
A Graded Monad for Deadlock-Free Concurrency
(Functional Pearl)

Andrej Ivašković
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom

andrej.ivaskovic@cst.cam.ac.uk

Alan Mycroft
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom
alan.mycroft@cst.cam.ac.uk

Abstract
We present a new type-oriented framework for writing sha-
red memory multithreaded programs that the Haskell type
system guarantees are deadlock-free. The implementation
wraps all concurrent computation inside a graded monad and
assumes a total order is defined between locks. The grades
within the type of such a computation specify which locks
it acquires and releases. This information is drawn from an
algebra that ensures that types can, in principle, be inferred
in polynomial time.

CCS Concepts: • Theory of computation → Program
analysis; Type structures.

Keywords: graded monads, concurrency, synchronization,
deadlock
ACM Reference Format:
Andrej Ivašković and Alan Mycroft. 2020. A Graded Monad for
Deadlock-Free Concurrency (Functional Pearl). In Proceedings of
the 13th ACM SIGPLAN International Haskell Symposium (Haskell
’20), August 27, 2020, Virtual Event, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3406088.3409024

1 Introduction
Writing concurrent programs that deal with shared memory
is frequently challenging, particularly if they use the thread
model. Race conditions can give rise to unexpected outcomes
of parallel computations when synchronization is not done
properly, while deadlock is a persistent problem. To address
this, alternatives to the threadedmodel of concurrency exist –
for example, a popular model seen in Haskell is software
transactional memory, exemplified by the STM monad [7].
These alternatives sometimes come with a performance hit
or lack a progress guarantee, so there is a tradeoff between
efficiency and prevalence of bugs.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
https://doi.org/10.1145/3406088.3409024

Threads are still the most common approach to concur-
rency in most imperative languages, with synchronization
performed through facilities such as monitors (Java, C++11)
or semaphores (POSIX pthreads). Static analysis tools such
as rccjava [3] for Java are sometimes used to detect possible
concurrency bugs. Formal models of concurrency (CCS [13],
𝜋-calculus [14], session types [8]) aremature andwell-known
approaches to reasoning about thread-safety.

Effect systems are a common framework for static analysis
of programs in functional languages. They were first defined
by Lucassen and Gifford [12] and applied to reasoning about
side-effects in parallel programs, and since then have been
used in numerous other contexts. An effect system defines
type-and-effect judgements of the form Γ ⊢ 𝑒 : 𝐴&𝐹 , where
Γ is the context (types of variables that may occur freely in
𝑒), 𝑒 is an expression, 𝐴 is the type of 𝑒 , and 𝐹 represents the
effect of 𝑒 . Note that such effects 𝐹 , in general, represent the
composition of the various effects of the sub-expressions of
𝑒 rather than being seen as mere individual primitive effects.

Wadler and Thiemann [22] show that effect systems cor-
respond to monads, as they serve a similar purpose (de-
limiting computational effects). In their work, Wadler and
Thiemann demonstrate how a closed expression 𝑒 satisfy-
ing the type-and-effect judgement ⊢ 𝑒 : 𝐴&𝐹 in a lan-
guage with impure features corresponds to an expression
𝑒 ′ of type 𝑇 𝐹𝐴 in a pure language with support for mon-
ads, where 𝑇 𝐹 represents a computation indexed by effect
𝐹 (there is a separate type constructor 𝑇 𝐹 for every possi-
ble effect 𝐹 ). The bind operation in these monads keeps the
effect annotation of the monad ‘fixed’, so the type of bind
is (≫=)𝐹,𝐺 : 𝑇 𝐹𝐴 → (𝐴 → 𝑇𝐺𝐵) → 𝑇 𝐹∪𝐺𝐵. Whilst such
indexed monads suffice for Lucassen-Gifford effect systems,
they fail to model richer (sequential) effect systems that have
separate operations for sequential composition ★ and for
alternation ⊔. More recently, Katsumata [9] has shown that
the semantics of effect systems is more accurately described
by graded monads. This means that all𝑇 𝐹 now form a family
of type constructors, but not all of them correspond to a
monad – instead, 𝐹 are drawn from an effect algebra which
is a monoid with some binary operator ★. Graded monads
thus compose in a way that more closely resembles how
effects interact, as now bind is actually a family of operators
(≫=)𝐹,𝐺 of type (≫=)𝐹,𝐺 : 𝑇 𝐹𝐴 → (𝐴 → 𝑇𝐺𝐵) → 𝑇 𝐹★𝐺𝐵.

17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/328720681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3406088.3409024
https://doi.org/10.1145/3406088.3409024


Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

This is the basis of the Haskell embedding of effect systems
by Orchard and Petricek [15].

The natural question arises: is there a gradedmonadic view
of concurrency that guarantees that well-typed programs
cannot deadlock?

Our contribution. We provide a simple framework for
writing a subset of multithreaded Haskell programs guaran-
teed to be free of deadlock (Section 3). The implementation
wraps all concurrent computation inside a graded monad so
that the type-checking algorithm explicitly rejects all pro-
grams that might lead to deadlock. We demonstrate its use
through the examples of the dining philosophers problem and
memory regions. We are able to get far without relying on
anything beyond the type system of Haskell (for example,
dependent types).
The theoretical foundation for this implementation is an

algebra representing the concurrency information (Section 5).
This algebra is a partially ordered monoid, the partial order
is a lattice and all of the operators used in the emitted type
constraints of the monad operations are monotonic. This
ensures that inferring safety can be computed in polynomial
time in language similar to Haskell, but with added support
for equirecursive types. There is a slight disconnect between
the theory and the Haskell implementation, since the math-
ematical view of graded monads makes totality assumptions
about the underlying algebraic structure – the difference is
seen in the way ill-typed expressions are handled.

2 Big Picture
Before taking a deep dive into the implementation, we set the
stage by outlining the key components. In this section, we
first discuss the members of a Haskell typeclass GradedMonad.
We then describe the requirements of this monad, that is,
what programs written using our particular graded monad –
which we call Sync – look like, as well as what kinds of
computation are permitted.

2.1 Graded Monads
Haskell programmers are well acquainted with programming
using monads. To define a monad m, the programmer has
to implement a function return :: a → m a that wraps a
pure value inside this monad, as well as a bind function
(commonly used as an infix operator):

(≫=) :: m a → (a → m b) → m b.
A graded monad is defined by the grading algebra over

which the effect annotation range, the return function and
a family of bind (≫=) operations. The grading algebra is a
partially ordered monoid: its identity element corresponds to
the unit effect, its binary operator★ corresponds to sequenc-
ing two monadic values, and the partial order is the basis
of the subtyping relation between two monadic values. One
way of representing a graded monad is using a typeclass:

class GradedMonad (m :: d → Type → Type) where
type Unit m :: d
type Seq m (r :: d) (s :: d) :: d
type Sub m (r :: d) (s :: d) :: Constraint
return :: a → m (Unit m) a
(≫=) :: m r a → (a → m s b)

→ m (Seq m r s) b
sub :: Sub m r s ⇒ m r a → m s a
-- The following lines are logically inessential
-- but ensure that Haskell's (≫) operator works
-- as expected with RebindableSyntax.
(≫) :: m r a → m s b → m (Seq m r s) b
x ≫ y = x ≫= const y

The identifier d refers to the grading algebra implemented
at the type level; note that no values of type d are ever con-
stucted at run-time. This grading algebra comes with a se-
quencing operation supplied using the type constructor Seq
(so the type Seq m r s yields a value of the same graded
monadic type wrapped inside m whose grade is 𝑟 ★ 𝑠) and
as a unit grade (Unit). This implementation leverages the
Constraint GHC extension to model subtyping: Sub m r s
represents a fact (or constraint) stating that type m r a is a
subtype of m s a for any type a.
The definition of (≫) is optional. If it is included and if

the RebindableSyntax extension is used, the meaning of do
changes – instead of being syntactic sugar for monadic com-
putation, it becomes syntactic sugar for sequenced graded
monadic operations. All usages of do in this paper refer to
the graded monadic version.

