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Stability and instability
in saddle point dynamics - Part I

Thomas Holding and Ioannis Lestas

Abstract—We consider the problem of convergence to a saddle
point of a concave-convex function via gradient dynamics. Since
first introduced by Arrow, Hurwicz and Uzawa such dynamics
have been extensively used in diverse areas, there are, however,
features that render their analysis non trivial. These include the
lack of convergence guarantees when the concave-convex function
considered does not satisfy additional strictness properties and
also the non-smoothness of subgradient dynamics. Our aim in
this two part paper is to provide an explicit characterization to
the asymptotic behaviour of general gradient and subgradient
dynamics applied to a general concave-convex function in C2.
We show that despite the nonlinearity and non-smoothness of
these dynamics their ω-limit set is comprised of trajectories that
solve only explicit linear ODEs characterized within the paper.

More precisely, in Part I an exact characterization is provided
to the asymptotic behaviour of unconstrained gradient dynamics.
We also show that when convergence to a saddle point is
not guaranteed then the system behaviour can be problematic,
with arbitrarily small noise leading to an unbounded second
moment for the magnitude of the state vector. In Part II we
consider a general class of subgradient dynamics that restrict
trajectories in an arbitrary convex domain, and show that when
an equilibrium point exists the limiting trajectories belong to a
class of dynamics characterized in part I as linear ODEs. These
results are used to formulate corresponding convergence criteria
and are demonstrated with examples.

Index Terms—Nonlinear systems, saddle points, gradient dy-
namics, optimizaton, large-scale systems.

I. INTRODUCTION

F INDING the saddle point of a concave-convex function
is a problem that is relevant in many applications in

engineering and economics and has been addressed by various
communities. It includes, for example, optimization problems
that are reduced to finding the saddle point of a Lagrangian.
The gradient method, first introduced by Arrow, Hurwicz and
Uzawa [1] has been widely used in this context as it leads to
decentralized update rules for network optimization problems.
It has therefore been extensively used in areas such as resource
allocation in communication and economic networks (e.g.
[19], [21], [28], [24], [22]), game theory [13], distributed
optimization [14], [34], [29] and power networks [35], [11],
[20], [9], [10], [32], [23], [26].

Nevertheless, in broad classes of problems there are features
that render the analysis of the asymptotic behaviour of gradient
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dynamics nontrivial. In particular, even though for a strictly
concave-convex function convergence to a saddle point via
gradient dynamics is ensured, when this strictness is lacking,
convergence is not guaranteed and oscillatory solutions can
occur. The existence of such oscillations has been reported
in various applications [1], [17], [27], however, an exact
characterization of their explicit form for a general concave-
convex function, which leads also to a necessary and sufficient
condition for their existence, has not been provided in the
literature and is one of the aims of Part I of this work.

Furthermore, when subgradient methods are used to restrict
the dynamics in a convex domain (needed, e.g., in optimization
problems), the dynamics become non-smooth in continuous-
time. This increases significantly the complexity in the analysis
which is also reflected the arguments used for the convergence
proof in [1] for subgradient dynamics applied to a strictly
concave-convex Lagrangian with positivity constraints. From
an early stage it has been noted in the literature that the right-
hand side of (sub)gradient dynamics is monotone [30],[31].
This has been exploited to derive convergence results under
appropriate strictness in the concavity/convexity properties
[31]. In [33] a relaxed sufficient condition for convergence
was derived, where the saddle points are required to satisfy
their defining min/max property with a strict inequality with
respect to one of the two sets of variables, with extensions
to non-smooth saddle functions given in [15]. In [6] it was
pointed out that the invariance principle for hybrid automata in
[25] cannot be applied in this context, and gave an alternative
proof, by means of Caratheodory’s invariance principle, to
the convergence result in [1] mentioned above. Convergence
criteria for unconstrained gradient dynamics were also derived
in [5] and under positivity constraints in [7]. In general,
rigorously proving convergence for the subgradient method,
even in what would naively appear to be simple cases, is a
non-trivial problem, and requires much machinery from non-
smooth analysis [8].

Our aim in this two part paper is to provide an explicit
characterization of the asymptotic behaviour of continuous-
time gradient and subgradient dynamics applied to a general
concave-convex function that is twice continuously differ-
entiable. Our analysis is carried out in a general setting,
where the concave-convex function with respect to which these
dynamics are applied does not necessarily satisfy additional
strictness properties. Furthermore, a general class of subgradi-
ent dynamics are considered, where trajectories are restricted
in an arbitrary convex domain. One of our main results is to
show that despite the nonlinear and non-smooth character of
these dynamics their ω-limit set is comprised of trajectories
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that solve explicit linear ODEs.
Our main contributions can be summarized as follows:

• In Part I, we consider the gradient method applied on
a general concave-convex function in C2 in an uncon-
strained domain, and provide an exact characterization to
the limiting solutions, which can in general be oscillatory.
In particular, we show that despite the nonlinearity of
the dynamics the trajectories converge to solutions that
satisfy a linear ODE that is explicitly characterized.
Furthermore, we show that when such oscillations occur,
the dynamic behaviour can be problematic, in the sense
that arbitrarily small stochastic perturbations lead to an
unbounded second moment for the magnitude of the state
vector, when the set of saddle points includes a bi-infinite
line.

• In Part II, we consider the subgradient method applied
to a general concave-convex function in C2 with the
trajectories restricted in an arbitrary convex domain, such
that an equilibrium point exists. We show that despite the
non-smooth character of these dynamics, their limiting
behaviour is given by the solutions of one of an explicit
family of linear ODEs. In particular, these ODEs are
shown to be solutions of subgradient dynamics on affine
subspaces, which is a class of dynamics the asymptotic
properties of which are exactly determined in Part I.
These results are used to formulate corresponding con-
vergence criteria, and various examples and applications
are discussed.

It should be noted that there is a direct link between the
results in Part I and Part II as the dynamics, that are proved to
be associated with the asymptotic behaviour of the subgradient
method, are a class of dynamics that can be analysed with the
framework introduced in Part I. Applications of the results
in Part I will therefore be discussed in Part II, as in many
cases (e.g. optimization problems with inequality constraints)
a restricted domain for the concave-convex function needs to
be considered.

Finally, we would also like to comment that the methodol-
ogy used for the derivations in the two papers is of independent
technical interest. In Part I the analysis is based on various
geometric properties established for the saddle points of a
concave-convex function. In Part II the non-smooth analysis
is carried out by means of some more abstract results on
corresponding semiflows that are applicable in this context,
while also making use of the notion of a face of a convex set
to characterize the asymptotic behaviour of the dynamics.

The Part I paper is structured as follows. In section II
we introduce various definitions and preliminaries that will
be used throughout the paper. In section III the problem
formulation is given and the main results are presented in
section IV, i.e. characterization of the limiting behaviour of
gradient dynamics. This section also includes an extension to
a class of subgradient dynamics that restrict the trajectories
on affine spaces. This is a technical result that will be used
in Part II to characterize the limiting behaviour of general
subgradient dynamics. The proofs of the results are finally
given in section A.

II. PRELIMINARIES

A. Notation

Real numbers are denoted by R and non-negative real num-
bers as R+. For vectors x, y ∈ Rn the inequality x < y denotes
the corresponding element wise inequality, i.e. xi < yi ∀i,
d(x, y) denotes the Euclidean metric and |x| denotes the
Euclidean norm.

The space of k−times continuously differentiable functions
is denoted by Ck. For a sufficiently differentiable function
f(x, y) : Rn × Rm → R we denote the vector of partial
derivatives of f with respect to x as fx, respectively fy . The
Hessian matrices with respect to x and y are denoted fxx
and fyy , while fxy denotes the matrix of partial derivatives
defined as [fxy]ij := ∂f

∂xi∂yj
. For a vector valued function

g : Rn → Rm we let gx denote the matrix formed by partial
derivatives of the elements of g, i.e. [gx]ij = ∂gi

∂xj
.

