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Early progression to active tuberculosis is a highly
heritable trait driven by 3q23 in Peruvians
Yang Luo 1,2,3,4,5, Sara Suliman 1, Samira Asgari 1,2,3,4,5, Tiffany Amariuta 1,2,3,4,5,6,

Yuriy Baglaenko1,2,3,4,5, Marta Martínez-Bonet 1, Kazuyoshi Ishigaki1,2,3,4,5, Maria Gutierrez-Arcelus 1,2,3,4,5,

Roger Calderon7, Leonid Lecca7, Segundo R. León7, Judith Jimenez7, Rosa Yataco7, Carmen Contreras7,

Jerome T. Galea8, Mercedes Becerra9, Sergey Nejentsev10,11, Peter A. Nigrovic1,12, D. Branch Moody 1,

Megan B. Murray9 & Soumya Raychaudhuri 1,2,3,4,5,13

Of the 1.8 billion people worldwide infected with Mycobacterium tuberculosis, 5–15% will

develop active tuberculosis (TB). Approximately half will progress to active TB within the first

18 months after infection, presumably because they fail to mount an effective initial immune

response. Here, in a genome-wide genetic study of early TB progression, we genotype 4002

active TB cases and their household contacts in Peru. We quantify genetic heritability (h2g) of

early TB progression to be 21.2% (standard error 0.08). This suggests TB progression has a

strong genetic basis, and is comparable to traits with well-established genetic bases. We

identify a novel association between early TB progression and variants located in a putative

enhancer region on chromosome 3q23 (rs73226617, OR= 1.18; P= 3.93 × 10−8). With in

silico and in vitro analyses we identify rs73226617 or rs148722713 as the likely functional

variant and ATP1B3 as a potential causal target gene with monocyte specific function.
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The infectious pathogen Mycobacterium tuberculosis (M.tb)
infects about one-quarter of the world’s population1.
Approximately 5–15% of infected individuals progress to

active TB while the vast majority remain infected with viable
latent M.tb (Fig. 1a). In 2017, approximately 10 million new
patients were diagnosed with active TB, and 1.6 million people
died from TB-related diseases2. Active TB can develop immedi-
ately (within the first 18 months) after recent M.tb infection or
after many years of latency, presumably caused via distinct dis-
ease mechanisms. Late progression or TB reactivation is more
likely the consequence of acquired immune compromise due to
other diseases or ageing, whereas early progression is presumably
due to failure in mounting the initial immune response that
contains the bacterial spread3. Previous studies have indicated a
strong heritable component of population-wide TB susceptibility,
that includes early disease progression, reactivation, and infec-
tion4–6. But whether early progression has a different genetic
architecture compared to population-wide susceptibility has yet
to be defined.

Reported associations for TB and other infectious diseases have
to be considered in the context of TB diagnostic criteria and
selected control groups7,8. To date genome-wide association
studies (GWAS) of TB have compared mixed pools of TB patients
with early progression or reactivation, to population controls,
who may not have been exposed to M.tb at all9–13. Hence, known
human genetic loci associations with clinical outcomes might
represent risk factors for M.tb infection, progression from recent
M.tb exposure to active TB, or reactivation of TB after a period of
latency. Infection, progression, and reactivation represent
pathophysiologically distinct disease transitions likely involving
distinct mechanisms of transmission, early innate immune
response, and control by adaptive immunity. Thus, the study of
mixed TB populations using controls of unknown exposure status
may underestimate or miss genetic associations for these separate
stages of disease.

In this study, we perform a genome-wide association study of a
large sample of early TB progression cases (2175 recently exposed
cases and 1827 controls). We first establish early TB progression
has a strong genetic basis that is comparable to other complex
traits. We further identify a novel association with early TB
progression, prioritize likely causal variants and functional genes,
and propose new candidate mechanisms of host response in early
TB progression.

Results
Building an early progression to active tuberculosis cohort. To
identify host factors that drive pulmonary early TB progression,
we conducted a large, longitudinal genetic study in Lima, Peru
(Fig. 1b), where the TB incidence rate is one of the highest in the
region14. We enrolled patients with microbiologically confirmed
pulmonary TB. Within 2 weeks of enrolling an index patient, we
identified their household contacts (HHCs) and screened for
infection as measured by a tuberculin skin test (TST) and for
signs and symptoms of pulmonary and extra-pulmonary TB.
HHCs were re-evaluated at 2, 6, and 12 months. We considered
individuals to be early progressors if they are (1) index patients
whose M.tb isolates shared a molecular fingerprint with isolates
from other enrolled patients; (2) HHCs who developed TB dis-
ease within 1 year after exposure to an index patient and (3) index
patients who were 40-years old or younger at time of diagnosis.
We considered HHCs who were TST positive at baseline or any
time during the 12 month follow up period, but who had no
previous history of TB disease and remained disease free, as non-
progressing controls (Methods, Fig. 1b). In total, we genotyped
2175 recently exposed pulmonary TB cases (early progressors)

versus 1827 HHCs with latent tuberculosis infection, who had not
progressed to active TB during 1 year of follow-up (non-pro-
gressors), as controls (Methods, Supplementary Table 1).