2.2 Concurrency Framework
The goal is to allow the programmer to write parallel pro-
grams that are guaranteed to not deadlock. This is possible
using the GradedMonad typeclass as previously defined.
All concurrent expressions have type Sync r a, where

type r represents information about the locks that are to be
acquired and released during execution, and a is the type
of the result of this computation. The key idea is that lock-
ing is structured: each lock, once acquired, has to be re-
leased within the same context. An expression of this graded
monadic type is then evaluated using the runSync function.
The two operations (in addition to the existing monad

operators (≫=, return and polymorphic operators such as
if-then-else instantiated at monadic type) we use are:

Synchronization Given a finite set of global named
locks X, Y, . . . , we define a family of functions syncX,
syncY, . . . that take a computation e wrapped inside
the Sync graded monad and return another compu-
tation wrapped inside Sync that does the same as e,
but has exclusive access to the respective lock. Thus
syncX e could be implemented as

lockX ≫ e ≫= _r → unlockX ≫ return r

18



A Graded Monad for Deadlock-Free Concurrency (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

provided lockX and unlockX are not exposed to the
user.
The expression syncX e should type-check if and only
if the type of e is Sync r a, where r contains only
those locks that are allowed to be acquired after ac-
quiring X. In this case the annotation s in the type of
the result Sync s a should be r with X added.

Parallelism Given computations e1 and e2 wrapped in-
side the Sync graded monad, there is a computation
e1 ∥ e2 wrapped inside Sync that runs e1 and e2 in
parallel.

It is important that the internals of Sync are not exposed
to the user of the library – otherwise, it is possible to write
programs that override the type annotations that guarantee
deadlock freedom. Instead, the user should have access to
the synchronization and parallelism operations. This means
that the set of locks has to be hardwired into the library and
known ahead of time.

Path to monitors. An extension to the basic model of
concurrency described above allows the programmer to syn-
chronize on data. This means that two threads sharing state
(possibly reading and writing to it) will each, in turn, have ex-
clusive access to the shared state. This resembles themonitor
framework of concurrency (seen, for example, in Java). We
present the details of how this can be implemented, which
comes with changes in types and usage of the synchroniza-
tion operations.

Synchonizing on data is nothing more than an extension
of synchronizing on a single lock: a mutual exclusion lock
can be seen as a shared piece of unit-type data.

Limits. The kind of concurrency we consider safe is lim-
ited. For example, the following singlethreaded program,
guaranteed to not deadlock, should be explicitly rejected by
the type system:
syncX (syncY (return 1)) ≫
syncY (syncX (return 2))

This would be the sequence of lock acquisions and releases:
1. acquire lock 𝑋 ;
2. acquire lock 𝑌 ;
3. release lock 𝑌 ;
4. release lock 𝑋 ;
5. acquire lock 𝑌 ;
6. acquire lock 𝑋 ;
7. release lock 𝑋 ;
8. release lock 𝑌 .

This is because the structured lock ordering assumption is
violated: in the first half of the program (lines 1–4), 𝑋 takes
precedence over 𝑌 , but in the second half of the program
(lines 5–8), 𝑌 takes precedence over 𝑋 .

Contrast with theory. The type of syncX requires the ar-
gument to satisfy an ordering constraint. This is not difficult

to do in Haskell using =⇒ , where the constraints are listed
on the left-hand side. This can model a partial addition oper-
ator on types: add (𝑥, ℓ) is defined only when 𝑥 comes before
all locks in ℓ in terms of the lock ordering, in which case it
is equal to the set ℓ extended with 𝑥 .
The mathematical treatment of graded monads assumes

all operators are total. The grading information is thus either
a set or an element denoting unsafe computation, which we
call error .

3 Implementation
We demonstrate, step-by-step, how to construct a graded
monad and define its operations so that code written using
them is guaranteed never to deadlock. The idea is that the
type checker only accepts those programs that obey an or-
dering discipline: there is a total order defined on the set of
locks that determines in what order a thread can acquire
them before releasing these locks. Programs that obey this
discipline are guaranteed to be deadlock-free.

In this section, we first explain how to manipulate the r in
Sync r a, that is, how to implement operations necessary for
respecting the lock order at the type level (Section 3.1). Next,
we define the Sync graded monad with all its operations (Sec-
tion 3.2). The key part of the implementation concerns lifting
IO operations such as threads sleeping or printing to stdout
(Section 3.3). Finally we implement the synchronization and
parallelism operations (Section 3.4). These features are suffi-
cient to demonstrate our first example, which is the dining
philosophers problem (3.5). This approach, although sim-
ple, is not particularly elegant and only makes sense under
the assumption that syncX, syncY, . . . are all used as binary
semaphores (mutexes). We demonstrate a how a simple mod-
ification based on a stack of ReaderT monad transformers
can be used to give a monitor rather than a simple mutex
(Section 3.6), which then allows us to implement shared-state
concurrency based on memory regions – instead of using a
simple mutex lock to synchronize IO, we make it possible to
synchronize on data.

3.1 Lock Algebra
Before defining the graded monad, it is necessary to describe
how lock information is expressed at the type level (this is
the r in Sync r a). The idea behind the implementation is
that sets of locks should be represented as lists whose items
are comparable (that is, have a total order defined). The lock-
ing discipline should be such that, if locks 𝑥 and 𝑦 satisfy
𝑥 < 𝑦, then 𝑥 needs to be acquired before 𝑦 does. The nat-
ural requirement is that lists representing sets of locks are
sorted and do not repeat items. Lists can be represented at the
type level in Haskell using DataKinds, but an alternative im-
plementation using GADTs is also possible. The DataKinds
approach uses the notation '[] to represent the type-level

19



Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

equivalent of an empty list, and ': as the type-level version
of : (cons).
Let xs and ys be sorted lists representing sets of locks.

We define the lock-algebra operators on such lists at the
type level, starting with the merge operator :∨:. It leverages
Haskell extensions for type families and type operators. Its
implementation is simple:
infixr 5 :∨:
type family (xs :: [k]) :∨: (ys :: [k]) :: [k] where

'[] :∨: ys = ys
xs :∨: '[] = xs
(x ': xs) :∨: (y ': ys) =

If (Cmp x y == LT) (x ': (xs :∨: y ': ys))
(If (Cmp x y == GT) (y ': (x ': xs :∨: ys))

(x ': (xs :∨: ys)))
type family Cmp (a :: k) (b :: k) :: Ordering

As we will see, subtyping in the graded monad is based
on the relationship between lock order indices. If an expres-
sion potentially acquires locks in the order given by list s,
then we know it also potentially acquires locks given by
any t of which s is a subsequence. Type-level sublists (or
subsequences) can be implemented using typeclasses.
class Sublist s t
instance Sublist '[] '[]
instance {-# OVERLAPPABLE #-}
Sublist s t ⇒ Sublist s (x ': t)

instance {-# OVERLAPS #-}
Sublist s t ⇒ Sublist (x ': s) (x ': t)

We implement a partial addition operator to represent
adding a lock to a list. Recall the assumption that syncX e is
valid only if the lock X is less than all the locks acquired in e;
in this case syncX e acquires both X and the locks acquired
in e. This partial operator PartialCons is implemented us-
ing Haskell typeclasses, where the third parameter is the
result. The implementation requires specifying a functional
dependency (→ below) in order for Haskell’s type system to
be able to infer that the result of partial addition is unique.
class PartialCons (x :: k) (xs :: [k]) (ys :: [k])

| x xs → ys
instance (LessThanAll x xs)
⇒ PartialCons x xs (x ': xs)

Implementing LessThanAll x xs is simple: given the under-
lying assumption that the list of locks is sorted, it suffices to
compare xwith the head of xs (if it is non-empty). Type-level
comparison is done using a typeclass BoolAsConstraint due
to Orchard and Petricek [15] who call it Conder; it provides
a way to express a boolean value as a Haskell constraint:
class BoolAsConstraint b
instance BoolAsConstraint True
class LessThanAll (x :: k) (ys :: [k])
instance LessThanAll x '[]

instance BoolAsConstraint (Cmp x y == LT)
⇒ LessThanAll x (y ': ys)

3.2 The Graded Monad
The underlying implementation of the Sync graded monad
has to provide every thread access to all the existing locks in
order to synchronize. A lock is just an MVar (imported from
Control.Concurrent). Thus a set of mutual exclusion locks
(call this set Locks) can be represented as a list whose items
all have type MVar (), and an expression with IO side-effects
that needs to access these locks has type Locks → IO a.
Hence the following is a sensible representation for Sync:
type Locks = [MVar ()]
newtype Sync (lockList :: [Symbol]) a =
Sync { unSync :: Locks → IO a }

This is very similar to the Reader monad – in fact, the type
Locks → IO a can be wrapped into Reader Locks (IO a).
The lockList type represents locks potentially acquired by
an expression. We choose to associate locks with strings
(Symbol), but alternative representations are possible. If the
lock order is lexicographic, we instantiate Cmpwith Symbols:
type instance Cmp (v :: Symbol) (u :: Symbol) =
CmpSymbol v u