For a matrix A ∈ Rn×m we denote its kernel and transpose
by ker(A) and AT respectively. If A is in addition symmetric,
we write A < 0 if A is negative definite.

1) Geometry: For subspaces E ⊆ Rn we denote the or-
thogonal complement as E⊥, and for a set of vectors E ⊆ Rn

we denote their span as span(E), their affine hull as aff(E)
and their convex hull as Conv(E). A set K ⊂ Rn is a bi-
infinite line if it is the affine hull of two points in Rn that
are not identical. The addition of a vector v ∈ Rn and a set
E ⊆ Rn is defined as v + E = {v + u : u ∈ E}.

For a set K ⊂ Rn, we denote the interior, relative interior,
boundary and closure of K as intK, relintK, ∂K and K
respectively, and we say that K and M are orthogonal and
write K ⊥ M if for any two pairs of points k,k′ ∈ K and
m,m′ ∈M , we have (k′ − k)T (m−m′) = 0.

Given a set E ⊆ Rn and a function φ : E → E we say
that φ is an isometry of (E, d) or simply an isometry, if for
all x, y ∈ E we have d(φ(x), φ(y)) = d(x, y).

For x ∈ R, y ∈ R+ we define [x]
+
y = x if y > 0 and

max(0, x) if y = 0.
2) Convex geometry: For a closed convex set K ⊆ Rn and

z ∈ Rn, we define the maximal orthogonal linear manifold to
K through z as

MK(z) = z + span({u− u′ : u,u′ ∈ K})⊥ (1)

and the normal cone to K through z as

NK(z) = {w ∈ Rn : wT (z′ − z) ≤ 0 for all z′ ∈ K}. (2)

When K is an affine space NK(z) is independent of z ∈
K and is denoted NK . If K is in addition non-empty,
then we define the projection of z onto K as PK(z) =
argminw∈K d(z,w).

B. Concave-convex functions and saddle points

Definition 1 (Concave-convex function). Let K ⊆ Rn+m be
non-empty closed and convex. We say that a function ϕ(x, y) :
K → R is concave-convex on K if for any (x′, y′) ∈ K,
ϕ(x, y′) is a concave function of x and ϕ(x′, y) is a convex
function of y. If either the concavity or convexity is always
strict, we say that ϕ is strictly concave-convex on K.
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Definition 2 (Saddle point). For a concave-convex function
ϕ : Rn × Rm → R we say that (x̄, ȳ) ∈ Rn+m is a saddle
point of ϕ if for all x ∈ Rn and y ∈ Rm we have the inequality
ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y).

If ϕ is in addition C1 then (x̄, ȳ) is a saddle point if and
only if ϕx(x̄, ȳ) = 0 and ϕy(x̄, ȳ) = 0.

When we consider a concave-convex function ϕ(x, y) :
Rn×Rm → R we shall denote the pair z = (x, y) ∈ Rn+m in
bold, and write ϕ(z) = ϕ(x, y). The full Hessian matrix will
then be denoted ϕzz. Vectors in Rn+m and matrices acting on
them will be denoted in bold font (e.g. A). Saddle points of
ϕ will be denoted z̄ = (x̄, ȳ) ∈ Rn+m.

C. Dynamical systems

Definition 3 (Flows and semiflows). A triple (φ,X, ρ) is
a flow (resp. semiflow) if (X, ρ) is a metric space, φ is a
continuous map from R × X (resp. R+ × X) to X which
satisfies the two properties

(i) For all x ∈ X , φ(0, x) = x.
(ii) For all x ∈ X , t, s ∈ R (resp. R+),

φ(t+ s, x) = φ(t, φ(s, x)). (3)

When there is no confusion over which (semi)flow is meant,
we shall denote φ(t, x(0)) as x(t), and this will be referred to
as a trajectory of the (semi)flow. For sets A ⊆ R (resp. R+)
and B ⊆ X we define φ(A,B) = {φ(t, x) : t ∈ A, x ∈ B}.

The results in the paper will be associated with semiflows
where (X, ρ) is a Euclidean space.

We say that a trajectory x(t) of a (semi)flow converges to
a trajectory y(t) of the (semi)flow if

ρ(x(t)− y(t))→ 0 as t→∞. (4)

Definition 4 (ω-limit set). Given a (semi)flow (φ,X, ρ), y
is an ω-limit point of a trajectory φ(t, x) if there exists
an unbounded increasing sequence (tn)n=N in R such that
limn→∞ φ(tn, x) = y. The ω-limit set of the (semi)flow is
the set

Ω =
⋃
x∈X
{y : y is an ω-limit point of φ(t, x)} (5)

Definition 5 (Global convergence). We say that a (semi)flow
(φ,X, ρ) is globally convergent, if for all initial conditions
x ∈ X , the trajectory φ(t, x) converges to an equilibrium point
as t→∞.

Definition 6 (Non-expansive semiflow). We say that a semi-
flow (φ,X, ρ) is non-expansive if for any two trajectories
x(t), x′(t) the distance ρ(x(t), x′(t)) is non-increasing in time.

As the subgradient method has a discontinuous vector field
we need the notion of Carathéodory solutions of differential
equations.

Definition 7 (Carathéodory solution). Consider the differential
equation ẋ = f(x) where f : Rn → Rn. Let I be an interval
of R. We say that the function z(t), z : I → Rn is a
Carathéodory solution to the differential equation ẋ = f(x) if

z is an absolutely continuous function of t, and for almost all
times t ∈ I , the derivative ż(t) exists and is equal to f(z(t)).

III. PROBLEM FORMULATION

The main object of study in Part I is the gradient method
on an arbitrary concave-convex function in C2.

Definition 8 (Gradient method). Given ϕ a C2 concave-
convex function on Rn+m, we define the gradient method as
the flow on (Rn+m, d), where d denotes the Euclidean metric,
generated by the differential equation

ẋ = ϕx,

ẏ = −ϕy.
(6)

It is clear that the saddle points of ϕ are exactly the
equilibrium points of (6). The trajectories of the flow, i.e.
solutions of (6) for t ∈ R, will also be referred to as solutions
of the gradient method, or as just solutions of (6).

In our companion paper [18] we study instead the sub-
gradient method where the gradient method (Definition 8) is
restricted to a convex set K by the addition of a projection
term to the differential equation (6).

Definition 9 (Subgradient method). Given a non-empty closed
convex set K ⊆ Rn+m and a function ϕ that is concave-
convex on K and C2 on an open neighbourhood of K, we
define the subgradient method on K as a semiflow on (K, d)
consisting of Carathéodory solutions of

ż = f(z)−PNK(z)(f(z)),

f(z) =

[
ϕx

−ϕy

]
.

(7)

Note that the gradient method is the subgradient method
on Rn+m. It should also be noted that the subgradient method
(7) can be seen as a projected dynamical system with on ODE
given by ż = PTK(z)

(f(z)), where TK(z) is the tangent cone
to K at z (see [4] for various equivalent representations). In
Appendix C we also consider the addition of constant gains
to the gradient and subgradient method.

We briefly summarise below the main contributions of this
paper (Part I).
• We provide an exact characterization of the limiting so-

lutions of the gradient method (6) applied to an arbitrary
concave-convex function in C2. In particular, we show
that these limiting solutions solve an explicit linear ODE.

• We show that the lack of convergence in gradient dy-
namics can lead to a problematic behaviour, in the sense
that arbitrarily small stochastic perturbations lead to an
unbounded second moment for the magnitude of the state
vector when the set of saddle points includes a bi-infinite
line.