Genomic analysis demonstrates the distinct genetic heritage of
Peruvians. Peru is a country with a complex demographic history
and underexplored genomic variation. When Spanish con-
quistadors arrived in the region in the 16th century, Peru was the
center of the vast Inca Empire and was inhabited by a large Native
American population15,16. During the colonial period, Europeans
and Africans (brought in as slaves) arrived in large numbers to
Peru. After Peru gained its independence in 1821, there was a
flow of immigrants from southern China to all regions of Peru as
a replacement for slaves17,18. As a result, based on the analysis of
our large genomic cohort, the genetic background of the current
Peruvian population is shaped by different levels of admixture
between Native Americans, Europeans, African and Asian
immigrants that arrived in waves with specific and dated his-
torical antecedents. When compared to individuals from other
South American countries19,20, Peruvians tend to share a greater
genetic similarity with Andean indigenous people such as Que-
chua and Aymara (Fig. 2, Supplementary Fig. 1, Methods).

This unique genetic heritage provides both a challenge and an
opportunity for biomedical research. To optimally capture genetic
variation, and particularly rare variations in Peruvians, we
designed a 712,000-SNP customized array (LIMAArray) with
genome-wide coverage based on whole-exome sequencing data
from 116 active TB cases (Methods, Supplementary Table 2,
Supplementary Fig. 2). When compared to other more compre-
hensive genotyping platforms available at the time, LIMAArray
showed an ~5% increase in imputation accuracy, particularly for
population-specific and low-frequency variants (Supplementary
Table 3). We derived estimated genotypes for ~8 million variants
using the 1000 Genomes Project Phase 319 as the reference panel
and tested single marker and rare-variant burden associations
with linear mixed models that account for both population
stratification and relatedness in the cohort (Supplementary
Figs. 3–4, Methods). Genome-wide association results of 2160
cases and 1820 controls after quality control (Methods) are
summarized in Supplementary Fig. 5. We observed no inflation of
test statistics (λGC= 1.03, λGC= 1.00 for common and rare
association analyses respectively), which suggests potential biases
were strictly controlled in our study. We observed no significant
rare variant (minor allele frequency (MAF) <1%) association with
TB progression after performing gene-based generalized linear
mixed model (Methods).

Progression of recent Mycobacterium tuberculosis exposure to
active tuberculosis is a highly heritable complex trait. To
investigate the genetic basis of early TB progression, we first
estimated its variant-based heritability (h2g). Using GCTA21 we
estimated h2g of TB progression to be 21.2% (standard error (s.e.)
= 0.08, PGaussian= 2.64 × 10−3) on the liability scale with
assumed incidence rate of 0.05 in the cohort (Methods). To avoid
biases introduced from calculating genetic relatedness matrices
(GRMs) in admixed individuals, we calculated two different
GRMs based on admixture-aware relatedness estimation
methods22,23 and removed related individuals. Both admixture-
aware methods reported similar h2g estimates (Supplementary
Table 4), indicating our reported heritability estimation is robust
under different model assumptions. We quantified h2g of TB
progression and observed a surprisingly strong genetic basis. This
degree of heritability is comparable to traits with a well-
established genetic basis (Supplementary Table 5). For example,
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GWAS have identified ~200 risk loci for Crohn’s disease24,25, which
has a reported h2g of 28.4% (s.e.= 0.02, PGaussian= 8.62 × 10−71)24.
To compare the genetic heritability between early TB progression
and population-wide TB susceptibility, we subsequently obtained
genotypes from a previous TB study conducted in
Russia with 11,137 individuals11. Using GCTA, we estimated the
h2g of population-wide TB susceptibility to be 17.8% (s.e.=
0.02, PGaussian= 2.85 × 10−21) with assumed prevalence of 0.0426.
Even though the point estimate of h2g of TB progression is greater
than that of population-wide TB risk in the Russian study, these
estimates are not statistically different from each other (two-tailed
t-test P= 0.68, Supplementary Fig. 6). Regardless, the strong
host genetic basis of TB progression suggests that larger pro-
gression studies may be well-powered to discover additional
variants.

