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Stability and instability in saddle point dynamics
Part II: The subgradient method

Thomas Holding and Ioannis Lestas

Abstract—In part I we considered the problem of convergence
to a saddle point of a concave-convex function in C2 via gradient
dynamics and an exact characterization was given to their
asymptotic behaviour. In part II we consider a general class
of subgradient dynamics that provide a restriction in a convex
domain. We show that despite the nonlinear and non-smooth
character of these dynamics their ω-limit set is comprised of
solutions to only linear ODEs. In particular, we show that the
latter are solutions to subgradient dynamics on affine subspaces
which is a smooth class of dynamics the asymptotic properties
of which have been exactly characterized in part I. Various
convergence criteria are formulated using these results and
several examples and applications are also discussed throughout
the manuscript.

Index Terms—Nonlinear systems, subgradient dynamics, sad-
dle points, non-smooth systems, networks, optimization.

I. INTRODUCTION

IN [24] we studied the asymptotic behaviour of the gradient
method when this is applied on a general concave-convex

function in an unconstrained domain, and provided an exact
characterization to its limiting solutions. Nevertheless, in many
applications, such as primal/dual algorithms in optimization
problems, it becomes necessary to constrain the system states
in a prescribed convex set, e.g. positivity constraints on
Lagrange multipliers or constraints on physical quantities like
data flow, and prices/commodities in economics [25], [29],
[43]. The subgradient method is used in such cases, which
is a version of the gradient method with a projection term in
the vector field additionally included, so as to ensure that the
trajectories do not leave the desired set.

In discrete time, there is an extensive literature on the sub-
gradient method, via its application in optimization problems
(see e.g. [37]). However, in many applications, for example
power networks [49], [14], [27], [11], [12], [28], [44], [32],
[35] and classes of data network problems [29], [43], [34]
continuous time models are considered. It is thus important to
have a good understanding of the subgradient dynamics in a
continuous time setting, which could also facilitate analysis
and design by establishing links with other more abstract
results in dynamical systems theory.

A main complication in the study of the subgradient method
arises from the fact the this is a non-smooth system, i.e. a
nonlinear ODE with a discontinuous vector field due to the
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projections involved. This complicates the analysis which is
also reflected in the early work in [1]. There have since been
various studies on subgradient dynamics including works that
exploit tools associated with monotone operators [40], [4],
[45], [20] and more recent studies that make use of tools from
non-smooth analysis [6], [7], [39] (see also the introduction
in part I for a more extensive discussion).

Our aim in this paper is to provide a framework of results
that allows one to study the asymptotic behaviour of the sub-
gradient method in a general setting, where the trajectories are
constrained to an arbitrary convex domain, and the concave-
convex function in C2 considered does not necessarily satisfy
aditional strictness properties. One of our main results is to
show that despite the nonlinear and non-smooth character
of the subgradient dynamics, their limiting behaviour when
an equilibrium point exists, are solutions to explicit linear
differential equations.

In particular, we show that these linear ODEs are limiting
solutions of subgradient dyanmics on an affine subspace,
which is a class of dynamics that fit within the framework
studied in Part I [24]. These dynamics can therefore be exactly
characterized, thus allowing to prove convergence to a saddle
point for broad classes of problems.

The results in this paper are illustrated by means of ex-
amples that demonstrate also the complications in the dy-
namic behaviour of the subgradient method relative to the
unconstrained gradient method. We also apply our results to
modification schemes in network optimization, that provide
convergence guarantees while maintaining a decentralized
structure in the dynamics.

The methodology used for the derivations in the paper
is also of independent technical interest. In particular, the
notion of a face of a convex set is used to characterize
the ODEs associated with the limiting behaviour of the sub-
gradient dynamics. Furthermore, some more abstract results
on corresponding semiflows have been used to address the
complications associated with the non-smooth character of
subgradient dynamics.

The paper is structured as follows. Section II provides pre-
liminaries from convex analysis and dynamical systems theory
that will be used within the paper. The problem formulation
is given in section III and the main results are presented
in section IV, where various examples that illustrate those
are also discussed. Applications to modification methods in
network optimization are given in section V. The proofs of the
results are given in appendices A and B and an application to
the problem of multipath routing is discussed in section V-B.
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II. PRELIMINARIES

We use the same notation and definitions as in part I of this
work [24] and we refer the reader to the preliminaries section
therein. The notions below from convex analysis and analysis
of dynamical systems will additionally be used throughout the
paper.

A. Convex analysis

We recall first for convenience the following notions defined
in part I [24] that will be frequently used in this manuscript.
For a closed convex set K ⊆ Rn and z ∈ Rn, we denote the
normal cone to K through z as NK(z). When K is an affine
space NK(z) is independent of z ∈ K and is denoted NK .
If K is in addition non-empty, then we denote the projection
of z onto K as PK(z). Also for vectors x, y ∈ Rn, d(x, y)
denotes the Euclidean metric and |x| the Euclidean norm.

1) Concave-convex functions and saddle points: For a
function ϕ that is concave-convex on Rn+m the (standard)
notion of a saddle point was given in part I [24]. We now
consider ϕ that is concave-convex in a restricted region K in
which case the notion of saddle point needs to be modified.

Definition 1 (Restricted saddle point). Let K ⊆ Rn+m be
non-empty closed and convex. For a function ϕ : U → R,
K ⊆ U ⊆ Rn+m that is concave-convex on K we say that
(x̄, ȳ) ∈ K is a K-restricted saddle point of ϕ if for all x ∈ Rn

and y ∈ Rm with (x, ȳ), (x̄, y) ∈ K we have the inequality
ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y).

If in addition ϕ ∈ C1 on an open neighbourhood of K then
z̄ = (x̄, ȳ) ∈ K is a K-restricted saddle point if the vector
of partial derivatives (ϕx(z̄),−ϕy(z̄)) lies in the normal cone
NK(z̄).

If C ⊆ K is closed and convex and z̄ ∈ C is a C-restricted
saddle point, then z̄ is also a K-restricted saddle point.

A structure of K that is important in the analysis1 of
concave-convex functions is that of a Cartesian product of two
convex sets ([41]), with x, y taking values in each of these two
sets respectively, i.e.

K = Kx ×Ky, Kx ⊂ Rn, Ky ⊂ Rm, (1)
Kx,Ky convex closed sets

It should be noted that in this case if ϕ ∈ C1 on an open
neighbourhood of K and concave-convex on K, then z̄ =
(x̄, ȳ) ∈ K is a K-restricted saddle point if and only if the
vector of partial derivatives (ϕx(z̄),−ϕy(z̄)) lies in the normal
cone NK(z̄).

In general it does not hold that if ϕ : Rn+m → R has a
saddle point, and K is closed convex and non-empty, then ϕ
has a K-restricted saddle point (an explicit example illustrating
this is given later in Example 27(ii)). In this manuscript we
will only consider cases where at least one K-restricted saddle
point exists, leaving the problem of showing existence to the
specific application.

1In particular, this allows concave-convex functions on K to be appropri-
ately extended as concave-convex functions in Rn+m [41].

2) Concave programming: Concave programming (see e.g.
[3]) is concerned with the study of optimization problems of
the form

max
x∈C,g(x)≥0

U(x) (2)

where U : Rn → R, g : Rn → Rm are concave functions and
C ⊆ Rn is non-empty closed and convex. Under some mild
assumptions, the solutions to such problems are saddle points
of the Lagrangian

ϕ(x, y) = U(x) + yT g(x) (3)

where y ∈ Rm
+ are the Lagrange multipliers. This is stated in

the Theorem below.

Theorem 2. Let g be concave and Slater’s condition hold, i.e.

∃x′ ∈ relintC with g(x′) > 0. (4)

Then x̄ is an optimum of (2) if and only if ∃ȳ with (x̄, ȳ) a
C × Rm

+ -restricted saddle point of (3).

The min-max optimization problem associated finding a C×
Rm

+ -restricted saddle point of (3) is the dual problem of (2).
3) Faces of convex sets: Some of the main results of this

manuscript refer to faces of a convex set. We refer the reader
to [21, Chap. 1.8.] for further discussion of such topics.

Definition 3 (Face of a convex set). Given a non-empty closed
convex set K, a face F of K is a subset of K that has both
the following properties:

(i) F is convex.
(ii) For any line segment L ⊆ K, if (relintL)∩F 6= ∅ then

L ⊆ F .

For the readers convenience we recall some standard prop-
erties of faces:

(a) The intersection of two faces of K is a face of K.
(b) The empty set and K itself are both faces of K. If a face

F is neither ∅ or K it is called a proper face.
(c) If F is a face of K and F ′ is a face of F , then F ′ is a

face of K.
(d) For a face F of K, the normal cone NK(z) is independent

of the choice of z ∈ relint(F ). In these cases we drop the
z dependence and write it as NF .

(e) K may be written as the disjoint union:

K =
⋃
{relintF : F is a face of K}. (5)

Property (a) above leads to the following definition.

Definition 4 (Minimal face containing a set). For a convex set
K and a subset A ⊆ K we define the minimal face containing
A as ⋂

{F : F is a face of K and A ⊆ F}

which is a face by property (a) above.
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B. Dynamical systems

We will be using the notions of flow, semiflow, convegence
to a solution, ω-limit set of a (semi)flow, global convergence,
non-expansive semiflow, Carathéodory solution as defined in
part I, section II-C.

The notions below will be additionally used in this paper.

Definition 5 (Invariant sets). For a semiflow (φ,X, ρ) we say
that a set A ⊆ X is positively invariant if φ(R+, A) ⊆ A.
If φ is also a flow we say that A is negatively invariant if
φ((−∞, 0], A) ⊆ A. If φ(t, A) = A for all t ∈ R then we say
A is invariant.