• We provide an exact classification of the limiting solu-
tions of the subgradient method on affine subspaces by
extending the result described in the first bullet point.
This will be important for the analysis of general subgra-
dient dynamics considered in Part II [18]. In particular,
we show in Part II that the limiting behaviour of the
subgradient method on arbitrary convex domains reduces
to the limiting behaviour on affine subspaces.
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IV. MAIN RESULTS

This section includes the main results of the paper. Before
presenting those some known results in the literature are stated.

A known property of the gradient method (6) is the fact that
it is non-expansive, which is stated below as Lemma 10. This
follows from the fact that the negative of the right-hand side
in (6) is maximal monotone [31], [15].

Lemma 10. Let ϕ be C1 and concave-convex on Rn+m, then
the gradient method (6) is non-expansive.

Since saddle points are equilibrium points of the gradient
method the result below immediately follows1.

Corollary 11. Let ϕ be C1 and concave-convex on Rn+m,
then the distance of a solution of (6) to any saddle point is
non-increasing in time.

The non-expansive property also allows to deduce the
following Corollary. Note that the notion of convergence to
a solution in Corollary 12 (see its definition in (4)) is stronger
than that of convergence to a set.

Corollary 12. Let ϕ be C1, concave-convex on Rn+m and
have at least one saddle point. Then each solution of (6)
converges to a solution of (6) which has constant distance
from any saddle point for all t ∈ R.

Thus classifying the limiting behaviour of the gradient
method reduces to the problem of finding all solutions that lie a
constant distance from any saddle point. In order to facilitate
the presentation of the results, for a given concave-convex
function ϕ we define the following sets:
• S̄ will denote the set of saddle points of ϕ.
• S will denote the set of solutions to (6) that are a constant

distance from any saddle point of ϕ for all t ∈ R.
Note that if S̄ = S 6= ∅ then Corollary 12 gives the

convergence of the gradient method to a saddle point.
Our first main result is that solutions of the gradient method

converge to solutions that satisfy an explicit linear ODE.
To present our results we define the following matrices of

partial derivatives of ϕ

A(z) =

[
0 ϕxy(z)

−ϕyx(z) 0

]
B(z) =

[
ϕxx(z) 0

0 −ϕyy(z)

]
.

(8)

For simplicity of notation we shall state the result for 0 ∈ S̄;
the general case may be obtained by a translation of coordi-
nates.

Theorem 13. Let ϕ be C2 and concave-convex on Rn+m. Let
0 ∈ S̄. Then all solutions in S solve the linear ODE:

ż(t) = A(0)z(t). (9)

Furthermore, a solution z(t) to (9) is in S if and only if for
all t ∈ R and r ∈ [0, 1],

z(t) ∈ ker(B(rz(t))) ∩ ker(A(rz(t))−A(0)) (10)

1See also Figure 1 in Appendix A for a graphical illustration.

where A(z) and B(z) are defined by (8).

The proof of Theorem 13 is provided in Appendix A and
Appendix B. The significance of this result is discussed in the
remarks below.

Remark 14. It should be noted that despite the non-linearity
of the gradient dynamics (6), the limiting solutions solve a
linear ODE with explicit coefficients depending only on the
derivatives of ϕ at the saddle point.

Remark 15. An important consequence of this exact charac-
terisation of the limiting behaviour, is the fact that the problem
of proving global convergence to a saddle point is reduced to
that of showing that there are no non-trivial limiting solutions.

Remark 16. Condition (10) appears to be very hard to check,
as it requires knowledge of the trajectory for all times t ∈ R.
However, when the aim is to prove convergence to an equi-
librium point, the form of condition (10) makes the stability
condition more powerful, as it makes it easier to prove that
non-trivial trajectories do not satisfy the condition. In partic-
ular, for various classes of gradient dynamics, the structure of
matrices A(z) and B(z) are often sufficient to deduce that
(9), (10) are only satisfied by saddle points, without explicitly
knowing those a priory, thus proving global convergence to
a saddle point. Such examples will be discussed in part II of
this manuscript, and include modifications that ensure global
convergence to a saddle point. An application of such a
modification to the problem of multipath routing will also be
discussed in part II.

Remark 17 (Localisation). The conditions in the Theorem use
only local information about the concave-convex function ϕ,
in the sense that if ϕ is only concave-convex on a convex
subset K ⊆ Rn+m which contains 0, then any trajectory z(t)
of the gradient method (6) that lies a constant distance from
any equilibrium point in K and does not leave K at any time
t will obey the conditions of the theorem.

Remark 18. The main significance of the exact characteriza-
tion of the limiting behaviour of gradient method in Theorem
13 is the fact that it has a natural generalization to subgradient
dynamics on affine subspaces (presented in section IV-A),
which can be used to characterize the limiting solutions of
the subgradient method. The latter is a more involved problem
due to the non-smoothness of the dynamics and is addressed
in part II of this manuscript.

Remark 19. One of the results proved in Appendix B is the
fact that the set S is convex (Proposition2 34). From this it
follows that global convergence of the gradient method can be
deduced from only local convergence properties about one of
the saddle points. This is stated below as Lemma 20 which is
proved in Appendix B.

Lemma 20. Let ϕ be C2, concave-convex on Rn+m, and let
z̄ be a saddle point. Then the gradient method (6) is globally
convergent if and only if there exists a neighbourhoud N of z̄
such that trajectories with initial condition in N converge to
a saddle point.

2This result is also generalized in part II to non-expansive semiflows.
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From Theorem 13 we deduce some further results that give
a more easily understandable classification of the limiting
solutions of the gradient method for simpler forms of ϕ.

In particular, the ‘linear’ case occurs when ϕ is a quadratic
function, as then the gradient method (6) is a linear system of
ODEs. In this case S has a simple explicit form in terms of
the Hessian matrix of ϕ at 0 ∈ S̄, and in general this provides
an inclusion as described below, which can be used to prove
global convergence of the gradient method using only local
analysis at a saddle point.

Theorem 21. Let ϕ be C2, concave-convex on Rn+m and
0 ∈ S̄. Then define

Slinear =span{v∈ker(B) :v is an eigenvector of A} (11)

where A = A(0) and B = B(0) in (8). Then S ⊆ Slinear with
equality if ϕ is a quadratic function.

The proof of Theorem 21 is provided in Appendix B.
Here we draw an analogy with the recent study [2] on the
discrete time gradient method in the quadratic case. There the
gradient method is proved to be semi-convergent if and only if
ker(B) = ker(A+B), i.e. if Slinear ⊆ S̄. Theorem 21 includes
a continuous time version of this statement.

We next consider the effect of noise when oscillatory
solutions occur, and show that arbitrarily small stochastic
perturbations lead to an unbounded second moment for the
magnitude of the state vector when the set of saddle points
includes a bi-infinite line. In particular, we consider the
addition of white noise to the dynamics (6). This leads to
the following stochastic differential equations

dx(t) = ϕxdt+ ΣxdBx(t)

dy(t) = −ϕydt+ ΣydBy(t)
(12)

where Bx(t), By(t) are independent standard Brownian mo-
tions in Rn,Rm respectively, and Σx,Σy are positive definite
symmetric matrices in Rn×n,Rm×m respectively.

Theorem 22. Let ϕ ∈ C2 be concave-convex on Rn+m. Let
0 ∈ S̄ and S contain a bi-infinite line. Consider the noisy
dynamics (12). Then, for any initial condition

E|z(t)|2 →∞ as t→∞ (13)

where z = (x, y) and E denotes the expectation operator.

The proof of Theorem 22 is provided in Appendix B. The
condition that S contains a bi-infinite line is satisfied, for
example, if the set S is not just a single point and ϕ is a
quadratic function, and can occur in applications, e.g. in the
multi-path routing example given in our companion paper [18].