Genome-wide association study identifies a novel association at
3q23. We next identified a novel risk locus associated with TB
progression on chromosome 3q23, which is comprised of 11 var-
iants in non-coding regions downstream of RASA2 and upstream
of RNF7 (P < 1 × 10−5) (Fig. 3a, Supplementary Table 6, Dataset 1).
The strongest association with early TB progression was at a
genotyped variant rs73226617 (OR= 1.18; P= 3.93 × 10−8). To
test for artifacts and to identify stronger associations that might
have been missed due to genotyping and imputation, we first
checked the genotype intensity cluster plot of the top associated
variant which showed a clear separation between genotypes AA,
AG, and GG (Supplementary Fig. 7). We then designed individual
TaqMan genotyping assays for four top associated variants
(Methods, Supplementary Table 7). We genotyped these four
SNPs in 4002 initial subjects and concluded that all four variants
show a high concordance rate (>99%) with imputed genotypes
(Supplementary Table 6, Dataset 1). Because all 11 variants in the
risk locus are in high linkage disequilibrium (LD) with each other
(Supplementary Fig. 8), the other imputed variants are also likely
to have high imputation quality.

To determine whether the reported risk locus at 3q23 also has
an independent association with TB progression from recentM.tb
infection, we conducted a case-only analysis removing age from
our case selection criteria. This approach is based on the premise
that TB cases that share a DNA fingerprint for M.tb and HHCs
who developed active TB are epidemiologically related while cases
in which M.tb fingerprints are different might have resulted from
remote infection that reactivated during the study assessment27.
1472 out of 2175 presumed early progressors shared molecular
fingerprint of M.tb isolates with another case or developed active
TB during the 1 year of follow-up (Supplementary Fig. 9). Other
cases did not have a shared molecular fingerprint among M.tb
isolates or did not come from the same household as the index
case, leading to a lower degree of certainty in the early
progression status of these cases. In this case-only analysis, the
top associated signal rs73226617 was nominally associated with
early progression (OR= 1.09, P= 0.016). A heritability analysis
restricted to those that shared the same molecular fingerprint or
from the same household estimated in a h2g of 22.1% (s.e.= 0.06,
PGaussian= 1.32 × 10−4) despite the smaller number of samples.
To assess the independence of the stratified cases compared to the
overall case-control analysis, we first compared reported effect
sizes in both analyses and observed a low Pearson correlation
(r= 0.014, Supplementary Fig. 10). To test the significance of the
reported association, we performed a permutation analysis, where
we randomly permuted the case/control status in the stratified
analysis. After permuting for 10,000 times, the observed OR
(1.09) has a P-value of 0.017 (Supplementary Fig. 11). We next
performed a Bayesian analysis to test whether the reported
association is restricted to the early progressors after recent
exposure to M.tb. (Methods). The disease specific approximate
Bayes Factor28 (i.e., the ratio of the marginal likelihood for a
model where the variant is only associated with early progressor
who has a shared molecular fingerprints and/or a secondary cases
and for a model where is associated with all progressors) is 0.42.
This suggested that the SNP is most likely to be associated with
early progressors who have recent exposure to M.tb. alone, but
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almost equally likely to be associated with TB progression in
general.

We examined the 11 most associated variants for early TB
progression identified in the Peruvian cohort in previously

published GWAS datasets9–11,29 (Supplementary Table 8, Data-
set 2). These SNPs were less frequent (<1%) in the African
populations than in the European and Peruvian populations,
resulting in lower statistical power to detect association. We
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therefore examined the SNPs in two previously published
Russian11 (5530 TB cases and 5607 controls) and Icelandic29

(4049 TB cases and 6543 TST+ controls) GWAS datasets. We
observed that the effects in the Russian cohort were similar, as
they shared comparable ORs of 1.10 (Russian) and 1.18 (Peru) for
rs73226617 (PRussia= 0.065). In contrast, there was no signal
observed in the Icelandic cohort (OR= 1.06, PIceland= 0.437).
Consistent with our previous case-only analysis, the weaker
signals observed in both European cohorts indicate that 3q23 is
associated with early TB progression. The lack of association
observed in the two European cohorts could be due to the
inclusion of reactivation TB cases and noninfected controls;
differences in TB prevalence (Methods).

We next examined how previously published TB GWAS risk
loci are associated with progression in this study. We detected
evidence of association in a previously reported TB locus at
rs9272785 in the HLA region29 (OR= 1.04, P= 4.49 × 10−3), but
did not detect signals at other reported risk loci (Supplementary
Table 9). Thus, previously reported loci may relate to infection or
reactivation phenotypes, rather than early TB progression whereas
HLA association may affect both early progression and reactiva-
tion. Next, we performed an HLA imputation using a multi-ethnic
HLA reference panel (Methods), and obtained genotypes for
classical alleles as well as amino acid positions of three class I
(HLA-A, HLA-B, HLA-C) and three class II (HLA-DQA1, HLA-
DQB1, HLA-DRB1) HLA genes. Using the same linear mixed
model framework (Methods, Supplementary Fig. 12), we tested
associations between specific amino acid positions and TB
progression which identified the most significant association at
amino acid position 73 of HLA-A (OR= 1.12, P= 1.03 × 10−6).
We noted several other amino acids of class I genes with suggestive
associations (P < 1 × 10−5) including position 97 ofHLA-B (OR=
1.05, P= 8.99 × 10−6). Notably, amino acid variability at this
position affects the structure and flexibility of the peptide-binding
groove and is associated with many infectious and autoimmune
phenotypes, such as HIV-1 viral load30,31 and ankylosing
spondylitis32. These results suggest that HLA class I genes might
play a role in TB progression.