Sync as defined above is a graded monad, which we now
show by instantiating the required operations. To instantiate
it, we require using the bind and return operations for the
IO monad. In order to access everything in Prelude, yet over-
write the standard monad operations we write the following
two lines at the start of the program:
import Prelude hiding (Monad)
import qualified Prelude as M

This also allows us to define the (≫=) and return functions
for all graded monads, keeping the original operations for
all monads (including IO) as (M.≫=) and M.return. We use
this to define GradedMonad:
instance GradedMonad Sync where

type Unit Sync = '[]
type Seq Sync r s = r :∨: s
type Sub Sync r s = Sublist r s
return = Sync ◦ const ◦ M.return
Sync x ≫= k = Sync $ _l →

let k' y = unSync (k y) l in x l M.≫= k'
sub (Sync x) = Sync x

Most of these instantiations are unsuprising. An expression
with no parallelism anywhere in its computation. Sequenc-
ing two possibly parallel expressions 𝑒1 and 𝑒2 results in an
expression that acquires both the locks in 𝑒1 and the locks
in 𝑒2. Sublists correspond to subtypes: an expression poten-
tially acquiring a set of locks 𝑟 also potentially acquires any
superset of 𝑟 . The implementations of return, ≫= and sub
demonstrate that this is nothing more than a wrapper.

20



A Graded Monad for Deadlock-Free Concurrency (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

It is necessary to provide a way to run code wrapped inside
the Sync graded monad. One simple way of achieving this is
by introducing a runSync function that creates initially full
MVars, and once all of them are in a list, this list as passed
as an argument to the computation wrapped inside Sync. A
quick and convenient way of doing this is the following:
runSync :: Sync r a → IO a
runSync e =

let running l k =
if k > 0 then
newMVar () M.≫= _x →
running (x:l) (k - 1)

else unSync e l
in running [] 5

assuming there are precisely five locks.

3.3 Lifting IO
The Syncmonad should allow the programmer to write code
with visible side-effects: printing to stdout. Given an expres-
sion e with IO side-effects wrapped inside of the IO monad,
we want to be able to wrap it inside Sync. We achieve this
by writing liftIO e, where liftIO is defined below. Such
lifting is also necessary for implementing the synchroniza-
tion and parallelism operations – they have to manipulate
the MVars that represent the locks.
Due to our above definition of Sync, the implementation

is simple:
liftIO :: IO a → Sync '[] a
liftIO e = Sync (const e)

This allows us to immediately lift two useful functions: sleep-
ing and writing to standard output.
delay :: Int → Sync '[] ()
delay = liftIO ◦ threadDelay
syncPutStrLn :: String → Sync '[] ()
syncPutStrLn = liftIO ◦ putStrLn

3.4 Synchronization and Parallelism
We finally get to the core operations in the Sync graded
monad. Given all the introduced facilities, their implementa-
tion is not particularly difficult. The most important part of
synchronization and parallelism is imposing the right typing
constraints.

We assume the RebindableSyntax extension is used. As a
result, do {...} blocks use the GradedMonad versions of ≫
and ≫=.

Parallelism. Parallelism is unsurprisingly based on the
forkIO function from Control.Concurrent. The implemen-
tation first creates two initially empty MVars – meaning that
they can be written to – that are later used to store the results
of the two threads. After that it is necessary to ‘unwrap’ the
threads wrapped inside of the Sync graded monad in order

to write their results to the Mvars that were introduced, as
well fork these twomodified threads. Finally the implementa-
tion blocks until the results of these two threads are known,
which are then paired up and returned as the result of the
computation. This is written as follows:

(∥) :: Sync r a → Sync s b
→ Sync (r :∨: s) (a, b)

Sync p ∥ Sync q = do
la ← liftIO newEmptyMVar
lb ← liftIO newEmptyMVar
Sync $ _l → forkIO (p l M.≫= putMVar la) M.≫

forkIO (q l M.≫= putMVar lb)
x ← liftIO $ takeMVar la
y ← liftIO $ takeMVar lb
return (x, y)

Note the unwrapping necessary in the middle of the imple-
mentation. It is necessary to fork two threads, one executing
p and the other executing q, but the result is written to an
MVar (either la or lb) at the end of each one. This write op-
eration is appended to the bodies of the threads using the
(≫=) for the IO monad. Since p and q are expressions of type
Locks → IO a and Locks → IO b, respectively, they have
to be applied to a list of locks before the IO-level bind is used.

Synchronization. Synchronizing an expression 𝑒 on lock
𝑥 consists of four steps:

1. wait on lock 𝑥 until it is available, then acquire it;
2. run 𝑒 , call its result 𝑟 ;
3. release 𝑥 ;
4. return 𝑟 .

This requires first defining locking (waiting and acquiring)
and unlocking (releasing) operations. These are based on
manipulating MVars in the list of locks. Given the position of
a lock in the list of locks, this just requires accessing a list
item:

lock :: Int → Sync '[] ()
lock n = Sync (_l → takeMVar (l!!n))
unlock :: Int → Sync '[] ()
unlock n = Sync (_l → putMVar (l!!n) ())

This allows us to create a generic approach to building
synchronization functions. To this end we introduce the
createSync function. It implements the four step process
mentioned previously and it enforces the lock total order
using PartialCons. Explicit application of Sync and unSync
is required in order to modify the lock annotation for the
expression being synchronized.

createSync :: PartialCons x r s
⇒ Int → Sync r a → Sync s a

createSync n e = Sync $ unSync $
lock n ≫ e ≫= _r → unlock n ≫ return r

21



Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

Finally, createSync can be applied to different integer con-
stants. Their types explicitly name the lock identifier using
the PartialCons typeclass. For example, for locks X and Y:
syncX :: PartialCons "X" r s
⇒ Sync r a → Sync s a

syncX = createSync 0
syncY :: PartialCons "Y" r s
⇒ Sync r a → Sync s a

syncY = createSync 1

This finalizes the implementation of the graded monad
and its main operations. A simple test case on which to
experiment with these functions is the following expression
that does not enforce isolation between two threads that
write to stdout:
syncPutStrLn "[thread␣1]" ∥
syncPutStrLn "[thread␣2]"

In one run, this function might write the following to the
standard output:
[thre[atdh r2e]a
d 1]

This is fixed by synchronizing on a common lock:
syncX (syncPutStrLn "[thread␣1]") ∥
syncX (syncPutStrLn "[thread␣2]")

This only allows two possibilities: either "[thread␣1]" is
written first in its entirety, or "[thread␣2]" is.

3.5 Example: Dining Philosophers
The dining philosophers problem is a commonly used exam-
ple of concurrent programming where deadlock may occur.
It can be phrased in the following way:

Five philosophers are sitting at a round table
and eating spaghetti for dinner. Their dexterity
leaves a lot to be desired, for they are easily dis-
tracted and any attempt at eating with only one
fork will result in a mess. Hence each philoso-
pher will need two forks. There are exactly five
forks on the table, one between each pair of ad-
jacent philosophers. The philosophers must re-
main seated for the duration of the dinner and
all of them must eventually finish eating.

A naïve first attempt at a solution to this problem assigns
each philosopher the following behaviour:

1. think
2. wait for the fork to the left to be available, then take it
3. wait for the fork to the right to be available, then take

it
4. think some more
5. eat
6. put the right fork down
7. put the left fork down

1

5

4

3
2

v
w

z
y

x

Figure 1. Setup of the dining philosophers problem. Dead-
lock happens if each philosopher acquires the fork to their
left before the one on their right.