One of the main applications of the gradient method is
to provide convergence to a saddle point of a Lagrangian
following from a concave optimization problem where some
of the constraints are relaxed by Lagrange multipliers. When
all the relaxed constraints are linear, the Lagrangian ϕ has the
form

ϕ(x, y) = U(x) + yT (Dx+ e) (14)

where U(x) is a concave cost function, y are the Lagrange
multipliers, and D, e are a constant matrix and vector re-
spectively associated with the equality constraints. Under

the assumption that U is analytic we obtain a simple exact
characterisation of S. One specific case of this was studied
by the authors previously in [17], but without the analyticity
condition.

Theorem 23. Let ϕ be defined by (14) with U analytic and
D ∈ Rm×n, e ∈ Rm constant. Assume that (x̄, ȳ) = z̄ is a
saddle point of ϕ. Then S is given by

S = z̄ + span{(x, y) ∈ W × Rm : (x, y) is

an eigenvector of
[

0 DT

−D 0

]}
(15)

W = {x ∈ Rn : s 7→ U(sx+ x̄) is linear for s ∈ R}.

Furthermore W is an affine subspace.

The proof of Theorem 23 is provided in Appendix B.

Remark 24. It should be noted that a simple characterization of
S as in Theorem 21 and Theorem 23 is not always necessary in
order to prove global convergence to a saddle point by means
of Theorem 13. For example, in the modification methods
discussed in part II the structure of the matrices A(z) and
B(z) are sufficient to deduce global convergence.

A. The subgradient method on affine subspaces

We now extend the exact classification (Theorem 13) to the
subgradient method on affine subspaces. The significance of
this result is that it allows to provide a characterization of the
limiting behaviour of the subgradient method in any convex
domain. In particular, one of the main results that will be
proved in Part II of this work is the fact that the limiting
behaviour of the subgradient method on a general convex
domain, when an equilibrium point exists, are solutions to
subgradient dynamics on only affine subspaces.

In order to consider subgradient dynamics on an affine
subspace, we let V be an affine subspace of Rn+m and let
Π ∈ R(n+m)2 be the orthogonal projection matrix onto the
orthogonal complement of the normal cone NV . Then the
subgradient method (7) on V is given by

ż= f(z)−PNV
(f(z))

= Πf(z) (16)

where f(z) =
[
ϕx −ϕy

]T
. We generalise Theorem 13 for this

projected form of the gradient method. As with the statement
of Theorem 13, we state the result for 0 being an equilibrium
point; the general case may be obtained by a translation of
coordinates.

Theorem 25. Let Π ∈ R(n+m)2 be an orthogonal projection
matrix, ϕ be C2 and concave-convex on Rn+m, and 0 be an
equilibrium point of (16). Then the trajectories z(t) of (16)
that lie a constant distance from any equilibrium point of (16)
are exactly the solutions to the linear ODE:

ż(t) = ΠA(0)Πz(t) (17)

that satisfy, for all t ∈ R and r ∈ [0, 1], the condition

z(t) ∈ ker(ΠB(rz(t))Π)∩ker(Π(A(rz(t))−A(0))Π) (18)
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where A(z) and B(z) are defined by (8).

The proof of Theorem 25 is provided in Appendix B.
The following Corollary follows from Theorem 25 (and

Theorem 13) and its proof and is associated with the case
φ is concave-convex only in a convex set K in Rn+m.

Corollary 26. Let φ be concave-convex on a convex set K ⊆
Rn+m, and C2 on an open neighbourhood of K. Let 0 ∈ K,
and 0 be an equilibrium point of (16). Then the trajectories
z(t) of (16) that lie in K for all t ∈ R and are a constant
distance from any equilibrium point of (16) in K, satisfy (17)
and condition (18).

B. Applications

In many applications associated with saddle point problems,
the variables need to be constrained in prescribed domains.
These include, for example, positivity constraints on dual
variables in optimization problems where some of the in-
equality constraints are relaxed with Lagrange multipliers, or
more general convex constraints on primal variables. Therefore
applications will be studied in Part II of this work where
subgradient dynamics will be analyzed3. It should be noted,
that apart from their significance for saddle point problems
without constraints4, the main significance of the results in
Part I is that they also lead to a characterization of the
asymptotic behaviour of subgradient dynamics, as mentioned
in section IV-A.

V. CONCLUSION

We have considered in Part I the problem of convergence to
a saddle point of a general concave-convex function in C2 via
gradient dynamics. We have provided an exact characterization
to the asymptotic behaviour of such dynamics, and have shown
that despite their nonlinearity, convergence is guaranteed to
trajectories that satisfy an explicit linear ODE. We have also
shown that when convergence to a saddle point is not ensured
then the behaviour of such dynamics can be problematic,
with arbitrarily small noise leading to an unbounded second
moment for the magnitude of the state vector when the set
of sadddle points includes a bi-infinite line. These results
have also been extended to subgradient dynamics on affine
subspaces, where an exact characterization of their asymptotic
behaviour as linear ODEs has also been derived. This class
of dynamics will be used as a basis for the results in Part
II. In particular, it will be shown in Part II that subgradient
dynamics on a general convex domain that have an equilibrium
point, have an ω-limit set that consists of trajectories that are
solutions to subgradient dynamics on only affine subspaces.
Various examples and applications will also be presented in
Part II.

3It should be noted that there are classes of constrained optimization
problems that can also be solved by means of smooth dynamics, such as
the dynamics proposed in [12].

4Note that these include also dual versions of optimization problems with
equality constraints.
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[12] H.-B. Dörr, E. Saka, and C. Ebenbauer. A smooth vector field for
quadratic programming. In IEEE Conference on Decision and Control,
pages 2515–2520, 2012.

[13] B. Gharesifard and J. Cortés. Distributed convergence to Nash equilibria
in two-network zero-sum games. Automatica, 49(6):1683–1692, 2013.

[14] B. Gharesifard and J. Cortés. Distributed continuous-time convex opti-
mization on weight-balanced digraphs. IEEE Transactions on Automatic
Control, 59(3):781–786, 2014.

[15] R. Goebel. Stability and robustness for saddle-point dynamics through
monotone mappings. Systems & Control Letters, 108:16–22, 2017.

[16] T. Holding and I. Lestas. On the convergence to saddle points
of concave-convex functions, the gradient method and emergence of
oscillations. In 53rd IEEE Conference on Decision and Control, 2014.

[17] T. Holding and I. Lestas. On the emergence of oscillations in distributed
resource allocation. Automatica, 85:22–33, 2017.

[18] T. Holding and I. Lestas. Stability and instability in saddle point
dynaimcs Part II: The subgradient method. IEEE Transactions on
Automatic Control, 2020.

[19] L. Hurwicz. The design of mechanisms for resource allocation. The
American Economic Review, 63(2):1–30, May 1973.

[20] A. Kasis, E. Devane, C. Spanias, and I. Lestas. Primary frequency
regulation with load-side participation Part I: Stability and Optimality.
IEEE Transactions on Power Systems, 32(5):3505–3518, 2017.

[21] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability. Journal
of the Operational Research Society, 49(3):237–252, March 1998.

[22] I. Lestas and G. Vinnicombe. Combined control of routing and flow: a
multipath routing approach. In 43rd IEEE Conference on Decision and
Control, December 2004.

[23] N. Li, C. Zhao, and L. Chen. Connecting automatic generation control
and economic dispatch from an optimization view. IEEE Transactions
on Control of Network Systems, 3(3):254–264, 2016.

[24] S. H. Low and D. E. Lapsley. Optimization flow controlI: basic algorithm
and convergence. IEEE/ACM Transactions on Networking, 7(6):861–
874, 1999.