To try to identify which of the variants in our reported risk
locus is likely to be the functional polymorphism affecting the risk
of pulmonary TB progression, we employed the FINEMAP33

software (Methods). The 90% credible set includes seven genomic
variants, with rs73226617 having the highest posterior probability
(0.54), followed by rs58538713 (0.16) and the indel rs148722713
(0.05) among 713 variants in the region (Fig. 3b, Supplementary
Table 6, Dataset 1).

A monocyte-specific regulatory element in 3q23 is implicated
in TB progression. To identify likely functional variants and
target genes, we employed a method called IMPACT (Inference
and Modeling of phenotype-related ACtive Transcription)34.
Briefly, IMPACT identifies regions predicted to be involved in
transcriptional regulatory processes related to a key transcription
factor of a cell type (Methods) by leveraging information from

approximately 400 chromatin and sequence annotations in public
databases (Fig. 3c, Supplementary Table 10, Dataset 3). Each
variant is assigned a probability between 0 (least likely to be a
regulatory element) and 1 (most likely to be a regulatory ele-
ment). We tiled through the 23,308 base pair region on a per-
nucleotide basis, computing the probability of a cell-type reg-
ulatory element separately for 15 different cell types and cell
states of which 10 are immune cell types with known roles in TB
outcomes, including T cells, B cells, monocytes, macrophages,
and peripheral blood cells (Fig. 3e). We observed monocyte-
specific predicted regulatory elements at rs73226617 and
rs148722713 (IMPACT score 0.79 and 0.41, respectively, Fig. 3d).

We next searched for other epigenomic evidence that may
indicate changes in transcriptional enhancers and other cis-
regulatory elements. Given the possible monocyte-specific activity
of the identified risk locus, we actively sought datasets that
include monocyte primary cells or cell lines. We used data
presented in the BLUEPRINT project35 to search for chromQTLs.
We observed significant chromQTL present in the region
(characterized by the presence of H3K4me1) in monocytes
(Supplementary Fig. 13) suggesting that this region indeed has an
active enhancer. The rs73226617 SNP was included in this region,
but did not itself have evidence of chromQTL activity; however, it
is in high LD with the top associated chromQTL signal
(rs1568171, D’= 1.0).

Based on the IMPACT analysis and the suggested enhancer
activity in monocytes, we studied monocytic cells (THP1) as the
most likely experimental model for locus-specific gene regulatory
activity. We performed electrophoretic mobility shift assays
(EMSA) to test whether the variants differentially bound nuclear
complexes in an allele-specific manner among the seven variants
that constitute the 90% credible set (Methods). We could detect
differential protein binding that was competed out by unlabeled
probes for three of the risk alleles (rs73226617, rs58538713, and
rs148722713) (Supplementary Fig. 14), providing evidence that
these alleles might confer differential transcription factor binding
activity, and in the right context may lead to altered enhancer
activity.

On the basis of posterior probabilities from the genetic data,
EMSA binding assays demonstrating the capacity to alter binding
of nuclear extract protein, and localization to an enhancer region
with regulatory potential, we identified rs73226617, and
rs148722713 as the most likely causal alleles.

Potential target genes implicated by the TB progression risk
locus. Next, we searched public promoter Hi-C databases36,37 to
identify any significant interactions between the monocyte-specific
enhancer harboring our most likely causal allele, rs73226617 and
rs148722713. We found that in monocytes, both of the risk var-
iants (rs73226617, rs148722713) are in a region that interacts with
the promoter of ATP1B3 (Supplementary Fig. 15a, b). Similar to
the IMPACT results, we found the variant-gene interactions are
strongest in monocytes compared to other cell types (Supple-
mentary Fig. 15c, d), suggesting cell-type-specific activities in the

Fig. 2 Global ancestry analysis of Peruvian populations. a ADMIXTURE plot of admixed individuals and continental reference panels. Each individual is
represented as a thin vertical bar. The colors can be interpreted as different ancestries. Reference panels are either from the 1000 Genomes project19