Unfortunately, this simple solution can lead to deadlock and
hungry philosophers. Suppose the five forks are labelled V,
W, X, Y, Z as in Figure 1. Suppose each philosopher manages
to first grab the fork to their left: 1 acquires V, 2 acquires W
and so on. Then the philosophers are stuck, since all of them
are waiting for a fork to be released.
If the locks (forks) are acquired in a way that obeys a

total order, there is no deadlock. Assuming the forks are or-
dered lexicographically, this means that Simone de Beauvoir
(philosopher 5) should first pick up the fork to her right, and
then the one of her left.
It is not difficult to implement this using the functions

we defined so far. For example, the code implementing the
behaviour of Slavoj Žižek (philosopher 1) is:
philosopher1 = syncV $ do
delay 100000
syncW $ do

delay 100000
syncPutStrLn "philosopher␣1"

Other philosophers are analogous, each acquiring the two
forks in alphabetical order. Then their concurrent dining
type-checks:
dining = philosopher1 ∥ philosopher2 ∥

philosopher3 ∥ philosopher4 ∥
philosopher5

Note, by contrast, that the naïve approach is rejected: the
code below where Simone de Beauvoir (philosopher 5) at-
tempts to take the left fork (Z) first is type-incorrect:
philosopher5 = syncZ $ do
delay 100000
syncV $ do

delay 100000
syncPutStrLn "philosopher␣5"

3.6 Memory Regions via Monad Transformers
The presented implementation of Sync has some drawbacks:

22



A Graded Monad for Deadlock-Free Concurrency (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

• there is no non-trivial shared state, all of the locks are
simple mutual exclusion locks;
• the type system does not prevent createSync function
accessing non-existent items in the lock list – that is,
createSyncmay be called with an argument that leads
to accessing an invalid index in the Locks list.

Both of these issues are caused by the underlying repre-
sentation of Sync a as Locks → IO a. We now turn to an
alternative approach via monad transformers, effectively
interpreting Sync as a stack of memory regions. The aim
is to synchronize on data – the main change is that new
synchronization functions are now applied to functions of
type s → (Sync r a, s), where s is the type of the data
synchronized on, and a is the type of the result of the com-
putation.1 Before, they were just applied to values of type
Sync r a. This way, threads are able to share data. The goal
is to provide monitor-like protection of variable access only
in lock-protected critical sections.2
Thus the goal is to produce a new framework in which

the following definition type-checks:

thr1 = do
delay 1000000
syncP $ _p → syncQ $ _q →

return ((0, RegionP (2 * qa q + 1) (pa p)),
RegionQ (qa q) "touched␣by␣1")

where RegionP and RegionQ are structures defined as fol-
lows:

data RegionP = RegionP { pa :: Int, pb :: Int }
data RegionQ = RegionQ { qa :: Int, qs :: String }

The internal implementation so far can be represented
as Reader [MVar ()] (IO a). This list representation of the
locks can be seen as a special case of a more general approach
that uses a stack of monad transformers. We first introduce
a transformer for locks:

type LockT l m = ReaderT (MVar l) m

These transformers can be combined to form an alternative
definition of the Sync graded monad:

type InternalRep a = LockT RegionP
(LockT RegionQ IO) a

newtype Sync (lockList :: [Symbol]) a =
Sync { unSync :: InternalRep a }

The actual InternalRep type is defined depending on what
memory regions (that is, locks) are used by the rest of the
program. If there is need for an additional lock on another

1Readers may observe that s → (a, s) is the underlying implementa-
tion of the State monad. This is unsurprising: the aim is to mutate the
contents of a memory region.
2Monitors provide syntactic scoping to protect variable access. However,
synchronization with monitors is done using wait and signal primitives.
We only focus on the former aspect of monitors.

region RegionR, then the definition of InternalRep has an
additional layer in the monad transformer stack:
type InternalRep a = LockT RegionP
(LockT RegionQ (LockT RegionR IO)) a

The instantiation of Sync as a graded monad is similar to
before, but we take advantage of bind at the ReaderT level:
instance GradedMonad Sync where

type Unit Sync = '[]
type Seq Sync r s = r :∨: s
type Sub Sync r s = Sublist r s
return x = Sync $ M.return x
Sync x ≫= k = Sync $ x M.≫= (unSync ◦ k)
sub (Sync x) = Sync x

Running the monad can now be changed to take advantage
of runReaderT:
performSync :: Sync r a
→ MVar RegionP → MVar RegionQ → IO a

performSync m lp lq =
runReaderT (runReaderT
(unSync m) lp) lq

runSync :: Sync r a →
→ RegionP → RegionQ → IO a

runSync m p q =
newMVar p M.≫= _lp →
newMVar q M.≫= _lq →
performSync m lp lq

The IO lifting functions seen in the previous implementa-
tion now have to be lifted through several levels of ReaderT
monad transformers. Assuming the definition of Sync given
above, with two regions, the definition is as follows:
pureReaderT :: M.Monad m ⇒ m a → ReaderT s m a
pureReaderT = ReaderT ◦ M.return
liftIO :: IO a → Sync '[] a
liftIO = Sync ◦ pureReaderT ◦ pureReaderT

This has the desired result because M.return ignores the
environment.

Synchronization. Synchronization is easier to implement
than parallelism, so we turn to it first. As before, the syn-
chronization functions (now syncP for region P etc.) can all
be created using a single ‘synchronization factory’ function,
now called makeSync, generalising the previous createSync
function. This function takes as input a possibly parallel
computation that eventually returns a reference to a lock,
and returns a synchronization function of the kind described
above:
makeSync :: Sync '[] (MVar l)
→ (l → Sync r (a, l)) → Sync s a

makeSync l k = Sync $ unSync $ do
lock ← l
v ← liftIO (takeMVar lock)

23



Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

(res, newv) ← k v
liftIO (putMVar lock newv)
return res

This is similar to createSync before, except that the lock
reference is no longer an index in a list. Defining syncP and
syncQ is simple and uses ask, from ReaderT, to access the
environment:

syncP :: PartialCons "P" r s
⇒ (RegionP → Sync r (a, RegionP)) → Sync s a

syncP = makeSync $ Sync ask
syncQ :: PartialCons "Q" r s
⇒ (RegionQ → Sync r (a, RegionQ)) → Sync s a

syncQ = makeSync $ Sync (lift ask)

The ask value represents the computation that returns the
value in the outermost level of the ReaderT monad trans-
former (on its own, ask has type Reader s s). To access the
inner levels of the monad transformer stack, we use the lift
function. If there are more regions in the monad transformer
stack, the number of lifts increases.

Parallelism. Looking at the definition of ∥, it is clear that
themain change in implementation has to be in spawning the
two threads: there are several layers of LockT transformers
and it is necessary to manipulates values wrapped inside the
IO monad. Therefore it is necessary to ‘unlift’ the monad
until the IO level is reached, append to the two threads the
operations of writing their results to two fresh MVars, and use
forkIO to spawn threads. Pushing the underlying IO-level
bind is done by first introducing two helper functions.

pushBind :: M.Monad m
⇒ (a → m b) → LockT s m a → LockT s m b

pushBind k m = ReaderT $
_x → runReaderT m x M.≫= k

pushAllBind :: (M.Monad m, M.Monad n)
⇒ ((a → n b) → m a → m b)
→ (a → n b) → LockT r m a → LockT r m b

pushAllBind l k m = ReaderT $
_x → l k $ runReaderT m x

In pushBind the monad m is IO in our application, whereas in
pushAllBind it is n that is IO. Combining these two functions
then allows us to turn a side-effecting function into a func-
tion that appends an operation at the end of a concurrent
expression:

bindIO :: (a → IO b)
→ InternalRep r a → InternalRep r b

bindIO = pushAllBind pushBind

For example, if p is a computation returning a value of
type a (that is, its type is InternalRep a), then a compu-
tation that writes this result to an MVar named l is given by
bindIO (putMVar l) p.

Forking two computations requires a similar ‘unlifting’.

deepFork :: Sync r () → Sync s ()
→ Sync (r :∨: s) ThreadId

deepFork m n = Sync $
ReaderT $ _p → ReaderT $ _q →
forkIO (performSync m p q) M.≫
forkIO (performSync n p q)

Tying these together gives the following definition of par-
allelism:

(∥) :: Sync r a → Sync s b
→ Sync (r :∨: s) (a, b)

Sync p ∥ Sync q = do
la ← liftIO newEmptyMVar
lb ← liftIO newEmptyMVar
Sync $ unSync $

deepFork (Sync $ bindIO (putMVar la) p)
(Sync $ bindIO (putMVar lb) q)

x ← liftIO $ takeMVar la
y ← liftIO $ takeMVar lb
return (x, y)

4 Reconciling Sync Programs and Haskell
We described two full implementations of Sync in Haskell
syntax. Some examples work out of the box, like dining
philosophers. However, both implementations come with
various challenges and shortcomings, mainly due to interac-
tion with Haskell’s type system. For all the trouble spots we
identified, there are workarounds in Haskell. This demon-
strates the power and flexibility of the Haskell type system –
we are able to write safe programs without needing the full
power of a dependently typed programming language.

Alternation. Haskell branching, if b then m else n, is
used under the assumption that the types of m and n are the
same. This prevents us from writing programs such as:

if True then syncX (syncPutStrLn "a")
else syncY (syncPutStrLn "b")

Our first instinct is to use the sub function to find a common
supertype of the two branches – that is, use

sub (syncPutStrLn "a")

and
sub (syncPutStrLn "b").