[25] J. Lygeros, K. H. Johansson, Slobodan N. Simić, J. Zhang, and S. S.
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APPENDIX

In appendices A and B we prove the main results of the
paper which are stated in section IV.

We first give a brief outline of the derivations of the results
to improve their readability. Before we give this summary we
define some additional notation.

Given z̄ ∈ S̄, we denote the set of solutions to the gradient
method (6) that are a constant distance from z̄ (but not
necessarily other saddle points) for all t ∈ R, as Sz̄. It is later
proved that Sz̄ = S but until then the distinction is important.

Outline of Proofs:

• First in Appendix A we use the non-expansive property
of the gradient method (Lemma 10) and geometric argu-
ments to establish convexity properties of S. Lemma 29
states that S̄ can only contain bi-infinite lines in degen-
erate cases. Lemma 30 gives an orthogonality condition
between S and S̄ which roughly says that the larger S̄
is, the smaller S is. Lemma 31 (its proof makes use of
Lemma 28) states that trajectories in Sz̄ that lie in a
linear manifold orthogonal to S̄ are in S. These allow
us to prove the key result of the section, Lemma 32,
which states that any convex combination of z̄ ∈ S̄ and
z(t) ∈ Sz̄ lies in Sz̄.

• In Appendix B we use the geometric results of Ap-
pendix A to prove Theorems 13, 21.
To prove Theorem 22 we first prove Lemma 35 (analo-
gous to Lemma 29) that tells us that S containing a bi-
infinite line implies the presence of a quantity conserved
by all solutions of the gradient dynamics (6). In the
presence of noise, the average value of this quantity
converges to infinity and allows us to prove Theorem 22.
To prove Theorem 23 we construct a quantity V (z) that
is conserved by solutions in S. In the case considered this
has a natural interpretation in terms of the utility function
U(x) and the constraints g(x).
Finally Theorem 25 is proved by modifying the proof
of Theorem 13 to take into account the addition of the
projection matrix.

APPENDIX A
GEOMETRY OF S̄ AND S

In this section we will use the gradient method to derive
geometric properties of convex-concave functions. We will
start with some simple results which are then used as a basis
to derive Lemma 32 the main result of this section.

We first provide a proof for Corollary 12 associated with
the convergence of all solutions of the gradient method to
solutions of the gradient method in the set S.

Proof of Corollary 12. The Corollary follows from a result
proved in part II for non-expansive semiflows (Corollary 16
in part II), that shows convergence to a trajectory in the ω-
limit set of the semiflow (denoted as Ω). From Proposition 14
in part II, it follows that all trajectories in Ω are a constant
distance from any equilibirum point for all t ∈ R. Since in
(6) saddle points are equilibrium points this proves Corol-
lary 12.

Remark 27. It should also be noted that convergence to the
set of solutions of (6) that lie a constant distance from any
saddle point (rather than to an individual solution) can also
be deduced by an application of Lasalle’s invariance principle
with |z(t) − z̄|2 as the Lyapunov like function, where z̄ is a
saddle point.

Lemma 28 ([30]). Let ϕ ∈ C1 be concave-convex on Rn+m,
then S̄, the set of saddle points of ϕ, is closed and convex.

z

ā b̄
L

Fig. 1. ā and b̄ are two saddle points of function ϕ in (6). Solutions of (6)
are constrained to lie in the shaded region for all positive time by Lemma 10.

L

z

z + sb

Fig. 2. L is a line of saddle points of function ϕ in (6). Solutions of (6)
starting on hyperplanes normal to L are constrained to lie on these planes
for all time. z lies on one normal hyperplane, and z + sb lies on another.
Considering the solutions of (6) starting from each we see that by Lemma 10
the distance between these two solutions must be constant and equal to |sb|.
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Lemma 29. Let ϕ be C1 and concave-convex on Rn+m. Let
the set of saddle points of ϕ contain the infinite line L =
{a+sb : s ∈ R} for some a,b ∈ Rn+m. Then ϕ is translation
invariant in the direction of L, i.e. ϕ(z) = ϕ(z + sb) for any
s ∈ R.

Proof. We do this in two steps. First we will prove that the
motion of the gradient method is restricted to linear manifolds
normal to L. Let z be a point and consider the motion of the
gradient method starting from z. As illustrated in Figure 1
we pick two saddle points ā, b̄ on L, then by Lemma 10 the
motion starting from z is constrained to lie in the (shaded)
region, which is the intersection of the two closed balls about
ā and b̄ which have z on their boundaries. The intersection
of all such regions generated by a sequence of pairs of saddle
points on L each tending to infinity on opposite directions
along L, is contained in the linear manifold normal to L that
contains z.

Next we claim that for s ∈ R the motion starting from
z+sb is exactly the motion starting from z shifted by sb. As
illustrated in Figure 2, by Lemma 10 the motion from z + sb
must stay a constant distance s|b| from the motion from z.
This uniquely identifies the motion from z + sb and proves
the claim. Finally we deduce the full result by noting that
the second claim implies that ϕ is defined up to an additive
constant on each linear manifold as the motion of the gradient
method contains all the information about the derivatives of
ϕ. As ϕ is constant on L, the proof is complete.

We now use these techniques to prove orthogonality results
about solutions in S.

Lemma 30. Let ϕ ∈ C1 be concave-convex on Rn+m, and
z be a trajectory in S, then z(t) ∈ MS̄(z(0)) for all t ∈ R,
where MS̄(z(0)) denotes the manifold defined in (1).

Proof. If S̄ = {z̄} or ∅ the claim is trivial. Otherwise we let
ā 6= b̄ ∈ S̄ be arbitrary, and consider the spheres centred at
ā and b̄, respectively, that each have the point z(t) on their
boundary. By Lemma 10, z(t) is constrained to lie on the
intersection of these two spheres which lies inside ML(z(0))
where L is the line segment between ā and b̄. As ā and b̄
were arbitrary this proves the lemma.

Lemma 31. Let ϕ be C1 and concave-convex on Rn+m, z̄ ∈ S̄
and z(t) ∈ Sz̄ lie in MS̄(z(0)) for all t. Then z(t) ∈ S.

Proof. If S̄ = {z̄} the claim is trivial. Let ā ∈ S̄ \ {z̄} be
arbitrary. Then by Lemma 28 the line segment L between ā
and z̄ lies in S̄. Let b be the point of intersection between
the line that includes the line segment L, and MS̄(z(0)). Then
the definition of MS̄(z(0)) tells us that the this line meets
MS̄(z(0)) at a right angles. d(b, z̄) is constant and d(z(t), z̄)
is constant as z(t) ∈ Sz̄, which implies that d(z(t), ā) is also
constant (as illustrated in Figure 3). Indeed, we have

d(z(t), ā)2 = d(z(t),b)2 + d(b, ā)2

= d(z(t), z̄)2 − d(b, z̄)2 + d(b, ā)2
(19)

and all the terms on the right hand side are constant.

b
ā z̄L

z

MS̄(z)

Fig. 3. ā and z̄ are saddle points of ϕ in (6), and L is the line segment
between them. z is a point on a solution in Sz̄ which lies on MS̄(z) which
is orthogonal to L by definition. b is the point of intersection between MS̄(z)
and the extension of L.

Using these orthogonality results we prove the key result of
the section, a convexity result between Sz̄ and z̄.

Lemma 32. Let ϕ be C1 and concave-convex on Rn+m, z̄ ∈ S̄
and z(t) ∈ Sz̄. Then for any s ∈ [0, 1], the convex combination
z′(t) = (1− s)z̄ + sz(t) lies in Sz̄. If in addition z ∈ S, then
z′(t) ∈ S.