(1000G) or Native American individuals collected from Reich et al. Nature20. Han Chinese are from Beijing, China; Yoruba are from Ibadan, Nigeria;
European individuals are Utah Residents (CEPH) with Northern and Western European Ancestry; Puerto Ricans are from Puerto Rico; Colombians are from
Medellin, Colombia; Mexican individuals are from Los Angeles, California; Peruvians are from Lima, Peru. Northern Amerindian includes individuals from
Maya, Mixe, and Kaqchikel. Central Amerindian includes individuals from Pima, Zapotec, Mixtec, Yaqui, Chorotega, Tepehuano. Southern Amerindian
includes individuals from Piapoco, Karitiana, Surui, Wayuu, Jamamadi, Parakana, Guarani, Kaingang, Ticuna, Palikur, Toba, Arara, Wichi, Chane and
Guahibo. Andean population includes Quechua and Aymara. K= 6 models are shown above, K= 3 through K= 15 models are available in Supplementary
Fig. 1. Source data are provided as a Source Data file. b Map of locations of sampled Native American populations20
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identified TB risk locus. ATP1B3 (ATPase Na+/K+ Transporting
Subunit Beta 3) is a protein-coding gene, which belongs to the
family of Na+/K+ and H+/K+ ATPases. Na+/K+–ATPases are
composed of an alpha, beta, and FXYD subunits, are integral

membrane proteins responsible for establishing and maintaining
the electrochemical gradients of sodium and potassium ions
across the plasma membrane through active transport against
their osmotic gradients. A recent study demonstrated that the Na,
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K ATPase Beta 3 subunit in monocytes has an important function
in mediating a normal T cell response38. Indeed ligating it with an
antibody resulted in a blunted T cell response after stimulation.
This effect was specific to the monocytes population. Consistent
with these findings, differential expression of ATP1B3 in whole
blood, along with genes coding for other members of the Na+/K
+-ATPases, was recently reported to be associated with TB
progression in an African cohort of household contacts of TB
patients39. Collectively, the Hi-C analysis and reported associa-
tion with TB progression point to ATP1B3 as a candidate gene of
the risk locus in 3q23.

Since in silico evidence suggested that our identified TB risk
locus harbors monocyte-specific regulatory elements, we used the
CRISPR/Cas9 system to introduce insertions/deletions around the
top associated variant rs73226617 (Methods, Supplementary
Fig. 16a). Among 23 sorted and grown clones that had unchanged
risk loci or harbored unique edits and deletions (Supplementary
Table 11 and Supplementary Fig. 16b, c), we did not observe
differential gene expression between edited and unedited THP1
clones in the cis-genes around the 500 kb window of the leading
rs73226617 variant (ANOVA P-value > 0.05, Methods, Supple-
mentary Fig. 17a). This CRISPR/Cas9 approach to disrupt the
putative enhancer has multiple limitations. Firstly, while we
observed no effect in THP1 cell lines, this might result from
differences between primary monocytes and transformed THP1
cell lines, or failure to identify the relevant activation conditions
and cell context to test enhancer activities, which are known to
influence eQTL interactions40–43. Secondly, although we chose
guide RNA sequences optimized to target the 3q23 region, and
did not identify other likely genomic targets by nucleotide
homology, off-target effects are still possible (Supplementary
Table 20). We analyzed independent edited THP1 clones to
reduce the likelihood that we propagated additional off-target
genomic edits. However, a genome-wide analysis of differential
expression also did not detect any other differentially expressed
targets outside the local neighborhood surrounding rs73226617
(Supplementary Fig. 17b), suggesting that off-target disruptions
were unlikely. In particular, we noted the enhancer activity seen
in primary monocytes, is not seen in THP1 cell lines44–47

(Supplementary Fig. 18).

Discussion
Overall, our results argue that rapid TB progression is a highly
heritable trait, comparable to other human diseases with an
established genetic origin. More generally, these results begin to
address general questions about genomic approaches to infectious
diseases, which have lagged behind other diseases and complex
traits in terms of locus discovery (Supplementary Table 5).
Infections, especially chronic infectious diseases, play out in
highly distinct phases that involve exposure, crossing epithelial
boundaries, pathogen expansion, locating a host niche, and in the
case of TB, decades-long persistence, reactivation, and re-
transmission. Each of these stages can be controlled by distinct

host factors. Our analysis indicates that progression from recent
M.tb exposure to active TB has a different genetic basis compared
to TB reactivation. Specific analysis of clinical progression as a
distinct phase allows for a more powerful detection of risk factors
for an equal number of samples, as compared to case-control
studies, which are an amalgamation of different phenotypes.
Thus, this work suggests that while detailed, stage-specific phe-
notypic profiling may be more costly, it may offer key advantages
for infectious disease genetic studies. Specifically, it allows for
precise phenotype definitions and identification of biological
targets with specific implications. Therefore, detailed phenotypic
profiling should become an additional valuable approach for
future genetic studies of infectious diseases. Detailed phenotyping
enables investigators to dissect pathogenic mechanisms at dif-
ferent stages of infection and disease progression.

Methods
Ethics statement. We recruited 4002 subjects from a large catchment area of
Lima, Peru that included 20 urban districts and ~3.3 million residents to donate a
blood sample for use in our study.

We obtained written informed consent from all the participants. The study
protocol was approved by the Institutional Review Board of Harvard School of
Public Health and by the Research Ethics Committee of the National Institute of
Health of Peru.