Definition 6 (Sub-(semi)flow). For a flow (resp. semiflow)
(φ,X, ρ) and an invariant (resp. positively invariant) set A ⊆
X we obtain the subflow (resp. sub-semiflow) by restricting
φ(t, x) to act on x ∈ A and denote it as (φ,A, ρ).

As it will be discussed in the paper, the ω-limit set of non-
expansive semiflows, is comprised of semiflows of the class
defined below.

Definition 7 ((Semi)Flow of isometries). We say that a
(semi)flow (φ,X, ρ) is a (semi)flow of isometries if for every
t ∈ R (resp. R+), the function φ(t, ·) : X → X is an isometry,
i.e. for all x, y ∈ X it holds that ρ(φ(t, x), φ(t, y)) = ρ(x, y).

III. PROBLEM FORMULATION

The main object of study in this work is the subgradient
method on an arbitrary concave-convex function in C2 and an
arbitrary convex domain K. We first recall the definition of
the gradient method, which is studied in part I of this work
[24].

Definition 8 (Gradient method). Given ϕ a C2 concave-
convex function on Rn+m, we define the gradient method as
the flow on (Rn+m, d) generated by the differential equation

ẋ = ϕx

ẏ = −ϕy.
(6)

The subgradient method is obtained by restricting the gra-
dient method to a convex set K by the addition of a projection
term to the differential equation (6).

Definition 9 (Subgradient method). Given a non-empty closed
convex set K ⊆ Rn+m and a function ϕ that is concave-
convex on K and C2 on an open neighbourhood of K, we
define the subgradient method on K as a semiflow on (K, d)
consisting of Carathéodory solutions of

ż = f(z)−PNK(z)(f(z))

f(z) =

[
ϕx

−ϕy

]
.

(7)

The equilibrium points of the subgradient method on K
are K-restricted saddle points. If in addition the set K is the
Cartesian product of two convex sets as in (1) then the set of
equilibrium points of the subgradient method on K is equal
to the set of K-restricted saddle points.

Remark 10. For (non-affine) convex sets K the subgradient
method (7) is a non-smooth system. The vector field is dis-
continuous due to the convex projection term, independently of
the regularity of the function ϕ or of the boundary of K. This
is in contrast to the gradient method (6), which is a smooth
system, as it inherits the regularity of the function ϕ.

We briefly summarise the contributions of this work in the
bullet points below.
• We show that the subgradient dynamics, despite being

nonlinear and non-smooth, have an ω-limit set that is
comprised of solutions to only linear ODEs.

• These solutions are shown to belong to the ω−limit
set of the subgradient method on affine subspaces. This
links with part I [24] of this two part work, where the
limiting solutions of such systems have been exactly char-
acterized. Based on this characterization of the limiting
solutions, a convergence result for subgradient dynamics
is also presented.

• Various examples that illustrate the results in the paper
are presented. Applications are also provided to mod-
ification methods in network optimization that provide
convergence guarantees while maintaining a decentralized
structure in the dynamics. An application to the problem
of multi-path routing is also discussed.

IV. MAIN RESULTS

This section states the main results of the paper. The results
are divided into three subsections. To facilitate the readability
of section IV we outline below the main Theorems that will
be presented and the way these are related.

In subsection IV-B we consider non-expansive semiflows,
an abstraction we use for the subgradient dynamcis in order
to develop tools for their analysis that are valid despite their
non-smooth character. In particular, Proposition 14 gives an
invariance principle for such semiflows, which applies without
any smoothness assumption on the dynamics. We then addi-
tionally incorporate projections that constrain the trajectories
within a closed convex set. Our key result, Theorem 18, says
that for these semiflows the dynamics on the ω-limit set are
smooth.

In subsection IV-C we apply these tools to the subgradient
method (7). In Theorem 20 we show that the limiting solutions
of the (non-smooth) subgradient method on a convex set are
given by the dynamics of the (smooth) subgradient method
on an affine subspace. This allows us to obtain Corollary 28,
a criterion for global asymptotic stability of the subgradient
method.

In subsection IV-D we combine Theorem 20 with the results
of Part I of this work [24] (for convenience of the reader re-
produced in subsection IV-A) to obtain a general convergence
criterion (Theorem 31) for the subgradient method.

These results are illustrated with examples throughout. The
proofs of the results are given in appendix A.

A. Subgradient method on affine subspaces

In this section we recall a result proved in part I of this
work [24] on the limiting solutions of the subgradient method
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on affine subspaces. To state this result we recall from [24]
the definition of the following matrices of partial derivatives
of a concave-convex function ϕ ∈ C2

A(z) =

[
0 ϕxy(z)

−ϕyx(z) 0

]
B(z) =

[
ϕxx(z) 0

0 −ϕyy(z)

]
.

(8)

Consider the subgradient method (7) on an affine subspace V
with normal cone NV

ż = f(z)−PNV
(f(z)) (9)

f(z) =

[
ϕx

−ϕy

]
.

Also let Π ∈ R(n+m)2 be the orthogonal projection matrix
onto the orthogonal complement of NV . Then the ODE (9)
can be written as

ż = Πf(z) (10)

The result is stated for 0 being an equilibrium point; the
general case may be obtained by a translation of coordinates.

Theorem 11. [24, Theorem 25] Let Π ∈ R(n+m)2 be an
orthogonal projection matrix, ϕ be C2 and concave-convex
on Rn+m, and 0 be an equilibrium point of (10). Then the
trajectories z(t) of (10) that lie a constant distance from any
equilibrium point of (10) are exactly the solutions to the linear
ODE:

ż(t) = ΠA(0)Πz(t) (11)

that satisfy, for all t ∈ R and r ∈ [0, 1], the condition

z(t) ∈ ker(ΠB(rz(t))Π)∩ker(Π(A(rz(t))−A(0))Π) (12)

where A(z) and B(z) are defined by (8).

Corollary 12. Let φ be concave-convex on a convex set K ⊆
Rn+m, and C2 on an open neighbourhood of K. Let 0 ∈ K,
and 0 be an equilibrium point of (10). Then the trajectories
z(t) of (10) that lie in K for all t ∈ R and are a constant
distance from any equilibrium point of (10) in K, satisfy (11)
and condition (12).

Remark 13. In the remainder of this paper we show that
subgradient dynamics on a general convex domain that have
an equilibrium point, have an ω-limit set that is comprised of
solutions of subgradient dynamics on only an affine subspace
and form a flow of isometries. In particular, the ω-limit set is
comprised of solutions to explicit linear ODEs, of the form
described in Theorem 11, despite the subgradient dynamics
being nonlinear and non-smooth.

B. Non-expansive semiflows and convex projections

If one wishes to extend the results of Part I of this work [24]
to the subgradient method on a non-empty closed convex set
K ⊆ Rn+m, then a complication arises from the discontinuity
of the vector field in (7).

The main tool used to prove the results in [24] was the
non-expansive property which says that the Euclidean distance

between any two solutions is non-increasing with time. One
would expect that the distance between any two of the limiting
solutions would be constant. A more abstract way of saying
this is that the sub-flow obtained by considering the gradient
method with initial conditions in the ω-limit set is a flow of
isometries. In fact, this can be proved for any non-expansive
semiflow, as stated in Proposition 14 below (proved in Ap-
pendix A-B).

Proposition 14. Let (φ,X, d) be a non-expansive semiflow
with X ⊆ Rn+m which has an equilibrium point z̄. Let Ω be
the ω-limit set of the semiflow. Then the sub-semiflow (φ,Ω, d)
defines a flow of isometries. Moreover, Ω is a convex set.

Note here that (φ,Ω, d) is a flow rather than a semiflow. This
comes from the simple observation that an isometry is always
invertible, so we can define, for t ≥ 0, φ(−t, ·) : Ω → Ω as
φ(t, ·)−1.

Remark 15. Care should be taken in interpreting the back-
wards flow given by Proposition 14. There could be multiple
trajectories in X that meet at a point in y ∈ Ω at time t = 0,
but exactly one of these trajectories will lie in Ω for all times
t ∈ R.

We would like to note that we are not the first to make
this observation. Indeed, we deduce this result from a more
general result in [10] which was published in 1970.

It should be noted that if a non-expansive semiflow has an
equilibrium point then all its trajectories are bounded. This
implies that each trajectory converges to its set of ω-limit
points [36, Lemma 4.16]. The structure of the ω-limit set can
also be used to strengthen the convergence to the ω-limit set
to convergence to a solution in the ω-limit set. This is stated
as Corollary 16 below (proved in Appendix A-B).

Corollary 16. Let (φ,X, d) be a non-expansive semiflow with
X ⊆ Rn+m, which has an equilibrium point. Then each
trajectory of the semiflow converges to a trajectory in its ω-
limit set.

We consider now non-expansive differential equations
which are projected onto a convex set, and make the following
set of assumptions.

(φ,K, d) is the semiflow given by Carathéodory solutions of
ż = f(z)−PNK(z)(f(z)) where,

K ⊆ Rn+m, is non-empty, closed and convex

f ∈ C1, f : U → Rn+m, U open,K ⊆ U ⊆ Rn+m,

for all z,w ∈ K (f(z)− f(w))T (z−w) ≤ 0.
(13)

Functions −f(z) such that f(z) satisfies the final inequality
in (13) are referred to as monotone. A known result in the
literature is the fact that the semiflow in (13) is non-expansive2,
which is stated as Lemma 17 below [20], [41]. Existence of
unique solutions z : [0,∞) → Rn+m can be deduced from

2In particular note that for any two trajectories z, z′ we have that W (t) =
1
2
|z(t) − z′(t)|2, satisfies for almost all times t ≥ 0 , Ẇ (t) = (z(t) −

z′(t))T (ż(t) − ż′(t)) ≤ 0 where the inequality follows from (13) and the
definition of the normal cone.
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corresponding results for projected dynamical systems [9],[8,
Theorem 3.2] (see also [41], [20], [4], [5]).

