaktuk Peninsula are characterized by shallow littoral 

shelves surrounding a deeper central pool (Burn 2005). Many of these lakes are oriented 

northwards as a result of easterly and westerly unimodal winds across the coastlands, driving 

perpendicular elongation through a two-cell circulation system (Côté and Burn 2002).  

Field measurements show these shelves to extend between 0.1 to 1 kilometres from shore 

proportional to the lake diameter, and the pools to be between 10 to 30 metres deep (Burn 2002). 

Shallow water sediments are mainly comprised of sand or gravel and/or organic material derived 

from previous bank collapse; the organic material, which includes peat, sod, and detrital mats, are 

highly erodible and are often reworked during summer storms (Murton 1996). In contrast, 

deeper water sediments are mainly covered by fine clastic sediment and organic material that 

have settled from suspension beneath winter ice (Murton 1996).  
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Figure 3.1. Landsat 5 TM image mosaic of the study area (band combination 5-4-3), which comprises the Tuktoyaktuk Peninsula, Northwest Territories, Canada. Notable 
landmarks, as well as the hamlet of Tuktoyaktuk, N. T., are spatially located on the map.  

1
8
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3.2. Climate of the Tuktoyaktuk Peninsula. 

 

Based on the Köppen Climate Classification scheme (Kottek et al. 2006), the Tuktoyaktuk 

Peninsula has a continental sub-Arctic climate, characterized by short, cool summers and very 

long, cold winters. Historical climate averages (1971 – 2000) recorded at the Tuktoyaktuk 

weather station are summarized in Table 1 (Environment Canada 2013). While summer air 

temperatures hover up to 10 C above freezing, mean annual air temperatures measure around -

10 C.  

 

The hydrology of the lakes in Tuktoyaktuk Peninsula is largely controlled by a combination of 

low precipitation and permafrost melt, with snowmelt runoff during the spring being the largest 

influx of water during the year (Anema et al. 1990). The annual precipitation in Tuktoyaktuk 

averages 140 mm, of which between 35 to 50 percent is manifested as snow. Rainfall in the area 

is highest during late July and August, occurring mostly as sustained low-intensity storms (Plug et 

al. 2008). In the summer, evaporation from the lake surface (~230 mm) is generally greater than 

that of precipitation (~60 mm; Marsh and Bigras 1988, Bigras 1990).  

 

 

Table 3.1. Climate averages for Tuktoyaktuk for the years 1979 to 2010. Temperature and precipitation statistics 

were obtained from the National Climate Data and Information Archive (Environment Canada 2013). Wind 

statistics were obtained from the Aurora Research Institute, Aurora College (Pinard 2011).  

Climate  June July August September Yearly 

Daily Average (C) 

(Standard Deviation) 

5.9 

(1.7) 

10.9 

(2.1) 

9.2 

(1.8) 

3.0 

(2.0) 

-10.2 

(2.0) 

Daily Minimum (C) 1.2 6.4 5.5 0.4 -6.6 

Daily Maximum (C) 10.7 15.3 12.8 5.6 -13.9 

Rainfall (mm) 8.5 17.9 25.5 14.8 70.2 

Snowfall (mm) 0.6 0.2 0.5 4.4 69.2 

Average Wind Speed and 

Direction (km/h) 
4.34 W 4.29 W 4.28 NW 4.40 W 4.28 W 
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4.  METHODS. 

 

 

The study was based on lake cover classification and analysis of 352 multi-spectral Landsat 

satellite images for the study area (Section 4.1). Systematic object-based classification of various 

land and water classes were applied for each pixel in all images using the Fmask algorithm 

(Version 2.2 Windows Executable, Section 4.2; Zhu and Woodcock 2012), and image objects 

were segmented and combined into yearly mosaics (Section 4.3). To account for intra-annual 

variability and seasonality in lake surface area, membership using fuzzy logic was then calculated 

for each pixel by applying three thresholds on a membership function to determine upper, 

middle, and lower bounds of lake rasters for each year within the temporal domain (1985 – 2011; 

Section 4.4). The surface area of lake bodies were extracted from the output lake image, and 

various statistics were calculated to determine trends at varying spatiotemporal scales (Section 

4.5). Finally, these trends were correlated with various climatic variables to discern any possible 

relationships between areal trends and weather forcings (Section 4.6).  

 

4.1. Landsat data and pre-processing. 

 

Multi-spectral Landsat images were acquired from the United States Geological Survey (USGS) 

in Reston, Virginia for the study area, for dates between 1985 and 2011 

(http://earthexplorer.usgs.gov). The images were derived from the Landsat 5 Thematic Mapper 

(TM) instrument for the years 1984 through 2011 and the Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) instrument for the years 1999 through 2013. Images acquired from the 

Landsat 7 ETM+ included those produced after 31 May 2003, which all contain an anomaly 

caused by a hardware component failure of the Scan Line Corrector (SLC). The images 

containing this data loss are hereafter referred to as SLC-off images. The SLC was used to 

compensate for the forward motion of the spacecraft to align all the scans in parallel orientation 

(Chander et al. 2009). Without a functional SLC, the satellite line of sight traces a zigzag pattern, 

producing wedge-shaped gaps on all subsequent images derived after the incident date varying in 

width from one pixel near the centre of the image to 14 pixels along the east and west edges of 

the image. The resulting missing data corresponds to a loss of approximately 22 percent of the 

target area for each image (Storey et al. 2005). Note that the failure of the SLC mirror assembly 

has no impact on the radiometric performance with the valid pixels.  
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Table 4.1. Landsat 5 TM and Landsat ETM+ spectral band properties.   

Band number Spectral response Band width (, m) Spatial resolution (m) 

Landsat 5 TM    

1 Blue 0.45 – 0.52 30 

2 Green 0.52 – 0.60 30 

3 Red 0.63 – 0.69 30 

4 Near Infrared 0.76 – 0.90 30 

5 Short-wave Infrared 1.55 – 1.75 30 

6 Thermal (Long) Infrared 10.4 – 12.5 120 

7 Mid Infrared 2.08 – 2.35 30 

Landsat 7 ETM+    

1 Blue-Green 0.45 – 0.515 30 

2 Green 0.525 – 0.605 30 

3 Red 0.63 – 0.69 30 

4 Near Infrared 0.75 – 0.90 30 

5 Short-wave Infrared 1.55 – 1.75 30 

6 Thermal Infrared 10.4 – 12.5 60 

7 Mid Infrared 2.09 – 2.35 30 

8 Panchromatic 0.52 – 0.90 15 

 

 

All multispectral Landsat images covered a visual area of 185 km x 172 km, and have a spatial 

resolution of 30 m x 30 m for six different reflective bands (Bands 1 – 5 and 7; Table 4.1). In 

addition, the spatial resolution of Band 6 was improved from 120 m to 60 m, and a 15 m-

panchromatic band (Band 8) was introduced with the launch of the Landsat 7 satellite.  

 

A total of 352 Landsat-5 and Landsat-7 images were collected between the years 1985 to 2012 

(Appendix 1). For the study area comprising the Tuktoyaktuk Peninsula, the images consisted of 

Paths 61 and 62 Rows 11 and 12, Path 63 Rows 10, 11, and 12, and Paths 64 and 65 Row 11. 

Images were selected based on availability, lack of obscuring cloud cover, and season of 

acquisition. Initially, all Landsat images that contained less than 40 percent of clouds covering 

the landscape were downloaded, and then images were individually screened based on lack of 

obscuring cloud cover over the study area. Only images that that lacked snow and substantial ice 

cover were used; temporally, these images spanned from mid-June to late September and 

represented the summer growing season.  
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All Landsat images were previously processed through the Level 1 Product Generation System 

(LPGS) with a Standard Terrain Correction (Level 1T). After image acquisition, all Landsat 

images were re-projected to a common Universal Transverse Mercator (UTM) Zone (WGS 1984 

UTM Zone 9). Atmospheric correction was conducted as part of the Fmask algorithm for land 

cover classification (Section 4.2).  

 

4.2. Land cover classification of pixels. 

 

The procedure for determining lake presence required several stages of robust image 

segmentation and classification, as detailed below. These stages collectively identified image 

pixels that were and were not representative of lakes (terrain, cloud, cloud shadow, snow/ice, 

and other water bodies) and excluded them from further data processing downstream. Image 

classifications were conducted using both supervised and unsupervised techniques. 

 

In order to spatially determine lake coverage over the scope of a Landsat image, a systematic 

object-based classification of various terrain and water classes must first be applied for each 

image pixel. From these cover types, only those that are not classified as cloud and cloud shadow 

should be applied for further data processing. Cloud and cloud shadow contamination of 

Landsat imagery has continually been a significant obstacle for spatial analyses of land cover (Ju 

and Roy 2008, Goodwin et al. 2013, Melaas et al. 2013). Optically thick clouds prevent 

panchromatic and infrared wavelength remote sensing of the covered surfaces and their 

associated shadows reduce the surface reflectance of its projected areas (Kaufman 1987). The 

subsequent effect of clouds and its shadows on surface illumination and reflectance observations 

in affected areas can bias calculations in areal classification and surface change (Zhu and 

Woodcock 2012).  

 

In this light, the published Function of mask (Fmask) approach (Version 2.2, Windows 

Executable) was applied to all obtained Landsat imagery. Fmask is a newly-developed cloud and 

cloud shadow detection algorithm for the Landsat TM and ETM+ instruments that builds on 

the results of previous screening approaches. The Fmask algorithm is outlined in this section; a 

more detailed description can be found in Appendix 2 and a complete approach and evaluation 

can be found in Zhu and Woodcock (2012). Digital Number (DN) values were converted to top-

of-atmosphere (TOA) reflectances and brightness temperatures (BT; C) using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric correction 
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procedure (Masek et al. 2006, Vermote and Saleous 2007). Then, various spectral tests were 

conducted to identify and extract the land cover classes of terrain, water, cloud, cloud shadow, 

and snow/ice. The algorithm can be summarized into four distinct “passes”:  

 

Pass 1: Identification of potential cloud pixels. A series of 4 spectral tests were applied to 

input images to flag pixels that may represent clouds, termed “Potential Cloud Pixels 

(PCPs)”. The spectral tests applied thresholds that identified cloud pixels based on the 

temperature, reflectivity, and whiteness characteristics normally exhibited by clouds. As 

well as identifying thick cumulus clouds, Pass 1 accounted for cirrus clouds and haze. 

Pass 1 also attempted to discriminate clouds from other terrain bodies that exhibit 

similar spectral characteristics, such as rocks, turbid waters, bare soil, and sand. Pixels not 

included in the first pass are considered as confident in representing clear-sky pixels. 

Pixels were labelled as PCPs if they satisfied all of the spectral tests used within this pass.   

 

Pass 2: Extraction of a potential cloud layer. Using absolutely clear-sky pixels (pixels not 

identified as PCPs in Pass 1), a potential cloud layer was extracted by computing 

potential cloud probability for all pixels in input images. Cloud probability was calculated 

separately for PCPs over terrain and water due to variations in temperature and 

reflectance distributions over each input image. This required discrimination between 

terrain and water pixel classes, which was calculated by thresholding the Normalised 

Difference Vegetation Index (NDVI) and the top-of-atmosphere (TOA) reflectance 

values in the upper visible spectrum. By combining the results from Passes 1 and 2 

(PCPs and potential cloud probability), a potential cloud layer was generated. To err on 

cloud pixel commission rather than omission, the cloud mask was dilated by one pixel 

depending on the results of its neighbouring pixels.  

 

Pass 3: Identification and extraction of a potential cloud shadow layer. Due to the 

darkening effect of cloud shadows in the near-infrared (NIR) spectrum, a potential 

shadow layer was generated by applying a flood-fill transformation to the NIR band. The 

potential cloud layer extracted in Pass 2 was transformed into three dimensions, and the 

resulting cloud objects were matched with their respective shadow projections by a series 

of geometric and trigonometric calculations relating the spatial location of the cloud 

morphometrics, the respective cloud shadow location, and the sun and satellite positions. 

Because the resulting cloud shadow mask may have contained spatial gaps, the shadow 
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pixels were dilated over a 3-by-3 pixel neighbourhood in 8-connected directions to fill 

these gaps.   

 

Pass 4: Identification and extraction of a potential snow and ice layer. The spectral tests 

used to detect snow and ice-contaminated pixels were derived from the MODIS snow 

mapping algorithm (Hall et al. 2001). The pixels identified as representing snow and ice 

bodies formed the potential snow and ice layer.  

 

In addition, terrain and water cover types were identified in Pass 2, and were designated for each 

pixel after identification of all other cover types. Because more than one class may have existed 

within any one pixel, the algorithm assigned a class hierarchy in the following order from highest 

to lowest: clouds, cloud shadows, snow and ice, terrain, and water (Figure 4.1).  

 

Each output image was visually inspected to identify misclassified pixels, which once identified, 

were masked from further image processing. The misclassification of haze, shaded cloud, or 

cloud-contaminated shadows had been particularly problematic when classifying water bodies 

using Landsat imagery (Zhu and Woodcock 2012). Clouds and their shadows that had been 

misclassified as terrain or water were subsequently masked and considered as missing data. If the 

image contained misclassified data over large areal extents, the image was discarded and not used 

for further image processing.  
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A B 

Figure 4.1. Example Fmask result for Landsat scene (Path 63 Row 11, 4 July 2011). (A) Landsat 5 TM scene (band combination 5-4-3). (B) Fmask output of the example 

Landsat scene.  

 

2
5
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4.3. Segmentation of land cover classed images.  

 

After running the Fmask algorithm for each Landsat image, a simple algorithm was established 

to hierarchically rank lake detections to reduce false positives. This algorithm was implemented 

using Python 2.7 in the ArcPy module from ArcGIS (Version 10.0, ESRI, Redlands, CA), and is 

detailed in Appendix 2.1. In this study, pixels were grouped into two broad classes: water and 

terrain. In general, a pixel was designated as representative of lakes and was assigned a value of 1 

if it satisfied all of the following conditions: 

 

1. The pixel was flagged as water. 

2. The pixel was not flagged as terrain. 

3. The pixel was not flagged as cloud. 

4. The pixel was not flagged as cloud shadow. 

5. The pixel does not lie in areas of missing data. 

 

To distinguish lakes from other water bodies such as rivers, seas, or wetlands, a river mask was 

obtained from Natural Earth public domain map dataset at the 1:10m scale (NACIS 2013; 

http://www.naturalearthdata.com). Pixels that satisfied conditions 1 through 5, but were located 

in these regions of non-lacustrine water bodies were internally flagged and excluded from further 

data processing. All lakes that were previously misconstrued as rivers did not meet the 

requirements of this condition, and were therefore excluded from further data processing. 

Similarly, wetland areas and frequently-inundated coastal terrain that have displayed connectivity 

to the ocean in at least one or more scenes were discarded from further analyses.  

 

As areas in northern Canada are characterized by below-freezing temperatures for the majority 

of the year, snow and ice are often present during the early summer months. The presence of 

snow and/or ice, particularly on the periphery of lake shorelines, may potentially bias lake areal 

data by increasing individual lake size. The study accounted for this limitation by restricting the 

intra-annual period to the summer growing season (June to September). However, if snow 

and/or ice were present in any input Landsat image, affected pixels were flagged for further 

review if: 

 

6. The pixel satisfied conditions 2 through 5.  

7. The pixel was flagged as snow or ice.  
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By manually examining a number of lakes with ice and snow cover at varying concentrations, it 

was found that a large majority of pixels flagged as snow or ice were coincident with known 

areas of water (p < 0.05). Therefore, if the concerned lake pixel was flagged as snow or ice, it was 

included in the final lake assignment and assigned a value of 0.5.  

 

Otherwise, a pixel was designated as representative of terrain and assigned a value of -1 if it 

satisfied the following conditions:  

 

8. The pixel satisfied conditions 3 through 5.  

9. The pixel was not flagged as snow or ice.  

10. The pixel was flagged as terrain.   

 

After applying the ranking algorithm to each Fmask-classified image, each image was reduced to 

containing only terrain, water, and snow/ice pixels. The range of values in each image was 

consequently reduced to -1, 0.5, and 1 respectively, to describe the range of land cover classes as 

an ordinal set. The resulting objects classified as lakes are believed to be a rather conservative but 

accurate representation of lake cover within the image.  

 

To determine inter-annual changes in lake dynamics, and to increase the confidence of lake 

presence, Landsat images were combined into yearly raster mosaics, as applied to each pixel by 

the equation:  

 

 

100xi

i=1

N

å

N
, [Eq. 4.1.] 

 

where N represents the total number of times a specific pixel is present within a given year, and 

xi is the pixel measurement vector in the domain 1  i  N (Appendix 2.1). The resulting mosaics 

create a spectrum where positive numbers represent increasing confidence in lake pixel presence, 

negative numbers represent decreasing confidence in lake pixel presence, and 0 represents the 

crossover point (Figure 4.2). Pixels were normalized to represent a percentage of confidence 

where a value of 100 represents a pixel uniformly being flagged as water in all instances, a value 

of -100 representing a pixel uniformly being flagged as terrain in all instances, and a value of 0 
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representing the crossover point between terrain and water. For instance, a pixel that was 

represented as water 6 times in a total of 6 images will have a value of 100, a pixel that was 

represented as water 2 times and as snow 2 times in a total of 4 images will have a value of 75, a 

pixel that was represented as water 1 time, as snow 2 times, and as terrain 5 times in a total of 8 

images will have a value of -30, and a pixel that was represented as terrain 1 time in a total of 1 

image will have a value of -100.  

 

 

 

Figure 4.2. Example of output yearly raster mosaic composite for the year 2011. Pixels representative of water were 

mapped to the magenta channel, and pixels representative of terrain were mapped to the green channel. Where 

more votes were recorded, the hues of each pixel were modulated by increased components. Water bodies that were 

not representative of lacustrine environments (e.g. seas, rivers) were internally flagged and excluded from further 

data processing. Diagonal striping patterns illustrate the effects of use of Landsat 7 ETM+ SLC-off mode imagery 

with missing wedge-shaped data stripes. The inset image of the hamlet of Tuktoyaktuk, N.T., portrays the gradient 

between water and terrain due to the influence of seasonal change on local water levels. This variability was 

accounted for using a fuzzy membership algorithm (detailed in Section 4.4.).  
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4.4. Uncertainty of pixel-classified images. 

 

When classifying an image, generally two kinds of problems are faced: 1. the spatial boundary 

between two land cover classes is not defined by a Boolean domain, but instead represents a 

gradient between the classes; and 2. a single pixel may contain more than one type of land cover 

class (Sharma et al. 2011). In the study, a third problem arose from the combination of images 

into yearly mosaics: 3. the loss of seasonal variability. These problems are primarily due to a 

limitation in available spectral resolution, and ambiguity induced by point-spread functions at the 

sub-pixel level (Townshend et al. 2000, Foody and Atkinson 2002). Figure 4.3 exemplifies how 

there is no definite boundary between terrain and lake as a result of these problems.  

Figure 4.3. A spatial comparison of (A) vertical aerial photography and (B) Landsat imagery (band combination 5-

4-3) of the hamlet of Tuktoyaktuk, N.T. Because Landsat imagery has a resolution of 30 m by 30 m, the boundary 

between terrain and lake is represented by a gradient instead of a strict delineation. Aerial photography was obtained 

from the Northwest Territories Department of Transportation (http://www.dot.gov.nt.ca).  

 

 

A fuzzy classification model (McBratney and Moore 1985, Wang 1990, Moon 1998) was 

implemented to account for such vagueness in both space and attributes (Williamson 1994, 

Fisher 2000, Robinson 2003). Fuzzy sets, originally proposed by Zadeh (1965), are widely used in 

GIS and are increasingly applied to identifying and monitoring water bodies (e.g. Yin et al. 1999, 

Carter et al. 2007, Fisher 2010, Sharma et al. 2011).  
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4.4.1. Description of fuzzy membership 

 

In a fuzzy classification model, all objects within the fuzzy set are characterized by a membership 

function fA(x) which associates with the object a real number in the range [0, 1]. In the set A, a 

value of fA(x) = 0 represents an absence of the object in the set, and a value of fA(x) = 1 

represents full confidence of the object in the set. Values between fA(x) = 0 and 1 indicate the 

relative strength of the object containing properties relevant to the set in a continuum. In general, 

a value of 0.5 suggests that the object has equal probability of inclusion into or exclusion from 

the set. In a geospatial context, fuzzy representation is partitioned as a spectral space composed 

of a family of fuzzy sets F1, F2, …, F1 on the domain X such that for all values x which is an 

element of X (Wang 1990):  

 

 

0 £ f
Fi x( )

£1

f
Fi x( )

xÎX

å > 0

f
Fi x( )

=1
i=1

m

å

, [Eq. 4.2.] 

 

recorded in a fuzzy partition matrix:  
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where Fi represents the spectral classes, X represents the domain of all pixels in the dataset, m is 

the number of predefined classes, n is the number of pixels, xi is a the pixel measurement vector 

in the domain 1  i  m, and fFi
 is the membership function of the fuzzy set Fi(1  i  m).  

 

As stated in Wang (1990), a fuzzy partition of a spectral space allows for an abundance of 

spectral information to be incorporated for analysis. Membership values are used to describe the 

gradient of intermediate and multiple cover classes, and classifies stray pixels and pixels isolated 

between classes.  
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 4.4.2. Application of fuzzy membership. 