The Haskell type system is not equipped to solve such con-
straints – and furthermore we are looking for the least upper
bound of the two grading annotations.
Another attempt at a solution redefines the if-then-else

construct using the underlying ifThenElse three argument
function (relying on the fact the RebindableSyntax exten-
sion is used):

ifThenElse :: Bool → Sync r a → Sync s a
→ Sync (r :∨: s) a

24



A Graded Monad for Deadlock-Free Concurrency (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

This redefines the usual setting in which if is used, so just
redefining ifThenElse makes it impossible to write:
if True then 2 else 3

A possible solution in Haskell is to introduce a new typeclass
containing ifThenElse, distinguishing whether this partic-
ular instance of using the if statement combines the lock
information or whether it is the conventional setting. This
requires using incoherent typeclass instances.
We opt for a simpler approach. We introduce an alterna-

tion function, which is the Sync-level version of if-then-else
that infers the right types:
alt :: Bool → Sync r a → Sync s a
→ Sync (r :∨: s) a

alt True x _ = Sync $ unSync x
alt False _ y = Sync $ unSync y

The code from before is now written as:
alt True (syncX $ syncPutStrLn "a")

(syncY $ syncPutStrLn "b")

Recursion. The interaction of the grading algebra with
recursive programs gives rise to problems – the type checker
rejects most non-trivial recursive programs. The following
simple function foo type-checks:
foo x = alt (x > 0)

(foo (x - 1))
(syncY $ syncPutStrLn "works?")

However, the inferred grading is not ["Y"] – instead, it is
some s satisfying (["Y"] :∨: s) ~ s, where the tilde sym-
bol ~ represents type equality:
foo :: (Num t, Ord t, (r :∨: '["Y"]) ~ r) =⇒
t → Sync r ()

What we are looking for is a least solution – that is, the
least fixed point of the function mapping some lock list s
to ["Y"] :∨: s. Since Haskell is unable to perform least
fixed point calculation at the type level (it does not support
equirecursive types), the type of foo has to be provided by
the programmer.

However, some recursive programs do not even type check.
The problems arise because the textual form of the definition
of :∨: does not enable the type checker to infer that it is
associative or idempotent. Consider the following ‘repeated
bind’ operation:
repeatBind n m =

foldl (≫) m (replicate (n - 1) m)

The purpose of this function is to produce a computation
m ≫ m ≫ ... ≫ m, where m appears n times. However, the
type inference algorithm cannot come to the conclusion
that r :∨: r :∨: ... :∨: r simplifies to r, no matter how
many occurrences of r there are. Even explicitly writing

the type of repeatBind in the source code cannot make this
inference.
The easiest fix is to introduce a new type, which can be

used as a constraint:
type Idempotent r = (r :∨: r) ~ r

Then idempotence of :∨: is used as an assumption:
repeatBind :: Idempotent r
⇒ Int → Sync r a → Sync r a

repeatBind n m =
foldl (≫) m (replicate (n - 1) m)

This allows us to write expressions such as
repeatBind 5 philosopher3

and Haskell’s type system is able to infer that its type is
Sync '["X", "Y"] ().
Most such useful properties can be wrapped into types

similar to Idempotent r, though they might require multiple
arguments. For example, a function might rely on associa-
tivity of :∨:, and such an assumption can be stated using a
new type again:
type Associative r s t =
((r :∨: s) :∨: t) ~ (r :∨: (s :∨: t))

Generic code. A more fundamental problem is seen in
the dining philosophers example. Since all synchronization
functions are defined separately, it is impossible to use them
in a ‘generic’ way. This means that, even if all five philoso-
phers have analogous behaviour, the code has to be written
five times. It is not possible to write the following using our
definitions so far:
philosopher x l1 l2 =
sync (min l1 l2) $ do
delay 100000
sync (max l1 l2) $ do

delay 100000
syncPutStrLn $ "philosopher␣" ++ show x

philosopher1 = philosopher 1 "V" "W"

Ideally, we want to be able to pass references to locks and
use only a single sync function. This looks attractive, but
requires a dependently typed language – the type of sync l
depends on the value of l. This is exactly what we are trying
to avoid with this Haskell implementation.
One way to address this issue is by passing not the re-

gion or lock on which to synchronize, but the synchroniza-
tion function itself. This does not allow the programmer to
‘choose the minimum of two locks’, but it resolves code du-
plication. The resulting code is much shorter and requires
no additional type annotations:
philosopher x s1 s2 = s1 $ do
delay 100000
s2 $ do
delay 100000

25



Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

syncPutStrLn $ "philosopher␣" ++ show x
philosopher1 = philosopher 1 syncV syncW
philosopher2 = philosopher 2 syncW syncX
philosopher3 = philosopher 3 syncX syncY
philosopher4 = philosopher 4 syncY syncZ
philosopher5 = philosopher 5 syncV syncX

The type system manages to infer the following type for
philosopher:

philosopher :: Show a =⇒
a → (Sync s b → t) →
(Sync '[] () → Sync s b) → t

Notice that the programmer has to explicitly encode the order
between the locks in the call to philosopher. Implementing
the ‘minimum of two locks’ and ‘maximum of two locks’ is
possible and this solution can be taken further. This is done
by defining functions minSync and maxSync, both of which
take two synchronization functions and return the appro-
priate one – for example, minSync syncX syncY. Assuming
the existence of a type-level function giving the minimum
of two locks represented as Symbols, the type signatures of
minSync is:

minSync :: (Sync r a → Sync s a) →
(Sync r a → Sync t a) →
Sync r a → Sync (Min s t) a

We omit this implementation from this functional pearl, as
it comes with its own details and difficulties.

5 Theoretical Foundations
In this section we briefly outline the theoretical background
of the implementation described in Section 3. First we for-
mally define the grading algebra (Section 5.1). We then give
the necessary theoretical background on graded monads and
explain why Sync is a graded monad (Section 5.2). Finally
we provide some comments on type inference and why it
can be performed in polynomial time (Section 5.3).

5.1 The Lattice of Subsets with error
Definition 5.1. A partial order (𝐸, ⊑) is a lattice if:
• for any two 𝑥,𝑦 ∈ 𝐸 there exists a (necessarily unique)
𝑧 ∈ 𝐸 such that 𝑥 ⊑ 𝑧 and 𝑦 ⊑ 𝑧, and for any 𝑡 such
that 𝑥 ⊑ 𝑡 and 𝑦 ⊑ 𝑡 it is the case that 𝑧 ⊑ 𝑡 – this 𝑧 is
the join (or least upper bound) of 𝑥 and 𝑦 and denoted
𝑥 ⊔ 𝑦;
• for any two 𝑥,𝑦 ∈ 𝐸 there exists a (necessarily unique)
𝑧 ∈ 𝐸 such that 𝑧 ⊑ 𝑥 and 𝑧 ⊑ 𝑦, and for any 𝑡 such
that 𝑡 ⊑ 𝑥 and 𝑡 ⊑ 𝑦 it is the case that 𝑡 ⊑ 𝑧 – this 𝑧
is the meet (or greatest lower bound) of 𝑥 and 𝑦 and
denoted 𝑥 ⊓ 𝑦.

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

error

{}

Figure 2. The lock set lattice. Note the error top element:
every subset of {1, 2, 3} is less than error in this lattice.

A simple example is the subset lattice: for any set 𝑈 , the
partial order (P(𝑈 ), ⊆) is a lattice, where P(𝑈 ) is the pow-
erset (set of all subsets) of 𝑈 . In this case the join is ∪ and
the meet is ∩.

Any lattice (𝐸, ⊑) with a least element⊥ (satisfying⊥ ⊑ 𝑥

for all 𝑥 ∈ 𝐸) gives rise to a monoid with the same carrier
set 𝐸, whose operator is the lattice join and whose identity
is ⊥ – in other words, (𝐸,⊔,⊥) is a monoid. The fact this is
a monoid is of special interest to us.3
We introduce the ‘subsets with error’ lattice. Given a set

𝑈 and some object error ∉ 𝑈 , define the set Perror (𝑈 ) as
P(𝑈 ) ∪ {error}. Furthermore, define the partial order ⊑ with
just two rules:
• 𝑥 ⊑ error for all 𝑥 ∈ Perror (𝑈 );
• 𝑥 ⊑ 𝑦 for all 𝑥,𝑦 ∈ P(𝑈 ) such that 𝑥 ⊆ 𝑦.