Lemma 17. Let (13) hold. Then (φ,K, d) is non-expansive.

Our main result on projected differential equations as in (13)
is that, even though the projection term gives a discontinuous
vector field, when we restrict our attention to the ω-limit set,
the vector field is C1. This allows us to replace non-smooth
analysis with smooth analysis when studying the asymptotic
behaviour of such systems.

Theorem 18. Let (13) hold and assume that the semiflow
(φ,K, d) has an equilibrium point. Let Ω be the ω-limit set of
the semiflow. Then (φ,Ω, d) defines a flow of isometries given
by solutions to the following differential equation, which has
a C1 vector field,

ż = f(z)−PNV
(f(z)). (14)

Here V is the affine span of the (unique) minimal face of K
that contains the set of equilibrium points of the semiflow.

The proof of Theorem 18 is provided in Appendix A-B.
Remark 19. The existence of a minimal face of K that contains
the set of equilibrium points is a simple consequence of
the definition of a face (see Definition 3 and the discussion
that follows). The significance of minimal face flows was
also noted in [48], where these have been used as a tool
to deduce local stability properties for projected dynamical
systems. In Theorem 18 we show that such flows can provide
a characterization to the ω-limit set of dynamical systems of
the form (13), which are non-expansive. Noting also that (14)
is a dynamical system on an affine subspace, Theorem 11,
Corollary 12 can be used to provide a characterization to the
ω-limit set of subgradient dynamics as linear ODEs, as it will
be discussed in the next section.

C. The subgradient method

We now apply Theorem 18 to the subgradient method. Our
first result reduces the study of the convergence on general
convex domains, where the subgradient method is non-smooth,
to the study of convergence of the subgradient method on
affine spaces, which is a smooth dynamical system studied
in [24]. We also show that when an internal saddle point
exists then the limiting behaviour of the subgradient method
is determined by that of the corresponding unconstrained
gradient method.

For a function ϕ that is concave-convex on a convex set
K ⊆ Rn+m and C1 on an open neighbourhood of K we
denote SK the set of solutions of the gradient method (6) (i.e.
no projections included), that are in K for all times t ∈ R
and are a constant distance from any equilibrium point of (6)
in K.

Theorem 20. Let function ϕ be concave-convex on on a
set K ⊆ Rn+m as defined in (1) and C2 on an open
neighbourhood of K, and let ϕ have a K-restricted saddle
point. Let (φ,K, d) denote the subgradient method (7) on K
and Ω be its ω-limit set. Then Ω is convex, and (φ,Ω, d) defines
a flow of isometries. Furthermore, the following hold:

(i) The trajectories z(t) of (φ,Ω, d) solve the ODE:

ż = f(z)−PNV
(f(z)), (15)

where V is the affine span of F , with F being the minimal
face containing all K-restricted saddle points.

(ii) If there exists a saddle point of ϕ in the interior of
K, then

Ω⊆ SK (16)

The proof of Theorem 20 is provided in Appendix A-C.

Remark 21. The ODE (15) is the subgradient method on the
affine subspace V . A main significance of Theorem 20 is
the fact that the solutions of (15) in Ω can be characterized
using the results in part I [24]. In particular, it follows from
Theorem 11, Corollary 12 in section IV-A that these satisfy
explicit linear ODEs. This therefore shows that even though
the subgradient dynamics are nonlinear and non-smooth their
ω-limit set is comprised of solutions to only linear ODEs
(stated in Corollary 34).

Remark 22. Later, in subsection IV-D we use the results in
[24] on the subgradient method on affine subspaces (section
IV-A) together with Theorem 20 to obtain a convergence
criterion for the subgradient method. This is used subsequently
to give proofs for the applications considered in section V.

Remark 23. It will be discussed in the proof of Theorem 20
that Theorem 20(ii) is a special case of Theorem 20(i) where
the projection term in (15) equal to zero. In Theorem 20(ii)
there is a characterization of the ω-limit set of the subgradient
method, as solutions of the corresponding gradient method.

Remark 24. A simple consequence of (16) is the fact if the
function φ is concave-convex on Rn+m and has a saddle
point in the interior of K then the subgradient method on
K is globally convergent (i.e. converges to a saddle point for
any initial condition in K) if the corresponding unconstrained
gradient method is globally convergent.

Remark 25. Theorem 20 follows directly from Theorem 18.
Hence Theorem 20 also holds when K is an arbitrary closed
convex set as in Theorem 18 (rather than just the Cartesian
product of two convex sets), if the subgradient method has an
equilibrium point. Note that a saddle point in the interior of
K, or a K-restricted saddle point with K as in (1), is always
an equilibrium point of the subgradient method on K.

We now present several examples to illustrate the applica-
tion of Theorem 20 in some simple cases.

The first example corresponds to a case where the uncon-
strained gradient method (6) is globally convergent, but the
subgradient method is not.

Example 26. Define the concave-convex function

ϕ(x1, x2, y) = −1

2
|x1|2 + (x1 + x2)y (17)

where x1, x2, y ∈ R. This has a single saddle point at (0, 0, 0),
and ϕ is the Lagrangian of the optimisation problem

max
x1+x2=0

−1

2
|x1|2 (18)
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where variable y in function ϕ is the Lagrange multiplier
associated with the constraint. On this function the gradient
method is the linear systemẋ1

ẋ2

ẏ

 =

−1 0 1
0 0 1
−1 −1 0

x1

x2

y

 . (19)

It is easily verified that all the eigenvalues of this matrix lie
in the left half plane, so that the gradient method is globally
convergent. Now consider the family of convex sets defined by

Ka = {(x1, x2, y) ∈ R3 : x1 ≥ a} (20)

for a ∈ R. The subgradient method on Ka is given by the
system

ẋ1 = [−x1 + y]+x1−a

ẋ2 = y

ẏ = −x1 − x2.

(21)

The convergence of the subgradient method on Ka depends
crucially on the value of a. There are three cases:

(i) a < 0: In this case the saddle point (0, 0, 0) lies in the
interior of Ka so that Theorem 20(ii) applies, and as the
unconstrained gradient method is globally convergent, so
is the subgradient method on Ka.

(ii) a > 0: Here the unconstrained saddle point (0, 0, 0)
lies outside Ka. A simple computation shows that the
point (a,−a, 0) is the only Ka-restricted saddle point.
Theorem 20(i) can be used here. The only proper face of
Ka is the set

Fa = {(a, x2, y) : x2, y ∈ R}. (22)

The subgradient method on Fa is the system[
ẋ2

ẏ

]
=

[
0 1
−1 0

] [
x2

y

]
+

[
0
−a

]
(23)

together with the equality x1 = a. This matrix has
imaginary eigenvalues ±i, showing that the subgradient
method on Fa is not globally convergent. It is easy
to verify that some of these oscillatory solutions are
also solutions of the subgradient method on Ka, e.g.
y(t) = a cos(t), x2(t) = −a(1 − sin(t)), x1(t) = a
satisfy (21). Therefore the subgradient method on Ka is
not globally convergent when a > 0.

(iii) a = 0: In this case the saddle point (0, 0, 0) lies on
the boundary of K0. Theorem 20(i) applies, and the
analysis of the subgradient method on F0 is the same
as in case (ii) above. However, when we check whether
any oscillatory solutions of the subgradient method on
F0 are also solutions of the subgradient method on K0,
we find that there are no such solutions. Indeed, for a
trajectory to be a solution to both the subgradient method
on F0 and the subgradient method on K0 we must have
both x1 = a = 0 and −x1 + y ≤ 0 by (21). Then (21)
implies that y = 0 and then that x1 = 0. So the only such
solution is the saddle point. Therefore the subgradient
method on K0 is globally convergent.

This shows that the subgradient method on Ka undergoes a
bifurcation at a = 0.

The following example illustrates that the subgradient
method can be globally convergent when the gradient method
is not.

Example 27. Define the concave-convex function

ϕ(x1, x2, y) = −1

2
|x2|2 + x1y. (24)

This has a single saddle point at (0, 0, 0) and corresponds to
the optimisation problem

max
x1=0

−1

2
|x2|2 (25)

where the constraint is relaxed via the Lagrange multiplier y.
The gradient method applied to ϕ is the linear systemẋ1

ẋ2

ẏ

 =

 0 0 1
0 −1 0
−1 0 0

x1

x2

y

 (26)

whose matrix has eigenvalues −1,±i so the gradient method
is not globally convergent. We again consider the subgradient
method on the closed convex set Ka defined by (20) for a ∈ R
splitting into three cases:

(i) a < 0: As in Example 26(i) the saddle point (0, 0, 0)
lies in the interior of Ka. As the unconstrained gradient
method is not globally convergent, Theorem 20(ii) implies
that the subgradient method on Ka is also not globally
convergent.

(ii) a > 0: The subgradient method on Ka is given by

ẋ1 = [y]+x1−a

ẋ2 = −x2

ẏ = −x1

(27)

The saddle point (0, 0, 0) lies outside Ka. For (x̄1, x̄2, ȳ)
to be a Ka-restricted saddle point, (27) implies that x̄1 =
x̄2 = 0, but this is impossible in Ka, so there are no Ka-
restricted saddle points. This can also be understood in
terms of the optimisation problem (25) which has empty
feasible set if we impose the further condition that x1 ≥
a > 0. This means that none of our results apply, but a
direct analysis of (27) shows that ẏ ≤ −a < 0 so that
y(t) → −∞ as t → ∞, and the system is not globally
convergent.