 

Although the fuzzy set has a range of memberships varying from 0 to 1, applying a threshold of 

any given value allows for the conversion to a Boolean set, yielding an alpha-cut (-cut). -cuts 

are a method to describe a vague interpretation of a landscape (the fuzzy set) as a hard or crisp 

composition (the Boolean set), but doing so results in the loss of much spectral information 

(Fisher 2010). To alleviate this concern, several -cuts were selected to represent the fuzzy set as 

an ordinal series of Boolean sets. For practical purposes, the study limits the series of -cuts to 

0.3, 0.5, and 0.7 to represent the lower, middle, and upper bounds, respectively. These values 

were previously used in Bijker et al. (2011) to map the spatial distribution and uncertainty of 

Lake Naivasha, in Kenya. The value range of yearly mosaics of Landsat images (Section 4.3) were 

transformed to a range of [0, 10], where 5 represents the midpoint between terrain and lake 

representation, and a simple right sigmoidal membership function was applied to input images, 

given by the expression (Tsoukalas and Uhrig 1997):  

 

 f x,c( ) =
1

1+
x

c

æ

è
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ö

ø
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-a
, [Eq. 4.4.] 

 

where a, the spread, is a standardized factor that controls the slope at the crossover point x = c. 

The resulting curve describes a fuzzy membership function where the larger input values exhibit 

membership closer to fA(x) = 1. The study applied a fixed crossover value of c = 5 and a fixed 

spread value of a = 5 (Appendix 3.2), implemented using Python 2.7 in the ArcPy module from 

ArcGIS 10.0.  

 

4.5. Statistical analyses of spatiotemporal trends. 

 

To perform spatio-temporal analyses that examined both individual and overall lake variability 

over different time periods, yearly lake raster mosaics were converted to polygon features, and 

each lake was assigned a unique ID number to track individual lake change. To summarise lake 

polygons that may have coalesced or separated through time, lake area was defined as either the 

polygon or group of polygons within the combined maximum extent of that individual water 

body throughout the entire time series, following the methods of Roach et al. (2013). Lakes that 

were smaller than 1,350 m2 (the midpoint between 1 and 2 pixels) in all images were excluded 
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from further data processing in order to reduce omission and commission errors (Roach et al. 

2012). If a specific lake polygon was smaller than 1,350 m2 in at least one of the input mosaicked 

images, the lake was removed from analysis.  

 

The analysis focused on two major components: first, the net change in lake surface area and 

count was calculated over the entire study area regardless of regional specifications; and second, 

a series of spatial clustering statistical tests were applied to trends in individual lake 

morphometrics to identify and examine any patterns in spatial heterogeneity over the study area.   

 

4.5.1. Overall variability in lake morphometrics. 

 

Lakes were designated into five area classes of increasing lake size (Table 4.2). The classification 

scheme models a geometric distribution to normalise the left-skewed distribution in lake count. 

To test for structural breaks in lake area and count time series, a Chow test was implemented on 

linear regressions of ice cover in each regional time series to test for a structural break in 

correlation. Specifically, the Chow test is a series of F-tests to determine if regression coefficients 

are structurally different between the two subsets (Chow 1960). 

 

 

Table 4.2. Specifications for lake surface area classes. Note that lakes representing a single (1) pixel were not 

included in analysis due to high degrees of sub-pixel uncertainty. 

Area class Area range (m2) Pixel range 

1 901 – 9,000 2 – 10 

2 9,001 – 90,000 11 – 100 

3 90,001 – 900,000 101 – 1,000 

4 900,001 – 9,000,000 1,001 – 10,000 

5 9,000,000 + 10,000 + 

 

 

4.5.2. Spatial heterogeneity in lake morphometrics. 

 

General linear models (GLMs) were conducted for each identified lake body to estimate trends 

in individual lake area over time using the R Project for Statistical Computing (Version 2.13.0, R 

Development Core Team 2006). As all time series under different fuzzy membership α-cut 

thresholds reported similar trends (e.g. Figure 5.1; see Sections 6.1 and 6.2), only lakes 

determined using the α-cut threshold of 0.5 were investigated. The predictor (independent) 
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variable used was time (in years), and the response (dependent) variable used was the surface 

area for each individual lake body (in m2). The regression estimate (slope) represented the rate at 

which each water body increases or decreases in surface area over time.  

 

To examine spatial autocorrelation over the entire study area, the Global Moran’s I statistic 

(Moran 1950) was applied to the set of lake polygons which exhibited a significant (p < 0.05) 

trend in areal increases or decreases. Given a set of features, the Moran’s I evaluates whether the 

spatial pattern expressed was clustered, dispersed, or randomly distributed across the study area. 

The Moran’s I statistic for spatial autocorrelation is given as follows:  

 

 , [Eq. 4.5.] 

 

where zj is the deviation of an attribute for the feature j from its mean xi - X( ) , N is the number 

of spatial units indexed by i  and j, and wi,j is an element of a matrix of spatial weights between 

features i  and j. The Moran’s I tests the null statistic that trend classes in lakes were randomly 

distributed without any noticeable spatial pattern. Calculation of the Moran’s I statistic was 

conducted in ArcGIS 10.0, using an inverse-weighted function that conceptualizes spatial 

relationships by distance from a target feature with a fixed distance band. The band distance was 

determined by first calculating the Moran’s I statistic using a starting band distance of 5000 m, 

then subsequently increasing the distance by 1000 m increments until an optimal minimum in p-

value was achieved.  

 

To examine spatial autocorrelation at more local scales, the Getis-Ord’s Local Gi* statistic (Getis 

and Ord 1992) was applied to the same lake polygons that exhibited significant areal trends. The 

Local Gi* identifies statistically significant hot and cold spots (cluster of high and low values, 

respectively) in the spatial distribution of lake trends. The Getis-Ord’s Local Gi* statistic is given 

as follows:  
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 , [Eq. 4.6.] 

  

using the same variables as the Moran’s I statistic. The local Gi* statistic is a Z-score, which is 

used to quantitatively determine the confidence with which the clusters have been identified.  

Calculation of the Getis-Ord’s Gi* was similarly conducted in ArcGIS using a variable distance 

band, which optimises the cut-off distance between target features to ensure inclusion of at least 

one neighbour for all target features. A general identification of hot and cold spots is potentially 

more useful than reducing the scope of the test to favour only the highest or lowest values; 

therefore, input slope values were log-transformed to reduce the weight of the largest extremes. 

The Getis-Ord’s Gi* can be applied to transformed values because it is asymptotically normal 

(Getis and Ord 1992). As the local Gi* statistic measures the magnitude of clustering, it should 

only be run if other global tests also predict significant clustering patterns (Carroll et al. 2011).  

 

4.6. Correlation to weather variables. 

 

Monthly climate data for weather stations across Canada are available for free acquisition from 

the National Climate Data and Information Archive in Fredericton, New Brunswick 

(Environment Canada 2013). Unfortunately, the Northwest Territories has few stations with a 

long-term weather record, and the closest weather station, located at the Tuktoyaktuk/James 

Gruben Airport (IATA: YUB) in Tuktoyaktuk, NWT (69° 26' 00" N, 133° 01' 35" W), is entirely 

missing data observations for the period spanning from January 1994 to September 1999. As a 

result, this study instead used ERA-Interim Reanalysis data (Dee et al. 2011) to examine 

atmospheric forcing on the study area.  

 

2-metre ground temperature and total precipitation data were obtained from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, United Kingdom. The data 

were derived from synoptic monthly means of the ERA Interim global atmospheric reanalysis 

project for the period 1985 – 2011 (Uppala et al. 2005). The dataset was produced using a 

sequential data assimilation scheme, advancing in time by 12-hourly analysis cycles that combine 

available observations with prior information from a forecast model to estimate the changes in 

Gi

* =

wi, j x j - X wi, j

j=1

n

å
j=1

n

å

x j

2

j=1

n

å

n
- X( )

2

n wi, j

2 - wi, j

j=1

n

å
æ

è
çç

ö

ø
÷÷

2

j=1

n

å

n -1



35 
 

the global earth, ocean, and atmosphere (Dee et al. 2011). The data used in this study has a grid 

cell resolution set at 0.5 x 0.5. Monthly data from June to September were averaged for each 

year to produce yearly summer means. 

 

For each climatic dataset, GLMs were conducted to examine trends and mean conditions that 

may influence overall lake areal change patterns. The predictor (independent) variable used was 

the specific climatic variable, and the response (dependent) variable used was the surface area for 

each individual lake body. The regression estimate (slope) represented the relative influence of 

each climatic variable on lake areal trends.  

 

GLMs were also conducted for each individual lake body to estimate trends in individual lake 

area over time. Only lakes that showed a significant increasing or decreasing trend in surface area, 

as determined in Section 4.5.2, were regressed. To test for spatial autocorrelation, the Global 

Moran’s I statistic was furthermore applied to the set of lake polygons which exhibited a 

significant (p < 0.05) trend both in areal increases or decreases over time (as identified in Section 

4.5.2) and in areal increases or decreases over each climatic variable.  
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5.  VALIDATION OF METHODOLOGY.   

 

 

In order to ensure robust results, a quantitative validation of the methodology was first 

conducted. Specifically, two aspects of the methodology were validated: the accuracy of the 

Fmask algorithm in detecting land cover classes of terrain, water, and snow/ice (Section 5.1); and 

the correlation of weather variables between ground observations and ERA-Interim Reanalysis 

data (Section 5.2).  

 

5.1. Validation of the Fmask algorithm. 

 

5.1.1. Methods for the Fmask algorithm validation. 

 

Because maps are deliberate generalisations of reality, and that all transformations of these maps 

introduce error (Maling 1989), quality assessment of remote-sensing image classification systems 

for land cover mapping is essential to evaluate the product accuracy (Smits et al. 1999). In this 

light, virtual “ground truthing” was conducted on images processed through the Fmask 

algorithm following a procedure modified from Zhu and Woodcock (2012) and Goodwin et al. 

(2013). First, two images from each year were randomly selected using a random number 

generator, with the condition that all WRS Path/Row combinations for all years are equally 

represented. This corresponded to a selection of 48 from a total of 352 scenes. A sample of 

between 60 and 90 pixels (depending on the amount of cloud cover projected on the image) was 

generated from each input image using a random generator and stored as a set of point 

shapefiles. These points were spatially constrained to overlay only areas classified by Fmask as 

pixels with data. Each pixel was visually interpreted and recorded whether the pixel contained: 

terrain, water, snow/ice, or ‘ambiguous’. Because there does not exist enough aerial photography 

imagery for each Landsat imagery assessed, the accuracy of image classifications were directly 

assessed by visually interpreting each Landsat image and identifying whether or not a certain 

pixel was correctly classified. The accuracy of image classifications was assessed overall 

regardless of class type:  

 

 Overall Accuracy =
Agreement

Total Pixels
, [Eq. 5.1.] 
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and separately for each class using the producer’s and user’s accuracy: 

 

 Producer's Accuracy =
Agreement for class

Agreement for class + omission of class
 and [Eq. 5.2.] 

 User's Accuracy =
Agreement for class

Agreement for class + comission of class
, [Eq. 5.3.] 

 

where an agreement represents the same classification between visual interpretation and the 

Fmask algorithm. Because thorough assessments were conducted for cloud cover and cloud 

shadow cover accuracy in previous studies (Zhu and Woodcock 2012, Goodwin et al. 2013), the 

validation assessment conducted for this study examined only points coinciding with terrain, 

water, and snow/ice classes.  

 

5.1.2. Accuracy assessment of the Fmask algorithm.  

 

At the pixel scale, the overall accuracy of the Fmask algorithm on terrain, water, and snow/ice 

cover classes is high with a score of 97.2%. When partitioned into separate classes, accuracy 

assessments revealed high percentages for all land cover classes, ranging from 89.4% to 99.4% 

representing both user’s and producer’s accuracies.  

 

Because the intra-annual study period was constrained to the growing season (June to 

September), the large majority of Landsat scenes used for the study were largely snow and ice 

free. Therefore, the number of input points was comparatively lower than those used for other 

land cover classes. Regardless, results for snow and ice classification were determined to be the 

least accurate with similar producer’s and user’s accuracies; upon further visual inspection, nearly 

all of the points that were misclassified to and from snow and ice were found to reside in areas 

comprising sparse snow cover and scattered ice floes. Because pixels classified as snow and/or 

ice were assigned a value representing half of water, the process of image segmentation, where 

additional images representing a snow- and ice-free landscape has been designed to reduce the 

impact of this discrepancy.  
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Table 5.1. Accuracy of the Fmask algorithm on land cover classification, by land cover class. The overall accuracy 

of the Fmask algorithm for all cover classes is 0.972, with an input of 3112 random points. The number of total 

points input for each land cover class represents the total amount of points assigned to the specified land cover class 

by the Fmask algorithm. The producer’s and user’s accuracies were defined in Equations 4.2 and 4.3, and are 

decimal representations of percentage. Accuracy assessments for cloud and cloud shadow (indicated by sharps) were 

obtained from Zhu and Woodcock (2012).  

Land cover class Total points  Producer’s accuracy User’s accuracy 

Terrain 1708 0.960 0.994 

Water 1246 0.996 0.952 

Snow/Ice 158 0.911 0.993 

Cloud# 142 scenes 0.921 0.894 

Cloud Shadow# 142 scenes >0.7 ~0.5 

 

 

A spatial examination of the accuracy assessments for terrain and water pixels revealed that 

almost all misclassified pixels resided either in transition zones between the two land cover  

classes or were coincident with small streams, where both entities were between 1 to 2 pixels 

wide (30 to 60 metres; Figure 5.1).This tendency was true regardless of the fuzzy membership α-

cut threshold used, which indicates high, average, and low bounds of lake extents. When faced 

with such ambiguous situations, the Fmask algorithm was found to assign coincident pixels to 

terrain approximately 80% of the time, and to water approximately 20% of the time (Table 5.2). 

The preference of terrain to water by the Fmask algorithm implies that lake surface area 

projections in this study were conservative in estimates. However, because the exact same 

algorithm and methods were applied to all images for all years, the outputs of lake surface area 

was believed to be an unambiguous representation of lakes.  

 

 

Table 5.2. Preference of Fmask algorithm towards terrain and water cover classes when presented with ambiguous 

situations. Two ambiguous locations were identified: the terrain-water transition zone and small streams. The 

number of total points input for each situation represents the total amount of points coincident with the locations 

of the specified situation. The preference ratio are decimal representations of percentages.  

Land cover class 
Total 

points 
Terrain points 

Terrain preference 

ratio 
Water points 

Water preference 

ratio 

Transition Zone 167 134 0.802 33 0.198 

Small Streams 23 19 0.826 4 0.174 
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Figure 5.1. Error in lake polygon delineation methodology with respect to two ambiguous situations: the terrain-
water transition zone and small streams. Imagery represents polygons and Landsat scenes from 4 August 2010 
(Band 5 uncorrected). Polygons were delineated with three fuzzy membership α-cut thresholds of (A) 0.3; (B) 0.5; 
and (C) 0.7. Note that even in the lowest α-cut threshold, algorithms used in the method were more likely to classify 
pixels within these situations as terrain rather than water.  

 

 

5.2. Evaluation of ERA-Interim Reanalysis data with ground observations.  

 

Following the methods of Mugford et al. (2012), the ERA-Interim Reanalysis data were 

compared with observations from the Tuktoyaktuk weather station to check for systematic bias 

between variables in the two datasets. The resulting time series and corresponding correlation 

scatterplots from 1979 to 2013 for ERA-Interim and concurrent ground observations are shown 

in Figure 5.2. 

 

The ERA-Interim monthly mean air temperatures corresponded well with observations at the 

Tuktoyaktuk Weather Station, capturing both inter-annual variability and seasonal temperatures 

well (Figure 5.2A). When removing estimated and interpolated data from ground observations, 

the correlation between the two datasets was nearly identical (R2 = 0.995).  

 

Monthly total precipitation was not as well represented between the two datasets. This was 

represented by a lower correlation between the two datasets, likely amplified by larger differences 

during months with extremely high precipitation levels (R2 = 0.754). Gauge measurements of 

precipitation in the Arctic inherently contain large uncertainties due to wind-induced effects, 

differences in gauge types, difficulty in distinguishing various snow types, treatment of trace 

amounts, and other difficulties in cold environments (Legates and Willmott 1990, Walsh et al. 

1998). Similar to Mugford et al. (2012), it was not surprising that the ERA-Interim data was not 

as tightly correlated with ground observations. Nonetheless, both precipitation datasets captured 

A B C 



40 
 

a seasonal cycle with peak precipitations during the summer months. Bias-correction procedures 

are available to correct for precipitation uncertainties, in some cases increasing the total 

precipitation by up to 70% (Bowling and Lettenmaier 2010); however, correction factors are 

found to be smallest during the summer months (up to 10%; Yang et al. 2005). Additionally, 

these methods are beyond the scope of the study, and as such, the ERA-Interim data was used in 

the study with caution. 
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Figure 5.2. Comparative time series and corresponding correlation scatterplots of (A, B) monthly means of temperature and (C, D) monthly total precipitation for ERA-
Interim data and ground observations at Tuktoyaktuk Weather Station for the years 1979 to 2012. 
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6.  RESULTS.   

 

 

In accordance with the structure and order of the Methods (Section 4), the results of the study 

are separated into three principal components: the presence of linear and bilinear trends in 

overall lake dynamics (Section 6.1); the statistical significance of spatiotemporal trends in lake 

surface area (Section 6.2); and the correlation of lake surface areal trends found in Sections 6.1 

and 6.2 with candidate weather variables (Section 6.3). Note that as the majority of available 

Landsat imagery during the years 1987, 1992, and 1993 were either largely contaminated by cloud 

cover or could not be run through the Fmask algorithm for unknown reasons, a cloud-free 

representation of the entire study area proved difficult, and as such, these years were excluded 

from the time series. 

 

6.1. Overall trends in lake dynamics. 

 

6.1.1. Magnitude and direction.  

 

Lakes occupied between 2,021 km2 to 2,352 km2 (22.5% to 26.2%) of the total land area on the 

Tuktoyaktuk Peninsula (8,990 km2), and averaged 2,155 km2 (24.0%) between the years 1985 to 

2011 over all three fuzzy membership -cut thresholds. A total of 16,486 distinct lakes and lake 

groups were identified over the entirety of the temporal period. Over the entire study area, the 

total surface areal coverage of lakes did not portray any significant unidirectional trends over the 

entire temporal domain (1985 – 2011; Figure 6.1A). The overall lake surface area remained 

between 2,100 km2 to 2,300 km2 during this period. This ambiguity was supported by the varying 

rates of change obtained from implementing three different fuzzy membership -cut thresholds, 

which varied from -0.982 km2/year to +0.586 km2/year (Table 6.1).  
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Table 6.1. Linear temporal trends in overall lake surface area over time, for each fuzzy membership -cut threshold. 

The regression estimate represented the rate at which lakes collectively increase or decrease in surface area over each 

year. Significant Chow p-values represented presence of a structural break between the years 1997 and 1998. All 

significant p-values are denoted by an asterisk (*).  

-cut 
Temporal 

Domain 
Estimate (km2) Intercept (km2) Adjusted R2 GLM p-value 

Chow value 

(p-value) 

0.3 

1985 – 1997 9.300 -16,293.381 0.151 0.146 
6.990 

0.004* 
1998 – 2011 -1.963 6,120.509 0.051 0.217 

1985 – 2011 -0.777 3,749.260 -0.030 0.606 

0.5 

1985 – 1997 8.124 -14,004.806 0.229 0.092 
10.347 

<0.001* 
1998 – 2011 -0.838 3,838.404 -0.069 0.700 

1985 – 2011 0.882 393.332 -0.024 0.526 

0.7 

1985 – 1997 6.805 -11,421.73 0.283 0.066 
13.429 

0.002* 
1998 – 2011 -3.016 8,172.910 0.232 0.047* 

1985 – 2011 1.002 119.178 -0.004 0.352 

 

 

Table 6.2. Linear temporal trends in overall lake surface area over time for each area class, separated by fuzzy 

membership -cut threshold and each area class: (A) 0.3; (B) 0.5; and (C) 0.7.. The regression estimate represented 

the rate at which lakes collectively increase or decrease in surface area over each year for the temporal domain 1985 

to 2011. Significant Chow p-values represented presence of a structural break between the years 1997 and 1998. All 

significant p-values are denoted by an asterisk (*).   

 

Table 6.2A. Linear temporal trends in surface area by area class using a fuzzy membership -cut threshold of 0.3. 

Area 

Class 

Temporal 

Domain 
Estimate (km2) Intercept Adjusted R2 GLM p-value 

Chow value 

(p-value) 

1 

1985 – 1997 0.063 -110.726 -0.093 0.643 

2.790 (0.083) 1998 – 2011 -0.051 113.936 -0.005 0.352 

1985 – 2011 -0.096 205.312 0.245 0.006* 

2 

1985 – 1997 -0.151 415.181 0.005 0.299 

3.433 (0.051) 1998 – 2011 -0.188 488.661 0.016 0.293 

1985 – 2011 -0.151 415.181 0.005 0.300 

3 

1985 – 1997 2.434 -4,330.682 0.098 0.197 

7.135 (0.004*) 1998 – 2011 -0.510 1,531.280 0.073 0.180 

1985 – 2011 0.030 450.330 -0.041 0.950 

4 

1985 – 1997 4.693 -8,132.085 0.270 0.071 

8.316 (0.002*) 1998 – 2011 -1.064 3,326.947 0.029 0.26 

1985 – 2011 -0.575 2,350.270 -0.009 0.386 

5 

1985 – 1997 2.327 -4,267.650 0.172 0.129 

6.144 (0.008*) 1998 – 2011 -0.150 659.620 -0.055 0.578 

1985 – 2011 0.016 328.187 -0.042 0.962 
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Table 6.2B. Linear temporal trends in surface area by area class using a fuzzy membership -cut threshold of 0.5. 