Then (Perror (𝑈 ), ⊑) is a lattice. This is not difficult to estab-
lish. It is known that (P(𝑈 ), ⊑) is a lattice, and furthermore
adding a top (⊤) element to a lattice yields a lattice. Figure 2
shows the Hasse diagram of this lattice when𝑈 = {1, 2, 3}.
The reason for introducing error is to introduce a total

function that is analogous to PartialCons: adding an item
that violates an assumption about the order in which they
need to be acquired should result in failure. While in Haskell
we aim to make the type checker explicitly reject the ex-
pression, here we use error to allow all functions to be total.
Assume (𝑈 , <) is a total order, e.g. locks with their ordering.
Then we define the function add : 𝑈 ×Perror (𝑈 ) → Perror (𝑈 )
as follows:

add (𝑥, 𝑆) =
{ {𝑥} ∪ 𝑆, 𝑆 ≠ error and ∀𝑦 ∈ 𝑆.𝑥 < 𝑦

error, otherwise

For example, add (1, {2}) = {1, 2} and add (2, {1, 3}) = error .
All of this could be alternatively presented via an algebra

of subsequences of [1, 2, . . . , 𝑛], where union can instead be
represented as a smallest common supersequence operator.

3This is also the reason why we use the letter 𝐸 – it is commonly used in
literature when grading algebras are discussed. By contrast, lattice literature
typically uses letters 𝐷 and 𝑃 .

26



A Graded Monad for Deadlock-Free Concurrency (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

5.2 Graded Monads
We define the notion of graded monads,4 and then show that
Sync is a graded monad.

Definition 5.2. For a partially ordered monoid ((𝐸, ⊑),★, 𝑖)
such that ★ is monotone with respect to ⊑, a graded monad
𝑇 is given by:
• a set of type constructors 𝑇 𝑟 , where 𝑟 ∈ 𝐸;
• a polymorphic function return : 𝛼 → 𝑇 𝑖𝛼 ;
• for any 𝑟, 𝑠 ∈ 𝐸, a left-associative polymorphic func-
tion≫=𝑟,𝑠 : 𝑇 𝑟𝛼 → (𝛼 → 𝑇 𝑠𝛽) → 𝑇 𝑟★𝑠𝛽

• for any 𝑟, 𝑟 ′ ∈ 𝐸 satisfying 𝑟 ⊑ 𝑟 ′, a polymorphic
function sub𝑟,𝑟 ′ : 𝑇 𝑟𝛼 → 𝑇 𝑟 ′𝛼

satisfying the following properties:
• 𝑚≫=𝑟,𝑖 return ≡𝑚 for all𝑚 of type 𝑇 𝑟𝐴;
• return 𝑥 ≫=𝑖,𝑟 𝑘 ≡ 𝑘 𝑥 for 𝑥 of type 𝐴 and 𝑘 of type
𝐴→ 𝑇 𝑟𝐵;
• (𝑚 ≫=𝑟,𝑠 𝑘) ≫=𝑠,𝑡 ℎ ≡ 𝑚 ≫=𝑟,𝑠 _𝑥 .(𝑘 𝑥 ≫=𝑠,𝑡 ℎ) for
all𝑚 of type 𝑇 𝑟𝐴, 𝑘 of type 𝐴 → 𝑇 𝑠𝐵 and ℎ of type
𝐵 → 𝑇 𝑡𝐶;
• sub𝑟,𝑟 ≡ _𝑥 .𝑥 for all 𝑟 ∈ 𝐸;
• sub𝑠,𝑡 ◦ sub𝑟,𝑠 ≡ sub𝑟,𝑡 for all 𝑟, 𝑠, 𝑡 ∈ 𝐸 such that 𝑟 ⊑
𝑠 ⊑ 𝑡 ;
• sub𝑟★𝑠,𝑟 ′★𝑠′ (𝑚≫=𝑟,𝑠 𝑘) ≡ sub𝑟,𝑟 ′𝑚≫=𝑟 ′,𝑠′ (sub𝑠,𝑠′𝑘) for
any 𝑟, 𝑟 ′, 𝑠, 𝑠 ′ ∈ 𝐸 satisfying 𝑟 ⊑ 𝑟 ′ and 𝑠 ⊑ 𝑠 ′.

The first two properties are very similar to the three
monad laws, but with the addition of the associativity law
(third property) relying on the associativity of the ★ oper-
ator of the monoid. The latter three properties show how
reflexivity of ⊑, transitivity of ⊑ and monotonicity of★with
respect to ⊑ are ‘lifted’ and form the basis of subtyping. The
sub(−),(=) family of functions can be seen as explicit casting
or type coercion operations.

The Sync structure introduced earlier almost matches the
Haskell definition of graded monad, but its sequencing oper-
ator is not total. To model this partiality, we use the grading
algebra defined in Section 5.1 (with error representing ‘unde-
fined result’). Instead we focus on an almost identical Sync
graded monad – the underlying data representation is the
same, the change is that the grading algebra is well-defined
(that is, the★ operator is total). Replacing the list representa-
tionwith thePerror (𝑈 ) (with⊔ as themonoid operator★) one
only requires one main change: the types of synchronization
functions. Now the type of syncX is Sync𝑟𝛼 → Syncadd (𝑥,𝑟 )𝛼
for all 𝑟 , and likewise for all the other synchronization func-
tions. It can be shown that Sync satisfies all of the axioms of
a graded monad.

The grading algebra we use is special and simple in several
ways. Firstly, the ★ (here ⊔) operator is commutative, which
is not generally the case for effect systems. Commutativity
is expected due to the fact that the locking primitives are
4The definition is not the most general: these are graded monads in the
context of Haskell, not for arbitrary categories.

structured – for example, (syncX e1) ≫ (syncX e2) has
the same type as (syncX e2) ≫ (syncX e1), as lock X is
released before the second statement acquires it. Secondly,
sequencing happens to coincidewith the join operator, which
resembles Lucassen-Gifford effect systems, but is not a re-
quirement on grading algebras. Neither of these assumptions
hold if the locking primitives are richer. The grading algebra
is simple, but limits the kinds of programs we can write.

5.3 Type Inference
We hinted previously that the type-inference algorithms of
Haskell cannot compute the types of all values – particularly
the recursive ones. However, due to monotonicity of ⊔ and
add (Theorems 5.6 and 5.7), it is in principle possible to infer
types with a different algorithm.

One perspective is that each expression in a program gen-
erates typing constraints involving it and its possible subex-
pressions. For example:
• if 𝑚 has type Sync𝑟𝐴 and 𝑘 has type 𝐴 → Sync𝑠𝐵,
then the expression𝑚≫= 𝑘 has type Sync𝑟⊔𝑠𝐵 (recall
that 𝑟 ⊔ 𝑠 = 𝑟 ★ 𝑠);
• if 𝑚 has type Sync𝑟𝐴, 𝑛 has type Sync𝑠𝐴, then the
expression if 𝑏 then𝑚 else 𝑛 has type Sync𝑟⊔𝑠𝐴;
• if𝑚 has type Sync𝑟𝐴, then the expression syncX𝑚 has
type Syncadd (𝑥,𝑟 )𝐴.

Thus, if every expression wrapped inside the Sync monad is
assigned a grade from 𝑟1, . . . , 𝑟𝑘 , we end up with constraints
such as:

𝑟1 = {}, 𝑟2 = 𝑟1, 𝑟3 = 𝑟1 ⊔ 𝑟4, 𝑟4 = add (𝑥, 𝑟2)
Every grade has an associated equation where it appears on
the left-hand side. All of these constraints can be seen as
representing a single equation of the form:

(𝑟1, . . . , 𝑟𝑘 ) = 𝑔(𝑟1, . . . , 𝑟𝑘 )
for some function 𝑔 : Perror (𝑈 )𝑘 → Perror (𝑈 )𝑘 based on
the generated constraints. The solution of this equation is a
fixed point of 𝑔. Moreover, since we are looking for the ‘most
precise’ grade, it is the least fixed point of 𝑓 with respect to
the partial order ⊑𝑘 .
For example, consider the following expression:

bar x = alt (x > 0)
((syncX $ syncPutStrLn (show x)) ≫ bar (x - 1))
(syncY $ syncPutStrLn "?")