(iii) a = 0: Solving (27) for the K0-restricted saddle points
yields the continuum {(0, 0, y) : y ≤ 0}. None of these
lie in the interior of K0, so Theorem 20(ii) does not apply
and Theorem 20(i) is used to analyze the asymptotic
behaviour. The only proper face of K0 is F0 defined
by (22). On F0, the subgradient method is the system[

ẋ2

ẏ

]
=

[
−1 0
0 0

] [
x2

y

]
(28)

together with the equality x1 = 0. This is globally
convergent, since for all initial conditions x2 converges
to 0 and hence we have convergence to a point in the
set {(0, 0, y) : y ∈ R}, which is the set of F0-restricted
saddle points . Therefore the subgradient method on K0

is also globally convergent.
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So in this case the subgradient method on Ka starts non-
convergent for a < 0, becomes globally convergent for a = 0
and finally looses all its equilibrium points when a > 0.

Although the minimal face F in Theorem 20(i) is given as
the intersection of all faces that contain K-restricted saddle
points, it can be useful to obtain convergence criteria that do
not depend upon knowledge of all K-restricted saddle points.
We note that if the subgradient method is globally convergent
on any affine span of a face of K, then global convergence is
implied.

Corollary 28. Let function ϕ be concave-convex on a set K ⊆
Rn+m as defined in (1), and C2 on an open neighbourhood of
K. Let ϕ have a K-restricted saddle point. Assume that, for
any face F of K that contains a K-restricted saddle point,
the subgradient method on aff(F ) is globally convergent. Then
the subgradient method on K is globally convergent.

Example 29. To illustrate this result, let us consider the case
of positivity constraints, where (x, y) are restricted to K =
Rn

+ ×Rm
+ . Here the faces of K are given by sets of the form

{(x, y) ∈ Rn
+ × Rm

+ : xi = 0, yj = 0 for i 6∈ I, j 6∈ J}

where I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} are sets of indices.
The affine span of such a face is then given by

{(x, y) ∈ Rn+m : xi = 0, yj = 0 for i 6∈ I, j 6∈ J}. (29)

Thus, by Corollary 28, checking convergence of the subgradi-
ent method in this case may be done by checking convergence
of the gradient method with any arbitrary set of coordinates
fixed as zero3.

In some cases the faces of the constraint set K have an
interpretation in terms of the specific problem.

Example 30. Consider the optimisation problem

max
gj(x)≥0,j∈{1,...,m}

U(x) (30)

where U, gj : Rn → R are concave functions in C2. This is
associated with the Lagrangian

ϕ(x, y) = U(x) +
∑

j∈{1,...,m}

yjgj(x) (31)

where y ∈ Rm is a vector of Lagrange multipliers4. To ensure
that the Lagrange multipliers are non-negative we define the
constraint set K = Rn × Rm

+ . As in Example 29 the affine
spans of the faces of K are given by (29) for I = {1, . . . ,m}
and J any subset of {1, . . . ,m}. The subgradient method
applied on such a face corresponds to the gradient method
on the modified Lagrangian

ϕ′(x, y) = U(x) +
∑
j∈J

yjgj(x) (32)

which is associated with the modified optimisation problem

max
gj(x)=0,j∈J

U(x) (33)

3This result was presented previously by the authors in [22].
4For simplicity of presentation we shall assume throughout the example

that there is no duality gap in the problems considered.

where, compared to (30), the inequality constraints are re-
placed by equality constraints, and some subset of the con-
straints are removed.

If ϕ is concave-convex on Rn+m then Corollary 28 applies.
We obtain that the subgradient method on K applied to ϕ is
globally convergent, if, for any J ⊆ {1, . . . ,m}, the gradient
method applied to the Lagrangian ϕ′ corresponding to the
modified optimisation problem (33) is globally convergent.

D. A general convergence criterion

By combining Theorem 20 with the results on the limiting
solutions of the (smooth) subgradient method on affine sub-
spaces given in [24] (recalled in section IV-A) we obtain the
following convergence criterion for the subgradient method on
arbitrary convex sets and arbitrary concave-convex functions
in C2. This states that the subgradient method is globally
convergent, if it has no trajectory satisfying an explicit linear
ODE.

The theorem is stated under the assumption that 0 ∈ K is
a K-restricted saddle point. The general case is obtained by a
translation of coordinates.

Theorem 31. Let function ϕ be concave-convex on a set K ⊆
Rn+m as defined in (1), and C2 on an open neighbourhood
of K, and let 0 ∈ K be a K-restricted saddle point of ϕ.
Let F be the minimal face of K that contains all K-restricted
saddle points and let V be the affine span of F . Let Π be the
orthogonal projection matrix onto the orthogonal complement
of NV . Let also A(.) and B(.) be the matrices defined in (8).

Then if the subgradient method (7) on K applied to ϕ has
no non-constant trajectory z(t) that satisfies both the following

(i) the linear ODE

ż(t) = ΠA(0)Πz(t) (34)

(ii) for all r ∈ [0, 1] and t ∈ R,

z(t) ∈ ker(ΠB(rz(t))Π)∩ker(Π(A(rz(t))−A(0))Π),
(35)

then the subgradient method is globally convergent.

The proof of Theorem 31 is provided in Appendix A-D.
Remark 32. Although the condition (35) appears difficult to
verify, it is only necessary to show that the condition does
not hold (by non-trivial trajectories) in order to prove global
convergence. This turns out to be easy in many cases, for
example in the proofs of the convergence of the modification
methods discussed in section V (Theorem 41). In particular,
these are examples where global convergence is desired to
a saddle point without knowing the saddle points a priori
and without function ϕ satisfying strictness properties that
guarantee convergence. The derivations exploit the structure of
the matrices A,B,Π to prove that (34) and (35) are satisfied
only by saddle points.

Remark 33. It should be noted that (34) and (35) are satisfied
by all trajectories z(t) in the ω-limit set of the subgradient
method. This follows from Theorem 20 and Theorem 11,
Corollary 12 and is stated in the corollary below (proved in
Appendix A-D).
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Corollary 34. Consider the subgradient method (7) and let
0 be a K-restricted saddle point. Then any trajectory z(t) in
the ω-limit set satisfies (34) and (35), i.e. it is a solution of a
linear ODE.

V. APPLICATIONS

In this section we apply the results of section IV to obtain
global convergence in a number cases. In particular, we look
at examples of modification methods, relevant in network
optimization, where the concave-convex function is modified
to provide guarantees of convergence. The application of one
such modification method to the problem of multi-path routing
is also discussed.

The proofs for this section are provided in appendix B.

A. Modification methods for convergence

We will consider methods for modifying ϕ so that the
(sub)gradient method converges to a saddle point. The methods
that will be discussed are relevant in network optimisation (see
e.g. [1], [16]), as they preserve the localised structure of the
dynamics. It should be noted that these modifications do not
necessarily render the function strictly5 concave-convex and
hence convergence proofs are more involved. We show below
that the results in section IV provide a systematic and unified
way of proving convergence by making use of Theorem 31,
while also allowing to consider these methods in a generalized
setting of a general convex domains for the variables x, y
respectively, in the concave-convex function ϕ(x, y).

1) Auxiliary variables method: Given function ϕ concave-
convex on a convex set K as in (1), and C2 on an open
neighbourhood U of K, we define the modified function ϕ′ :
Rn′ × U → R as

ϕ′(x′, x, y) = ϕ(x, y) + ψ(Mx− x′)
ψ : Rn′

→ R, ψ ∈ C2, is strictly concave
with ψ(0) = 0, ψ(u) ≤ 0,

(36)

where x′ is a vector of n′ auxiliary variables, and M ∈ Rn′×n

is a constant matrix that satisfies ker(M)∩ker(ϕxx(z̄)) = {0}
for a K-restricted saddle point z̄ of ϕ.

We define the augmented convex domain as K ′ = Rn′×K.
Note that the additional auxiliary variables are not restricted
and are allowed to take values in the whole of Rn′

. Also note
that the n×n identity matrix always satisfies the assumptions
upon M above.
Remark 35. An important feature of this modification (and
also the ones that will be considered below) is the fact that
there is a correspondence between K-restricted saddle points
of ϕ and K ′-restricted saddle points of ϕ′, with the values of
x, y at the saddle points remaining unchanged. In particular, if
(x̄, ȳ) is a K-restricted saddle point of ϕ, then (Mx̄, x̄, ȳ) is
a K ′-restricted saddle point of ϕ′. In the reverse direction, if
(x̄′, x̄, ȳ) is a K ′-restricted saddle point of ϕ′ then Mx̄ = x̄′

and (x̄, ȳ) is a K-restricted saddle point of ϕ.

5It should be noted that the relaxed strictness conditions in [45] are also
not necessarily satisfied.

Remark 36. The significance of this method will become
more clear in the multipath routing problem discussed in
Appendix V-B. In particular, this method allows convergence
to be guaranteed in network optimization problems without
introducing additional information transfer among nodes. Spe-
cial cases of this method have also been used in [13], [23] in
applications in economic and power networks.

2) Penalty function method: For this and the next method
we will assume that the concave-convex functions ϕ is a
Lagrangian originating from a concave optimization problem
(see subsection II-A2). We will assume that the Lagrangian ϕ
satisfies

ϕ(x, y) = U(x) + yT g(x)

C2 3 U : Rn → R is concave

C2 3 g : Rn → Rm is concave.

(37)

We consider a so called penalty method (see e.g. [18]). This
method adds a penalising term to the Lagrangian based directly
on the constraint functions. The new Lagrangian ϕ′ is defined
by

ϕ′(x, y) = ϕ(x, y) + ψ(g(x))

C2 3 ψ : Rm → R is strictly concave with ψu > 0

ψ(u) = 0 ⇐⇒ u ≥ 0.