Area 

Class 

Temporal 

Domain 
Estimate (km2) Intercept Adjusted R2 GLM p-value 

Chow value 

(p-value) 

1 

1985 – 1997 0.111 -206.716 -0.005 0.356 
0.017  

(0.012*) 
1998 – 2011 -0.059 149.619 0.031 0.256 

1985 – 2011 -0.057 126.048 0.080 0.088 

2 

1985 – 1997 0.240 -367.798 -0.078 0.573 
10.180 

(<0.001*) 
1998 – 2011 -0.001 110.874 -0.083 0.996 

1985 – 2011 0.033 43.161 -0.039 0.811 

3 

1985 – 1997 2.059 -3,599.193 0.190 0.116 
16.556 

(<0.001*) 
1998 – 2011 -0.085 672.143 -0.081 0.867 

1985 – 2011 0.613 -726.736 0.047 0.148 

4 

1985 – 1997 3.635 -6,048.446 0.199 0.110 
6.762  

(0.005*) 
1998 – 2011 -0.620 2,424.257 -0.060 0.618 

1985 – 2011 0.147 888.561 -0.0394 0.821 

5 

1985 – 1997 2.079 -3,782.641 0.285 0.646 
7.377  

(0.004*) 
1998 – 2011 -0.063 481.543 -0.080 0.844 

1985 – 2011 0.146 62.262 -0.028 0.581 

 

 

Table 6.2C. Linear temporal trends in surface area by area class using a fuzzy membership -cut threshold of 0.7. 

Area 

Class 

Temporal 

Domain 
Estimate (km2) Intercept Adjusted R2 GLM p-value 

Chow value 

(p-value) 

1 

1985 – 1997 0.009 -4.692 -0.123 0.904 
2.847  

(0.079) 
1998 – 2011 -0.119 249.253 0.246 0.041* 

1985 – 2011 -0.071 154.155 0.280 0.003* 

2 

1985 – 1997 -0.136 376.411 -0.108 0.735 
4.891  

(0.017*) 
1998 – 2011 -0.068 241.589 -0.073 0.744 

1985 – 2011 -0.020 205.11 -0.033 0.653 

3 

1985 – 1997 2.099 -3686.965 0.285 0.065 
24.274 

(<0.001*) 
1998 – 2011 -0.416 1329.523 0.069 0.186 

1985 – 2011 0.643 -793.878 0.080 0.088 

4 

1985 – 1997 3.612 -6025.212 0.361 0.039* 
9.009  

(0.001*) 
1998 – 2011 -1.679 4535.321 0.139 0.103 

1985 – 2011 0.523 121.300 0.002 0.318 

5 

1985 – 1997 1.221 -2081.270 0.262 0.075 
6.854  

(0.005*) 
1998 – 2011 -0.733 1817.259 0.244 0.042* 

1985 – 2011 -0.042 432.548 -0.039 0.819 
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When lakes were portioned into the five defined areal classes (Table 4.2), medium and large lakes 

(Class 3 and Class 4) saw both the greatest increases and decreases in lake area over the entire 

temporal domain (1985 – 2011), highlighting its influence in driving overall changes in lake area. 

As the -cut threshold was increased from 0.3 to 0.7, these classes changed from a decreasing to 

an increasing trend, due to lakes switching from a higher to a lower areal class (Table 6.2). This 

finding was attributed to either intraannual variability or the presence of a structural break 

(explained further in Section 6.1.2).  

 

In contrast, the total count of lakes had a significant decreasing trend over the entire temporal 

domain (1985 – 2011; Figure 6.1C). The average rates of change obtained from using the three 

different fuzzy membership -cut thresholds all portrayed similar rates of decrease at a loss of 61, 

58, and 72 lakes/year for thresholds set at 0.3, 0.5, and 0.7 respectively (Table 6.3).  

 

The smallest class of lakes (Class 1) constituted a large majority within the total amount of lakes 

(~66%; Figure 6.2, Table 6.4), and subsequently drove the negative trend at -28 to -34 lakes/year, 

depending on the -cut thresholds used (Table 6.3). Because the changes in area within Class 1 

were also the least influential, as indicated by the low area-to-count ratio (Table 6.4), the large 

decreasing trend observed within this class only had a small effect on the overall changes in 

surface area. Correspondingly, the distribution of lake count was determined to be logarithmic, 

which renders the data difficult to analyse due to its resulting skewed distribution (Figure 6.1D). 

The distribution of lake surface area, on the other hand, approximately follows a normal 

distribution (Figure 6.1B). Finally, as it is probable that lake count would change with the use of 

higher resolution imagery that potentially identifies lakes smaller than the 1-pixel equivalent in 

this study (900 m2), lake count is therefore inherently dependent on specific aspects of Landsat 

data quality. Although the study acknowledged the variability of count data in this section, due to 

the above reasons, the rest of the study focused on changes in lake surface area rather than count. 
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Table 6.3. Linear temporal trends in overall lake count over time, for each fuzzy membership -cut threshold, each 

area class, and the combination of all classes. The regression estimate represented the rate at which lakes collectively 

increase or decrease in count over each year for the temporal domain 1985 to 2011. All significant p-values are 

denoted by an asterisk (*).   

-cut Area Class Estimate Intercept Adjusted R2 GLM p-value 

0.3 

1 -34.33 72,500.02 0.295 0.003* 

2 -17.610 39,534.82 0.402 0.001* 

3 -7.341 17,278.92 0.189 0.019* 

4 -1.047 33,24.168 -0.033 0.608 

5 -1.633 3,398.052 0.068 0.116 

 Total -62.145 136,352.75 0.392 <0.001* 

0.5 

1 -28.249 60,237.40 0.242 0.009* 

2 -14.915 34,063.14 0.313 0.003* 

3 -11.033 24,684.73 0.330 0.002* 

4 -2.434 60,69.873 0.029 0.207 

5 -1.735 3,603.085 0.083 0.093* 

 Total -58.373 128658.22 0.359 <0.001* 

0.7 

1 -31.460 66,505.85 0.420 <0.001* 

2 -18.886 41,924.19 0.564 <0.001* 

3 -13.560 29,787.00 0.360 0.001* 

4 -6.578 14,380.07 0.204 0.015* 

5 -2.123 4,383.690 0.116 0.057 

 Total -72.610 156,981.12 0.536 <0.001* 

 

 

6.1.2. Comparison of longer-term and recent trends 

 

Over the entire study area, the rates of areal decline for recent temporal records (1998 – 2011) 

were more negative than when compared to the rates of decline over the entire temporal domain 

(1985 – 2012; Table 6.1). Chow tests revealed a significant structural break in the total surface 

areal coverage time series for all three fuzzy membership -cut thresholds (all p < 0.004; Table 

6.1), separating the time series into two periods 1985 – 1997 and 1998 – 2011. Consequently, 

areal trends for all three thresholds were bifurcated into an initial positive correlation and a 

subsequent negative correlation (Figure 6.2A – C). The bifurcation resulted in an increase in 

statistical significance (decrease in p-value) for all regressions (Table 6.1).  
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When the total surface areal coverage was partitioned into areal classes, the structural break 

remained statistically significant (Table 6.2). In general, larger classes were found to have higher 

Chow statistics, with medium and large lakes (Classes 3 and 4) presented the highest Chow 

statistics overall. These lakes also saw the largest increases and decreases in lake area, respective 

of temporal period. Class 1 was the only class that was better represented as a continuous time 

series, rather than as two distinct periods. 

 

The presence of a significant structural break in lake surface areal trends forms the basis of the 

next section (Section 6.2), where the period indicating an initial positive correlation in lake areal 

extent is referred to as the first temporal period, and the period indicating the subsequent 

decreasing correlation is referred to as the second temporal period. 

 

 

Table 6.4. Average surface area and total count coverage and percentage, and the area-count percentage ratio for 

each fuzzy membership -cut threshold, classified into five area classes (defined in Table 4.2). The area-count 

percentage ratio represents the weight of lakes in each class in influencing changes in total surface area. 

-cut 
Area 

Class 

Average Areal 

Coverage (km2) 

Percentage of 

Total Area (%) 

Average Total 

Count 

Percentage of 

Total Count 

Area-to-Count 

Ratio 

0.3 

1 13.279 0.617 3,918 31.967 0.019 

2 112.651 5.231 4,366 35.615 0.147 

3 510.173 23.690 2,636 21.506 1.102 

4 1,198.994 55.676 1,204 9.828 5.665 

5 359.689 16.702 133 1.085 15.394 

Total 2,153.510 100 12,257 100 1 

0.5 

1 12.616 0.595 3,785 30.936 0.019 

2 108.631 5.125 4,324 35.348 0.145 

3 498.002 23.496 2,718 22.216 1.058 

4 1,180.323 55.687 1,270 9.829 5.363 

5 353.938 16.699 137 1.117 14.949 

Total 2,119.545 100 12,233 100 1 

0.7 

1 11.923 0.5433 3,649 30.015 0.018 

2 104.606 4.766 4,267 35.095 0.136 

3 490.499 22.348 2,783 22.895 0.976 

4 1,164.654 53.065 1,317 10.836 4.897 

5 347.863 15.850 141 1.159 13.673 

Total 2,194.786 100 12,157 100 1 
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Figure 6.1. Comparative time series of three fuzzy membership -cut thresholds and five lake surface area classes (using an -cut threshold of 0.5), respectively, for (A, B) total 

surface area and (C, D) lake count for the years 1985 to 2011.  
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Figure 6.2. Time series of total surface area for three fuzzy membership -cut thresholds of (A) 0.3; (B) 0.5; and 

(C) 0.7. Trendlines were calculated using a general linear model regressing total area by year, and are denoted by the 

solid line. The significant structural breaks, as identified by Chow tests, were denoted by the dotted line between 

years 1997 and 1998, where all p < 0.05. The structural break separated the time series into an initial positive 

correlation (black) and a subsequent negative correlation (blue).  

 

 

6.2. Spatial heterogeneity in lake dynamics. 

 

6.2.1. Individual rates of change. 

 

When examining the trends of individual lakes, a wide range in annual trends were found that 

included both substantial decreases and increases in lake area (Figure 6.3). Over the entire 

temporal domain, there was on average a very slight increasing trend in individual lake surface 

area, although the range of values was substantially variable (standard deviation = 5,348 m2/year; 

Table 6.5). Lakes displayed a higher positive trend in surface area increase during the first period 

(2,375 m2/year) than the second period (474 m2/year; Table 6.5).  

 

 

Table 6.5. Summary statistics for GLMs regressing lake area over time. The Global Moran’s I statistic was used to 

evaluate whether lakes exhibiting significant increasing or decreasing areal trends were spatially clustered, dispersed, 

or randomly distributed across the overall study area. The corresponding scale was the optimized distance band that 

determined the spatial extent of clustering.  

Temporal 

Period 
# of Lakes  

Mean Estimate 

(m2/year) 

Estimate Standard 

Error (m2/year) 

Moran’s I Value 

(Scale; m) 

Moran’s I  

p-value 

1985 – 1997 527 2,375.747 1,098.375 -0.005 (23,000) 0.045* 

1998 – 2011 1293 474.434 346.094 0.016 (22,000) 0.002* 

1985 - 2011 1872 23.776 195.804 -0.005 (23,000) 0.045* 

 

 

  

A B 

C B A 
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Figure 6.3A. Time series of Landsat images (Band 5 uncorrected) showing a lake  

in the South Eskimo Lakes region with a significantly (A) increasing and  

(B) decreasing trend. Delineations of lake extent represent polygons generated  

using a fuzzy membership -cut threshold of 0.5. Individual lake equation was  

obtained using a GLM as described in Section 4.5.2.   

A 
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 Figure 6.3 (continued).  

 

  

B 
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6.2.2. Spatiotemporal variability in lake area. 

 

When running the Global Moran’s I test on individual lakes showing a significant area trend, 

Moran’s I values were positive and significant (all p < 0.05) for all temporal domains, indicating 

that lakes with high or low areal trends were likely to be spatially clustered (Table 6.5; Figure 6.4). 

Maximum clustering of individual lake areal trends occurred at scales ranging from 22 to 23 km, 

suggesting broad-scale heterogeneity in trends (Table 6.5). Over the entire temporal domain, lake 

trends were overall spatially segregated, with lakes showing an increasing areal trend located at 

the bottom half of the peninsula, and lakes showing a decreasing trend located at the upper half 

of the peninsula (Figure 6.4A).   

 

The  Getis-Ord’s Local Gi* test determined that lakes showing the most extreme areal trends 

were likely to be spatially clustered in several hot and cold spots (Figure 6.5). In this study, hot 

spots were defined as a cluster of lakes collectively showing a significant increase in surface area 

over time, and cold spots defined the converse, representing a cluster of lakes collectively 

showing significant decreasing trends.  Several hot and cold spot clusters of large lakes were 

identified over the entire temporal domain, and represented various spatial extents (Figure 6.5A). 

The presence of a mid-peninsula transition zone (Box 1) was the most noticeable of these 

clusters, spanning an area of approximately 400 km2. At the meso-scale, hot and cold spots were 

also identified spanning the northern coastline of the peninsula (Boxes 2 – 4). A significant hot 

spot was further identified at the local scale in an area otherwise depicting unidirectional 

decreases in lake areal extents, indicating spatial heterogeneity at finer spatial extents (Box 5).  

 

During the first temporal period, lakes were seen to cluster most significantly at the Southern 

region of the Eskimo Lakes Region (Figure 6.5C inset). This meso-scale hot spot was also 

observed during the second temporal period, forming the southern extent of a corridor of lakes 

running northwards along the middle of the peninsula, collectively exhibiting increasing areal 

trends. Regardless of temporal extent, hot spots were located almost exclusively in the lower half 

of the peninsula, and cold spots were located mostly within the upper half of the peninsula.  
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Figure 6.4. Spatial distribution of lake surface areal trends over the Tuktoyaktuk Peninsula for (A) the entire temporal domain 1985 to 2011; (B) the first temporal 

period 1985 to 1997; and (C) the second temporal period 1998 to 2011. Lake areas were determined using a fuzzy membership -cut threshold of 0.5. Ordinary 

kriging was used to provide a visual representation to spatially portray individual lakes and their respective areal trends. Lake area trends were portrayed as points.  

A 

5
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Figure 6.4 (continued).   

B 

C 
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Figure 6.5. Significant hot and cold spot clusters of lake surface areal trends over the Tuktoyaktuk Peninsula for (A) the entire temporal domain 1985 to 2011; 

(B) the first temporal period 1985 to 1997; and (C) the second temporal period 1998 to 2011. Lake areas were determined using a fuzzy membership -cut 

threshold of 0.5. Ordinary kriging was used to provide a visual representation to spatially portray individual lakes and their respective areal trends. Numbers and 

inset figures provide a closer depiction of transition zones and hot and cold spot clusters.  

A 
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 Figure 6.5 (continued).   

B 

C 
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6.3. Relationship between lake area and weather variables. 

 

6.3.1. Overall rates of change. 

 

Analysis of climate data derived from the ERA-Interim Reanalysis Dataset revealed either weak 

or no significant trends in climatological time series (Figure 6.6). Both the annual mean and 

annual growing season (June to September) temperature over the Tuktoyaktuk Peninsula showed 

a weak linear increase and decrease over time, respectively (R2 = 0.093 and R2 = 0.004). 

Although not statistically significant, average growing season temperatures were noted to 

increase almost linearly after 1999.  

 

A slight linear increase in total annual precipitation was also found; however, the correlation was 

extremely low (R2 = -0.04) and consequently is better described as having no observable trend 

during the short time period specified. The total precipitation during the growing seasons 

revealed a statistically significant structural break between the years 1997 and 1998, separating 

the time series into an initial positive correlation that increased at a moderate rate, and a 

subsequent correlation that was also positive, but with a lower rate of increase, and with 

significantly lower average values (p < 0.05) than the initial temporal period. The presence of the 

same structural break in both the total growing season precipitation and the lake surface area 

time series suggests that the structural break is robust. Consequently, the reductions in total 

growing season precipitation rates and values during the second temporal period are coincident 

with the declining trend seen in lake surface areas. For most of the years corresponding to the 

Landsat images, both the total annual and total growing season precipitation were within 1 

standard deviation of the 1979 – 2012 mean (227.608 mm ± 34.452 mm; 127.905 mm ± 27.866 

mm).  

 

Similarly, the effect of climatic variables on overall lake surface area over the study region 

revealed little correlation (Table 6.6). Mean annual temperatures were found to have the largest 

effect among the climatic variables, decreasing lake areal extents by -13 km2/C (R2 = 0.058).  
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Table 6.6. Statistics of GLMs regressing individual lake surface areal change over individual climatic variables. 

Chow tests were conducted on each variable time series (variable ~ year) to determine the temporal period used for 

the GLM. The regression estimate represented the relative influence of each climatic variable in driving increase or 

decrease in lake area. None of the variables were significant at p = 0.05.  

Variable 
Temporal 

Period 
Estimate Intercept Adjusted R2 

GLM  

p-value 

Chow  

p-value 

Mean Annual 

Temperature 
1985 – 2011  -12.837 13.335 0.058 0.153 0.378 

Mean Growing 

Season Temperature 
1985 – 2011 -2.573 14.118 0.373 0.775 0.872 

Total Annual 

Precipitation 
1985 – 2011 0.063 13.887 -0.050 0.844 0.101 

Total Growing 

Season Precipitation  

1985 – 1997  0.987 2,027.875 0.052 0.256 
0.042* 

1998 – 2011 -0.374 2,203.666 0.056 0.209 

 

 

 

Figure 6.6. Time series of (A) mean annual temperature; (B) mean temperature during the growing season; (C) 

total annual precipitation; and (D) total precipitation during the growing season. The growing season was defined as 

the period between 01 June and 30 September of the coinciding year. Time series were derived from the ERA-

Interim Reanalysis dataset. The significant structural break, as identified by a Chow test, was denoted by the dotted 

line between years 1997 and 1998, where p < 0.05. The structural break separated the time series into an initial 

strong positive correlation (black) and a subsequent weaker positive correlation (blue). 

 

A B 

C D 
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6.3.2. Spatiotemporal variability in lake area. 

 

Examining the effect of climatic variables on lake surface area at the individual scale revealed 

varying ranges that included both increases and decreases in lake area (Table 6.7). Lakes were 

found to decrease both with increasing mean annual temperatures (-2,105 m2/C) and with 

increasing mean growing season temperatures (-404 m2/C). The total annual precipitation was 

found to negatively correlate with lake area at a rate of -47 m2/mm; however, increasing total 

growing season precipitation had a positive effect on lake area (+60 m2/mm). Overall, negative 

correlations were found to be more extreme than positive correlations (Figure 6.7).  

 

 

Table 6.7. Summary statistics for GLMs regressing lake area over climatic variables. The Global Moran’s I statistic 

was used to evaluate whether lakes exhibiting significant increasing or decreasing areal trends were spatially clustered, 

dispersed, or randomly distributed across the overall study area. The corresponding scale was the optimized distance 

band that determined the spatial extent of clustering. The total number of lakes regressed (both statistically 

significant and insignificant) was 1,872, as determined in Table 6.5.  

Variable 
# of 

Lakes  

Mean Estimate 

(m2/°C or mm) 

Estimate Standard Error 

(m2/°C or mm) 

Moran’s I Value  

(Scale; m) 

Moran’s I  

p-value 

Mean Annual 

Temperature 
189 -2,104.89 906.001 0.094 (20,000) <0.001* 

Mean Growing 

Season Precipitation 
100 -403.656 603.872 0.053 (20,000) 0.021* 

Total Annual 

Precipitation 
47 -46.761 21.816 0.157 (17,000) 0.008* 

Total Growing 

Season Precipitation 
105 59.732 27.536 0.049 (22,000) <0.001* 

 

 

Moran’s I values were positive and significant (all p < 0.05) for all climatic variables, indicating 

that each climatic variable had a greater effect on certain regions than others within the entire 

study area (Table 6.7; Figure 6.7). Lakes were found to have the highest degree of clustering at 

scales between 17 and 22 km, indicating that spatial autocorrelation was most significant at the 

broad scale.  

 

The spatial distribution of individual lake areal-climate trends exhibited similar spatial patterns 

observed with the distribution of individual lake areal trends over the entire temporal period 

(Figure 6.9). Consequently, the lake areal-climate trends were also spatially segregated, with lakes 

depicting positive trends located almost exclusively within the upper half of the peninsula, and 

lakes depicting negative correlations located on the lower half. Overall, annual mean 
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temperatures were found to exert the largest effect on the lower half of the peninsula, especially 

around Kugmallik Bay, where an increase in temperatures tended to reduce individual lake 

surface area. Conversely, annual growing season temperatures may have had a more profound 

effect on the upper half of the study area, possibly driving expansion in lake areal extents with 

increasing temperatures. The significant effects of total annual precipitation on lake areal trends 

were restricted to within the lower half the peninsula, where interestingly, an increase in 

precipitation resulted in a reduction of lake surface area. This trend was similar with total 

growing season precipitation. These results could be interpreted as either 1. a delayed response 

of lakes to precipitation that was not identified in this study; 2. the relative weakness of 

precipitation as a forcing weather variable on lake surface areal change; or 3. faults in the 

statistical analysis and/or methodology. These interpretations are discussed further in the 

Discussion of the study (Section 6.1.2). 