Suppose the grade associated with bar x is 𝑟1, the grade asso-
ciated with the recursive case is 𝑟2, and the grade associated
with the base case of the recursion (or the ‘else branch’) is
𝑟3. The generated constraints are:

𝑟1 = 𝑟2 ⊔ 𝑟3, 𝑟2 = {𝑋 } ⊔ 𝑟1, 𝑟3 = {𝑌 }
The least solution of this equation is 𝑟1 = 𝑟2 = {𝑋,𝑌 }, 𝑟3 =
{𝑌 }.

27



Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

Finding the least fixed point is not difficult. It relies on
a few key properties of the lattice and of the operations
introduced in Section 5.1.

Definition 5.3. A lattice (𝑃, ⊑𝑃 ) is complete if every ascend-
ing chain 𝑝0 ⊑𝑃 𝑝1 ⊑𝑃 . . . has a least upper bound

⊔
𝑖 𝑝𝑖 that

is in 𝑃 .

Definition 5.4. Given two complete lattices (𝑃, ⊑𝑃 ) and
(𝑄, ⊑𝑄 ), denote least upper bounds of ascending chains 𝑝0⊑𝑃
𝑝1 ⊑𝑃 . . . in 𝑃 and 𝑞0 ⊑𝑄 𝑞1 ⊑𝑄 . . . in 𝑄 as

⊔
𝑖 𝑝𝑖 and

⊔
𝑖 𝑞𝑖 ,

respectively. We say that a function 𝑓 : 𝑃 → 𝑄 is Scott-
continuous if for every ascending chain 𝑝0 ⊑𝑃 𝑝1 ⊑𝑃 . . . in 𝑃 ,
we have

𝑓

(⊔
𝑖

𝑝𝑖

)
=

⊔
𝑖

𝑓 (𝑝𝑖 )

Theorem 5.5. (Perror (𝑈 ), ⊑) is a complete lattice.

Theorem 5.6. The join operator ⊔ is Scott-continuous (in
both of its arguments).

Theorem 5.7. The add function is Scott-continuous in its
second argument.

A consequence of this is that the function 𝑔 introduced
above is also Scott-continuous.

Finally, the following theorem provides a way to compute
the least fixed point:

Theorem 5.8 (Kleene). Let (𝑃, ⊑𝑃 ) be a lattice with a least
element ⊥ and let 𝑓 : 𝑃 → 𝑃 be Scott-continuous function.
Then the least fixed point of 𝑔 is given by

⊔
𝑖 𝑓

𝑖 (⊥). [10]
The algorithm that can be used to compute the grades of

each expression is a simple iteration:
1. Initialise 𝑟1 = 𝑟2 = . . . = 𝑟𝑘 = {}.
2. Compute (𝑠1, . . . , 𝑠𝑘 ) = 𝑔(𝑟1, . . . , 𝑟𝑘 ).
3. If (𝑠1, . . . , 𝑠𝑘 ) = (𝑟1, . . . , 𝑟𝑘 ), return (𝑟1, . . . , 𝑟𝑘 ).
4. Otherwise, assign (𝑠1, . . . , 𝑠𝑘 ) to (𝑟1, . . . , 𝑟𝑘 ) and repeat

2.
This algorithm necessarily terminates because 𝑔, being Scott-
continuous, also is monotonic in every argument, and the
(Perror (𝑈 )𝑘 , ⊑𝑘 ) lattice has a finite height – so there will be
a finite number of iterations before a fixed point is reached.
By Theorem 5.8, the returned tuple (𝑟1, . . . , 𝑟𝑘 ) is the least
fixed point of 𝑔.

The worst-case running time of this algorithm is polyno-
mial in the number of locks 𝑙 . Updating each 𝑟𝑖 takes constant
time, since it is either an application of add or ⊔ or the iden-
tity function to one or two of the other grades being inferred.
Hence each update iteration takes 𝑂 (𝑘) time. Consider any
chain in the (Perror (𝑈 )𝑘 , ⊑𝑘 ) lattice from the bottom ele-
ment ({}, {}, . . . , {}) to the top element (⊤,⊤, . . . ,⊤). For
two successive lattice elements on that path, lattice elements,
(𝑆1, . . . , 𝑆𝑘 ) ⊑𝑘 (𝑆 ′1, . . . , 𝑆 ′𝑘 ), there is least one 𝑖 (1 ≤ 𝑖 ≤ 𝑘)
such that 𝑆𝑖 ≠ 𝑆 ′𝑖 . Since every step in Perror (𝑈 )𝑘 corresponds

to at least one step in one of the 𝑘 Perror (𝑈 ) lattices, the
height5 of (Perror (𝑈 )𝑘 , ⊑𝑘 ) does not exceed 𝑘 (𝑙 + 1). This
is equal to the worst-case number of iterations performed.
Thus the running time of this algorithm is 𝑂 (𝑘2 (𝑙 + 1)).

6 Related Work
Session types. Honda et al. [8] introduced session types

for 𝜋-calculus, which constrain the kinds of interaction and
communication allowed between concurrent threads. A well-
typed program ensures that two potentially communicating
processes have compatible communication patterns. There
have been several implementations of session types in Ha-
skell as monad generalisations, for example by Orchard
and Yoshida [16], Sackman and Eisenbach [19], Pucella and
Tov [17]. Our approach lacks the message-passing capabili-
ties of 𝜋-calculus, but it makes thread-safety analysis much
easier.

Regions and capabilities. One of the earliest applica-
tions of effect systems was for concurrency and memory re-
gions – see Tofte and Talpin [21]. Crary et al. [2] introduced
the Capability Calculus, a compiler intermediate language
with region-based memory management. This language fea-
tures first-class memory regions – a new region can be allo-
cated using a form of let. These regions are deallocated after
the context which created them finishes, meaning that this is
a paradigm that is an alternative to garbage collection. The
Capability Calculus is type safe in the sense that there are no
memory leaks. The inference system holds information about
which regions are available to an expression as part of the
context. Similar capability-based systems for concurrency
exist – see Castegren’s thesis [1] for an overview.
Gerakios et al. [4] consider a more expressive capability-

based type system in which locks are lexically scoped and
there is no assumed order between them. The deadlock
avoidance strategy is based on reference counting and track-
ing the order of synchronization operations. The language
they introduce uses lock and unlock primitives, as well as
share and release which track reference counts. The typ-
ing relation uses type-and-effect judgements of the form
𝑀 ;Δ; Γ ⊢ 𝑒 : 𝜏&(𝛾 ;𝛾 ′), where 𝑀 ;Δ; Γ is the typing context
(with additional information about permissions), 𝑒 is an ex-
pression in the language, 𝜏 is the type attributed to 𝑒 , and 𝛾
and𝛾 ′ are input and output effects. The effects are drawn from
the set of ordered lists that represent sequences of operations
(such as locking) on references. It is unknown whether their
type system can be embedded in Haskell through graded
monads, and perhaps an interesting avenue of future work.
There are other approaches that do not assume a fixed

order. For example, Kobayashi [11] considers a more expres-
sive type system for 𝜋-calculus. Suenaga [20] uses the idea of
lock levels without an explicit lock order. Pun et al. [18] use a
5By ‘height’ we mean the maximum number of steps of an increasing chain
in a lattice, not the number of elements of this chain.

28



A Graded Monad for Deadlock-Free Concurrency (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

two-step process: a effect system yields a transition system
representing program execution, after which the system is
explored at the global level to detect whether the program
might deadlock.

Gordon et al. [6] consider a problem and framework sim-
ilar to ours. Their approach is based on lock capabilities –
static capabilities that permit acquiring additional locks and
are inherited. They do not assume a fixed total order – in-
stead, they generalise to a forest-shaped partial order.6 The
approach is type-directed and uses type judgements of the
form Υ; Γ;𝐿 ⊢ 𝑒 : 𝜏 ; Υ′, where Υ and Υ′ represent ‘tree dis-
jointness’ in the partial order, Γ is the typing context for
local variables, and 𝐿 is the set of held locks. By contrast, our
approach does not add this information to the context and
all information is wrapped inside the annotation of a graded
monad.
Furthermore, Gordon [5] also uses a lattice with ⊤ rep-

resenting an error value. The same paper also considers a
synchronization framework that more resembles mutual ex-
clusion locks with explicit locking and unlocking primitives.

7 Conclusions
We introduced a set of simple concurrency primitives that
allow the programmer to write code inside a graded monad
that is guaranteed to be deadlock-free. The simplest imple-
mentation, which allows us to write a safe dining philoso-
phers solution, uses a list of mutual exclusion locks stored
as MVars holding unit values (where empty means that the
lock is not acquired, and full means it is). An extension that
introduces support for memory regions is based on monad
transformers and it generalises the above use of MVars to
protect data more general than (). The Haskell type system
is able to infer the types of a significant number of applica-
tions, but requires programmer annotations in cases of most
recursive values and code that relies on properties of the
grading algebra. We have shown that, with added support
for equirecursive types, a Kleene-style iteration can perform
full inference.