Preparation of genome-wide genetic data. We enrolled index cases as adults
(aged 15 and older) who presented with clinically suspected pulmonary TB at any
of 106 participating health centers. We excluded patients who resided outside the
catchment area, who had received treatment for TB before and those who were
unable to give informed consent. Pulmonary TB patients have been diagnosed by
the presence of acid fast bacilli in sputum smear or a positive M.tb culture at any
time from enrollment to the end of treatment. All cultures of the index cases were
genotyped using mycobacterial interspersed repetitive units-variable number of
tandem repeats (MIRU-VNTR). Within 2 weeks of enrolling an index patient, we
enrolled his or her household contacts (HHCs). The M.tb status was determined
using the Tuberculin Skin Test (TST). All HHCs were evaluated for signs and
symptoms of pulmonary and extra-pulmonary TB disease at 2, 6, and 12 months
after enrollment. All cases were HIV-negative, culture-positive and drug-sensitive
who have pulmonary TB. We defined cases who were likely to have recently
exposed TB, if a case satisfied at least one of the three criteria: (1) exposed HHCs
who developed active TB during a 12 month follow up period; (2) index patients
whose M.tb isolates shared a molecular fingerprint with isolates from other
enrolled patients and (3) index patients who were 40-years old or younger at time
of diagnosis. To maximize the likelihood that controls were exposed to M.tb but
did not develop active disease, we chose them from among TST positive HHCs
with no previous history of TB disease, and who remained disease free at the time
of recruitment both by directly re-contacting individuals to inquire about their
latest medical history and by checking their names against lists of notified TB
patients at all of the 106 health clinics. Where possible, we chose controls who are
less than second-degree related to the index cases.

Customized axiom array for Peruvian populations. We developed a custom
array (LIMAArray) based on whole-exome sequencing data from 116 active TB
cases to optimize the capture of genome-wide genetic variation in Peruvians. Many
markers were included because of known associations with, or possible roles in,
phenotypic variation, particularly TB-related (Supplementary Table 12). The array
also includes coding variants across a range of minor allele frequencies (MAFs),
including rare markers (<1% MAF), and markers that provide good genome-wide
coverage for imputation in Peruvian populations in the common (>5%), low fre-
quency (1–5%) and rare (0.5–1%) MAF ranges (Supplementary Table 3). This

Fig. 3 Genome-wide association details of the 3q23 locus. a A regional association plot of the 3q23 locus including all genotyped and imputed variants. The
horizontal line indicates the genome-wide significant threshold at 1.78 × 10−7 for Peruvian populations (Methods). b Fine-mapping posterior probability of
all variants in the chr3:140221602-145217859 region. c Number of overlaps between all variants in the risk locus and ~400 epigenetic features. d Predicted
posterior probability of cell-type-specific gene regulatory activity using IMPACT (Inference and Modeling of phenotype-related ACtive Transcription)
based on the epigenetic chromatin signature of binding sites of the transcription factor CEBPB in monocytes. e Intersection of nucleotide-resolution of
variant cell-state IMPACT annotations with potential causal variants in 3q23 locus. The y-axis shows the posterior probability of predicted cell-state
regulatory activity among each variant in 15 different cell types and cell states. The x-axis shows the genomic positions of all variants among the identified
risk locus. The bolded variant (rs73226617) is the leading risk variant from the association study which shows the highest predicted cell-state regulatory
activity in monocytes (masked by CEBPB transcription factor). Dashed lines highlight 11 top associated variants. Genotyped variant rs73226617 is
highlighted in red. Source data are provided as a Source Data file
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approach allowed the detection of rare population-specific coding variants and
those which predisposed individuals to TB risk.

Genotyping and quality control. We extracted genomic DNA from whole blood
of the participating subjects. Genotyping of all samples was performed using our
customized Affymetrix LIMAArray. Genotypes were called in a total of
4002 samples using the apt-genotype-axiom48. Individuals were excluded if they
were missing more than 5% of the genotype data, had an excess of heterozygous
genotypes (±3.5 standard deviations, Supplementary Table 13), duplicated with
identity-by-state >0.9 or index cases with age at diagnosis greater than 40-years old.
After excluding these individuals, we excluded variants with a call rate less than
95%, with duplicated position markers, those with a batch effect (P < 1 × 10−5),
Hardy–Weinberg (HWE) P-value below 10−5 in controls, and a missing rate per
SNP difference in cases and controls greater than 10−5 (Supplementary Table 14).
In total, there were 3980 samples and 677,232 SNPs left for imputation and
association analyses after quality control.

Imputation and association analyses. The genotyped data were pre-phased using
SHAPEIT249. IMPUTE250 was then used to impute genotypes at untyped genetic
variants using the 1000 Genomes Project Phase 3 dataset19 as a reference panel. For
chromosome X, males are coded as diploid. That is male genotypes are coded as 0/2
and females genotypes are coded as 0/1/2. HLA imputation was performed using
SNP2HLA51 and a multi-ethnic HLA imputation reference panel52. Imputed SNPs
were excluded if the imputation quality score r2 was less than 0.4, HWE P-value <
10−5 in controls or a missing rate per SNP greater than 5%. After filtering,
7,756,401 SNPs were left for further association analyses.