(38)

It is easy to see that the saddle points of ϕ and ϕ′ are the
same.

Remark 37. This modification method is also often applied
to network optimization problems, i.e. problems where U(x)
is of the form U(x) =

∑
i Ui(x) and each of the Ui(x) is a

function of only a few of the components of x. Similarly each
component, gi(x), of the constraints g(x) depends on only
a few of the components of x. The subgradient method for
such problems applied to (37) has a decentralized structure.
When applied to the modified version (38) the dynamics
will still have a decentralized structure, but will often also
involve additional information exchange between neighboring
nodes, e.g. when g(x) is linear, due to the nonlinearity of the
function ψ(.).

Remark 38. This method has been considered previously (see
[16] and the references therein6), either without constraints, or
with positivity constraints, i.e. K = Rn

+ × Rm
+ . Theorem 41

below applies to all non-empty closed sets K ⊆ Rn+m which
are a product set of convex sets as in (1).

3) Constraint modification method: We next recall a
method proposed in [1]. Here we instead modify the con-
straints to enforce strict concavity. The Lagrangian (37) is
modified to become:

ϕ′(x, y) = U(x) + yTψ(g(x))

C2 3 U : Rn → R is concave

C2 3 g : Rn → Rm is concave

C2 3 ψ =[ψ1, . . . , ψm]T : Rm → Rm

ψj(0) = 0, ψj
u ≥ 0 and ψj

uu < 0 for j = 1, . . .m.

(39)

6Note that a related modification method in discrete time is the ADMM
method [2], [19].
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It is clear that the value of x at the saddle points of the
modified and original Lagrangian will be the same. In analogy
with Remark 37, this method also preserves the decentralized
structure of the subgradient method for network optimization
problems, but may require additional information transfer.

Remark 39. Previous works [1],[6] have proved convergence
of this method with positivity constraints, i.e. K = Rn

+×Rm
+ .

Theorem 41 below applies to any constraint set K which is a
product set of convex sets as in (1).

Remark 40. It should be noted that even though the three
methods described in this section all provide global conver-
gence guarantees, they lead to different information structures
in the underlying dynamics when applied to network opti-
mization problems. In particular, the auxiliary variable method
leads to fully decentralized implementations, whereas the other
two can require additional information transfer among nodes.
This will be illustrated in subsection V-B where the multipath
routing problem will be discussed.

4) Convergence results: We now give a global convergence
result for each of the methods described above on general
convex domains.

Theorem 41 (Convergence of modification methods). Let
K ⊆ Rn+m be a non-empty closed set that is the Cartesian
product of two convex sets as in (1), and assume that ϕ, ϕ′

satisfy one of the following:
1) Auxiliary variable method: Let ϕ ∈ C2 be concave-

convex and ϕ′, K ′ be defined by (36) and the text directly
below it.

2) Penalty function method: Let ϕ have the form (37), and
ϕ′ be defined by (38).

3) Constraint modification method: Let ϕ have the form (37),
and ϕ′ be given by (39).

Also assume that ϕ has a K-restricted saddle point. Then
the subgradient method (7) applied to ϕ′ on K ′ in 1) and K
in 2), 3) is globally convergent.

Remark 42. Each of the convergence results in Theorem 41 is
proved using Theorem 31. It should also be noted that the
modification methods do not necessarily produce a strictly
concave-convex function ϕ′, or lead to a ϕ′ that strictly
decreases (increases) for all deviations from the set of saddle
points due to a change in x, x′ (change in y). Global conver-
gence to a saddle point is still though guaranteed by ensuring
that no trajectory, other than saddle points, satisfy conditions
(34), (35) in Theorem 31. A specific such example will be
studied in the next section.

B. Multi-path congestion control

Combined control of routing and flow is a problem that
has received considerable attention within the communications
literature due to the significant advantages it can provide
relative to congestion control algorithms that use single paths
[30]. Nevertheless its implementation is not directly obvious
as the availability of multiple routes can render the network
prone to route flapping instabilities [47], [26], [46].

A classical approach to analyse such algorithms is to for-
mulate them as solving a corresponding network optimization
problem [29], [43] with primal/dual update rules leading to a
decentralized implementation. This optimization problem is,
however, not strictly concave and modifications that make
it strictly concave can lead to a deviation from the optimal
solution [46], [17].

Here we consider a multi-path routing problem with a fixed
number of routes per source/destination pair, as in [29], [46],
[31], [33]. For such schemes we investigate algorithms that
allow the corresponding network optimization problem to be
solved without requiring any relaxation in its solution or any
additional information exchange.

1) Problem formulation: We consider a network that con-
sists of sources s1, . . . , sm, routes r1, . . . , rn, and links
l1, . . . , ll. Each source si is associated with a unique desti-
nation for a message which is to be routed each source also
has a fixed set of routes associated with it.. Every route rj
has a unique source si, and we write rj ∼ si to mean that si
is the source associated with route rj . Routes rj each use a
number of links, and we write rj ∼ lk to mean that the link
lk is used by the route rj . The desired running capacity of
the link lk is denoted Ck, and 0 ≤ C ∈ Rl is the vector of
these capacities. We let A be the connectivity matrix, so that
Akj = 1 if lk ∼ rj and 0 otherwise. In the same way we set
Hij = 1 if si ∼ rj and 0 otherwise. xj denotes the current
usage of the route rj . We associate to each source si a strictly
concave, increasing utility function Ui.

We consider the problem of maximising total utility

max
x≥0,Ax≤C

∑
si

Ui

∑
rj∼si

xj

 . (40)

Here the first sum is over all sources si, and the second over
routes rj with rj ∼ si (we shall use such notation throughout
this section). This optimisation problem is associated with the
Lagrangian

ϕ(x, y) =
∑
si

Ui

∑
rj∼si

xj

+ yT (C −Ax). (41)

where y ∈ Rl
+ are the Lagrange multipliers. Note that even

though Ui(.) is strictly concave, this is not strictly concave
in (40) with respect to the decision variables xi, hence the
Lagrangian ϕ(x, y) is not strictly concave-convex.

A common approach in the context of congestion control
is to consider primal-dual dynamics originating from this La-
grangian so as to deduce decentralized algorithms for solving
the network optimisation problem (40) [29],[43]. This gives
rise to the subgradient dynamics

ẋj =

U ′i
( ∑

si∼rk

xk

)
−
∑
lk∼rj

yk

+

xj

ẏk =

∑
lk∼rj

xj − Ck

+

yk

(42)
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where si ∼ xj in the equation for ẋj and U ′i is the derivative
of the utility function Ui. Note that the equilibrium points of
(42) are saddle points of the Lagrangian (under the positivity
constraints on x and y) and hence also solutions of the
optimization problem (40) (Slater’s condition is assumed to
hold).

Remark 43. The dynamics (42) are the subgradient method (7)
applied to the Lagrangian (41) on the positive orthant Rn+l

+ .

The dynamics (42) are also localised in the sense that the
update rules for xj depend only on the current usage, xk,
of routes with the same source and of the congestion signals
associated with links on these routes. In the same way the
update rules for congestion signals yk depend only on the
usage of routes using the associated link.

2) Instability: The dynamics (42) inherit the stability prop-
erties of the subgradient method discussed in section IV. In
particular the distance of (x(t), y(t)) from any saddle point
(x̄, ȳ) is non-increasing. However, the lack of strict concavity
of the Lagrangian (41) leads to a lack of global convergence
of the dynamics (42) in some situations as we shall describe
below.

We assume for simplicity that there is a strictly positive
saddle point z̄ > 0. In this situation Theorem 20(ii) applies,
and the convergence properties are the same as those of the
unconstrained gradient method. The structure of the problem
suggests an application of [24, Theorem 21]. Here a simple
computation yields that Slinear is equal to S̄ (we use the
notation of [24]) unless the following algebraic condition on
the network topology holds:

∃u ∈ ker(H) \ {0}, λ > 0 such that ATAu = λu. (43)

[24, Theorem 21] tells us that global convergence holds if (43)
does not hold, but in fact more is true.

Proposition 44. Let z̄ = (x̄, ȳ) > 0 be a saddle point of ϕ
defined by (41) and Ui ∈ C2 be be strictly concave and strictly
increasing. Then the dynamics (42) are globally convergent if
and only if (43) does not hold.

The algebraic criterion (43) on the network topology is
satisfied by many networks, for example the network in
Figure 1.

We also remark that under the condition (43), the system is
sensitive to noise in the sense that the unconstrained dynamics
satisfy the conditions of [24, Theorem 22].

3) Modified dynamics: Here we present a modification
of the dynamics (42), that, while still fully localised, gives
guaranteed convergence to an optimal solution of (40).

We use the auxiliary variables method described in subsec-
tion V-A1 and define the modified optimisation problem

max
x≥0,x′∈Rn

Ax≤C

∑
si

Ui

∑
rj∼si

xj

− 1

2

∑
rk

κk|x′k − xk|2 (44)

where x′ ∈ Rn is an additional vector to be optimised over,
and κk > 0 are arbitrary constants. It is important to note that

this has the same optimal x points as (40). This gives rise to
a modified Lagrangian

ϕ′(x′, x, y) =
∑
si

Ui

∑
rj∼si

xj

+ yT (C −Ax)

− 1

2

∑
rk

κk|x′k − xk|2.
(45)

The new dynamics are given by the following subgradient
method.

ẋj =

U ′i
( ∑

si∼rk

xk

)
−
∑
lk∼rj

yk + κj(x
′
j − xj)

+

xj

ẋ′j = κj(xj − x′j)

ẏk =

∑
lk∼rj

xj − Ck

+

yk

.

(46)

Remark 45. The dynamics (46) are the subgradient method (7)
applied to the modified Lagrangian (45) on Rn

+ × Rn × Rl
+.