61 
 

  

Figure 6.7. Spatial distribution depicting the effect of climatic variables on individual lake surface area over the Tuktoyaktuk Peninsula. The surface area of individual lakes were 
found to be affected by (A) yearly average temperatures; (B) average growing season temperatures; (C) total annual precipitation; and (D) total growing season precipitation. 
Trends were determined by GLMs regressing lake area over each climatic variable, where the estimate (slope; represented as red [positive] and blue [negative] points) was 
represented as the change in areal extent (m2) per climatic variable unit (°C or mm). Histograms show the distribution of slope values for each climatic variable trend. Trend 
points were overlaid on lake surface areal trends over the time period 1985 – 2011.  
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7.  DISCUSSION. 

 

 

This study was among the first to implement a fully automated land-cover classification 

algorithm to detect and examine changes seen in lake surface area, with relative success.  

This study was also among the first to evaluate a near-complete yearly time series of 

homogeneous geospatial imagery in a lacustrine environment. Intra-annual variability was 

addressed by employing fuzzy membership techniques to represent water level fluctuations 

throughout the growing season. Inter-annual variability was addressed by implementing general 

linear models (GLMs) to estimate linear and bilinear trends on individual and overall lake area.  

 

To explain and contextualise the Results of the study (Section 5), the discussion of the study 

examined and interpreted individual and overall trends in lake area across the Tuktoyaktuk 

Peninsula (Section 7.1). The section explored the effect of weather forcings found on these areal 

trends, and investigated other non-climatic effects on the spatiotemporal evolution of lakes. 

Because this study investigated modern polar lacustrine change in a purely geospatial context, 

and because of the scope this study was limited to, an additional section detailing priorities for 

further research was included to contextualise this study with other modern issues in the 

Tuktoyaktuk Peninsula and the Mackenzie Delta region (Section 7.2).  

 

7.1. Analysis of temporal trends.  

 

The results of this study indicate that, even though lakes showed negligible changes in surface 

area throughout the entire temporal domain of the modern Landsat archive (1985 – 2011), 

significant lake areal trends were present at the decadal scale (Figure 6.2). Similarly, areal trends 

did not appear to be homogeneous over the Tuktoyaktuk Peninsula, but instead bifurcated the 

Peninsula into broad regions of increasing and decreasing areal extents, with local areas of spatial 

heterogeneity at the finer scale.  

 

7.1.1. Comparison of longer-term and recent trends. 

 

Previous studies have focused on broad spatiotemporal patterns and trends in lake surface area 

and count in Arctic and sub-Arctic regions (Table 2.1). Thermokarst lakes located within the 
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zone of continuous permafrost were generally observed to increase both in area and in count, 

while lakes located within the zones of discontinuous, sporadic, and isolated permafrost 

decreased in area and number (Smith et al. 2005, Kirpotin et al. 2008, Kirpotin et al. 2009, 

Carroll et al. 2011). Although the temporal scale of this study was shorter and more recent in 

comparison, the results obtained are based on considerably more satellite images within data 

processing steps, and documented a different pattern for thermokarst lake change in a region of 

continuous permafrost. This study reported negligible changes in the total area of lakes over 

1985 to 2011, while observing a unilateral decline in lake number. The discrepancy between areal 

and numeral trends can primarily attributed to the presence of a significant structural break 

between the years 1997 and 1998 in overall lake areal trends, which highlights major differences 

in trends within areal classes. 

 

The temporal structural break between the years 1997 and 1998 divides the time series into an 

initial positive growth in lake surface area, and a subsequent negative areal decline overall. This 

structural break is highly significant, and this pattern in lake areal trends has been observed in 

past literature. In particular, the presence of the break supports the claims of Plug et al. (2008), 

the only other study to examine lake areal trends over the entire Tuktoyaktuk Peninsula. 

Although their study identified general increases in lake surface area primarily between 1978 to 

1992 and general decreases between 1992 to 2001, only images corresponding to the years 1978 

– 1978, 1991 – 1992, and 2000 – 2001 were examined, due to the previous restrictions 

concerning Landsat imagery availability (as explained in Section 2.4.2). With a total of 352 

Landsat images used, this study was considerably higher in temporal resolution, and arguably 

more accurate in the analysis of time series trends. The inter-annual timing of the structural 

break determined in this present study is located between the periods of missing data in Plug et 

al.’s study, and therefore should be interpreted as a temporal refinement of lake areal trends. In 

addition, this study extended the temporal series of Plug et al.’s study by ten years, and similarly 

reported no persistent lake changes in overall lake extent on the Tuktoyaktuk Peninsula. 

 

Furthermore, the presence of the structural break is a robust result, which remains applicable 

when overall trends in lake surface area were partitioned into areal classes. When examining the 

magnitude of trends within each areal class, it appears that large lakes (Classes 3 and 4) increased 

relatively more substantially from 1985 to 1997, and decreased from 1998 to 2011 at rates 

relatively higher and lower than other classes, respectively (Table 6.2; up to 4.693 km2/year and 

down to -1.679 km2/year, respectively). Increases in lake area were concomitant with a 
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unidirectional decline in the number of lakes, which were largest in magnitude in the smallest 

areal class (Table 6.3; Class 1; of down to -34.33 lakes/year). A sole analysis of lake abundance 

without addressing lake area changes over time may be misleading (Jones et al. 2011), as Class 1 

lakes have the lowest area-to-count ratio (Table 6.4), and have little effect on the overall changes 

observed in surface area. Therefore, because large areal classes saw the greatest increases in 

absolute lake surface area between the years 1985 to 1997, it is likely that these classes masked 

the reduction in lake count to an extent during this first temporal period. In addition, as the large 

areal classes hold a relatively high area-to-count ratio (Table 6.4), it is likely that these classes 

drove the overall changes in lake area throughout the entire temporal domain.  

 

The apparent rapid decline in overall lake area since 1998 in comparison to the rates of change 

observed over the entire temporal domain may indicate the presence of larger-scale climatic 

phenomena. A plausible explanation for this negative areal trend after 1998 is a shift towards a 

stronger Beaufort Sea High during the summer months beginning in the late 1990s (Moore 

2012). This particular shift in the intensity and position of the Beaufort Sea High has been 

associated with a reduction in cyclogenesis over the Beaufort Sea area (Moore 2012). When the 

cyclone pattern is poorly developed, net precipitation tends to be anomalously negative over the 

Arctic Ocean (Serreze and Barrett 2008). In addition, a strong Beaufort Sea High has also been 

associated with positive lower-tropospheric temperature anomalies over the majority of the 

Arctic Ocean (Serreze and Barrett 2008). The simultaneous combination of positive temperature 

and negative net precipitation anomalies often results in a major imbalance of the water balance 

of the landscape, as given by the equation:  

 

 S = P – ET – Q – D, [Eq. 7.1.] 

 

where S represents the change in water stored within a given area, and is determined by 

precipitation (P), evapotranspiration (ET), streamflow (Q), and groundwater recharge (D). 

Increased annual mean temperatures are highly correlated with evapotranspiration rates (Gibson 

et al. 1996), and have been correlated with regional decreases in lake surface area across Alaska 

(Riordan et al. 2006, Jones et al. 2011). In this study, the yearly growing season precipitation 

totals were found to also possess a statistically significant break between 1997 and 1998, and to 

be lower both in trend and in average after 1998 (Figure 6.6D). Although not statistically 

significant, average temperatures during the growing season appear to be rising in the late 1990s 

(Figure 6.6A). Because these climatic time series were found to have an overall good fit with the 
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trends seen in overall lake area during the second temporal period (1998 – 2011), the overall 

trend of shrinking areal extent during this may have been particularly responsive to negative 

shifts in water balance due to the combination of temperature and precipitation trends after 1998.  

 

7.1.2. Spatial heterogeneity in lake morphometrics.  

 

Trends in lake surface area over the Tuktoyaktuk Peninsula were found to be regional, which 

was consistent with prior studies that identified spatial regional heterogeneity in areal trends in 

Alaska (Riordan et al. 2006, Roach 2011, Rover et al. 2012, Roach et al. 2013) and in Siberia 

(Smith et al. 2005). Similar with the findings of (Roach 2011), the lack of an association with 

several climatic variables (Table 6.7) instead suggests that substrate characteristics, topographic 

features, or other terrestrial, periglacial, and atmospheric climatic gradients are potentially more 

influential in determining spatial heterogeneity in areal trends.  

 

A spatial visualisation of individual lake surface areal trends over the Tuktoyaktuk Peninsula 

indicated the presence of a latitudinal divide in net study area trends that bifurcated the 

Peninsula into two regions of approximately equal area (Figure 6.4). Within these two regions, 

several hot and cold spots were identified, some that exhibited trends in concordance with their 

local surroundings, and others that instead represented local heterogeneity in areal trends. The 

presence of meso-scale and local spatial heterogeneity within the boundaries of a given study 

area may indicate complex interactions between climate forcing and fine-scale variability in lake 

hydrological processes, which include factors such as permafrost and thermokarst degradation, 

the variability of sub-lacustrine substrate permeability, and/or regional and local topography 

(Roach et al. 2013).  

 

A closer look at the permafrost and ground ice conditions at and around Tuktoyaktuk Peninsula 

reveals that the types of periglacial environments covering the Peninsula are spatially 

heterogeneous (Figure 7.1), and that the locations of different permafrost class types closely 

match the spatial distribution of individual lake surface areal trends (Figure 6.4). Specifically, 

areas with noticeable ice content at various depths, and silty and clay diamicton deposits form 

the same spatial patterns with observed regions of lake area increase, and areas with low or no 

ice content, and coarser sand and gravel sediment types were present where lakes were seen to 

decrease in area. Furthermore, these areas are spatially coincident with various hot (e.g. Figure 

6.5A Boxes 1 and 2; Figure 6.5B Inset; Figure 6.5C Inset) and cold spots (e.g. Figure 6.5A Boxes 



66 
 

3 and 4) that respectively represent localized zones of significant areal increases and decreases. 

The spatial associations found between lake areal trends and the corresponding local surficial 

geology supports the studies of Roach (2011), who determined a positive correlation between 

trends in lake area, soil grain size and type, and local lacustrine water retention. The occurrence 

of frozen sublacustrine silt is also significantly associated with expanding lakes (Jepsen et al. 

2013a). With the unidirectional increases in annual temperature (Figure 6.6A; Figure 6.7A) and 

the increases in growing season temperature observed after 1998 (Figure 6.6B; Figure 6.7B), it 

can be hypothesized that the continued warming of the earth surface in regions of declining lake 

areal trends may promote sub-lacustrine permafrost degradation, increasing the width of the 

active layer, and connecting the affected lakes to subsurface groundwater networks or 

overflowing into river systems. Warmer air temperatures have been linked with similar increases 

in lake temperature (Marsh et al. 2009), and often results in higher rates of lake outflow 

downwards due to rapid melt of ground ice during drainage (Marsh and Neumann 2001).  

 

The associations found in this study was also consistent with the hypothesis that continued 

degradation of permafrost in areas with coarse-grained soils may lead to declining lake areas 

(Yoshikawa and Hinzman 2003, Smith et al. 2005, Roach et al. 2013), with the sole exception 

that the Tuktoyaktuk Peninsula is located entirely in the continuous permafrost region, and that 

other observations supporting this hypothesis have all been made in regions of discontinuous 

permafrost. Therefore, a better understanding of the surficial geology and permafrost-

thermokarst interactions in the Tuktoyaktuk Peninsula will enable empirical testing of this 

hypothesis whether or not trends and correlations in permafrost thaw, soil characteristics, and 

lake areal change are transferrable across different classifications of permafrost zones.   
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Low to high ice content in sandy sediments, as wedges; 
moderate to high ice content in silty and clayey 
sediments, as lenses and reticulate veins; massive ice 
commonly occurs at depth and in pingos 
 Lacustrine and marine deposits as plains and intertidal lagoons: 

interbedded silt, clayey silt, and silty sand; locally underlain by 
diamicton 

 
Low to moderate ice content, as lenses and reticulate 
veins, higher ice content with depth; massive ice may be 
present at base of diamicton and in underlying sediments 
 Alluvial deposits as fans, plains, and terraces: sands and isolated 

silty layers 

 Morainal and colluvial blanket deposits: stony clay diamicton; 
may overlie marine and glaciofluvial deposits 
o Ice content locally higher in lenses of silt and clay 
o May have higher ice content where underlain by marine 

sediments, especially in the northern part of the map area.  

 Glaciated upland and piedmont complex: mainly till and 
disintegrated bedrock; overlies areas of moderate to low slope.  

 Veneered bedrock: diamicton overlying low rounded hills and 
ridges of unglaciated bedrock 

 Exposed bedrock: varied bedrock types 

 
Nil to low ice content, as wedges 
 Alluvial deposits: coarse sand and gravel 

o Ice content locally high where silt, clay, and/or peat form 
veneers or fill depressions 

 Glaciofluvial deposits as outwash plains, kames, and eskers: sand 
and interbedded sand and gravel 
o Ice content locally higher in lenses of silt and clay 
o May be covered by sand dunes consisting of fine to medium 

sand, in places silty, with isolated peaty layers; higher ice 
content in silt and peat 

 Colluvial deposits as blankets and veneers: coarse diamicton; 
may overlie areas of unglaciated bedrock 

 
Sporadic permafrost: Nil to low ice content where 
material frozen 
 Glaciofluvial deposits as outwash plains, drumlins, kames, 

hummocks, and eskers: sand and interbedded sand and gravel 

 Veneered bedrock: colluviums 

 Alluvial deposits and fans, terraces and floodplains: gravel, sand, 
and silt 

 Landslide debris deposits: variable texture 

 Marine beach deposits and spits and bars: sand and gravel 

5LH 

5LM 

5NL 

2NL 

Figure 7.1. Permafrost and ground ice conditions 

and associated surficial materials at and around 

Tuktoyaktuk Peninsula. Areas with a purple hue 

indicate regions of continuous permafrost, while 

areas in green and yellow indicate areas of 

discontinuous and sporadic permafrost, respectively. 

The presence of a dashed line symbolises the 

approximate route of the proposed Inuvik to 

Tuktoyaktuk Highway at the time of map 

publication. Figure adapted from Heginbottom and 

Radburn (1992), where the areal coverage was 

derived from Rampton (1981a, b). 
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The presence of wildfire within the realm of the study area may also influence local and regional 

lake areal trends. Wildfires result in an immediate impact on the permafrost and ground thermal 

regimes, increasing soil thermal conductivity and ground heat flux, and decreasing soil moisture 

retention due to an increase in active layer thickness and the growth of primary and secondary 

succession (Yoshikawa et al. 2003). The loss of frozen soil, which often serves as an aquiclude 

for lakes, may promote long-term soil drying (Swanson 1996, Riordan et al. 2006). Very few fires 

were documented on the Tuktoyaktuk Peninsula due to a combination of the Peninsula being 

located above the Arctic treeline ecotone and a lack of physical observation at the time of 

potential fires (EIRB 2011). However, given the available data, all known locations of wildfires 

and wildfire ignition sites correspond to localised areas of lake surface areal decline during the 

wildfire occurrence period specified (Figure 7.2), and the majority of these locations coincide 

with identified cold spots of lake area decrease (Figure 6.5).  

 

Figure 7.2. Locations of known historical fires and fire ignition causes between Inuvik, N. T., and Tuktoyaktuk, N. 
T. Note that although there are several points of fire ignition reported, these instances did not all become fires. Fire 
locations were not known for the region above Tuktoyaktuk, N. T. Adapted from the Environmental Impact 
Statement for Construction of the Inuvik to Tuktoyaktuk Highway, N. W. T. (EIRB 2011).  
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The spatial patterns observed examining the effect of precipitation totals on individual lake 

surface area were less intuitive in comparison. While increased precipitation rates have been 

correlated with both an increase in lake surface area through the filling of basin catchments 

(Tarasenko 2013), the same increases have also been associated with a reduction in areal extent 

by stimulating ground water flow through higher lake levels (Brewer et al. 1993). In this study, an 

increase in precipitation totals both throughout the year and during the growing season were 

associated with a reduction in lake surface area in regions of general areal increase (Figure 6.9C 

and D). It is feasible that increased precipitation could cause diminished lake areas due to higher 

erosion caused by higher stream level connecting lakes (Hinkel et al. 2007). However, this cannot 

explain the converse also observed, where reduced amounts of precipitation correlate with 

increased lake surface area. Several hypotheses can be made to address this discrepancy. First, 

there may be a significant time lag in the responses of thermokarst lakes to changes in 

precipitation, due to the delayed response of permafrost to climate forcing (Harris et al. 2009). 

The coupled thermal and geomorphic processes that operate on thaw lake margins may give rise 

to a complicated temporal response of lakes to climate change, such as the effect of thaw slump 

material accumulating along lake margins that buffers permafrost from the effects of increasing 

waterlevels and temperatures until it is redeposited into the deeper water basin in future years 

(Plug et al. 2008). Second, precipitation may not be an important factor causing lake areal change. 

Other studies have made similar claims, due to the absence of lake drainage phenomena and 

limited new lake formation and lateral lake expansion rates during periods of increased 

precipitation (Sannel and Kuhry 2011). Third, due to the low number of lakes (47 and 105, 

respectively) in comparison to the amount of input lakes (1872), there exists the possibility that 

the results obtained from the GLM are purely coincidental. Last, the ERA-Interim Reanalysis 

Dataset may not be the best source of precipitation data for localised studies. Because 

precipitation estimates in the ERA-Interim Dataset were produced by a forecast model based on 

temperature and humidity (Dee et al. 2011), in addition to known methodological limitations in 

the ground measurement of precipitation data (explained in Section 5.2), it is difficult to 

determine true and unbiased totals of precipitation, and future studies should incorporate 

procedures to correct for precipitation uncertainties.  
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Figure 7.3. Proposed Inuvik-Tuktoyaktuk Highway routes. Adapted from the Environmental Impact Statement for 
Construction of the Inuvik to Tuktoyaktuk Highway, N. W. T. (EIRB 2011).   
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7.2. Study implications and priorities for future research.  

 

The results of this study may guide present and future land planning projects in this region. 

Currently, continued progress is being made at the planning stage for the construction of an all-

weather road between the town of Inuvik, N. T., to the hamlet of Tuktoyaktuk, N. T. (EIRB 

2011), which is located on the lower half of the northern coastline on the Tuktoyaktuk Peninsula. 

Although a comprehensive Environmental Impact Statement was recently conducted, the report 

fails to consider the potential impacts that a changing lacustrine landscape may impact 

surrounding permafrost and thermokarst conditions. Approximately 80 kilometres of the 

highway is spatially coincident with identified regions of lake increase, and transcends the Mid-

Peninsula Corridor cold spot (Figures 5.4, 5.5, 6.3). Therefore, it would likely be beneficial to 

understand the local areal dynamics of lakes, particularly in those locations where the highway is 

to run alongside lakes that have been known to significantly expand and/or shrink over time.  

 

Although historical maps (Figure 7.1; e.g. Rampton 1981a, b, Heginbottom and Radburn 1992) 

have illustrated the surficial geology and spatial distribution of permafrost conditions of the 

Tuktoyaktuk Peninsula in the recent past, the instability of ground conditions in the region make 

consistent and/or complete physical coverage surveys of the Peninsula difficult to achieve. As 

dramatic changes in the landscape of the Arctic have been observed at an increasing rate, future 

studies investigating thermokarst lake change in the Tuktoyaktuk Peninsula should involve a field 

component to measure the present state of permafrost and associated active layer, in the hopes 

of obtaining more accurate data to successfully correlate lacustrine variability with landscape 

characteristics.  

 

A better comprehensive knowledge of the ecosystem characteristics, in turn, can potentially 

quantify explicit relationships between important landscape characteristics and lake areal change. 

Incorporating these important characteristics in an ecological distribution model, for instance, 

have been relatively successful at describing the present system by correlative statistics and 

projecting the system into the future under altered, but monitored conditions (Evans 2012). An 

improved understanding of the mechanisms underlying lake area trends is imperative to enhance 

spatiotemporal projections of future lacustrine change by identifying hot and cold spots that are 

and will be most susceptible to future change (Roach et al. 2013). 
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Ramifications of the land surface transition due to climate change could potentially trigger 

changes in the carbon and surface energy budgets of the Arctic (Sturm et al. 2005), as well as 

alter the habitat and phenology of the system (Jia et al. 2003). Drained thermokarst lake basins 

have been a significant sink for soil organic carbon over historic and recent geological time scales 

(Serreze et al. 2000, Schuur et al. 2008). However, lacustrine regions with significant declines in 

lake area and count, such as the Kuparuk River Basin (Kling et al. 1991) have been identified as 

recent hotspots of CO2 and methane export (Zona et al. 2010). Specifically, thermokarst lake 

basins serve most as a significant CO2 source within the first 15 years of drainage (Wickland et al. 

2009, Jones et al. 2011). Knowing how much carbon will be released from specific permafrost 

zones during the course of this century is crucial for determining future responses to climate 

change (Schuur and Abbott 2011). With the recent decreases observed in lake area over the 

Tuktoyaktuk Peninsula, future research could clarify the net declines in lake area on carbon 

balance by identifying the size and fraction of the permafrost carbon pool, and the projected 

increases in methane emissions as a result of carbon release from basin exposure as a result of 

lake drainage.  
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8.  CONCLUSION.   