Further work. The main limitation of our approach is
that it assumes a fixed pre-existing total order on the set
of locks. This is sufficient, but not necessary for deadlock
detection. All that is needed is for different parts of the pro-
gram, those guaranteed not to be run concurrently, assume
a partial order between locks (this makes the example in Sec-
tion 2.2 type check). A way to resolve this is by inferring a
happens-before relation on the lock set during type inference
and type-checking, and then rejecting if the inferred con-
straints are inconsistent. This happens-before relation can
be represented as a graph, and it is inconsistent if and only
if the graph has a cycle. We will explore various applications
6This means that the partial order ⊑, when visualised as a Hasse diagram,
looks like a forest of trees – there is a ‘unique path to root’ for every element
of the set.

of graph effect algebras, including concurrency, in a future
publication.
The structured locking primitive we used (syncX, syncY,

. . . ) is not nearly general – most programs cannot be trans-
lated into this framework (for example, producer-consumer
programs). However, the provided constructs can be seen as
an intermediate step towards deadlock-free Haskell monitors,
which provide more expressive concurrency primitives. We
intend to investigate the degree to which the implementation
in this pearl can be generalised to implement monitors.
There are other limitations of our approach that provide

opportunities for further work. For example, there is no ab-
straction over locks, which we discussed in Section 4. More
significantly, fine-grained locking is impossible – for exam-
ple, a thread-safe binary search tree implementation might
require associating a lock with each node or subtree. It is not
clear how these issues can be resolved in Haskell without
dependent types.

Acknowledgments
The first author is funded by Trinity College, University of
Cambridge, through its Internal Graduate Scholarship.
We thank Michael Gale for his encylopaedic knowledge

of Haskell syntax extensions.

References
[1] Elias Castegren. 2018. Capability-Based Type Systems for Concurrency

Control. Ph.D. Dissertation. Uppsala UniversityUppsala University,
Division of Computing Science, Computing Science.

[2] Karl Crary, David Walker, and Greg Morrisett. 1999. Typed Mem-
ory Management in a Calculus of Capabilities. In Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (San Antonio, Texas, USA) (POPL ’99). Association
for Computing Machinery, New York, NY, USA, 262–275. https:
//doi.org/10.1145/292540.292564

[3] Cormac Flanagan and Stephen N. Freund. 2000. Type-Based Race
Detection for Java. SIGPLAN Not. 35, 5 (May 2000), 219–232. https:
//doi.org/10.1145/358438.349328

[4] Prodromos Gerakios, Nikolaos Papaspyrou, and Konstantinos Sagonas.
2010. A Type System for Unstructured Locking that Guarantees Dead-
lock Freedom without Imposing a Lock Ordering. In Proceedings Third
Workshop on Programming Language Approaches to Concurrency and
communication-cEntric Software, PLACES 2010, Paphos, Cyprus, 21st
March 2010 (EPTCS, Vol. 69), Kohei Honda and Alan Mycroft (Eds.).
44–58. https://doi.org/10.4204/EPTCS.69.4

[5] Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymor-
phic Effects. In 31st European Conference on Object-Oriented Program-
ming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74),
Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
13:1–13:31. https://doi.org/10.4230/LIPIcs.ECOOP.2017.13

[6] Colin S Gordon, Michael D Ernst, and Dan Grossman. 2012. Static
lock capabilities for deadlock freedom. In Proceedings of the 8th ACM
SIGPLAN workshop on Types in language design and implementation.
67–78.

[7] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. 2005. Composable Memory Transactions. In Proceedings of the
Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Chicago, IL, USA) (PPoPP ’05). Association for Comput-
ing Machinery, New York, NY, USA, 48–60. https://doi.org/10.1145/

29

https://doi.org/10.1145/292540.292564
https://doi.org/10.1145/292540.292564
https://doi.org/10.1145/358438.349328
https://doi.org/10.1145/358438.349328
https://doi.org/10.4204/EPTCS.69.4
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/1065944.1065952


Haskell ’20, August 27, 2020, Virtual Event, USA Andrej Ivašković and Alan Mycroft

1065944.1065952
[8] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language

primitives and type discipline for structured communication-based
programming. In Programming Languages and Systems, Chris Hankin
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 122–138.

[9] Shin-ya Katsumata. 2014. Parametric Effect Monads and Semantics
of Effect Systems. SIGPLAN Not. 49, 1 (Jan. 2014), 633–645. https:
//doi.org/10.1145/2578855.2535846

[10] Stephen Cole Kleene, NG De Bruijn, J de Groot, and Adriaan Cornelis
Zaanen. 1952. Introduction to metamathematics. Vol. 483. van Nostrand
New York.

[11] Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Pro-
cesses. In CONCUR 2006 – Concurrency Theory, Christel Baier and
Holger Hermanns (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 233–247.

[12] J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (San Diego, California, USA) (POPL ’88).
Association for Computing Machinery, New York, NY, USA, 47–57.
https://doi.org/10.1145/73560.73564

[13] R. Milner. 1982. ACalculus of Communicating Systems. Springer-Verlag,
Berlin, Heidelberg.

[14] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of
mobile processes, I. Information and Computation 100, 1 (1992), 1–40.
https://doi.org/10.1016/0890-5401(92)90008-4

[15] Dominic Orchard and Tomas Petricek. 2014. Embedding effect systems
in Haskell. In Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell. 13–24.

[16] Dominic Orchard and Nobuko Yoshida. 2016. Effects as Sessions,
Sessions as Effects. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (St. Peters-
burg, FL, USA) (POPL ’16). Association for Computing Machinery, New
York, NY, USA, 568–581. https://doi.org/10.1145/2837614.2837634

[17] Riccardo Pucella and Jesse A. Tov. 2008. Haskell Session Types
with (Almost) No Class. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell (Victoria, BC, Canada) (Haskell ’08). Associa-
tion for Computing Machinery, New York, NY, USA, 25–36. https:
//doi.org/10.1145/1411286.1411290

[18] Ka I. Pun, Martin Steffen, and Volker Stolz. 2012. Deadlock checking
by a behavioral effect system for lock handling. The Journal of Logic
and Algebraic Programming 81, 3 (2012), 331 – 354. https://doi.org/10.
1016/j.jlap.2011.11.001 The 22nd Nordic Workshop on Programming
Theory (NWPT 2010).

[19] Matthew Sackman and Susan Eisenbach. 2008. Session types
in Haskell: Updating message passing for the 21st century.
(2008). https://spiral.imperial.ac.uk/bitstream/10044/1/5918/1/session-
types-in-haskell.pdf

[20] Kohei Suenaga. 2008. Type-Based Deadlock-Freedom Verification for
Non-Block-Structured Lock Primitives and Mutable References. In
Programming Languages and Systems, G. Ramalingam (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 155–170.

[21] Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory
Management. Inf. Comput. 132, 2 (Feb. 1997), 109–176. https:
//doi.org/10.1006/inco.1996.2613

[22] Philip Wadler and Peter Thiemann. 1999. The Marriage of Effects
and Monads. ACM Transactions on Computational Logic 4 (12 1999).
https://doi.org/10.1145/601775.601776

30

https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/2578855.2535846
https://doi.org/10.1145/2578855.2535846
https://doi.org/10.1145/73560.73564
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1016/j.jlap.2011.11.001
https://doi.org/10.1016/j.jlap.2011.11.001
https://spiral.imperial.ac.uk/bitstream/10044/1/5918/1/session-types-in-haskell.pdf
https://spiral.imperial.ac.uk/bitstream/10044/1/5918/1/session-types-in-haskell.pdf
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/601775.601776

	Abstract
	1 Introduction
	2 Big Picture
	2.1 Graded Monads
	2.2 Concurrency Framework

	3 Implementation
	3.1 Lock Algebra
	3.2 The Graded Monad
	3.3 Lifting IO
	3.4 Synchronization and Parallelism
	3.5 Example: Dining Philosophers
	3.6 Memory Regions via Monad Transformers

	4 Reconciling [style=default-haskell]Sync Programs and Haskell
	5 Theoretical Foundations
	5.1 The Lattice of Subsets with error
	5.2 Graded Monads
	5.3 Type Inference

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