The Lagrangian (45) corresponds to (36) with ψ(z) = −|z|2/2
and M the n× n identity matrix.

It is apparent (as discussed in subsection V-A1) that the
equilibrium points of the modified dynamics (46) and the
original dynamics (42) are in correspondence. We remark that
the new dynamics are analogous to the addition of a low pass
filter to the unmodified dynamics (42).

These dynamics are still localised. Each route rk is now
associated with its usage, xk, and a new variable x′k. To
update xk the only additional information required over the
unmodified scheme is the value of x′k, and to update x′k one
only needs xk. Thus the new variables x′k are local to the
updaters of xk.

It should be noted that if instead the other two modification
methods described in subsection V-A were used, then the mod-
ified gradient dynamics would require additional information
transfer among nodes for their implementation. In particular,
due to the nonlinearity of the function ψ in (38), (39), the
ODE for the xi updates would have required also the flows
xj from neighboring nodes, which is practically undesirable as
such information is not available in existing implementations
of congestion control algorithms.

Convergence of the modified dynamics (46) to an optimum
of the original problem now follows immediately from Theo-
rem 41.1).

Proposition 46. Let Ui ∈ C2 be strictly concave and strictly
increasing. Then solutions of (46) converge as t → ∞ to
maxima of the original problem (40).

Remark 47. The use of derivative action to damp oscillatory
behaviour has been studied previously in the context of node
based multi-path routing in [38] by incorporating derivative
action in a price signal that gets communicated (i.e. a form of
prediction is needed) and a local stability result was derived.
This has also been used in gradient dynamics in game theory
in [42]. A control scheme similar to (46) for multi-path
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routing was proposed in [33] and studied in discrete and
continuous time. In [33] the scheme differs from (46) in that
the xj variables are updated instantaneously. In our context
this would be

x(t) = argmax
x≥0,Ax≤C

ϕ′(x′(t), x, y(t)). (47)

4) Numerical examples: In this subsection we present nu-
merical simulations to illustrate the results described above.
We consider the network in Figure 1 with two sources (nodes
1, 2) and two destinations (nodes 3, 4). The capacities are all
set to 1, and the utility functions are chosen as log(1+x) and
1−e−x for the sources at 1 and 2 respectively. The parameters
κj were all set to 1. This network satisfies the condition (43)
and this is apparent in the oscillating modes of the unmodified
dynamics (42), shown in Figure 2, that do not decay. However,
when we apply the modified dynamics (46) to this network,
we obtain the rapid convergence to the equilibrium shown in
Figure 3. Simulations demonstrate improved performance of
the modified dynamics also in cases the unmodified dynamics
lead to decaying oscillations, by providing improved damping
to those (omitted due to page constraints).

1

3

2

4

Fig. 1. First example network. Sources at 1 and 2 transmit to the destinations
4 and 3 respectively. Each has a choice of two routes. Routes associated with
the source at 1 are dotted lines, while those associated with the source at 2
are solid lines.
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Fig. 2. The unmodified dynamics (42) running on the network given in
Figure 1 with all link capacities set to 1 and the utility functions are log(1+x)
and 1 − e−x for the sources at 1 and 2 respectively. In this network the
condition (43) holds, and there is oscillatory behaviour which does not decay.

VI. CONCLUSION

In this paper we considered the problem of convergence to
a saddle point of a concave convex function via subgradient
dynamics that provide a restriction in an arbitrary convex
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Fig. 3. The modified dynamics (46) running on the network given in Figure 1
with all link capacities set to 1, κj = 1 for all j. The utility functions are
log(1+x) and 1−e−x for the sources at 1 and 2 respectively. In this network
the condition (43) holds, but the modification of the dynamics causes rapid
convergence to equilibrium.

domain. We showed that despite the nonlinear and non-smooth
character of these dynamics, when these have an equilibrium
point their ω-limit set is comprised of trajectories that are
solutions to only linear ODEs. In particular, we showed that
these ODEs are subgradient dynamics on affine subspaces
which is a class of dynamics the asymptotic properties of
which have been exactly characterized in part I. Various
convergence criteria have been deduced from these results
that can guarantee convergence to a saddle point. Several
examples have also been discussed throughout the manuscript
to illustrate the results in the paper.
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APPENDIX A
PROOFS OF THE MAIN RESULTS

In this appendix we prove the main results of the paper,
which are stated in section IV in the main text.

A. Outline of the proofs

We first give a brief outline of the derivations of the results
to improve their readability.

1) Non-expansive semiflows and convex projections: In
section A-B of this appendix we prove the results described
in subsection IV-B in the main text.

We revisit some of the literature on topological dynamical
systems [10], quoting a more general result Theorem 51, from
which Proposition 14 is deduced. These results allow us to
prove the main result of the subsection, Theorem 18, using the
fact that the convex projection term cannot break the isometry
property of the flow on the ω-limit set.

2) Subgradient method: In sections A-C, A-D in this ap-
pendix we prove the results in subsections IV-C, IV-D, respec-
tively, in the main text using the results in subsection IV-B.

B. Non-expansive semiflows and convex projections

In this section we provide the proofs of Proposition 14 and
Theorem 18.

B.1. Convergence to a flow of isometries

We begin by revisiting the literature on topological dynami-
cal systems, in which a type of incremental stability is studied,
and show how this leads to an invariance principle for non-
expansive semiflows.

Definition 48 (Equicontinuous semiflow). We say that a
flow (resp. semiflow) (φ,X, ρ) is equicontinuous if for any
x(0) ∈ X and ε > 0 there is a δ = δ(x(0), ε) such that if
ρ(x′(0), x(0)) < δ then

ρ(x(t), x′(t)) ≤ ε for all t ∈ R (resp. R+). (48)

Remark 49. In the control literature equicontinuity of a semi-
flow would correspond to ‘semi-global non-asymptotic incre-
mental stability’, but we shall keep the term equicontinuity for
brevity and consistency with [10].



13

Definition 50 (Uniformly almost periodic flow). We say that
a flow (φ,X, ρ) is uniformly almost periodic if for any ε > 0
there is a syndetic set A ⊆ R, (i.e. R = A + B for some
compact set B ⊆ R), for which

ρ(φ(t, x), x) ≤ ε for all t ∈ A, x ∈ X. (49)

For the readers convenience we reproduce the results, [10,
Theorem 8] and [15, Proposition 4.4.], that we will use.

Theorem 51 ([10]). Let (φ,X, ρ) be an equicontinuous semi-
flow and let X be either locally compact or complete. Let
Ω be its ω-limit set. Then (φ,Ω, ρ) is an equicontinuous
semiflow of homeomorphisms of Ω onto Ω. This generates an
equicontinuous flow.

The backwards flow given by Theorem 51 is only unique
on Ω, (see Remark 15 which also applies here).

Proposition 52 ([15]). Let (φ,X, ρ) be a flow, with X
compact. Then the following are equivalent:

(i) The flow is equicontinuous.
(ii) The flow is uniformly almost periodic.

In our case we focus on the non-expansive property which is
a particular form of equicontinuity. We prove stronger results
in this special case.

Proof of Proposition 14. By Theorem 51 (φ,Ω, d) is an
equicontinuous flow with an equilibrium point z̄. Let R > 0
be arbitrary, and define

YR =

{
z(0) ∈ Ω : sup

t∈R
d(z(t), z̄) ≤ R

}
. (50)

As the flow is equicontinuous, YR is a closed bounded subset
of Rn+m and hence compact, and moreover, the union of the
sets YR over R ≥ 0 is Ω. By Proposition 52 the flow (φ, YR, d)
is uniformly almost periodic. By the non-expansive property,
d : YR×YR → R is a non-increasing along the direct product
flow, and is a continuous function on a compact set. Hence
we have the inequality, for any two points z(0), z′(0) ∈ YR,

lim
t→−∞

d(z(t), z′(t)) = sup
t∈R

d(z(t), z′(t))

≥ inf
t∈R

d(z(t), z′(t)) = lim
t→∞

d(z(t), z′(t)).
(51)

We claim that the two limits are equal. Indeed, by uniform
almost periodicity there are sequences tn →∞ and t′n → −∞
as n→∞ for which

0 = lim
n→∞

d(z(tn), z(0)) = lim
n→∞

d(z(t′n), z(0)) (52)

and the analogous limits hold for z′ for the same sequences
tn, t

′
n. Hence, by continuity of d, we have

lim
t→−∞

d(z(t), z′(t)) = d(z(0), z′(0)) = lim
t→∞

d(z(t), z′(t)).

(53)
Hence d(z(t), z′(t)) is constant. By picking R big enough,
this holds for any z(0), z′(0) ∈ Ω, which completes the proof
that the sub-semiflow generates a flow of isometries.

It remains to show that Ω is convex. To this end let
z(t), z′(t) be two trajectories of (φ,Ω, d). Let that λ ∈ (0, 1)
and define z′′(t) = λz(t) + (1 − λ)z′(t). By the same

argument as used in the proof of [24, Proposition 34] we
deduce that z′′(t) is a trajectory of the original semiflow,
but (as argued above) by uniform almost periodicity of
(φ,Ω, d) we have a sequence of times tn → ∞ for which
d(z(tn), z(0)) → 0 as n → ∞ and the same limit for z′(t).
Hence d(z′′(tn), z′′(0)) → 0 also, showing that z′′(0) is in
the ω-limit set.

Proof of Corollary 16. From the text above the statement of
the Corollary we have that all trajectories of the semiflow
converge to its ω-limit set (denoted as Ω). Also from Propo-
sition 14 we have that (φ,Ω, d) defines a flow of isometries.