 

 

Changes in thermokarst lakes have been identified across many high-latitude ecosystems (Table 

2.1), and these changes are often attributed to consequences from a warming Arctic climate 

(Roach et al. 2013). This study has examined the dynamics of lake surface area over different 

spatial and temporal scales in the Tuktoyaktuk Peninsula, N. T., an area located completely 

within the zone of continuous permafrost. The results of this study supported the findings of 

past studies in this region (e.g. Plug et al. 2008), while also increasing the temporal resolution to a 

near-complete yearly time series of homogeneous geospatial imagery, achieving temporal levels 

that were previously unattainable. The major findings of the study can be separated into five 

principal components:  

 

1. While no significant net change was found in the total surface area of lakes between 1985 

and 2011, the presence of a significant and robust structural temporal break between the 

years 1997 and 1998 divided the time series into an initial positive growth in lake surface 

area during the period 1985 to 1997, and a subsequent negative decline in lake area 

during the period 1998 to 2011.  

2. Large lakes saw the greatest changes both in lake areal increase and decrease coincident 

with the overall observed trends, and so drove the overall change in surface area. 

3. The declines seen in lake surface area after 1998 were suggested to be a ramification of a 

stronger summer Beaufort Sea High that began simultaneously at the end of the old 

millennium, due to the effects of the pressure system on temperature and precipitation 

trends around the Tuktoyaktuk Peninsula.  

4. Regional differences were observed in the spatial distribution of individual lake area 

trends. On the broad scale, a latitudinal divide bifurcated the peninsula into two regions 

of approximately equal area, where the northern region exhibited general trends of lake 

areal decline, while the southern region exhibited general trends of areal increase. Within 

these regions, meso- and local hot and cold spots were identified, some that exhibited 

trends in concordance with local surroundings, while others represented local spatial 

heterogeneity in areal trends.  

5. The spatial trends in lake area seen at multiple scales were suggested to be influenced to a 

greater extent by characteristics in coincident permafrost and surficial geology, and to a 
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lesser extent by atmospheric and climatic variables. Most of these features were linked to 

a warming climate.  

 

In addition, the study demonstrated reasonable success in implementing a largely automated 

technique on land cover classification using large amounts of Landsat satellite imagery in order 

to achieve these component goals.  

 

Aside from low-permeability environments and/or beneficial net water balance adjustments,  the 

ultimate effect of continued climate warming on high-latitude permafrost-controlled lakes has 

continually and consistently been observed (Smith et al. 2005). Annual rates of change of 

individual lakes within a given region may compound to yield substantial cumulative reductions 

in overall lake surface area (Roach et al. 2013). As the Arctic continues to warm, a continued 

observation of thermokarst lake evolution over both broad landscapes and localised regions will 

be increasingly valuable to future studies that investigate the resulting transformation of the 

Arctic tundra ecosystem.  
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APPENDIX.   

 

 

Appendix 1. Complete tabular list of Landsat imagery used in methodology.  

Year Month Day Path Row Landsat Sensor 

1985 7 15 61 11 5 TM 

1985 7 31 61 11 5 TM 

1985 7 15 61 12 5 TM 

1985 7 31 61 12 5 TM 

1985 9 1 61 12 5 TM 

1985 8 7 62 11 5 TM 

1985 8 7 62 12 5 TM 

1985 6 27 63 12 5 TM 

1985 8 5 64 11 5 TM 

1985 6 25 65 11 5 TM 

1986 7 18 61 11 5 TM 

1986 7 2 61 12 5 TM 

1986 7 18 61 12 5 TM 

1986 8 10 62 11 5 TM 

1986 9 11 62 11 5 TM 

1986 8 10 62 12 5 TM 

1986 9 11 62 12 5 TM 

1986 8 17 63 10 5 TM 

1986 8 17 63 11 5 TM 

1986 9 2 63 11 5 TM 

1986 7 23 64 11 5 TM 

1986 6 21 64 12 5 TM 

1986 7 7 64 12 5 TM 

1986 8 8 64 12 5 TM 

1988 6 28 62 11 5 TM 

1988 6 28 62 12 5 TM 

1988 7 5 63 10 5 TM 

1988 8 6 63 10 5 TM 

1988 7 5 63 11 5 TM 

1988 7 3 65 11 5 TM 

1989 6 24 61 11 5 TM 

1989 8 18 62 11 5 TM 

1989 8 18 62 12 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

1989 7 8 63 10 5 TM 

1989 7 8 63 11 5 TM 

1989 6 22 63 12 5 TM 

1989 7 15 64 11 5 TM 

1989 7 22 65 11 5 TM 

1989 8 7 65 11 5 TM 

1989 8 23 65 11 5 TM 

1990 6 27 61 11 5 TM 

1990 8 14 61 11 5 TM 

1990 8 14 61 12 5 TM 

1990 7 4 62 11 5 TM 

1990 9 22 62 11 5 TM 

1990 7 4 62 12 5 TM 

1990 9 22 62 12 5 TM 

1990 8 12 63 10 5 TM 

1990 9 13 63 10 5 TM 

1990 9 13 63 11 5 TM 

1990 6 25 63 12 5 TM 

1990 7 2 64 11 5 TM 

1990 7 2 64 12 5 TM 

1991 7 16 61 11 5 TM 

1991 6 21 62 12 5 TM 

1991 7 30 63 10 5 TM 

1991 9 16 63 10 5 TM 

1991 9 16 63 11 5 TM 

1991 6 28 63 12 5 TM 

1991 7 14 63 12 5 TM 

1991 7 28 65 11 5 TM 

1994 7 24 61 11 5 TM 

1994 6 13 62 11 5 TM 

1994 6 29 62 11 5 TM 

1994 6 13 62 12 5 TM 

1994 7 6 63 10 5 TM 

1994 7 22 63 10 5 TM 

1994 8 7 63 10 5 TM 

1994 7 22 63 11 5 TM 

1994 8 7 63 11 5 TM 

1994 7 22 63 12 5 TM 

1994 8 7 63 12 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

1994 7 13 64 11 5 TM 

1994 7 29 64 11 5 TM 

1994 7 4 65 11 5 TM 

1995 7 11 61 11 5 TM 

1995 7 11 61 12 5 TM 

1995 7 2 62 11 5 TM 

1995 9 20 62 11 5 TM 

1995 7 2 62 12 5 TM 

1995 7 9 63 10 5 TM 

1995 8 10 63 10 5 TM 

1995 8 10 63 11 5 TM 

1995 6 30 64 11 5 TM 

1995 6 30 64 12 5 TM 

1995 9 18 64 12 5 TM 

1996 7 13 61 11 5 TM 

1996 6 18 62 12 5 TM 

1996 9 6 62 12 5 TM 

1996 8 12 63 10 5 TM 

1996 8 28 63 10 5 TM 

1996 8 12 63 11 5 TM 

1996 8 28 63 11 5 TM 

1996 7 11 63 12 5 TM 

1996 8 28 63 12 5 TM 

1997 6 30 61 11 5 TM 

1997 6 30 61 12 5 TM 

1997 6 5 62 12 5 TM 

1997 7 30 63 11 5 TM 

1997 7 30 63 12 5 TM 

1998 6 17 61 11 5 TM 

1998 7 19 61 12 5 TM 

1998 8 20 61 12 5 TM 

1998 7 1 63 10 5 TM 

1998 7 17 63 10 5 TM 

1998 6 15 63 11 5 TM 

1998 7 1 63 11 5 TM 

1998 6 15 63 12 5 TM 

1998 7 1 63 12 5 TM 

1998 8 2 63 12 5 TM 

1998 6 22 64 11 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

1998 7 24 64 11 5 TM 

1998 6 29 65 11 5 TM 

1999 7 14 61 11 7 ETM+ SLC-on 

1999 7 30 61 11 7 ETM+ SLC-on 

1999 9 16 61 11 7 ETM+ SLC-on 

1999 7 14 61 12 7 ETM+ SLC-on 

1999 7 30 61 12 7 ETM+ SLC-on 

1999 7 22 61 11 5 TM 

1999 8 7 61 11 5 TM 

1999 8 7 61 12 5 TM 

1999 6 11 62 12 5 TM 

1999 8 21 63 10 5 TM 

1999 6 25 64 11 5 TM 

2000 7 16 61 11 7 ETM+ SLC-on 

2000 8 1 61 11 7 ETM+ SLC-on 

2000 9 2 61 11 7 ETM+ SLC-on 

2000 7 16 61 12 7 ETM+ SLC-on 

2000 8 17 61 12 7 ETM+ SLC-on 

2000 9 2 61 12 7 ETM+ SLC-on 

2000 7 23 62 11 7 ETM+ SLC-on 

2000 7 23 62 12 7 ETM+ SLC-on 

2000 8 31 63 11 7 ETM+ SLC-on 

2000 8 31 63 12 7 ETM+ SLC-on 

2000 6 19 64 12 7 ETM+ SLC-on 

2001 7 3 61 11 7 ETM+ SLC-on 

2001 7 19 61 11 7 ETM+ SLC-on 

2001 8 20 61 11 7 ETM+ SLC-on 

2001 9 5 61 11 7 ETM+ SLC-on 

2001 9 21 61 11 7 ETM+ SLC-on 

2001 7 3 61 12 7 ETM+ SLC-on 

2001 7 19 61 12 7 ETM+ SLC-on 

2001 8 4 61 12 7 ETM+ SLC-on 

2001 8 20 61 12 7 ETM+ SLC-on 

2001 8 27 62 11 7 ETM+ SLC-on 

2001 9 12 62 11 7 ETM+ SLC-on 

2001 6 24 62 12 7 ETM+ SLC-on 

2001 8 27 62 12 7 ETM+ SLC-on 

2001 9 12 62 12 7 ETM+ SLC-on 

2001 9 19 63 10 7 ETM+ SLC-on 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

2001 7 17 63 11 7 ETM+ SLC-on 

2001 9 19 63 11 7 ETM+ SLC-on 

2001 7 17 63 12 7 ETM+ SLC-on 

2001 8 18 63 12 7 ETM+ SLC-on 

2001 9 19 63 12 7 ETM+ SLC-on 

2001 9 10 64 11 7 ETM+ SLC-on 

2001 10 3 65 11 7 ETM+ SLC-on 

2002 7 22 61 11 7 ETM+ SLC-on 

2002 9 8 61 11 7 ETM+ SLC-on 

2002 7 22 61 12 7 ETM+ SLC-on 

2002 9 8 61 12 7 ETM+ SLC-on 

2002 7 13 62 11 7 ETM+ SLC-on 

2002 7 20 63 10 7 ETM+ SLC-on 

2002 9 6 63 10 7 ETM+ SLC-on 

2002 9 6 63 11 7 ETM+ SLC-on 

2002 7 20 63 12 7 ETM+ SLC-on 

2002 9 6 63 12 7 ETM+ SLC-on 

2002 8 28 64 11 7 ETM+ SLC-on 

2002 9 29 64 11 7 ETM+ SLC-on 

2002 8 28 64 12 7 ETM+ SLC-on 

2002 7 18 65 11 7 ETM+ SLC-on 

2003 9 2 62 11 7 ETM+ SLC-off 

2003 7 21 65 11 7 ETM+ SLC-off 

2003 8 2 61 11 5 TM 

2003 8 2 61 12 5 TM 

2003 8 9 62 12 5 TM 

2003 9 1 63 10 5 TM 

2004 8 12 61 12 7 ETM+ SLC-off 

2004 6 16 62 12 7 ETM+ SLC-off 

2004 6 23 63 12 7 ETM+ SLC-off 

2004 7 25 63 12 7 ETM+ SLC-off 

2004 8 17 64 11 7 ETM+ SLC-off 

2004 7 23 65 11 7 ETM+ SLC-off 

2004 9 25 65 11 7 ETM+ SLC-off 

2004 7 19 61 11 5 TM 

2004 7 26 62 11 5 TM 

2004 7 26 62 12 5 TM 

2004 7 1 63 10 5 TM 

2004 7 17 63 10 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

2004 7 1 63 11 5 TM 

2004 8 18 63 11 5 TM 

2004 7 1 63 12 5 TM 

2004 8 18 63 12 5 TM 

2004 9 19 63 12 5 TM 

2004 8 9 64 11 5 TM 

2004 9 26 64 11 5 TM 

2004 8 9 64 12 5 TM 

2005 7 14 61 11 7 ETM+ SLC-off 

2005 8 15 61 11 7 ETM+ SLC-off 

2005 7 14 61 12 7 ETM+ SLC-off 

2005 8 15 61 12 7 ETM+ SLC-off 

2005 9 16 61 12 7 ETM+ SLC-off 

2005 6 19 62 12 7 ETM+ SLC-off 

2005 8 29 63 11 7 ETM+ SLC-off 

2005 6 26 63 12 7 ETM+ SLC-off 

2005 8 29 63 12 7 ETM+ SLC-off 

2005 8 4 64 11 7 ETM+ SLC-off 

2005 8 4 64 12 7 ETM+ SLC-off 

2005 7 26 65 11 7 ETM+ SLC-off 

2005 6 20 61 12 5 TM 

2005 8 14 62 11 5 TM 

2005 6 27 62 12 5 TM 

2005 8 14 62 12 5 TM 

2005 6 18 63 12 5 TM 

2005 7 27 64 11 5 TM 

2006 8 2 61 11 7 ETM+ SLC-off 

2006 9 3 61 11 7 ETM+ SLC-off 

2006 6 15 61 12 7 ETM+ SLC-off 

2006 8 2 61 12 7 ETM+ SLC-off 

2006 7 8 62 11 7 ETM+ SLC-off 

2006 7 24 62 11 7 ETM+ SLC-off 

2006 7 8 62 12 7 ETM+ SLC-off 

2006 7 31 63 11 7 ETM+ SLC-off 

2006 6 20 64 11 7 ETM+ SLC-off 

2006 9 8 64 11 7 ETM+ SLC-off 

2006 9 15 65 11 7 ETM+ SLC-off 

2006 7 9 61 11 5 TM 

2006 7 25 61 11 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

2006 8 10 61 11 5 TM 

2006 8 26 61 11 5 TM 

2006 7 9 61 12 5 TM 

2006 7 25 61 12 5 TM 

2006 8 10 61 12 5 TM 

2006 6 30 62 11 5 TM 

2006 8 1 62 11 5 TM 

2006 9 18 62 11 5 TM 

2006 6 14 62 12 5 TM 

2006 6 30 62 12 5 TM 

2006 9 18 62 12 5 TM 

2006 7 14 64 11 5 TM 

2006 9 16 64 11 5 TM 

2006 9 7 65 11 5 TM 

2007 7 4 61 11 7 ETM+ SLC-off 

2007 6 18 61 12 7 ETM+ SLC-off 

2007 7 11 62 11 7 ETM+ SLC-off 

2007 8 12 62 11 7 ETM+ SLC-off 

2007 8 28 62 11 7 ETM+ SLC-off 

2007 6 9 62 12 7 ETM+ SLC-off 

2007 6 25 62 12 7 ETM+ SLC-off 

2007 7 11 62 12 7 ETM+ SLC-off 

2007 8 12 62 12 7 ETM+ SLC-off 

2007 8 28 62 12 7 ETM+ SLC-off 

2007 9 4 63 11 7 ETM+ SLC-off 

2007 9 4 63 12 7 ETM+ SLC-off 

2007 7 16 65 11 7 ETM+ SLC-off 

2007 9 18 65 11 7 ETM+ SLC-off 

2007 7 28 61 11 5 TM 

2007 8 29 61 11 5 TM 

2007 6 10 61 12 5 TM 

2007 8 29 61 12 5 TM 

2007 7 3 62 11 5 TM 

2007 8 4 62 11 5 TM 

2007 9 5 62 11 5 TM 

2007 6 17 62 12 5 TM 

2007 7 3 62 12 5 TM 

2007 8 4 62 12 5 TM 

2007 7 10 63 10 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

2007 7 10 63 11 5 TM 

2007 7 26 63 11 5 TM 

2007 7 10 63 12 5 TM 

2007 8 27 63 12 5 TM 

2007 9 12 63 12 5 TM 

2007 9 3 64 11 5 TM 

2007 8 25 65 11 5 TM 

2008 7 6 61 11 7 ETM+ SLC-off 

2008 6 20 61 12 7 ETM+ SLC-off 

2008 7 4 63 11 7 ETM+ SLC-off 

2008 6 25 64 11 7 ETM+ SLC-off 

2008 7 27 64 11 7 ETM+ SLC-off 

2008 6 25 64 12 7 ETM+ SLC-off 

2008 8 12 64 12 7 ETM+ SLC-off 

2008 7 14 61 12 5 TM 

2008 7 5 62 11 5 TM 

2008 7 5 62 12 5 TM 

2008 6 26 63 10 5 TM 

2008 7 28 63 10 5 TM 

2008 8 13 63 10 5 TM 

2008 6 26 63 11 5 TM 

2008 6 10 63 12 5 TM 

2008 6 26 63 12 5 TM 

2008 7 3 64 11 5 TM 

2008 6 24 65 11 5 TM 

2008 7 10 65 11 5 TM 

2008 7 26 65 11 5 TM 

2009 6 23 61 11 7 ETM+ SLC-off 

2009 7 9 61 11 7 ETM+ SLC-off 

2009 6 23 61 12 7 ETM+ SLC-off 

2009 7 9 61 12 7 ETM+ SLC-off 

2009 6 30 62 11 7 ETM+ SLC-off 

2009 6 30 62 12 7 ETM+ SLC-off 

2009 9 2 62 12 7 ETM+ SLC-off 

2009 8 24 63 11 7 ETM+ SLC-off 

2009 8 24 63 12 7 ETM+ SLC-off 

2009 9 16 64 11 7 ETM+ SLC-off 

2009 8 31 64 12 7 ETM+ SLC-off 

2009 9 16 64 12 7 ETM+ SLC-off 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

2009 8 18 61 11 5 TM 

2009 7 1 61 12 5 TM 

2009 8 18 61 12 5 TM 

2009 9 3 61 12 5 TM 

2009 7 8 62 11 5 TM 

2009 8 25 62 11 5 TM 

2009 7 8 62 12 5 TM 

2009 7 6 64 11 5 TM 

2009 8 23 64 11 5 TM 

2010 7 28 61 11 7 ETM+ SLC-off 

2010 6 10 61 12 7 ETM+ SLC-off 

2010 8 4 62 11 7 ETM+ SLC-off 

2010 8 4 62 12 7 ETM+ SLC-off 

2010 9 5 62 12 7 ETM+ SLC-off 

2010 6 24 63 11 7 ETM+ SLC-off 

2010 7 10 63 11 7 ETM+ SLC-off 

2010 6 8 63 12 7 ETM+ SLC-off 

2010 7 10 63 12 7 ETM+ SLC-off 

2010 9 12 63 12 7 ETM+ SLC-off 

2010 8 18 64 11 7 ETM+ SLC-off 

2010 9 19 64 11 7 ETM+ SLC-off 

2010 8 5 61 11 5 TM 

2010 7 4 61 12 5 TM 

2010 8 5 61 12 5 TM 

2010 7 27 62 11 5 TM 

2010 6 9 62 12 5 TM 

2010 7 27 62 12 5 TM 

2010 8 19 63 10 5 TM 

2010 8 19 63 11 5 TM 

2010 8 19 63 12 5 TM 

2010 8 17 65 11 5 TM 

2011 7 15 61 11 7 ETM+ SLC-off 

2011 7 15 61 12 7 ETM+ SLC-off 

2011 10 3 61 12 7 ETM+ SLC-off 

2011 6 20 62 11 7 ETM+ SLC-off 

2011 6 27 63 11 7 ETM+ SLC-off 

2011 6 27 63 12 7 ETM+ SLC-off 

2011 8 5 64 11 7 ETM+ SLC-off 

2011 7 14 62 11 5 TM 
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Appendix 1 (continued).  

Year Month Day Path Row Landsat Sensor 

2011 6 28 62 12 5 TM 

2011 7 14 62 12 5 TM 

2011 8 31 62 12 5 TM 

2011 7 5 63 11 5 TM 

2011 6 19 63 12 5 TM 

2011 7 5 63 12 5 TM 

2011 6 26 64 11 5 TM 
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Appendix 2. Extended methods section detailing the Fmask algorithm.  

 

In order to spatially determine lake coverage over the scope of a Landsat image, a systematic 

classification of various land and water classes must first be applied for each image pixel. From 

these cover types, only those that are not classified as cloud and cloud shadow should be applied 

for further data processing. Clouds and their associated shadows inherently obstruct and 

complicate the view of the earth surface, and are an impediment to the assembly and analysis of 

dense time series of geospatial analysis (Martinuzzi et al. 2007, Sano et al. 2007, Ju and Roy 2008, 

Goodwin et al. 2013). However, as Goodwin et al. (2013) explain, a complete reliance on cloud-

free imagery greatly restricts sampling opportunities, which could be alleviated by incorporating 

cloud-contaminated imagery in analyses, many of which contain large numbers of usable pixels. 

Therefore, to maximize the potential number of valid observations for any one pixel throughout 

the entirety of the time series, it is advantageous to include cloud and cloud shadow 

contaminated imagery and mask out the affected pixels.  

 

In this light, the published Function of mask (Fmask) approach (Version 2.2, Windows 

Executable) was applied to all obtained Landsat imagery. Fmask is a newly-developed cloud and 

cloud shadow detection algorithm for the Landsat TM and ETM+ instruments that builds on 

the results of previous screening approaches. The Fmask algorithm is described in this section; a 

complete approach and evaluation can be found in Zhu and Woodcock (2012), and the code 

script downloadable at the project website URL (https://code.google.com/p/fmask/). Digital 

Number (DN) values were converted to top-of-atmosphere (TOA) reflectances and brightness 

temperatures (BT; C) using the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) atmospheric correction procedure (Masek et al. 2006, Vermote and Saleous 2007). 