Proof. Clearly z′ is a constant distance from z̄. We must show
that z′(t) is also a solution to (6). We argue in a similar way
to Figure 2 but with spheres instead of planes. Let the solution
to (6) starting at z′(0) be denoted z′′(t). We must show this
is equal to z′(t). As z(t) ∈ S it lies on a sphere about z̄,
say of radius r, and by construction z′(0) lies on a smaller
sphere about z̄ of radius rs. By Lemma 10, d(z(t), z′′(t)) and
d(z′′(t), z̄) are non-increasing, so that z′′(t) must be within rs
of z̄ and within r(1−s) of z(t). The only such point is z′(t) =
(1 − s)z̄ + sz(t) which proves the claim. For the additional
statement, we consider another saddle point ā ∈ S̄ and let L
be the line segment connecting ā and z̄. By Lemma 30, z(t)
lies in MS̄(z(0)), so by construction, z′(t) ∈ MS̄(z′(0)), (as
illustrated by Figure 4). Hence, by Lemma 31, z′(t) ∈ S.

z̄

z
z′

MS̄(z) MS̄(z′)

Fig. 4. z̄ is a saddle point of ϕ in (6). z is a point on a solution in S and
z′ is a convex combination of z and z̄. MS̄(z) and MS̄(z′) are parallel to
each other by definition.

In Appendix B we also prove that the set S is convex (stated
as Proposition 34).
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APPENDIX B
CLASSIFICATION OF S

We will now proceed with a full classification of S and
prove Theorems 13-25.

A. The set S as solutions of linear ODEs

For notational convenience we will make the assumption
(without loss of generality) that 0 ∈ S̄. Then we compute
ϕx(z), ϕy(z) from line integrals from 0 to z. Indeed, letting
ẑ be a unit vector parallel to z, we have[

ϕx(z)
−ϕy(z)

]
=

(∫ |z|
0

[
ϕxx(sẑ) ϕxy(sẑ)
−ϕyx(sẑ) −ϕyy(sẑ)

]
ds

)
ẑ. (20)

Together with the definition of the matrices A(z) and B(z)
given by (8) we obtain[

ϕx(z)
−ϕy(z)

]
=

∫ |z|
0

(A(sẑ) + B(sẑ))ẑ ds. (21)

We are now ready to prove the first main result. The proof
makes use of the representation in (21) and Lemma 32.

Proof of Theorem 13. Define the set X as solutions of the
ODE (9) which obey the condition (10) for all t ∈ R and
r ∈ [0, 1]. Then Theorem 13 is the statement that X = S. For
brevity we define the matrix B′(z) by

B′(z) = B(z) + (A(z)−A(0)). (22)

As A(z) is skew symmetric and B(z) is symmetric we have
ker(B′(z)) = ker(B(z))∩ker(A(z)−A(0)), so that condition
(10) is equivalent to

z(t) ∈ ker(B′(rz(t))) for all t ∈ R, r ∈ [0, 1]. (23)

We will prove that X ⊆ S0, X ⊆ S and S0 ⊆ X . As the
other inclusion S ⊆ S0 is clear this will prove the theorem.

Step 1: X ⊆ S0. For any non-zero point z we can compute
the partial derivatives of ϕ at z using the line integral formula
(21) and (22),[

ϕx(z)
−ϕy(z)

]
= A(0)z +

∫ |z|
0

B′(sẑ)ẑds (24)

where z = |z|ẑ. If z(t) ∈ X , then ż(t) = A(0)z(t), and
by skew-symmetry of A(0), |z(t)| is constant, which means
that z(t) is a constant distance from 0. Furthermore, the
assumption that z(t) ∈ ker(B′(rz(t))) for r ∈ [0, 1] implies
that the integrand in (24) vanishes, and z(t) is a solution of
the gradient method.

Step 2: X ⊆ S. Let z̄ be arbitrary. Consider the function
t 7→ d(z(t), z̄)2 for a z(t) ∈ X . Since z(t) satisfies the
linear ODE ż(t) = A(0)z(t), where A(0) is skew-symmetric
it is a linear combination of periodic functions. Therefore
the function t 7→ d(z(t), z̄)2 is also a linear combination
of periodic functions and is hence almost periodic [3]. Fur-
thermore, as noted in Step 1, z(t) is a solution of the
gradient method and hence the function t 7→ d(z(t), z̄)2 is
non-increasing from Lemma 10. From the above it follows
that this function is constant. More precisely, if there exist
t1, t2 ∈ R s.t. d(z(t1), z̄)2 − d(z(t2), z̄)2 ≥ ε for some

ε > 0 then from the non-increasing property t1 < t2 and
d(z(t), z̄)2 − d(z(t1), z̄)2 ≥ ε for all t ≤ t1. This implies
that d(z(t), z(t1) > ε̃ for all t ≤ t1 for some ε̃ > 0, which
contradicts almost periodicity.

Step 3: S0 ⊆ X . Let z(t) ∈ S0 and R = |z(t)| which is
constant. For r ∈ [0, R], define z(t; r) = (r/R)z(t), so that
z(t; 0) = 0 and z(t;R) = z(t). Note that the corresponding
unit vector ẑ(t; r) = ẑ(t) does not depend on r. The convexity
result Lemma 32 implies that z(t; r) ∈ S0, and is a solution
of the gradient method. We shall compute the time derivative
of this in two ways. First, we use (6) and (24) to obtain,

ż(t; r) = A(0)z(t; r) +

∫ r

0

B′(sẑ(t))ẑ(t) ds. (25)

Second, we use the explicit definition of z(t; r) in terms of
z(t) to obtain,

ż(t; r) =
r

R
A(0)z(t) +

r

R

∫ R

0

B′(sẑ(t))ẑ(t) ds. (26)

Equating (25) and (26) we deduce that∫ r

0

B′(sẑ(t))ẑ(t) ds =
r

R

∫ R

0

B′(sẑ(t))ẑ(t) ds. (27)

Differentiating with respect to r we have,

B′(rẑ(t))ẑ(t) =
1

R

∫ R

0

B′(sẑ(t))ẑ(t) ds. (28)

The right hand side of this is independent of r, which implies
that the left hand side is also independent of r, and is thus
equal to its value at r = 0, so that

B′(rẑ(t))ẑ(t) = B′(0)ẑ(t) = B(0)ẑ(t). (29)

Putting this back into our expression for ż we find that

ż(t) = A(0)z(t) + B(0)z(t), (30)

but as |z(t)| is constant, A(0) skew symmetric, and B(0)
symmetric, B(0)z(t) must vanish, which, together with (29)
shows that z(t) ∈ X .

B. Convexity of S and Lemma 20

The following Lemma follows directly from Theorem 13
and will be used to prove Proposition 34, which states that
the set S is convex.

Lemma 33. Let ϕ be C2 and concave-convex on Rn+m. Let
z(t), z′(t) ∈ S. Then d(z(t), z′(t)) is constant.

Proof. Using Theorem 13 we have that z(t) − z′(t) =
etA(0)(z(0) − z′(0)) which has constant magnitude as A(0)
is skew symmetric.

Proposition 34. Let ϕ be C2 and concave-convex on Rn+m,
then S is convex.

Proof. The proof is very similar to that of Lemma 32. Let
z(t), z′(t) ∈ S, and s ∈ (0, 1). Set w(t) = sz(t)+(1−s)z′(t).
By Lemma 33 we know that d = d(z(t), z′(t)) is constant.
Denote the solution of the gradient method starting from w(0)
as w′(t). We must prove that w′(t) = w(t) and that w(t) ∈ S.