Common single variant associations were tested with a linear mixed model
(LMM) implemented in GEMMA53 version 0.94.1 on genotype likelihood from
imputation assuming an additive genetic model. We used the genetic relatedness
matrix (GRM) as random effects to correct for cryptic relatedness and population
stratification between collected individuals. Sex and age were included as fixed
effects. The GRM was obtained from an LD-pruned (r2 < 0.2), with MAF ≥ 1% after
removing large high-LD regions54 (Supplementary Table 15) dataset of 154,660
SNPs using GEMMA55 version 0.7–1. To determine an appropriate genome-wide
significant threshold for Peruvian populations, we followed the permutation
strategy proposed by Kanai et al. 56, and considered a variant is significantly
associated with TB progression, if it has a P-value smaller than 1.78×10−7.

Gene-based rare variant (MAF < 1%) burden test was performed using
GMMAT55 version 0.7–1, a generalized linear mixed model framework. For each
gene j, we aggregated the information for multiple rare variants into a single

burden score (Ci ¼
PM

j¼1
Gij) for each subject i. Where Gij denotes the allele counts

{0,1,2} for m variants in the gene. The genomic control inflation factor (λGC) for
variants after imputation was 1.03 and 1.00 for common and rare association study
respectively (Supplementary Fig. 5), indicating that we have successfully controlled
for any residual population structure or cryptic relatedness between genotyped
samples.

To minimize false-positive signals due to population stratification and
heterogeneity of effects due to differential LD in admixed populations, we also
computed GRMs based on methods22,23 that account for inflation of identity-by-
state statistics due to admixture LD. LMM with admixture-aware GRMs resulted in
numerically similar association statistics to those from unadjusted analyses
(Supplementary Table 16). To control for the potential effect of ancestry differences
between cases and controls and the robustness of our reported findings, we tested
our linear mixed model adding Native American ancestry inferred from
ADMIXTURE analysis (K= 6) as a covariate. We observed similar association
strengths genome-wide (Supplementary Fig. 19) and in our reported top
associations (Supplementary Table 6). This result supports that our reported
associations are independent of individual ancestral proportions.

To identify likely causal variants in the identified risk locus, we used the
FINEMAP33 method to calculate marginal likelihoods and Bayes factor for each
variant assuming that there is one true causal variant in the region, and it has been
included in the analysis and has been well imputed (–n-causal-max 1). We used the
in-sample LD scores calculated using LDstore57 to further increase the accuracy of
the fine-mapping analysis.

TaqMan SNPs and genotyping. Selection of SNPs in the 3q23 locus was con-
ducted based on information from the dbSNP database (http://www.ncbi.nlm.nih.
gov/projects/SNP/). Four polymorphisms rs73226617, rs73226619, rs73239724,
and rs73226608 were included for the genotyping tests. Real-time PCR using the
following calculations: 2.5 uL Genotyping Master Mix, 0.25 uL SNP Assay-probes,
and 2.25 uL DNA template (at 5 ng/uL= 11.25 ng total).Thermal cycling condi-
tions were as follows: 60 °C 30 s Pre-read, 95 °C for 10 min, followed by 40 cycles
at 95 °C for 15 s and at 60 °C for 1 min, then 60 °C 30 s Post-read. Genotyping of
the polymorphisms was carried out using the 5’ exonuclease TaqMan Allelic
Discrimination assay, which was performed utilizing minor groove binder probes
fluorescently labeled with VIC or FAM and the protocol recommended by the
supplier (Applied Biosystems, Foster City, CA, USA). Analysis for interpretation
was performed with Via7 software and Taqman Genotyper software calls. Per

variant, concordance rate was obtained by comparing genotypes obtained from
imputation and from TaqMan assays (Supplementary Table 6).

Heritability estimation. The genetic heritability based on genome-wide markers
(h2g ) was first estimated from the genetic relatedness matrix (GRM) after removing
related individuals (–grm-cutoff 0.125) and corrected for population stratifications
using the top 10 principal component (–qcovar), as implemented in GCTA21,58.
Among a total of 14,044 enrolled HHCs, 692 progressed to active TB. Based on these
numbers, we estimated the incidence rate in the Lima cohort for recent TB pro-
gression is 5%. Using this rate, we report h2g on the liability scale to be 0.21 (s.e.=
0.08). If the true prevalence was in fact half as high, our estimate would instead be
0.17 (s.e.= 0.02); if twice as high, 0.26 (s.e.= 0.09). h2g on the observed scale is 0.24
(s.e.= 0.09).