Then, various spectral tests were conducted to identify and extract the land cover classes of 

terrain, water, cloud, cloud shadow, and snow/ice. The algorithm can be summarized into four 

distinct “passes”:   

 

 Pass 1: Identification of potential cloud pixels;  

 Pass 2: Extraction of a potential cloud layer;  

 Pass 3: Identification and extraction of a potential cloud shadow layer; and  

 Pass 4: Identification and extraction of a potential snow and ice layer. 
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In this method, clouds are identified using a probability mask and a scene-based threshold, and 

cloud shadows are calculated using a combination of object matching, lapse rates, and a flood-

filled transformation. In addition, land and water cover types are identified in Pass 2, and are 

designated for each pixel after identification of all other cover types. Because more than one 

class may exist within any one pixel, the algorithm assigns a class hierarchy in the following order 

from highest to lowest: clouds, cloud shadows, snow and ice, land and water.  

 

Pass 1 – Potential clouds, cloud shadows, and snow.  

 

The first pass compiles a series of spectral tests to flag pixels that may represent either clouds, 

termed “Potential Cloud Pixels (PCPs)”. Pixels not included in the first pass are considered as 

confident in representing clear-sky pixels. Pixels will be labelled as PCPs if they satisfy all four of 

the following spectral tests.   

 

 Filter 1: Brightness and temperature threshold. 

 

As a first step, the Basic Test was performed to fundamentally identify clouds by their 

temperature and reflectivity. The test is formulated as follows:  

 

 

Basic Test: 

B7 > 0.03

BT < 27

NDSI < 0.8

NDVI < 0.8

ì

í

ï
ï

î

ï
ï

, [Eq. A2.1.] 

 

where the Normalised Difference Snow Index (NDSI) and the Normalised Difference 

Vegetation Index (NDVI) was defined for Landsat images as:  

 

 and . [Eq. A2.2.] 

 

The top-of-atmosphere (TOA) reflectance for clouds usually decreases with increasing 

wavelength (Lyapustin et al. 2008) extending into the mid-infrared (Band 7) spectrum; 

additionally, the relatively low temperature of clouds was also encapsulated by thresholding the 

NDSI =
B2 - B5

B2 + B5

NDVI =
B4 - B3

B4 + B3
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brightness temperature at 27 C. To distinguish PCPs from vegetated or snow-covered areas, 

additional thresholds were applied to the NDSI and NDVI.  

 

Filter 2: Whiteness threshold. 

 

As clouds always appear white due to their uniform spectral signature across the visible spectrum, 

the Whiteness Test (Gómez-Chova et al. 2007) was applied as follows:  

 

    

Whiteness Test: 
Bi - lv

lvi=1

3

å < 0.7

,  [Eq. A2.3.] 

 

where the mean pixel value of the Landsat bands within the visible spectrum are defined as:  

 

 
lv =

B1 + B2 + B3

3 . [Eq. A2.4.] 

 

The Whiteness Test was used to include pixels that are considered white enough to be classified 

as clouds; this test may also include pixels representing soil, sand, snow, and ice due to their 

similar flat reflectance in the visible bands.  

 

Filter 3: Haze optimised transformation. 

 

The Haze Optimised Transformation (HOT) for Landsat data was originally developed to target 

and characterize haze and thin cloud spatial distributions (Zhang et al. 2002). The image 

transform uses a simple spectral space consisting of blue and red bands based on the idea that, 

although the spectral responses of visible bands for all land cover types are highly correlated, the 

effect of haze on apparent radiance is significantly different between blue and red wavelengths. 

The HOT Test was applied as follows: 

 

    
HOT Test: B1 -0.5× B3 -0.08> 0

,  [Eq. A2.5] 
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which separated thin and thick clouds, as well as thick aerosols from clear-sky pixels. Like the 

Whiteness Test, the HOT Test may also include pixels representing rocks, turbid water, snow, 

and ice surfaces due to their bright TOA reflectance values in the specified bands.  

 

Filter 4: Band 4/band 5 ratio. 

 

In the Automated Cloud Cover Assessment (ACCA; Irish 2000), a Band 4/Band 5 ratio was 

employed to distinguish highly reflective rocks and sands in arid landscapes from clouds, 

targeting those pixels not identified as PCPs using the HOT Test. The Band 4/5 ratio was 

applied as a test as follows:  

 

 

B4 /B5  Test: 
B4

B5

> 0.75

. [Eq. A2.6.] 

 

2.2.2. Pass 2: Potential cloud layer. 

 

The second pass used absolutely cloud-free pixels (pixels not identified as PCPs in Pass One) to 

compute potential cloud probability for all pixels in each image. Because temperature and 

reflectance distributions may vary between each input image, cloud probability was calculated 

separately for water and land pixels, described below. Discrimination between water and land 

pixels were conducted using a Water Test as follows:  

 

 

Water Test: 
NDVI < 0.01

B4 < 0.11
or 

NDVI < 0.1

B4 < 0.05

ì
í
ï

îï

ì

í
ï

îï , [Eq. A2.7.] 

 

in which land pixels were identified by their low TOA reflectance and NDVI values, and water 

pixels identified by the converse. From this, cloud-free pixels over water and land bodies were 

respectively identified as follows:  

 

    

Clear-Skyw: 
Water Test True( )

B7 < 0.03

ì

í
ï

îï  and  [Eq. A2.8.]  
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Clear-Skyl: 
Water Test False( )

PCP False( )

ì

í
ï

îï . [Eq. A2.9.] 

 

By combining the results from Passes 1 and 2 (PCPs and potential cloud probability), a potential 

cloud layer was generated. In addition, missed cloud pixels are identified if the cloud probability 

over land is extremely large (P > 0.99) or if the BT is extremely cold (BT < Tlow – 35). Finally, to 

err on cloud pixel commission rather than omission, the cloud mask was enlarged over a 3-by-3 

pixel neighbourhood if 5 or more pixels represented clouds.  

 

Filter 1: Cloud probability over water. 

 

The overall cloud probability over water represents the product of its respective temperature and 

brightness probabilities, outlined below. A water pixel was designated as a cloud pixel if its 

overall cloud probability exceeds the 50th percentile.  

 

The temperature probability over water was calculated as follows, normalizing the pixels’ BT by 

4 C (Vermote and Saleous 2007):  

 

 
Pw,T =

Tw - BT

4 , [Eq. A2.10.] 

 

where the clear-sky water temperature was classified using the upper level of clear-sky brightness 

temperatures over water:  

 

 
Tw: P BTw,C( ) > 0.825

. [Eq. A2.11.] 

 

The brightness probability over water was calculated as follows:  

 

 
Pw,B =

B5

0.11
, B5 £ 0.11

, [Eq. A2.12.] 
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which takes advantage of water’s generally dark TOA reflectance values, especially at the near-IR 

domain. The pixels’ TOA reflectance values were normalized by 0.11, which was the highest 

observed value in Band 5.  

 

Filter 2: Cloud probability over land. 

 

The overall cloud probability over land represents the product of its respective temperature and 

variability probabilities, outlined below. A land pixel was designated as a cloud pixel if its overall 

cloud probability exceeds a threshold, given by the addition of the 82.5 percentile of clear-sky 

land pixels’ probability and a constant of 0.2, based on sensitivity analyses.  

 

The temperature probability over land was calculated as follows:  

 

 

     

Pl,T =
Thigh + 4 - BT

Thigh + 4- Tlow - 4( )  , [Eq. A2.13.]  

 

 

where the clear-sky land temperature was classified respectively using the lower and upper level 

of clear-sky brightness temperatures over water:  

 

 
Tlow: P BTl,C( ) = 0.175

 and 
Thigh: P BTl,C( ) = 0.825

. [Eq. A2.14.] 

 

Pass 3: Cloud shadow layer 

 

 Filter 1: Flood-filling algorithm. 

 

Because direct solar radiation towards the earth surface is blocked by clouds, their respective 

shadows are illuminated mostly by scattered light, and as the atmospheric scattering is stronger at 

shorter wavelengths, the intensity of the diffusive radiation within cloud shadows will be larger at 

these wavelengths (Luo et al. 2008). First, a flood-fill transformation was applied to the NIR 

band reflectance values, reducing the darkening effect of cloud shadows by matching the 

brightness values of its surrounding pixels (Soille 1999, Soille et al. 2003). From the output, the 
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difference between the flood-filled and the original reflectance values therefore assigns potential 

cloud shadow pixels with higher positive values, as follows:  

 

 
Shadow Test: B4,Ff - B4 > 0.02

. [Eq. A2.15.] 

 

 Filter 2: Cloud and cloud shadow attribution. 

 

Cloud shadows result from the projection of the cloud onto the earth surface, as determined by 

the direction of incoming solar radiation (Simpson and Stitt 1998). Potential cloud and shadow 

layers can be matched assuming that a cloud and its assigned shadow are geometrically related. 

The location and shape of cloud shadows with respect to its attributed cloud was therefore 

matched by a series of geometric and trigonometric calculations relating the spatial location of 

the cloud, cloud top and base heights, and the sun and satellite positions. This was achieved by a 

series of iterations to determine these locations and positions.  

  

Lastly, similar to the potential cloud mask, because the matched cloud shadow may contain 

spatial gaps, the shadow pixels were dilated by 3 pixels in 8-connected directions to fill these 

gaps.   

 

Pass 4: Snow/ice layer. 

 

The spectral tests used to detect snow and ice-contaminated pixels were derived from the 

MODIS snow mapping algorithm (Hall et al. 2001), with the exception of the NDSI threshold, 

which was lowered from 0.4 to 0.15. The MODIS algorithm uses the former threshold to only 

identify pixels containing at or over 50% coverage of snow and/or ice; for the current algorithm, 

the threshold was lowered to include pixels with snow/ice coverage less than 50% and snow in 

vegetated areas. The Snow/Ice Test was applied as follows: 

 

 

Snow/Ice Test: 

NDSI > 0.15

BT < 3.8

B4 > 0.11

B2 > 0.1

ì

í

ï
ï

î

ï
ï

. [Eq. A2.16.] 
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Appendix 3. Python scripts to streamline batch processing in methodology.  

 
3.1. Python ArcPy script to assemble Fmask images into yearly mosaics.  

 
# --------------------------------------------------------------------------- 
# fmask2poly.py 
# Created on: 2013-04-12 15:40:06.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Created by: TJ Young (SPRI) 
# Description: This script was written to convert TIF images [generated from 
#           the Fmask program version 2.2 (Windows Executable format) via 
#           ENVI 4.6] to polygon files of only lakes. Output is the sum of 
#           all lakes within a given year.  
# --------------------------------------------------------------------------- 
print "Running script 'fmask2poly.py'..." 
 
# Import arcpy module 
import os, sys, shutil 
import arcpy 
 
from arcpy import env 
from arcpy.sa import * 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Overwrite pre-existing files 
arcpy.env.overwriteOutput = True 
 
# Create input variables 
year_input = raw_input('Enter year to process data: ') 
data_path = "H:\\dissertation\\data\\" 
scratch_path = "H:\\dissertation\\scratch\\" 
 
print "\nProcessing data: " + str(year_input)  
 
# Creates a list of contents in the working directory 
workdir0 = "H:\\dissertation\\data\\fmask\\" 
workdir1 = workdir0 + year_input + "\\" 
 
dircontents = os.listdir(workdir1) 
dirlist0 = list(dircontents)   # list contents in specified data folder 
dirlist1 = [] 
for fname in dirlist0: 
    fname_front, fname_end = os.path.splitext(fname) 
    if fname_end == ".tif": 
        dirlist1.append(fname) # only adds TIF files to dirlist1 
 
mlakelist = [] 
mlandlist = [] 
micelist = [] 
 
# ArcPy Process 1a: Extract by Attributes (water) 
print "\nRunning ArcPy Process 1a: Extract by Attributes (water)" 
for fname in dirlist1: 
    fname_path0 = workdir1 + fname 
    fname_lakeras = fname[4:16] + "_lakeras.tif" 
    fname_path1 = scratch_path + fname_lakeras # lists full path and file name for output water files 
 
    arcpy.gp.ExtractByAttributes_sa(fname_path0, "\"Value\" = 1", fname_path1) 
    mlakelist.append(fname_path1) # updates mlakelist 
    print "Successfully completed tool 'Extract by  Attributes (water)' for raster file '" + fname + 
"'." 
    print "Saved output as file and path '" + fname_path1 + "'." 
 
# ArcPy Process 1b: Raster Calculator (water) 
print "\nRunning ArcPy Process 1b: Raster Calculator (water)" 
 
mosaic_clip_back = "H:\\dissertation\\data\\mosaic_erdas_clip_back.tif" 
mlakelist1 = [] 
for fname in mlakelist: 
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    fname1 =os.path.basename(fname[:-4]) + "1.tif" 
    arcpy.MosaicToNewRaster_management([fname,mosaic_clip_back], scratch_path, fname1, 
"PROJCS['WGS_84_UTM_zone_9N',GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,29
8.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercat
or'],PARAMETER['false_easting',500000.0],PARAMETER['false_northing',0.0],PARAMETER['central_meridian',
-129.0],PARAMETER['scale_factor',0.9996],PARAMETER['latitude_of_origin',0.0],UNIT['Meter',1.0]]", 
"8_BIT_UNSIGNED", "", "1", "MAXIMUM", "FIRST") 
    # Converts null values of water rasters to 0 values; expands extent to full study area 
     
    fname_path1 = os.path.dirname(fname) + "\\" + fname1 
    mlakelist1.append(fname_path1) # updates mlakelist1 
 
    print "Successfully completed tool 'Mosaic to New Raster (water)' for raster file '" + fname1 + 
"'." 
    print "Saved output as file and path '" + fname_path1 + "'." 
 
print "Summing lake rasters..." 
 
i = 0 
for fname in mlakelist1: 
    out2 = Raster(fname) 
    if i == 0: 
        out1 = out2 
        i += 1 
    else:  
        out1 = out1 + out2 
        i += 1 
fname_lakeras_sum = scratch_path + str(year_input) + "_lakeras_sum.tif" 
out1.save(fname_lakeras_sum) 
# Sums all lake rasters together to create composite gradient value lake raster 
print "Successfully summed all lake rasters for year '" + str(year_input) + "'." 
 
# ArcPy Process 2a: Reclassify using Con (land) 
print "\nRunning ArcPy Process 2a: Extract by Attributes (land)" 
for fname in dirlist1: 
    fname_path0 = workdir1 + fname 
    fname_landras = fname[4:16] + "_landras.tif" 
    fname_path1 = scratch_path + fname_landras # lists full path and file name for output land files 
 
    inraster = Raster(fname_path0) 
    outraster = Con(inraster == 0, 1, 0) # converts 0 values (land) to 1, converts all other values to 
0.  
    outraster.save(fname_path1) 
    
    mlandlist.append(fname_path1) 
    print "Successfully completed tool 'Raster Calculator (land)' for raster file '" + fname + "'." 
    print "Saved output as file and path '" + fname_path1 + "'." 
 
# ArcPy Process 2b: Raster Calculator (land) 
print "\nRunning ArcPy Process 2b: Raster Calculator (land)" 
 
mosaic_clip_back = "H:\\dissertation\\data\\mosaic_erdas_clip_back.tif" 
mlandlist1 = [] 
for fname in mlandlist: 
    fname1 =os.path.basename(fname[:-4]) + "1.tif" 
    arcpy.MosaicToNewRaster_management([fname,mosaic_clip_back], scratch_path, fname1, 
"PROJCS['WGS_84_UTM_zone_9N',GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,29
8.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercat
or'],PARAMETER['false_easting',500000.0],PARAMETER['false_northing',0.0],PARAMETER['central_meridian',
-129.0],PARAMETER['scale_factor',0.9996],PARAMETER['latitude_of_origin',0.0],UNIT['Meter',1.0]]", 
"8_BIT_UNSIGNED", "", "1", "MAXIMUM", "FIRST") 
    # Converts null values of land rasters to 0 values; expands extent to full study area 
         
    fname_path1 = os.path.dirname(fname) + "\\" + fname1 
    mlandlist1.append(fname_path1) 
 
    print "Successfully completed tool 'Mosaic to New Raster (land)' for raster file '" + fname1 + 
"'." 
    print "Saved output as file and path '" + fname_path1 + "'." 
 
print "Summing land rasters..." 
 
i = 0 
for fname in mlandlist1: 
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    out2 = Raster(fname) 
    if i == 0: 
        out1 = out2 
        i += 1 
    else:  
        out1 = out1 + out2 
        i += 1 
fname_landras_sum = scratch_path + str(year_input) + "_landras_sum.tif" 
out1.save(fname_landras_sum) 
# Sums all lake rasters together to create composite gradient value land raster 
print "Successfully summed all land rasters for year '" + str(year_input) + "'." 
 
# ArcPy Process 3a: Extract by Attributes (snow/ice) 
print "\nRunning ArcPy Process 3a: Extract by Attributes (snow/ice)" 
for fname in dirlist1: 
    fname_path0 = workdir1 + fname 
    fname_iceras = fname[4:16] + "_iceras.tif" 
    fname_path1 = scratch_path + fname_iceras # lists full path and file name for output water files 
 
    arcpy.gp.ExtractByAttributes_sa(fname_path0, "\"Value\" = 3", fname_path1) 
    micelist.append(fname_path1) # updates micelist 
    print "Successfully completed tool 'Extract by  Attributes (snow/ice)' for raster file '" + fname 
+ "'." 
    print "Saved output as file and path '" + fname_path1 + "'." 
 
# ArcPy Process 3b: Raster Calculator (snow/ice) 
print "\nRunning ArcPy Process 3b: Raster Calculator (snow/ice)" 
 
mosaic_clip_back = "H:\\dissertation\\data\\mosaic_erdas_clip_back.tif" 
micelist1 = [] 
for fname in micelist: 
    fname1 =os.path.basename(fname[:-4]) + "1.tif" 
    arcpy.MosaicToNewRaster_management([fname,mosaic_clip_back], scratch_path, fname1, 
"PROJCS['WGS_84_UTM_zone_9N',GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,29
8.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercat
or'],PARAMETER['false_easting',500000.0],PARAMETER['false_northing',0.0],PARAMETER['central_meridian',
-129.0],PARAMETER['scale_factor',0.9996],PARAMETER['latitude_of_origin',0.0],UNIT['Meter',1.0]]", 
"8_BIT_UNSIGNED", "", "1", "MAXIMUM", "FIRST") 
    # Converts null values of water rasters to 0 values; expands extent to full study area 
     
    fname_path1 = os.path.dirname(fname) + "\\" + fname1 
    micelist1.append(fname_path1) # updates mlakelist1 
 
    print "Successfully completed tool 'Mosaic to New Raster (snow/ice)' for raster file '" + fname1 + 
"'." 
    print "Saved output as file and path '" + fname_path1 + "'." 
 
print "Summing lake rasters..." 
 
i = 0 
for fname in micelist1: 
    out2 = Raster(fname) 
    if i == 0: 
        out1 = out2 
        i += 1 
    else:  
        out1 = out1 + out2 
        i += 1 
fname_iceras_sum = scratch_path + str(year_input) + "_iceras_sum.tif" 
out1.save(fname_iceras_sum) 
# Sums all lake rasters together to create composite gradient value ice raster 
print "Successfully summed all ice rasters for year '" + str(year_input) + "'." 
 
# ArcPy Process 4: Mosaic To New Raster (combined) 
print "\nRunning ArcPy Process 4: Mosaic to New Raster (combined)" 
 
fname_path1 = fname_lakeras_sum[:-4] + "10.tif" 
fname_path2 = fname_landras_sum[:-4] + "10.tif" 
fname_path3 = fname_iceras_sum[:-4] + "10.tif" 
fname_path4 = data_path + "fmask_raster\\blend\\" + str(year_input) + "_ras_blend.tif" 
 
inraster1 = Raster(fname_lakeras_sum) 
outraster1 = 10*inraster1 # rescales water rasters from 0 (land) to 110 (highest water) 
outraster1.save(fname_path1)  
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inraster2 = Raster(fname_landras_sum) 
outraster2 = -10*inraster2 # rescales land rasters from -110 (water) to 0 (highest land) 
outraster2.save(fname_path2) 
 
inraster3 = Raster (fname_iceras_sum) 
outraster3 = 5*inraster3 
outraster3.save(fname_path3) 
 
inraster4 = Raster(fname_path1) 
inraster5 = Raster(fname_path2) 
inraster6 = Raster(fname_path3) 
outraster4 = inraster4 + inraster5 + inraster6 
outraster4.save(fname_path4) 
 
inras_lake = scratch_path + str(year_input) + "_lakeras_sum10.tif" 
inras_land = scratch_path + str(year_input) + "_landras_sum10.tif" 
inras_ice = scratch_path + str(year_input) + "_iceras_sum10.tif" 
inras_comp = scratch_path + str(year_input) + "_compras_sum.tif" 
 
data_path_fmaskras_blend = data_path + "fmask_raster\\blend\\" 
ras_blend = str(year_input) + "_ras_blend.tif" 
 
print "Successfully completed tool 'Mosaic to New Raster (combined)' for rasters in year: " + 
str(year_input) + "'." 
 