10

First we imagine two closed balls centered on z(t) and z′(t)
and of radii sd and (1 − s)d respectively. By Lemma 10,
w′(t) is constrained to lie within both of these balls. For each
t there is only one such point and it is exactly w(t). Next
we let ā ∈ S̄ be arbitrary, then d(ā,w(t)) is determined
by d(z(t), z′(t)), d(ā, z) and d(ā, z′(t)), (as illustrated by
Figure 5). Indeed, we may assume by translation that ā = 0,
and then

d(ā,w(t))2 = d(0, z(t) + (1− s)z′(t))2

= s2d(0, z(t))2 +(1−s)2d(0, z′(t))2 −2s(1−s)zT (t)z′(t)
(31)

The first two terms in (31) are constant by Lemma 33 and the
third can be computed as

2zT (t)z′(t) = d(z(t), z′(t))2−d(0, z(t))2−d(0, z′(t))2 (32)

which is constant for the same reason.

ā

z

z′

w

Fig. 5. z and z′ are two elements of S and w is a convex combination of
them. ā is a saddle point in S̄. We know all the distances are constant except
possibly d(w, ā), but this is uniquely determined by the other four distances.

Proof of Lemma 20. The only if part is trivial. To prove the
if part, assume there exists a trajectory in S that is not a
saddle point, i.e. it is at a constant non-zero distance from
each saddle point. Since saddle points are in S, the convexity
of S (Proposition 34) implies the existence of trajectories in S
that are not saddle points and can be chosen to be arbitrarily
close to the saddle point z̄. This contradicts the assumption in
Lemma 20. Therefore if the assumption in Lemma 20 holds
then the set S consists only of saddle points, and hence from
Corollary 12 for all initial conditions we have convergence to
a saddle point as t→∞.

C. Unbounded second moment

To prove Theorem 22 we require the following lemma
which shows the existence of a conserved quantity of the
gradient dynamics.

Lemma 35. Let ϕ be C2 and concave-convex on Rn+m. Sup-
pose that S contains a bi-infinite line L = {a + sv : s ∈ R}.
Assume that 0 ∈ S̄. Then W (t; z) = |(etA(0)v)T z|2 is a
conserved quantity for any solution z of (6).

Proof. As S is closed and convex (Proposition 34) we may
assume that the line passes though the origin and take a = 0.
Let v(t) = etA(0)v and note that λv(t) is a solution to the
gradient method (6) by Theorem 13 for any λ ∈ R. We follow
the strategy of the first part of the proof of Lemma 29 with
−λv(t), λv(t) replacing the saddle points ā,b̄. Indeed, let z(t)

be any solution to (6) and let λ′ = vT z(0). Then for any t ≥ 0,
Lemma 10 implies that z(t) must satisfy

d(±λv(t), z(t)) ≤ d(±λv(0), z(0)), (33)

where by ± we mean that the equation holds for each of + and
−. In the same way as in the proof of Lemma 29, taking the
intersection of these balls for a sequence λ → ∞ we deduce
that z(t) is contained in the linear manifold normal to the line
through the origin and v(t), and passing through λ′v(t)/|v|2.
Indeed, by squaring (33) and expanding we obtain

|z(t)|2 ∓ 2λv(t)T z(t) ≤ |z(0)|2 ∓ 2λv(0)T z(0).

By dividing through by λ and taking the limit λ → ∞ we
deduce that v(t)T z(t) is equal to v(0)T z(0) which implies
that W (t; z) is conserved.

Proof of Theorem 22. Consider the conserved quantity
W (t; z) given by Lemma 35. Applying Itō’s lemma and
taking expectations, we have

d

dt
EW (t; z(t)) = EẆ (t; z(t)) + 1

2ETr(ΣTWzzΣ)

where Σ = diag(Σx,Σy), Ẇ is the total derivative along the
deterministic flow (6) and Tr is the trace operator. As W is
conserved along the deterministic flow, Ẇ = 0 and a simple
computation shows that the second term is independent of z
and bounded below by a strictly positive constant. Therefore
EW (t; z(t)) grows at least linearly in time. It remains to
note that W (t; z) ≤ |etA(0)v|2|z|2 ≤ |v|2|z|2, so that
|z(t)|2 ≥ cW (t; z(t)) for a constant c > 0. This implies
that also E|z(t)|2 → ∞ and completes the proof of the
proposition.

D. Proof of Theorem 21 and Theorem 23

To prove Theorem 21 and Theorem 23 we make use of
the following result that follows easily from linear algebra
arguments.

Lemma 36. Let X be a linear subspace of Rn and A ∈ Rn×n

a normal matrix. Let

Y = span{v ∈ X : v is an eigenvector of A}. (34)

Then Y is the largest subset of X that is invariant under A.

We note that invariance of a subspace under A is equivalent
to invariance of the subspace under etA.

Proof of Theorem 21. Step 1: Slinear ⊆ S when ϕ is a
quadratic function. We will use the characterisation of S
given by Theorem 13. By Lemma 36, Slinear is invariant under
etA(0), so that z(0) ∈ Slinear =⇒ z(t) = etA(0)z(0) ∈ Slinear.
Hence if z(0) ∈ Slinear then z(t) ∈ ker(B′(0)) for all time t,
and as ϕ is a quadratic function, B′(z) is constant, so this is
enough to show Slinear ⊆ S.

Step 2: S ⊆ Slinear. Let z(t) ∈ S , then by Theorem 13
taking r = 0 we have z(t) = etA(0) ∈ ker(B′(0)) for all
t ∈ R. Thus S lies inside the largest subset of ker(B′(0)) that
is invariant under the action of the group etA(0), which by
Lemma 36 is exactly Slinear.
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In order to prove Theorem 23 we give a different in-
terpretation of the condition in Theorem 13. The condition
z ∈ ker(B(sz)) for all s ∈ [0, 1] looks like a line integral
condition. Indeed, if we define a function V (z) by

V (z) = zT
(∫ 1

0

∫ 1

0

B(ss′z)s ds′ ds

)
z (35)

then as B(z) is symmetric negative semi-definite we have that
V (z) = 0 if and only if z ∈ ker(B(sz)) for every s ∈ [0, 1].
This still leaves the condition z ∈ ker(A(sz)−A(0)) for all
s ∈ [0, 1], and the function V has no natural interpretation
in general. However in the specific case where ϕ is the
Lagrangian of a concave optimization problem where the
relaxed constraints are linear, we do have an interpretation. In
this case the assumption that 0 is a saddle point is no longer
generic and we must translate coordinates explicitly. Let the
Lagrangian of the optimization problem be given by

ϕ(x′, y′) = U ′(x′) + y′
T
g′(x′)

U ′ ∈ C2 and concave, g′ linear with g′x = D.
(36)

We pick a saddle point (x̄′, ȳ′), and shift to new coordinates
(x, y) = (x′ − x̄′, y′ − ȳ′) so that (0, 0) is a saddle point in
the new coordinates. After expanding we obtain

ϕ(x, y) = (U ′(x+ x̄′) + ȳ′T g′(x+ x̄′)) + yT g′(x+ x̄′) (37)

which is a Lagrangian originating from the utility function

U(x) = U ′(x+ x̄′) + ȳ′T g′(x+ x̄′) (38)

and constraints g(x) = g′(x+ x̄′). Without loss of generality
we assume that U(0) = 0. As g(x) is a linear function we
have

B(z) =

[
Uxx(x) 0

0 0

]
(39)

so that V (z) is independent of y, and in fact by direct
computation we have V (z) = U(x). This leads us to the
following lemma.

Lemma 37. Let (36) hold. Then S is the largest subset of
U−1({0}) × Rm = {(x, y) ∈ Rn+m : U(x) = 0} that is
invariant under evolution by the group etA(0), where U is
given by (38).