In the remainder of the proof we strengthen the convergence
to Ω to convergence to a trajectory of the flow (φ,Ω, d). Let
z(t) be a trajectory of the flow. From the convergence to the
set Ω there exist points z(n) ∈ Ω and times tn such that,

|z(tn)− z(n)| ≤ 1/n. (54)

We now consider the trajectories z(n)(t) of the flow (φ,Ω, d)
with z(n)(tn) = z(n) (note that z(n)(t) ∈ Ω for all t ∈ R).
From the non expansive property we have for all t ≥ tn,

|z(t)− z(n)(t)| ≤ 1/n. (55)

From the boundedness of z(t) and (55) the set {z(n) : n ∈ N}
is relatively compact, and by the constant distance of each
trajectory of the flow (φ,Ω, d) from any equilibrium point, the
set of initial conditions {z(n)(0) : n ∈ N} is also relatively
compact. There is hence a subsequence nk for which z(nk)(0)
tends to a point z′(0) ∈ Ω as k → ∞ (using also the fact
that that Ω is closed [10, Theorem 5]). We claim that |z(t)−
z′(t)| → 0 as t→∞, where z′(t) is the trajectory of the flow
(φ,Ω, d) that at time t = 0 is equal to z′(0). Indeed, for any
ε > 0 there exists a k ∈ N such that for all t ≥ tnk

, we have

|z(t)− z(nk)(t)| ≤ ε/2 (56)

and also for all t ≥ 0,

|z′(t)− z(nk)(t)| ≤ ε/2 (57)

where in each case we have used the non-expansive property.
The claim now follows from the triangle inequality, which
completes the proof.

B.2. Convergence to solutions of dynamics projected on an
affine subspace

We now use the isometry property together with the geome-
try of the convex projection term to obtain the key result of this
section, Theorem 18, which states that the limiting dynamics
of a non-expansive ODE restricted to a convex set K have C1

smooth vector field and lie inside one of the faces of K.
To prove the theorem we will make use of a simple lemma

on faces of convex sets.

Lemma 53. Let K ⊆ Rn be non-empty closed and convex
and A ⊆ K. Let F be the minimal face of K containing A,
then relint(F ) intersects ConvA.
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F
A

Fig. 4. This figure illustrates the claim of Lemma 53. The triangle F is the
minimal face containing the convex set A (shaded region). If A intersects two
subfaces of F , then, as shown, to be convex it must also intersect the relative
interior of F .

The statement of this lemma and the idea behind its proof
are illustrated by Figure 4.

Proof. As faces are convex, the minimal face containing A is
the same as the minimal face containing ConvA. So we are
free to assume without loss of generality that A is convex.
Assume for a contradiction that A∩ relint(F ) = ∅. Define the
set F as

{C : C is a proper face of F and A ∩ (relintC) 6= ∅}.

Note that every point in the relative boundary of F lies in
the relative interior of some proper face of F by property (e)
below Definition 3. This implies that F is not empty. Now,
either there is a face C in F that contains all other faces in F ,
or there are two faces F1, F2 ∈ F such that there is no face
F3 ∈ F containing both F1 and F2. In the first case, C is a
face containing A that is strictly contained in F , contradicting
minimality of F . In the second case let xi ∈ (relintFi) ∩ A
for i = 1, 2, (note that x1 6= x2 by property (e) of faces),
and let x3 be some point in the open line segment between
x1 and x2. By convexity of A, x3 ∈ A. Hence x3 lies in
relint(F3) for some face F3, and F3 ∈ F , as otherwise
x3 would lie in relint(F ) contradicting the assumption that
(relintF ) ∩ A = ∅. We claim that F3 contains both F1 and
F2, a contradiction. Indeed, first we note that x1, x2 ∈ F3 by
property (ii) in Definition 3 as x3 ∈ F3. Then, as Fi is convex
and xi ∈ relint(Fi), Fi can be written as the union of line
segments which have xi as an interior point (i.e. not an end
point). But each of these line segments touches F3 at xi, so
by Definition 3(ii) each lies entirely within F3.

Proof of Theorem 18. Step 1: Identification of the limiting
equation. First, by Lemma 17 and Proposition 14 (φ,Ω, d)
is a flow of isometries. Now let F be the minimal face that
contains Ω, i.e. the intersection of all faces that contain Ω, and
NF be its normal cone (in step 2 of the proof we will identify
this face more precisely). We note that the vector field in (13)
must be directed parallel to V , as otherwise trajectories would
leave F , contradicting Ω ⊆ F .

It is sufficient to show that if z = z(0) ∈ Ω with n(t) =
PNK(z(t))(f(z(t))) then n(t) is orthogonal to F . If z(t) ∈
relintK then NK(z(t)) = NF and the orthogonality holds.
Otherwise z(t) lies in the relative boundary of F .

As each solution of the differential equation (13) holds only
for almost all times t and we wish to consider an uncountably
infinite family of solutions, we run the risk of taking an
uncountable union of sets of measure zero, (which does not
necessarily have zero measure). Avoiding this makes the proof
technical. To better communicate the idea of the proof, we

shall first give the proof that would work if the differential
equations held for all times t.

Step 1.1: Heuristic (unrigorous) proof.
Let C = Conv Ω, then, by the definition of a face, Ω ⊆ F

implies that C ⊆ F . From Lemma 53 and the minimality
of F we deduce that C must intersect relintF . Thus there
are x(0),y(0) ∈ Ω and λ ∈ (0, 1) with w = λx(0) + (1 −
λ)y(0) ∈ relintF . Set W = 1

2 |x(t)− z(t)|2. By the isometry
property of the flow we know that Ẇ = 0 at t. We also have,

Ẇ (t) = (x(t)− z(t))T (ẋ(t)− ż(t))

= (x(t)− z(t))T (f(x(t))− f(z(t)))+

− (x(t)− z(t))TPNK(x(t))(f(x(t)))+

+ (x(t)− z(t))TPNK(z(t))(f(z(t))).

(58)

The first term in (58) is non-positive due to the assumption that
the ODE satisfies (13). The other two terms are non-positive
due to the definition of the normal cone. Hence Ẇ = 0 implies
that (x−z)Tn = 0. Similarly we obtain (y−z)Tn = 0. Taking
a convex combination of these equalities, we obtain

(w−z)Tn = λ(x−z)Tn+(1−λ)(y−z)Tn = 0+0 = 0 (59)

and as w is in the relative interior of F this implies that n is
orthogonal to F .

Step 1.2: Rigorous proof. We now give the fully rigorous
proof. We must show that the set of times t when n(t) is
not orthogonal to F is of measure zero. Let Ω′ be a countable
dense subset of Ω that contains z(0). By invariance of Ω under
the flow φ, the set φ(t,Ω′) = {φ(t,x) : x ∈ Ω′} is also dense
in Ω for any t ∈ R. Then the set

A = {t ∈ [0,∞) : ∃x(0) ∈ Ω′ such that
ẋ(t) 6= f(x(t))−PNK(x(t))(f(x(t)))}

(60)

is the countable union of measure zero sets, and is hence of
measure zero. From the isometry property and by considering
W (t) = 1

2 |x(t)−z(t)|2 with x(0) ∈ Ω′, it follows that (x(t)−
z(t))Tn(t) = 0 for all x(0) ∈ Ω′ and t ∈ [0,∞) \ A. Thus,
for t ∈ [0,∞) \ A, (x − z(t))Tn(t) = 0 for all x in a dense
subset of Ω, and hence for any x ∈ Ω. The proof now follows
as step 1.1. above.

Step 2: Identification of the limiting face. Finally we will
show that the face F defined above is in fact the minimal face
F ′ containing the equilibrium points of the semiflow (φ,K, d).
We argue by contradiction. If F 6= F ′ then there must be some
trajectory z(t) in Ω and a time t0 with z(t0) ∈ F \F ′. For T >

0 we define z(t;T ) = 1
2T

∫ T

−T z(t+s) ds. For any finite T this
is a convex combination of trajectories in Ω, and as Ω is convex
by Proposition 14, t 7→ z(t;T ) is a trajectory in Ω. Next, as the
semiflow is uniformly almost periodic due to Proposition 52
the trajectory z(t) is an almost periodic function. Therefore,
the limit T → ∞ of z(t;T ) exists (see e.g. [15]), and this
limit is clearly a constant (z′ say) independent of t. As Ω is
closed, z′ ∈ Ω and being a constant, is an equilibrium point
of the semiflow.

To obtain a contradiction we argue that z′ 6∈ F ′ which
is impossible as F ′ contains all equilibrium points. Indeed,
this follows as the trajectory z(t), being almost periodic and
passing through z(t0) ∈ F \ F ′ spends a positive proportion
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of its time in F \ F ′. Therefore, there is a δ > 0 such
that for any sufficiently large T , the average z(t;T ) satisfies
d(z(t;T ), F ) ≥ δ and this property carries over to the
limit z′.

C. Subgradient method

In this section we give the proofs of the results of subsec-
tion IV-C.

Proof of Theorem 20. We apply Theorem 18, noting that f(z)
in (7) satisfies the inequality in (13) [41], [20].

Case (i). This follows directly from Theorem 18.
Case (ii). As F must contain all K-restricted saddle points,

it must contain a point in the interior of K. The only such face
is K itself whose affine span is Rn+m (as K has non-empty
interior) which has normal cone {0}. Therefore in case (ii)
(14) becomes the gradient method (6) and (16) holds, using
also the isometry property of the flow on Ω.

The convexity and isometry properties of Ω stated in The-
orem 20 follow from Proposition 14.

D. A general convergence criterion

In this section we give the proofs of subsection IV-D.