# ArcPy Process 4a: Extract by Attributes (water) 
print "\nRunning ArcPy Process 4a: Extract by Attributes (water)" 
 
print "Converting combined raster to binary values..." 
year_ras_blend = data_path_fmaskras_blend + ras_blend 
fname_path_bin = data_path + "fmask_raster\\binary\\median_bin\\" + ras_blend[:-10] + "_bin.tif" 
inraster = Raster(year_ras_blend) 
outraster = Con(inraster <0, 0, 1) 
outraster.save(fname_path_bin) 
 
print "Removing land pixels..." 
fname_lakeras_bin = scratch_path + str(year_input) + "_ras_bin_lake.tif" 
arcpy.gp.ExtractByAttributes_sa(fname_path_bin, "\"Value\" = 1", fname_lakeras_bin) 
 
# ArcPy Process 4b: Raster to Polygon (combined) 
print "\nRunning ArcPy Process 4b: Raster to Polygon (combined)" 
 
print "Extracting pixels within study mask..." 
fname_path_ras_mask = scratch_path + str(year_input) + "_ras_bin_lake_mask.tif" 
study_mask = data_path + "\\study_site_image\\fig1_mask_upd.shp" 
outExtractByMask = ExtractByMask(fname_lakeras_bin, study_mask) 
outExtractByMask.save(fname_path_ras_mask) 
 
print "Converting binary raster to polygon (combined)..." 
fname_path_poly = data_path + "fmask_polygon\\median\\" + str(year_input) + "_poly_upd.shp" 
arcpy.RasterToPolygon_conversion (fname_path_ras_mask, fname_path_poly, "NO_SIMPLIFY", "VALUE") 
 
print "Successfully complete tool 'Raster to Polygon (combined) to create polygon shapefile '" + 
fname_path_poly+ "'." 
 
print "\nScript complete." 
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3.2. Python ArcPy script to extract Fmask polygons by specified fuzzy membership thresholds.  

 
# --------------------------------------------------------------------------- 
# fmask2poly_conf.py 
# Created on: 2013-05-07 20:30:09.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Created by: TJ Young (SPRI) 
# Description: This script was written to assess the confidence of the lake 
#           output given as the median of all pixels (on a gradient from land 
#           to water).  
# --------------------------------------------------------------------------- 
print "Running script 'fmask2poly_conf.py'..." 
 
# Import arcpy module 
import os, sys, shutil 
import arcpy 
 
from arcpy import env 
from arcpy.sa import * 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Overwrite pre-existing files 
arcpy.env.overwriteOutput = True 
 
# Create input variables 
year_input = raw_input('Enter year to process data: ') 
del_input = raw_input('Delete intermediary files? (y/n): ') 
data_path = "H:\\dissertation\\data\\" 
scratch_path = "H:\\dissertation\\scratch\\" 
 
print "\nProcessing data: " + str(year_input)  
 
# Creates a list of contents in the working directory 
workdir0 = "H:\\dissertation\\data\\fmask\\" 
workdir1 = workdir0 + year_input + "\\" 
 
dircontents = os.listdir(workdir1) 
dirlist0 = list(dircontents)   # list contents in specified data folder 
dirlist1 = [] 
for fname in dirlist0: 
    fname_front, fname_end = os.path.splitext(fname) 
    if fname_end == ".tif": 
        dirlist1.append(fname) # only adds TIF files to dirlist1 
 
print "Defining number of layers for each pixel..." 
 
# ArcPy Process 1a: Con (Spatial Analyst) 
print "\nRunning ArcPy Process 1a: Con (Spatial Analyst)" 
 
env.workspace = workdir1 # Set environment workspace 
dirlist_back = [] 
 
# Runs through conditional functions for each raster in list 
for fname in dirlist1:  
    inRaster = Raster(fname) 
    outRaster = Con((inRaster <= 3) & (inRaster <> 2), 1, 0) # defines measured area (excludes NoData) 
    outRaster_path = scratch_path + fname[4:16] + "_back.tif" 
    outRaster.save(outRaster_path) 
    dirlist_back.append(outRaster_path) 
    print "Successfully completed tool 'Con (Spatial Analyst)' for raster file '" + fname + "'." 
 
print "Successfully completed tool 'Con (Spatial Analyst)' for all files." 
 
# ArcPyProcess 1b: Mosaic to New Raster (Spatial Analyst) 
print "\nRunning ArcPy Process 1b: Mosaic to New Raster (Spatial Analyst)" 
 
env.workspace = scratch_path # Change environment workspace 
 
dirlist_back2 = [] 
mosaic_clip_back = "H:\\dissertation\\data\\mosaic_erdas_clip_back.tif" 
outLocation = scratch_path 
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coordSystem = 
"PROJCS['WGS_84_UTM_zone_9N',GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,29
8.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercat
or'],PARAMETER['false_easting',500000.0],PARAMETER['false_northing',0.0],PARAMETER['central_meridian',
-129.0],PARAMETER['scale_factor',0.9996],PARAMETER['latitude_of_origin',0.0],UNIT['Meter',1.0]]" 
pixelType = "8_BIT_UNSIGNED" 
cellSize = "" 
bands = "1" 
mosaicMethod = "MAXIMUM" 
mosaicMode = "FIRST" 
 
for fname in dirlist_back: 
    outRaster = os.path.basename(fname[:-4]) + "1.tif" 
    arcpy.MosaicToNewRaster_management([fname,mosaic_clip_back], outLocation, outRaster, coordSystem, 
                                       pixelType, cellSize, bands, mosaicMethod, mosaicMode) 
    outRaster_path = os.path.dirname(fname) + "\\" + outRaster 
    dirlist_back2.append(outRaster_path) 
    print "Successfully completed tool 'Mosaic to New Raster' for raster file '" + 
os.path.basename(fname) + "'." 
 
print "Successfully completed tool 'Mosaic to New Raster (Spatial Analyst)' for all files.." 
 
print "\nSumming background rasters..." 
i = 0 
for fname in dirlist_back2: 
    out2 = Raster(fname) 
    if i == 0: 
        out1 = out2 
        i += 1 
    else:  
        out1 = out1 + out2 
        i += 1 
backras_sum = scratch_path + str(year_input) + "_backsum.tif" 
out1.save(backras_sum) 
# Sums all lake rasters together to create composite gradient value lake raster 
print "Successfully summed all background rasters for year '" + str(year_input) + "'." 
 
print "Successfully obtained pixel-based layered background raster for year " + str(year_input) + "." 
 
# ArcPy Process 2: Raster Calculator (Spatial Analyst) 
print "\nRunning ArcPy Process 2: Raster Calculator (Spatial Analyst)" 
 
fmaskras_blend = data_path + "fmask_raster\\blend\\" + str(year_input) + "_ras_blend.tif" 
fmaskras_rescale = scratch_path + str(year_input) + "_ras_rescale.tif" 
 
inRaster1 = Raster(backras_sum) 
inRaster2 = Raster(fmaskras_blend) 
outRaster = (10 * inRaster2)/inRaster1 
outRaster.save(fmaskras_rescale) 
 
print "Statistics for background raster in year: " + str(year_input) 
inRaster = fmaskras_rescale 
propertyType = "MAXIMUM" 
 
rescale_result = arcpy.GetRasterProperties_management(inRaster, propertyType) 
rescale_value = rescale_result.getOutput(0) 
rescale_max = float(rescale_value) 
print propertyType + " for rescaled raster: " + str(rescale_value) 
 
propertyType = "MINIMUM" 
 
rescale_result = arcpy.GetRasterProperties_management(inRaster, propertyType) 
rescale_value = rescale_result.getOutput(0) 
rescale_min = float(rescale_value) 
print propertyType + " for rescaled raster: " + str(rescale_value) 
 
dif_factor = (rescale_max - rescale_min)/2 
dif_shift = ((5 * rescale_min)/dif_factor) * -1 
 
fmaskras_10 = data_path + "fmask_raster\\10\\" + str(year_input) + "_ras_10.tif" 
 
inRaster = Raster(fmaskras_rescale) 
outRaster = (5 * inRaster)/dif_factor + dif_shift 
outRaster.save(fmaskras_10) 
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print "Successfully completed tool 'Raster Calculator (Spatial Analyst)" 
 
# ArcPy Process 3: Fuzzy Membership (Spatial Analyst) 
print "\nRunning ArcPy Process 3: Fuzzy Membership (Spatial Analyst)" 
 
env.workspace = data_path + "fmask_raster\\10\\"  # Set environment workspace 
 
# Set local variables 
inRaster = str(year_input) + "_ras_10.tif" 
outRaster_large = scratch_path + str(year_input) + "_fuzzy.tif" 
 
# Create the Fuzzy algorithm object and raster (Large) 
propertyType = "MEAN" 
 
rescale_result = arcpy.GetRasterProperties_management(inRaster, propertyType) 
rescale_value = rescale_result.getOutput(0) 
rescale_mean = float(rescale_value) 
print propertyType + " for rescaled raster: " + str(rescale_value) 
 
# For Fuzzy Large 
midpoint = 5 
spread = 5 
fuzzyAlgorithm = FuzzyLarge(midpoint, spread) 
 
outRaster = FuzzyMembership(inRaster, fuzzyAlgorithm) 
outRaster.save(outRaster_large) 
fuzzy_inc = outRaster_large 
 
# For Fuzzy MSLarge 
 
print "Successfully completed tool 'Fuzzy Membership (Spatial Analyst)' for file '" + str(year_input) 
+ "_fuzzy_large.tif'." 
 
# ArcPy Process 4: Reclassify (Spatial Analyst) 
print "\nRunning ArcPy Process 4: Reclassify (Spatial Analyst)" 
 
print "Reclassifying IsNull values..." 
inRaster = Raster(fuzzy_inc) 
outRaster = scratch_path + str(year_input) + "_fuzzy_isnull.tif" 
fuzzy_isnull = IsNull(inRaster) 
fuzzy_isnull.save(outRaster) 
fuzzy_null = outRaster 
 
inConRaster = Raster(fuzzy_null) 
inTrueConstant = 0.00000001 
inFalseRaster = Raster(fuzzy_inc) 
outRaster = data_path + "fmask_raster\\fuzzy\\" + str(year_input) + "_fuzzy_large.tif" 
 
outCon = Con(inConRaster == 1, inTrueConstant, inFalseRaster) 
outCon.save(outRaster) 
fuzzy = outRaster 
 
print "Successfully reclassified IsNull values. Successfully ran ArcPy Process 4." 
 
# ArcPy Process 5: Reclassify (Spatial Analyst) 
print "\nRunning ArcPy Process 5: Reclassify (Spatial Analyst)" 
 
thresholdlist = [0.3, 0.5, 0.7] 
 
for threshold in thresholdlist:  
    print "\nConverting fuzzy raster to binary values using set threshold: " + str(threshold) 
    outFolder = data_path + "fmask_raster\\binary\\" 
    outFolderYear = outFolder + "fuzzy_" + str(int(threshold * 100)) + "\\" 
    if not os.path.exists(outFolderYear): 
        os.makedirs(outFolderYear) 
    inRaster = Raster(fuzzy) 
    outRaster = outFolderYear + str(year_input) + "_fuzzy" + str(int(threshold * 100)) + "_bin.tif" 
    fuzzy_threshold = Con(inRaster > float(threshold), 1, 0) 
    fuzzy_threshold.save(outRaster) 
    fuzzy_threshold_bin = outRaster 
     
    print "Removing land pixels..." 
    outRaster = scratch_path + str(year_input) + "_fuzzy" + str(int(threshold * 100)) + "_bin_inc.tif" 
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    arcpy.gp.ExtractByAttributes_sa(fuzzy_threshold_bin, "\"Value\" = 1", outRaster) 
    fuzzy_threshold_bin = outRaster 
     
    print "Extracting pixels within study mask..." 
    inRaster = fuzzy_threshold_bin 
    outRaster = scratch_path + str(year_input) + "_fuzzy" + str(int(threshold * 100)) + 
"_bin_lake.tif" 
    study_mask = data_path + "\\study_site_image\\fig1_mask_upd.shp" 
    outExtractByMask = ExtractByMask(inRaster, study_mask) 
    outExtractByMask.save(outRaster) 
    fuzzy_threshold_bin_extract = outRaster 
     
    print "Converting binary raster to polygon (combined)..." 
    inRaster = fuzzy_threshold_bin_extract 
    simplify = "NO_SIMPLIFY" 
    rasterField = "VALUE" 
    outFolder = data_path + "fmask_polygon\\" 
    outFolderYear = outFolder + "fuzzy_" + str(int(threshold * 100)) + "\\" 
    if not os.path.exists(outFolderYear): 
        os.makedirs(outFolderYear) 
    outRaster = outFolderYear + str(year_input) + "_fuzzy" + str(int(threshold * 100)) + "_poly.shp" 
    arcpy.RasterToPolygon_conversion(inRaster, outRaster, simplify, rasterField) 
 
    print "Successfully completed tool 'Raster to Polygon' to create polygon shapefile '" + 
os.path.basename(outRaster) + "'." 
 
# Delete scratch files 
if del_input == "y":  
    print "\nDeleting intermediary files in scratch..." 
    for fname in dirlist_back: # Deletes output in Process 1a 
        inData = fname 
        dataType = "" 
        arcpy.Delete_management(inData, dataType) 
    for fname in dirlist_back2: # Deletes output in Process 1b 
        inData = fname 
        dataType = "" 
        arcpy.Delete_management(inData, dataType) 
    arcpy.Delete_management(backras_sum, "") 
    arcpy.Delete_management(fmaskras_rescale, "") # Deletes output in Process 2  
    arcpy.Delete_management(outRaster_large, "") # Deletes output in Process 3 
    arcpy.Delete_management(fuzzy_null, "") # Deletes output in Process 4 
    for threshold in thresholdlist:  
        inData = scratch_path + str(year_input) + "_fuzzy" + str(int(threshold * 100)) + 
"_bin_inc.tif" 
        dataType = "" 
        arcpy.Delete_management(inData, dataType) 
        inData = scratch_path + str(year_input) + "_fuzzy" + str(int(threshold * 100)) + 
"_bin_lake.tif" 
        dataType = "" 
        arcpy.Delete_management(inData, dataType) 
 
elif del_input == "n":  
    pass 
 
else:  
    pass 
 
print "\nScript complete."  
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3.3. Python ArcPy script to assign unique ID numbers to individual lakes for all years.  

 

# --------------------------------------------------------------------------- 
# fmask_sj.py 
# Created on: 2013-05-30 10:26:53.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Created by: TJ Young (SPRI) 
# Description: This script was written to assign each lake polygon a unique  
#     ID that corresponds to the same ID for a given master lake mask. This  
#     ensures that all polygons with the same X and Y coordinate in any year 
#     has the same ID number. In general, polygons increase in unique ID  
#     number with latitude. This script also calculates area and perimeter 
#     for each polygon.  
# --------------------------------------------------------------------------- 
print "Running script 'fmask_sj.py'..." 
 
# Import arcpy module 
import os, sys, shutil 
import arcpy 
 
from arcpy import env 
from arcpy.sa import * 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Overwrite pre-existing files 
arcpy.env.overwriteOutput = True 
 
# Create input variables 
fmask_path = "H:\\dissertation\\data\\fmask_polygon\\" 
data_path = "H:\\dissertation\\data\\" 
scratch_path = "H:\\dissertation\\scratch\\" 
 
fuzzylist_int = [30, 50, 70] 
yearlist_int = [1994] 
 
#yearlist_int = [1985, 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,  
                #2000, 2001, 2002, 2003, 2004 ,2005, 2006, 2007, 2008, 2009, 2010, 2011] 
fuzzylist_str = map(str, fuzzylist_int) 
yearlist_str = map(str, yearlist_int) # Converts years from integer to string 
 
for acut in fuzzylist_str:  
    fuzzy_path = fmask_path + "fuzzy_" + acut + "\\" 
    print "\nRunning polygons for specified years having alpha-threshold: " + acut + "." 
     
    # Copy Features (Data Management) 
    inFeature = fmask_path + "join\\fuzzy_union.shp" 
    outFeature = fmask_path + "join\\fuzzy_union" + acut + ".shp" 
     
    arcpy.CopyFeatures_management(inFeature, outFeature) 
 
    # Add Field (Data Management)    
    inFeature = fmask_path + "join\\fuzzy_union" + acut + ".shp" 
    fieldName = "FID_fuzzy_" 
    fieldType = "LONG" 
    fieldPrecision = "" 
    fieldScale = "" 
    fieldLength = "" 
    fieldAlias = "" 
    fieldIsNullable = "NON_NULLABLE" 
    fieldIsRequired = "NON_REQUIRED" 
    fieldDomain = "" 
          
    arcpy.AddField_management(inFeature, fieldName, fieldType, fieldPrecision, fieldScale,  
                              fieldLength, fieldAlias,fieldIsNullable, fieldIsRequired,  
                              fieldDomain) 
     
    # Calculate Field (Data Management)     
    expression = "!FID!" 
    expressionType = "PYTHON_9.3" 
    codeBlock = ""   
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    arcpy.CalculateField_management(inFeature, fieldName, expression, expressionType, codeBlock) 
 
    # Add Index (Data Management) 
    fields = "FID_fuzzy_" 
    indexName = "" 
    unique = "UNIQUE" 
    ascending = "ASCENDING" 
     
    arcpy.AddIndex_management(inFeature, fields, indexName, unique, ascending) 
 
    for year in yearlist_str:  
        print "\nProcessing polygon for year: " + year + "." 
 
        # Identity (Analysis) 
        print "Assigning Unique ID..." 
         
        inFeature = fuzzy_path + year + "_fuzzy" + acut + "_poly.shp"         
        identityFeature = fmask_path + "join\\fuzzy_union.shp" 
        outFeature = scratch_path + "fuzzy" + acut + "_" + year + "_id.shp" 
        joinAttributes = "ALL" 
        clusterTolerance = "" 
        relationship = "NO_RELATIONSHIPS" 
         
        arcpy.Identity_analysis(inFeature, identityFeature, outFeature, joinAttributes,  
                                clusterTolerance, relationship) 
         
        # Dissolve (Data Management) 
        print "Dissolving fields with same Unique IDs..." 
         
        inFeature = scratch_path + "fuzzy" + acut + "_" + year + "_id.shp" 
        outFeature = fmask_path + "join\\fuzzy" + acut + "_" + year + "_id.shp" 
        dissolveField = "FID_fuzzy_" 
        statisticsField = "" 
        multiPart = "MULTI_PART" 
        unsplitLines = "DISSOLVE_LINES" 
         
        arcpy.Dissolve_management(inFeature, outFeature, dissolveField, statisticsField, multiPart, 
unsplitLines) 
 
        # Add Field (Data Management) 
        print "Calculating area..." 
         
        inFeature = fmask_path + "join\\fuzzy" + acut + "_" + year + "_id.shp" 
        fieldName = "AREA" + year 
        fieldType = "LONG" 
        fieldPrecision = "" 
        fieldScale = "" 
        fieldLength = "" 
        fieldAlias = "" 
        fieldIsNullable = "NON_NULLABLE" 
        fieldIsRequired = "NON_REQUIRED" 
        fieldDomain = "" 
              
        arcpy.AddField_management(inFeature, fieldName, fieldType, fieldPrecision, fieldScale,  
                                  fieldLength, fieldAlias,fieldIsNullable, fieldIsRequired,  
                                  fieldDomain) 
         
        # Calculate Field (Data Management) 
        print "Copying relevant fields to master polygon shapefile..." 
         
        expression = "!SHAPE.AREA!" 
        expressionType = "PYTHON_9.3" 
        codeBlock = ""   
         
        arcpy.CalculateField_management(inFeature, fieldName, expression, expressionType, codeBlock) 
        """ 
        # Delete (Data Management) 
        print "Deleting intermediary files in scratch..." 
        inData = scratch_path + "fuzzy" + acut + "_" + year + "_id.shp" 
        dataType = "" 
        arcpy.Delete_management(inData, dataType)     
         
        print "\nProcess complete for year: " + year + " having alpha-threshold: " + acut + "." 
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""" 
    # Delete (Data Management) 
    print "Deleting intermediary files in scratch..." 
    inData = scratch_path + "fuzzy_union_" + acut + ".shp" 
    dataType = "" 
    arcpy.Delete_management(inData, dataType)   
 
    print "\nProcess complete for alpha-threshold: " + acut + "." 
 
print "\nScript complete." 

 

3.4. Python ArcPy script to generate random points for each input Landsat image for validation. 

 

# --------------------------------------------------------------------------- 
# fmask2poly.py 
# Created on: 2013-05-26 17:24:30.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Created by: TJ Young (SPRI) 
# Description: This script was written to sample weather rasters using inputs 
#    as defined from statistical significance in linear regression. Code was  
#    blocked out as necessary.  
# --------------------------------------------------------------------------- 
 
print "Running script 'weather_extract.py'..." 
 