Proof. Denote the set defined in the lemma as Y .
Step 1: S ⊆ Y . By the computation above we know that

z ∈ U−1({0}) × Rm if and only if z ∈ ker(B(sz)) for all
s ∈ [0, 1]. Thus by Theorem 13, we have S ⊆ U−1({0})×Rm

as S is invariant under the action of etA(0).
Step 2: Y ⊆ S . If z(0) is in the largest subset of

U−1({0}) × Rm invariant under the action of etA(0), then
z(t) is in this set for all t ∈ R. Defining z(t) = etA(0)z(0),
we have z(t) ∈ ker(B(sz(t))) for all s ∈ [0, 1], so z(t) ∈ S
by Theorem 13.

To obtain a more exact expression for S, we make use of
the assumption that U is analytic.

Lemma 38. Let (36) hold and in addition U given by (38) be
analytic. Then

(i) U−1({0}) = span(U−1({0})).

(ii) S = {etA(0)z(0) : z(0) ∈ Q} where

Q = span{(x, y) ∈ U−1({0})× Rm :

(x, y) is an eigenvector of
[

0 DT

−D 0

]}
(40)

Proof. We begin with (i). Recall we have assumed without
loss of generality that U(0) = 0. As U−1({0}) is the set of
maxima of a concave function, it is convex. If U−1({0}) is
the single point 0, then (i) is trivial. Otherwise let L be a line
segment (of strictly positive length) in U−1({0}), and let L̂
be the bi-infinite extension of L. Let f be a linear bijection
from R to L̂, and let I ⊂ R be the interval in R given by
f−1(L). Then U(f(t)) : R→ R is an analytic function whose
restriction to I vanishes. Hence U(f(t)) vanishes everywhere
on R, which is equivalent to U vanishing on L̂. By varying
the choice of L, we deduce that U−1({0}) contains infinite
lines in every direction in span(U−1({0})) and by convexity
is equal to span(U−1({0})).

(ii) is a consequence of Lemma 37 and Lemma 36.

Lastly, we translate back into the original coordinates.

Lemma 39. Let (36) hold and U ′ be analytic, then

U−1({0}) = {x ∈ Rn : R 3 s 7→ U ′(sx+ x̄′) is linear}

where U is given by (38).

Proof. Suppose that x ∈ U−1({0}) then by Lemma 38
U(sx) = 0 for all s ∈ R. Recall that U − U ′ is a linear
function. Hence U ′(sx+ x̄′) is linear as a function of s ∈ R.
Now suppose that U ′(sx+ x̄′) is linear as a function of s ∈ R
for some x ∈ Rn, then U(sx) is also linear. But U(0) = 0
and Ux(0) = 0, as 0 is a saddle point of ϕ, so by linearity
U(sx) = 0 for all s ∈ R.

Proof of Theorem 23. This is just a simple combination of
Lemma 39 and Lemma 38.

E. Projection on an affine subspace

Proof of Theorem 25. We show how to adapt the proof of
the results on the gradient method. We denote the set of
equilibrium points of the projected gradient method as S̄Π

and similarly SΠ,SΠ
z̄ , in analogy with S,Sz̄.

We first note that the projected gradient method is non-
expansive [15]. Together with the assumption that 0 ∈ S̄Π,
this means that the reasoning in Appendix A applies, and in
particular a version of Lemma 32 holds, i.e.

Lemma 40. Let ϕ be C2 and concave-convex on Rn+m, Π ∈
R(n+m)2 be an orthogonal projection matrix, z̄ ∈ S̄Π and
z(t) ∈ SΠ

z̄ . Then for any s ∈ [0, 1], the convex combination
z′(t) = (1 − s)z̄ + sz(t) lies in SΠ

z̄ . If in addition z ∈ SΠ,
then z′(t) ∈ SΠ.

Equation (20) becomes

Π

[
ϕx(z)
−ϕy(z)

]
Π =

(∫ |z|
0

Π

[
ϕxx(sẑ) ϕxy(sẑ)
−ϕyx(sẑ) −ϕyy(sẑ)

]
Πds

)
ẑ
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and we replace (8) with

Ã(z) = Π

[
0 ϕxy(z)

−ϕyx(z) 0

]
Π

B̃(z) = Π

[
ϕxx(z) 0

0 −ϕyy(z)

]
Π

The remainder of the proof carries through unaltered in
analogy with that of Theorem 13.

Proof of Corollary 26. This follows directly from the proof of
Theorem 25 (and Theorem 13) by noting that the properties
of the trajectories used in the proof also hold in this case.

APPENDIX C
THE ADDITION OF CONSTANT GAINS

It is common in applications to consider the gradient method
with constant gains, i.e.

ẋi = γxi ϕxi
for i = 1, . . . , n,

ẏj = −γyj ϕyj
for j = 1, . . . ,m.

(41)

for ϕ ∈ C2 a concave-convex function on Rn+m and γxi , γ
y
j

positive constants. However, in the setting of an arbitrary
concave-convex function, this is not a generalisation, and it
is sufficient to study the gradient method (6) without gains,
by a coordinate transformation that we now describe.

Let Λ be a diagonal matrix defined from the gains by

Λ = diag(
√
γx1 , . . . ,

√
γxn,
√
γy1 , . . . ,

√
γym). (42)

Given a concave-convex function ϕ we define a new concave-
convex function ϕ′ by

ϕ′(z′) = ϕ(Λz′). (43)

Let z′(t) be a solution to the gradient method (6) without gains
applied to ϕ′, then

z(t) := Λz′(t) (44)

is a solution to the gradient method (41) applied to ϕ with
gains. Indeed, we have

ż(t) = Λż′(t) = Λ2

[
ϕx(Λz′(t))
−ϕy(Λz′(t))

]
= Λ2

[
ϕx(z(t))
−ϕy(z(t))

]

and the Λ2 term gives the gains.
Thus any properties of the gradient method with gains can

be obtained from the gradient method without gains applied
to a suitably modified function.

However, applying this transformation to the subgradient
method has the effect of altering the metric in the convex
projection. We therefore use the following definition of sub-
gradient dynamics with gains.

Definition 41 (Subgradient method with gains). Given a non-
empty closed convex set K ⊆ Rn+m, ϕ ∈ C2 a concave-
convex function on K and a set of positive gains γxi , γ

y
j as in

(41), we define the subgradient method on K with gains as a
semiflow on (K, d) consisting of Carathéodory solutions of

ż = f(z)−PNK(z),dΛ−1
(f(z)) (45)

where f(z) is the vector field of the gradient method with gains
(41) and PM,dΛ−1 is a weighted convex projection given by

PM,dΛ−1 (z) = argminw∈M d(Λ−1w,Λ−1z) (46)

where Λ is defined in terms of the gains by (42).

It should be noted that the weighted metric used in the
projection arises from the stretching of the domain K when
the coordinate transformation (44) is applied.
Remark 42. When non-negativity constraints are present the
subgradient dynamics are not affected by this change to the
metric in the convex projection, i.e. the dynamics in (45) are
identical to the ones where an unweighted metric is used in
the projection. For example, if the y coordinates are restricted
to be non-negative and the x coordinates unconstrained, then
the subgradient method with gains (45) is given by

ẋi = γxi ϕxi for i = 1, . . . , n,

ẏj = [−γyj ϕyj ]+yj
for j = 1, . . . ,m.

(47)

This holds more generally for any convex set K with bound-
aries aligned to the coordinate axes.


	Introduction
	Preliminaries
	Notation
	Geometry
	Convex geometry

	blackConcave-convex functions and saddle points
	blackDynamical systems

	Problem formulation
	Main Results
	The subgradient method on affine subspaces
	Applications

	Conclusion
	References
	Appendix
	Appendix A: Geometry of S and S
	Appendix B: Classification of S
	blackThe set S as solutions of linear ODEs
	blackConvexity of S and Lemma 20
	blackUnbounded second moment
	blackProof of Theorem 21 and Theorem 23
	blackProjection on an affine subspace

	Appendix C: The addition of constant gains