Proof of Theorem 31. By Theorem 20(i) any solution z(t) in
the ω-limit set of the subgradient method on K solves (15). By
using Π, the orthogonal projection matrix onto the orthogonal
complement of NV , the ODE (15) can be written as (10).
Noting also the isometry property of the ω-limit set we have by
Theorem 11, Corollary 12 (in section IV-A), that z(t) satisfies
(34) and (35) for all t ∈ R and r ∈ [0, 1]. Therefore, if there are
no non-constant trajectories of the subgradient method on K
satisfying these conditions then the ω-limit set consists only
of equilibrium points and the subgradient method on K is
globally convergent.

Proof of Corollary 34. This follows from Theorem 20, and
Theorem 11, Corollary 12 using the arguments in the proof of
Theorem 31.

APPENDIX B
PROOFS OF THE RESULTS IN SECTION V

A. Modification methods

Proof of Theorem 41:
We prove convergence of each modification method in turn.

1) Auxiliary variables method:

Proposition 54. Let (36) hold, and assume that there exists a
K ′-restricted saddle point. Then the subgradient method (7)
on K ′ applied to ϕ′ is globally convergent.

Proof. We prove global convergence to an equilibrium point
by making use of Theorem 31. In particular, we show that the
only solutions of the subgradient method applied to φ′, which
satisfy both (34) and (35), are equilibrium points.

Without loss of generality, we assume, by a translation of
coordinates, that z̄′ = (Mx̄, x̄, ȳ) = 0 is an equilibrium point.
Since the auxiliary variables are unconstrained the orthogonal

complement of NV in Theorem 31 is a subspace of the form
Rn′ × V ′ where V ′ ⊆ Rn+m is an affine subspace.

Let Π be the orthogonal projection matrix onto the subspace
Rn′ × V ′. We decompose Π on Rn′ × Rn+m as

Π =

[
I 0
0 Π′

]
. (61)

Now let z(t) = (x′(t), x(t), y(t)) be a solution of the mod-
ified subgradient method that satisfies (34) and (35), and let
(x̃(t), ỹ(t)) = Π′(x(t), y(t)). The remainder of the proof is
carried out in three steps.

Step 1: x′(t) is constant. By the form of A(0) in (34) we
deduce that ẋ′(t) = 0.

Step 2: x̃(t) and ỹ(t) are constant. From the condition
(35) that ΠB(rz)Πz = 0 for r ∈ [0, 1], we have that

0 = zTΠB(rz)Πz = uTψuuu+ x̃Tϕxxx̃− ỹTϕyy ỹ (62)

where ψuu is the Hessian matrix of ψ evaluated at u = Mx̃−
x′. As each term is non-positive and ψ is strictly concave we
deduce that Mx̃− x′ = 0 and x̃ ∈ ker(ϕxx(0)). Thus Mx̃(t)
is constant. By the condition that ker(M) ∩ ker(ϕxx) = {0}
we deduce that x̃(t) is constant. Then the form of A(0) allows
us to deduce that ỹ(t) is also constant.

Step 3: x(t) and y(t) are constant. The vector field
in (34) is orthogonal to ker(Π), so that (x̃(t), ỹ(t)) being
constant implies that (x(t), y(t)) are constant.

This completes the proof of convergence to an equilibrium
point of the subgradient method applied to φ′ .

2) Penalty function method:

Proposition 55. Let K ⊆ Rn+m be non-empty closed and
convex as in (1). Let (37), (38) hold, and assume that there ex-
ists a K-restricted saddle point. Then the subgradient method
(7) on K applied to ϕ′ is globally convergent.

Proof. Without loss of generality, we may assume by a trans-
lation of coordinates that 0 is a K-restricted saddle point. We
apply Theorem 31 and let F, V,Π be as in Theorem 31 and
z(t) = (x(t), y(t)) be a trajectory of the subgradient method
on K satisfying (34) and (35) for all t ∈ R and r ∈ [0, 1].
Define (x̃(t), ỹ(t)) = z̃(t) = Πz(t). We compute that

A(0) =

[
0 gx(0)T

−gx(0) 0

]
. (63)

Step 1: gx(0)x̃(t) = 0.
The condition (35) implies that the following expression is

zero for all s ∈ [0, 1],

z̃TB(sz)z̃ = x̃Tϕxxx̃+[gxx̃]Tψuu[gxx̃]+ψu(x̃T gxxx̃) (64)

where ϕxx is evaluated at sz, with gx, gxx at sx, and ψuu, ψuk

at u = g(sx), and where xT gxxx is the vector with ith
component xT gixxx where g = [g1, . . . , gm]T . All the terms
are non-positive by the assumptions on ψ and ϕ. Strict
concavity of ψ and that (64) vanishes for all s ∈ [0, 1] implies
that gx(sx)x̃ = 0 for all s ∈ [0, 1]. In particular gx(0)x̃(t) = 0.

Step 2: x̃(t) is constant.
Let Π be decomposed on Rn × Rm as

Π =

[
Π11 Π12

Π21 Π22

]
. (65)
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Then x̃, ỹ satisfy

˙̃x = Π11gx(0)T ỹ ˙̃y = −Π21gx(0)T ỹ. (66)

Taking the time derivative of gx(0)x̃ = 0 we obtain
gx(0)Π11gx(0)T ỹ = 0. As Π11 is positive semi-definite,
ker(gx(0)Π11gx(0)T ) = ker(Π11gx(0)T ), and hence ˙̃x =
Π11gx(0)T ỹ = 0 and x̃(t) is constant.

Step 3: ỹ(t) is constant.
The relation Π ˙̃z = ˙̃z implies that Π11

˙̃x+Π12
˙̃y = ˙̃x = 0 and

0 = Π12
˙̃y = −Π12Π21gx(0)T ỹ. Therefore, again, as Π12Π21

is positive semi-definite we have ỹT gx(0)Π12Π21gx(0)T ỹ = 0
and Π21gx(0)T ỹ = 0 = − ˙̃y, which implies ỹ is constant7.

The fact that x(t), y(t) are constant can be deduced as in
Step 3 of the proof of Proposition 54.

3) Constraint modification method: We first consider the
case without constraints. The proof below shows that the
method works by disrupting the linear structure of the os-
cillating solutions by changing A(z) to ensure it is not equal
to A(0), (where 0 is a saddle).

Proposition 56. Let (39) hold and S̄ 6= ∅. Then S = S̄ and
the gradient method (6) applied to ϕ′ is globally convergent.

Proof. Without loss of generality we may assume that 0 is a
saddle point of ϕ. We use the classification of S given by [24,
Theorem 13] and use the notation therein. We first compute,

A(z) =

[
0 (ψggx)T

−ψggx 0

]
. (67)

Let z(t) = (x(t), y(t)) ∈ S then we have

0 =
d

ds
[(ψi

g(g(sx))T gx(sx)x]s=0 for i = 1, . . . ,m (68)

Then by applying the chain rule we obtain

0 = [gx(0)x]Tψi
gg(0)[gx(0)x] + ψi

g(0)T (xT gxx(0)x), (69)

where xT gxx(0)x is the vector with components xT gixxx
where g = [g1, . . . gm]T . All the terms are non-positive due to
the assumptions on ψ and g. As ψi

gg < 0 we have gx(0)x = 0.
Hence ẏ = 0 and therefore y is constant. As |x|2 + |y|2 is also
constant this means that ẋ is zero. Therefore S = S̄ and the
gradient method is globally convergent.

Now we extend the stability to the subgradient method
on sets which have a product structure, by making use of
Corollary 28.

Corollary 57. Let K ⊆ Rn+m be non-empty closed and
convex as in (1). Let (39) hold and there be a K-restricted
saddle point. Then the subgradient method (7) on K applied
to ϕ′ is globally convergent.

Proof. By Corollary 28 it suffices to prove that the subgradient
method on aff(F ) is globally convergent, where F is an
arbitrary face of K that contains a K-restricted saddle point z̄.
By translation of coordinates we may assume that z̄ = 0. By

7Note that step 3 could also be proved from the fact that the product struc-
ture of K implies that V = aff(F ) must also decompose into V = Vx×Vy
with Vx ⊆ Rn, Vy ⊆ Rm affine subspaces, thus implying Π12 = Π21 = 0
(this structure of V is used in the proof of Corollary 57).

the product structure of K, V = aff(F ) must also decompose
into V = Vx × Vy with Vx ⊆ Rn and Vy ⊆ Rm affine
subspaces. Let the orthogonal projection matrices onto Vx, Vy ,
which exist as (0, 0) ∈ Vx × Vy , be P,Q respectively. Then
the subgradient method on V , satisfies, for (x, y) ∈ V ,

ẋ = Pϕ′x = ϕV
x , ẏ = −Qϕ′y = −ϕV

y (70)

where ϕV (x, y) := ϕ(Px,Qy). By a rotation8 of coordinate
bases we may assume that Vx = Rn′ × {0} and Vy = Rm′ ×
{0} for some n′ ≤ n and m′ ≤ m. Then ϕV : Rn′×Rm′ → R
is of the form (39) and Proposition 56 gives convergence.

B. Multi-path congestion control

Proof of Proposition 44. The if claim follows directly from
the discussion preceding the proposition. For the only if we
explicitly construct a trajectory that does not converge. Let u
satisfy (43), then it can be directly verified that

z(t) = z̄ + cetA(z̄)

[
u
−Au

]
is a solution (for any c > 0) of the unconstrained gradient
method (6) applied to ϕ. By taking c small enough using the
fact that z̄ > 0 (and the skew-symmetry of A(z̄)) we can
ensure that z(t) > 0 for all t ∈ R, and hence z(t) is also a
solution of the subgradient dynamics (42).

8Note that a rotation of coordinates will transform φ′ in (39) to a function
that is still of the form specified in (39), i.e. in the new coordinates φ′ can
be written in terms of functions U , g, ψ that satisfy the conditions in (39).
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