# Import arcpy module 
import os, sys, shutil 
import csv 
import arcpy 
 
from arcpy import env 
from arcpy.sa import * 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Overwrite pre-existing files 
arcpy.env.overwriteOutput = True 
 
# Create input paths 
data_path = "H:\\dissertation\\data\\" 
scratch_path = "H:\\dissertation\\scratch\\" 
weather_path = "H:\\dissertation\\docs\\weather\\sample\\" 
 
varlist = ["t2m", "tp0", "tp12"] 
 
# Get yearly and summer temperatures and precipitation  
t2m_path = "H:\\dissertation\\data\\weather\\temperature_2m\\utm_zone9\\" 
 
year_range_int = list(xrange(1984, 2012)) 
year_range = map(str, year_range_int) 
leapyear_list = ["1984", "1988", "1992", "1996", "2000", "2004", "2008", "2012"] 
""" 
# Temperature 
 
print "Getting averages for temperature..." 
for year in year_range:       
    month1 = Raster(t2m_path + year + "01.tif") 
    month2 = Raster(t2m_path + year + "02.tif") 
    month3 = Raster(t2m_path + year + "03.tif") 
    month4 = Raster(t2m_path + year + "04.tif") 
    month5 = Raster(t2m_path + year + "05.tif") 
    month6 = Raster(t2m_path + year + "06.tif") 
    month7 = Raster(t2m_path + year + "07.tif") 
    month8 = Raster(t2m_path + year + "08.tif") 
    month9 = Raster(t2m_path + year + "09.tif") 
    month10 = Raster(t2m_path + year + "11.tif") 
    month11 = Raster(t2m_path + year + "11.tif") 
    month12 = Raster(t2m_path + year + "12.tif") 
     
    # For temperature yearly averages:  
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    print "year" + year 
    outRaster = (month1 + month2 + month3 + month4 + month5 + month6 + month7 + month8 +  
                 month9 + month10 + month11 + month12) / 12 
    outRaster.save("H:\\dissertation\\data\\weather\\temperature_2m\\year\\" + year + ".tif") 
 
    # For temperature growing season averages:        
    print "growing season" + year           
    outRaster = (month5 + month6 + month7 + month8 + month9) / 5 
    outRaster.save("H:\\dissertation\\data\\weather\\temperature_2m\\growing\\" + year + ".tif") 
""" 
# NOTE: I labelled precipitation files wrong. E.g. tp12201201 is 201201 time step 00,  
#       tp00201202 is 201201 time step 12, tp12201202 is 201202 time step 00,  
#       tp00201203 is 201202 time step 12, etc. The output is daily averages of monthly means,  
#       says ECMWF... 
tp0_path = "H:\\dissertation\\data\\weather\\total_precipitation0\\utm_zone9\\" 
tp12_path = "H:\\dissertation\\data\\weather\\total_precipitation12\\utm_zone9\\" 
 
# Precipitation 
 
print "Getting totals for precipitation..." 
for year in year_range:  
    year_int = int(year) 
    month1 = (Raster(tp12_path + year + "01.tif") + Raster(tp0_path + year + "02.tif")) * 31 
    if year in leapyear_list:  
        month2 = (Raster(tp12_path + year + "02.tif") + Raster(tp0_path + year + "03.tif")) * 29 
    else:  
        month2 = (Raster(tp12_path + year + "02.tif") + Raster(tp0_path + year + "03.tif")) * 28 
    month3 = (Raster(tp12_path + year + "03.tif") + Raster(tp0_path + year + "04.tif")) * 31 
    month4 = (Raster(tp12_path + year + "04.tif") + Raster(tp0_path + year + "05.tif")) * 30 
    month5 = (Raster(tp12_path + year + "05.tif") + Raster(tp0_path + year + "06.tif")) * 31 
    month6 = (Raster(tp12_path + year + "06.tif") + Raster(tp0_path + year + "07.tif")) * 30 
    month7 = (Raster(tp12_path + year + "07.tif") + Raster(tp0_path + year + "08.tif")) * 31 
    month8 = (Raster(tp12_path + year + "08.tif") + Raster(tp0_path + year + "09.tif")) * 31 
    month9 = (Raster(tp12_path + year + "09.tif") + Raster(tp0_path + year + "10.tif")) * 30 
    month10 = (Raster(tp12_path + year + "11.tif") + Raster(tp0_path + year + "11.tif")) * 31 
    month11 = (Raster(tp12_path + year + "11.tif") + Raster(tp0_path + year + "12.tif")) * 30 
    month12 = (Raster(tp12_path + year + "12.tif") + Raster(tp0_path + str(year_int + 1) + "01.tif")) 
* 31 
 
    # For precipitation yearly averages:  
    print "year" + year 
    outRaster = (month1 + month2 + month3 + month4 + month5 + month6 + month7 + month8 +  
                 month9 + month10 + month11 + month12) * 1000 
    outRaster.save("H:\\dissertation\\data\\weather\\total_precipitation\\year\\" + year + ".tif")     
     
    # For temperature growing season averages:                 
    print "growing season" + year 
    outRaster = (month5 + month6 + month7 + month8 + month9) * 1000 
    outRaster.save("H:\\dissertation\\data\\weather\\total_precipitation\\growing\\" + year + ".tif") 
     
    # For previous year (June to May):      
    print "previous year" + year 
    year_int = int(year) 
    month1 = (Raster(tp12_path + year + "01.tif") + Raster(tp0_path + year + "02.tif")) * 31 
    if year in leapyear_list:  
        month2 = (Raster(tp12_path + year + "02.tif") + Raster(tp0_path + year + "03.tif")) * 29 
    else:  
        month2 = (Raster(tp12_path + year + "02.tif") + Raster(tp0_path + year + "03.tif")) * 28 
    month3 = (Raster(tp12_path + year + "03.tif") + Raster(tp0_path + year + "04.tif")) * 31 
    month4 = (Raster(tp12_path + year + "04.tif") + Raster(tp0_path + year + "05.tif")) * 30 
    month5 = (Raster(tp12_path + year + "05.tif") + Raster(tp0_path + year + "06.tif")) * 31 
    month6 = (Raster(tp12_path + str(year_int - 1) + "06.tif") + Raster(tp0_path + str(year_int - 1) + 
"07.tif")) * 30 
    month7 = (Raster(tp12_path + str(year_int - 1) + "07.tif") + Raster(tp0_path + str(year_int - 1) + 
"08.tif")) * 31 
    month8 = (Raster(tp12_path + str(year_int - 1) + "08.tif") + Raster(tp0_path + str(year_int - 1) + 
"09.tif")) * 31 
    month9 = (Raster(tp12_path + str(year_int - 1) + "09.tif") + Raster(tp0_path + str(year_int - 1) + 
"10.tif")) * 30 
    month10 = (Raster(tp12_path + str(year_int - 1) + "11.tif") + Raster(tp0_path + str(year_int - 1) 
+ "11.tif")) * 31 
    month11 = (Raster(tp12_path + str(year_int - 1) + "11.tif") + Raster(tp0_path + str(year_int - 1) 
+ "12.tif")) * 30 
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    month12 = (Raster(tp12_path + str(year_int - 1) + "12.tif") + Raster(tp0_path + year + "01.tif")) 
* 31 
 
    print "year" + year 
    outRaster = (month1 + month2 + month3 + month4 + month5 + month6 + month7 + month8 +  
                 month9 + month10 + month11 + month12) * 1000 
    outRaster.save("H:\\dissertation\\data\\weather\\total_precipitation\\previous\\" + year + ".tif")     
  
 
# ArcPy Process 1: Sample (Spatial Analyst) 
print "Running ArcPy Process 1: Sample (Spatial Analyst)" 
 
# Create input paths 
period_path = "H:\\dissertation\\data\\spatial_stats\\" 
chow1_path = "H:\\dissertation\\data\\spatial_stats\\chow1\\" 
chow2_path = "H:\\dissertation\\data\\spatial_stats\\chow2\\" 
 
# Read in sample points  
period_pt = period_path + "lakes_reg_pt.shp" 
chow1_pt = chow1_path + "lakes_reg_pt.shp" 
chow2_pt = chow2_path + "lakes_reg_pt.shp"  
 
tsptlist = [period_pt, chow1_pt, chow2_pt] 
 
# 1a. Yearly average of temperature 
 
print "\n1a. Yearly average of temperature" 
year_range_int = list(xrange(1985, 2012)) 
year_range = map(str, year_range_int) 
year_range_chow1 = year_range[:12] 
year_range_chow2 = year_range[12:] 
 
for ts in tsptlist:  
    if ts == period_pt: 
        print "Sampling for entire time domain..." 
        yearlist_period = [] 
        for year in year_range:  
            yearfile = "H:\\dissertation\\data\\weather\\temperature_2m\\year\\" + year + ".tif" 
            yearlist_period.append(yearfile) 
        inRasters = yearlist_period 
        outTable = weather_path + "period_tyear.dbf" 
    if ts == chow1_pt: 
        print "Sampling for chow1 domain..." 
        yearlist_chow1 = [] 
        for year in year_range_chow1: 
            yearfile = "H:\\dissertation\\data\\weather\\temperature_2m\\year\\" + year + ".tif" 
            yearlist_chow1.append(yearfile) 
        inRasters = yearlist_chow1 
        outTable = weather_path + "chow1_tyear.dbf" 
    if ts == chow2_pt: 
        print "Sampling for chow2 domain..." 
        yearlist_chow2 = [] 
        for year in year_range_chow2: 
            yearfile = "H:\\dissertation\\data\\weather\\temperature_2m\\year\\" + year + ".tif" 
            yearlist_chow2.append(yearfile) 
        inRasters = yearlist_chow2     
        outTable = weather_path + "chow2_tyear.dbf" 
    inPoint = ts 
    resamplingType = "NEAREST" 
 
    Sample(inRasters, inPoint, outTable, resamplingType) 
     
# 1b. Growing season average of temperature 
print "\n1b. Growing season average of temperature" 
 
year_range_int = list(xrange(1985, 2012)) 
year_range = map(str, year_range_int) 
year_range_chow1 = year_range[:12] 
year_range_chow2 = year_range[12:] 
 
for ts in tsptlist:  
    if ts == period_pt: 
        print "Sampling for entire time domain..." 
        yearlist_period = [] 
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        for year in year_range:  
            yearfile = "H:\\dissertation\\data\\weather\\temperature_2m\\growing\\" + year + ".tif" 
            yearlist_period.append(yearfile) 
        inRasters = yearlist_period 
        outTable = weather_path + "period_tgs.dbf" 
    if ts == chow1_pt: 
        print "Sampling for chow1 domain..." 
        yearlist_chow1 = [] 
        for year in year_range_chow1: 
            yearfile = "H:\\dissertation\\data\\weather\\temperature_2m\\growing\\" + year + ".tif" 
            yearlist_chow1.append(yearfile) 
        inRasters = yearlist_chow1 
        outTable = weather_path + "chow1_tgs.dbf" 
    if ts == chow2_pt: 
        print "Sampling for chow2 domain..." 
        yearlist_chow2 = [] 
        for year in year_range_chow2: 
            yearfile = "H:\\dissertation\\data\\weather\\temperature_2m\\growing\\" + year + ".tif" 
            yearlist_chow2.append(yearfile) 
        inRasters = yearlist_chow2     
        outTable = weather_path + "chow2_tgs.dbf" 
    inPoint = ts 
    resamplingType = "NEAREST" 
     
    Sample(inRasters, inPoint, outTable, resamplingType) 
 
# 1c. Yearly average of precipitation 
print "\n1c. Yearly average of precipitation" 
 
year_range_int = list(xrange(1985, 2012)) 
year_range = map(str, year_range_int) 
year_range_chow1 = year_range[:12] 
year_range_chow2 = year_range[12:] 
 
for ts in tsptlist:  
    if ts == period_pt: 
        print "Sampling for entire time domain..." 
        yearlist_period = [] 
        for year in year_range:  
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\year\\" + year + ".tif" 
            yearlist_period.append(yearfile) 
        inRasters = yearlist_period 
        outTable = weather_path + "period_tpyear.dbf" 
    if ts == chow1_pt: 
        print "Sampling for chow1 domain..." 
        yearlist_chow1 = [] 
        for year in year_range_chow1: 
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\year\\" + year + ".tif" 
            yearlist_chow1.append(yearfile) 
        inRasters = yearlist_chow1 
        outTable = weather_path + "chow1_tpyear.dbf" 
    if ts == chow2_pt: 
        yearlist_chow2 = [] 
        print "Sampling for chow2 domain..." 
        for year in year_range_chow2: 
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\year\\" + year + ".tif" 
            yearlist_chow2.append(yearfile) 
        inRasters = yearlist_chow2     
        outTable = weather_path + "chow2_tpyear.dbf" 
    inPoint = ts 
    resamplingType = "NEAREST" 
     
    Sample(inRasters, inPoint, outTable, resamplingType) 
 
# 1d. Growing season average of precipitation 
print "\n1d. Growing season average of precipitation" 
 
year_range_int = list(xrange(1985, 2012)) 
year_range = map(str, year_range_int) 
year_range_chow1 = year_range[:12] 
year_range_chow2 = year_range[12:] 
 
for ts in tsptlist:  
    if ts == period_pt: 
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        print "Sampling for entire time domain..." 
        yearlist_period = [] 
        for year in year_range:  
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\growing\\" + year + 
".tif" 
            yearlist_period.append(yearfile) 
        inRasters = yearlist_period 
        outTable = weather_path + "period_tpgs.dbf" 
    if ts == chow1_pt: 
        print "Sampling for chow1 domain..." 
        yearlist_chow1 = [] 
        for year in year_range_chow1: 
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\growing\\" + year + 
".tif" 
            yearlist_chow1.append(yearfile) 
        inRasters = yearlist_chow1 
        outTable = weather_path + "chow1_tpgs.dbf" 
    if ts == chow2_pt: 
        yearlist_chow2 = [] 
        print "Sampling for chow2 domain..." 
        for year in year_range_chow2: 
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\growing\\" + year + 
".tif" 
            yearlist_chow2.append(yearfile) 
        inRasters = yearlist_chow2     
        outTable = weather_path + "chow2_tpgs.dbf" 
    inPoint = ts 
    resamplingType = "NEAREST" 
     
    Sample(inRasters, inPoint, outTable, resamplingType) 
 
# 1e. Previous yearly average of precipitation 
print "\n1e. Previous yearly average of precipitation" 
 
year_range_int = list(xrange(1985, 2012)) 
year_range = map(str, year_range_int) 
year_range_chow1 = year_range[:12] 
year_range_chow2 = year_range[12:] 
 
for ts in tsptlist:  
    if ts == period_pt: 
        print "Sampling for entire time domain..." 
        yearlist_period = [] 
        for year in year_range:  
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\previous\\" + year + 
".tif" 
            yearlist_period.append(yearfile) 
        inRasters = yearlist_period 
        outTable = weather_path + "period_tppyear.dbf" 
    if ts == chow1_pt: 
        print "Sampling for chow1 domain..." 
        yearlist_chow1 = [] 
        for year in year_range_chow1: 
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\previous\\" + year + 
".tif" 
            yearlist_chow1.append(yearfile) 
        inRasters = yearlist_chow1 
        outTable = weather_path + "chow1_tppyear.dbf" 
    if ts == chow2_pt: 
        print "Sampling for chow2 domain..." 
        yearlist_chow2 = [] 
        for year in year_range_chow2: 
            yearfile = "H:\\dissertation\\data\\weather\\total_precipitation\\previous\\" + year + 
".tif" 
            yearlist_chow2.append(yearfile) 
        inRasters = yearlist_chow2     
        outTable = weather_path + "chow2_tppyear.dbf" 
    inPoint = ts 
    resamplingType = "NEAREST" 
     
    Sample(inRasters, inPoint, outTable, resamplingType) 
 
print "\nScript complete."  
 



118 
 

  



119 
 

3.5. Python ArcPy script to assess the classification accuracy of the Fmask software. 

 

# --------------------------------------------------------------------------- 
# randompt_check.py 
# Created on: 2013-05-09 11:44:25.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Created by: TJ Young (SPRI) 
# Description: This script was written to create a set of randomly-generated 
#           points to assess the classification accuracy of the fmask  
#           software.  
# --------------------------------------------------------------------------- 
print "Running script 'randompt_check.py'..." 
 
# Import arcpy module 
import os, sys, shutil 
import arcpy 
 
from arcpy import env 
from arcpy.sa import * 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Overwrite pre-existing files 
arcpy.env.overwriteOutput = True 
 
yearlist_int = [1990, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000,  
             2001, 2002, 2004 ,2005, 2006, 2007, 2008, 2009, 2010, 2011] 
yearlist_str = map(str, yearlist_int) # Converts years from integer to string 
 
env.workspace = "H:\\dissertation\\data\\randpts\\"  # Set environment workspace 
 
for year in yearlist_str: 
    print "\nCreating random points for year: " + year  
     
    Path_fmask = "H:\\dissertation\\data\\fmask\\" + year + "\\" 
    Path_data = "H:\\dissertation\\data\\randpts\\"   + year + "\\" 
    Path_scratch = "H:\\dissertation\\scratch\\randpts\\"   + year + "\\" 
     
    # Creates output folder by year (if it does not already exist) 
    if not os.path.exists(Path_data): 
        os.makedirs(Path_data)  
    if not os.path.exists(Path_scratch): 
        os.makedirs(Path_scratch) 
     
    # Creates a list of contents in the input directory 
    dircontents = os.listdir(Path_fmask) 
    inPath_list = list(dircontents) # list contents in specified data folder 
    inPath_listTIF = [] 
    for fname in inPath_list: 
        fname_front, fname_end = os.path.splitext(fname) 
        if fname_end == ".tif": 
            inPath_listTIF.append(fname) # only adds TIF files to inPath_listTIF 
     
    # Runs tool referencing every TIF file in specified year 
    pt_genlist = [] 
    for fname in inPath_listTIF:  
        outPts = os.path.basename(fname[4:16]) + "_randpts_clean.shp" 
        conFC = "" 
        fcExtent = Path_fmask + fname 
        numPoints = 150 
         
        arcpy.CreateRandomPoints_management(Path_scratch, outPts, conFC, fcExtent, numPoints) 
         
        # Adds X and Y coordinates to point files 
        inPts = Path_scratch + outPts 
        arcpy.AddXY_management(inPts) 
         
        print "Successfully created " + str(numPoints) + " geo-labelled random points to be used in 
year " + year + " for file: '" + fname + "'." 
         
    # Extract values of fmask rasters to set points 
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    print "\nExtracting Fmask values to set points..." 
    for fname in inPath_listTIF: 
        inPts = Path_scratch + os.path.basename(fname[4:16]) + "_randpts_clean.shp" 
        inRaster = Path_fmask + fname 
        outPts = Path_scratch + os.path.basename(fname[4:16]) + "_fmaskpts.shp" 
        interpolate = "NONE" 
        attributes = "ALL" 
         
        ExtractValuesToPoints(inPts, inRaster, outPts, interpolate, attributes) 
     
    # Remove NoData points  
    print "\nRemoving points with NoData..." 
    for fname in inPath_listTIF:  
        inPts = Path_scratch + os.path.basename(fname[4:16]) + "_fmaskpts.shp" 
        outPts = Path_data + os.path.basename(fname[4:16]) + "_randpts.shp" 
        where = "RASTERVALU < 5" 
        arcpy.Select_analysis(inPts, outPts, where) 
 
    # Delete scratch files 
    print "\nDeleting intermediary files in scratch..." 
    inData = Path_scratch 
    dataType = "" 
    arcpy.Delete_management(inData, dataType) # Deletes folder for year 
     
    print "\nSuccessfully processed all random point shapefiles in year: " + year + "." 
 
# Delete scratch randpts folder 
inData = "H:\\dissertation\\scratch\\randpts\\" 
dataType = "" 
arcpy.Delete_management(inData, dataType) 
 
print "\nScript complete." 

 


	Declaration from author.
	Abstract.
	List of Figures.
	List of Tables.
	List of Equations.
	Acknowledgements.
	1. Introduction.
	1.1. Rationale.
	1.2. Purpose.

	2. Background.
	2.1. Properties and dynamics of permafrost.
	2.1.1. Description of permafrost.
	2.1.2. Permafrost and climate warming.

	2.2. Thermokarst basin and lake formation.
	2.2.1. Thermokarst basin formation and development.
	2.2.2. Thermokarst lake formation and dynamics.

	2.3. Spatial and temporal trends in high-latitude lake cover.
	2.4. Remote Sensing of land cover and the advent of free satellite imagery.
	2.4.1. History of land cover remote sensing.
	2.4.2. The Landsat Program


	3. Location and study area.
	3.1. Thermokarst lakes in the Tuktoyaktuk Peninsula.
	3.2. Climate of the Tuktoyaktuk Peninsula.

	4. Methods.
	4.1. Landsat data and pre-processing.
	4.2. Land cover classification of pixels.
	4.3. Segmentation of land cover classed images.
	4.4. Uncertainty of pixel-classified images.
	4.4.1. Description of fuzzy membership
	4.4.2. Application of fuzzy membership.

	4.5. Statistical analyses of spatiotemporal trends.
	4.5.1. Overall variability in lake morphometrics.

	4.6. Correlation to weather variables.

	5. Validation of methodology.
	5.1. Validation of the Fmask algorithm.
	5.1.1. Methods for the Fmask algorithm validation.
	5.1.2. Accuracy assessment of the Fmask algorithm.

	5.2. Evaluation of ERA-Interim Reanalysis data with ground observations.

	6. Results.
	6.1. Overall trends in lake dynamics.
	6.1.1. Magnitude and direction.
	6.1.2. Comparison of longer-term and recent trends

	6.2. Spatial heterogeneity in lake dynamics.
	6.2.1. Individual rates of change.
	6.2.2. Spatiotemporal variability in lake area.

	6.3. Relationship between lake area and weather variables.
	6.3.1. Overall rates of change.
	6.3.2. Spatiotemporal variability in lake area.


	7. Discussion.
	7.1. Analysis of temporal trends.
	7.1.1. Comparison of longer-term and recent trends.
	7.1.2. Spatial heterogeneity in lake morphometrics.

	7.2. Study implications and priorities for future research.

	8. Conclusion.
	9. Bibliography.
	Appendix.
	Appendix 1. Complete tabular list of Landsat imagery used in methodology.
	Appendix 2. Extended methods section detailing the Fmask algorithm.
	Appendix 3. Python scripts to streamline batch processing in methodology.
	3.1. Python ArcPy script to assemble Fmask images into yearly mosaics.
	3.2. Python ArcPy script to extract Fmask polygons by specified fuzzy membership thresholds.
	3.3. Python ArcPy script to assign unique ID numbers to individual lakes for all years.
	3.4. Python ArcPy script to generate random points for each input Landsat image for validation.
	3.5. Python ArcPy script to assess the classification accuracy of the Fmask software.