Bayesian meta-analysis on GWAS summary statistics. Briefly, we adopted a
Bayesian meta-analysis approach59 to test whether the reported top association is
restricted to the early progressors only. We calculated the approximate Bayes factor
(ABF)28 for the top associated variant (rs73226617), testing the hypothesis that the
reported association is specific to early progressors with a shared molecular fin-
gerprint. We assumed the variance σ2 around the true effect to be 0.04 as suggested
by previous studies28,60. We assumed the probability of correlated true effects (ρ)
between two phenotypes to be 0.5. The disease-specific log10(ABF)(i.e., the ratio of
the marginal likelihood for a model where the variant is only associated with early
progressor who has a shared molecular fingerprints and/or a secondary cases
(log10(ABF)= 5.81) and for a model where is associated with all progressors
(log10(ABF)= 6.19) is −0.38. To test the robustness of the model using different
priors (σ2 and ρ), we varied the values of σ= {0.1,0.2,0.3,0.4}and ρ=
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} but did not detect a strong difference that would
alter the conclusion above (Supplementary Table 17).

In silico functional annotation of candidate causal variants. We combined
multiple sources of in silico genome-wide functional annotations from publicly
available databases to help identify potential functional variants and target genes in
the 3q23 novel risk locus. To investigate functional elements enriched across the
region encompassing the strongest candidate causal variants, we aggregated ~400
epigenomic and sequence annotations including cell-type-specific annotation types
such as ATAC-seq, DNase-seq, FAIRE-seq, HiChIP-H3K27ac, HiChIP-CTCF,
polymerase and elongation factor ChIP-seq, and histone modification ChIP-seq, as
well as cell-type-nonspecific annotations, such as conservation scores and sequence
annotation, such as coding, intronic, intergenic, etc. A list of all included resources
is summarized in Supplementary Table 10, Dataset 3.

Using IMPACT 34, we built a model that predicts cell type gene regulatory
elements by learning the epigenomic profiles of key TF binding sites in the cell
type. Briefly, we trained IMPACT to distinguish regulatory elements from non-
regulatory elements among 11 immune-related TFs and 4 others (Supplementary
Table 18). To create the class of gold standard regulatory elements, we scanned the
ChIP-seq peaks of the master TFs, mentioned above, for matches to the TF binding
motif, using HOMER61 [v4.8.3] and retained the genomic location of the highest
scoring match for each ChIP-seq peak to the regulatory class. To create the class of
non-regulatory elements, we scanned the entire genome for motif matches of each
of the 14 master TFs, again using HOMER, and selected motif matches with no
overlap with the ChIP-seq peaks. IMPACT learns an epigenomic profile
representative of cell type regulatory elements in 10-fold cross validation (CV)
using the complete sets of regulatory and non-regulatory elements. We scored
regions of interest according to the learned feature profile from this CV.

Electrophoretic mobility shift assay (EMSA). Frozen cell pellets from the THP1
cell line (ATCC) were used for preparation of nuclear extracts using NE-PER
Nuclear and Cytoplasmic Extraction reagent (ThermoFisher) according to the
manufacturer’s instructions, then dialyzed overnight at 4 °C with gentle stirring in
1 L of pre-cooled dialysis buffer (10% glycerol, 10 mM Tris pH 7.5, 50 mM KCl,
200 mM NaCl, 1 mM di-thiothreitol, 1 mM phenylmethanesulfonyl fluoride).
Samples were quantified using BCA Protein Assay Kit (ThermoFisher, catalogue
no. 23227) and stored in 1× Halt protease inhibitor cocktail (ThermoFisher, cat-
alogue no. 78437) at −80 °C until use. We designed single-stranded oligonucleo-
tides (30–34 bp) corresponding to each set of alleles (Integrated DNA
Technologies, Supplementary Table 19), and biotinylated the forward and reverse
sequences separately using the Biotin 3’End DNA Labeling Kit (ThermoFisher
Scientific, catalogue no. 20160) following the manufacturer’s instructions. Single-
stranded probes were annealed by incubation for 5 min at 95 °C followed by 1 h at
room temperature. EMSA reactions were performed using the LightShift Chemi-
luminescent EMSA kit (ThermoFisher, catalogue no. 20148). Binding reactions
were performed in a volume of 20 μL: 2 μL of 10× binding buffer, 16 μg nuclear
extract, 2.5% glycerol, 5 mM MgCl2, 0.05% Nonidet P-40 and 50 ng Poly dI:dC as a
nonspecific DNA competitor, and 20 mol of biotinylated probes with or without
unlabeled competitor probes at 200 fold molar excess. The binding reaction was
resolved on 5% Tris-borate-EDTA (TBE) gels (BioRad, catalogue no. 3450049) at
110 volts. Gels were transferred for 1 h at 4 °C at 40 volts onto pre-cut zeta-probe
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nylon membrane (Bio-Rad, catalogue no. 162-0165). Transferred DNA was UV
crosslinked for 10 min, then blocked and incubated with stabilize streptavidin-
horseradish peroxidase conjugate, at 1:300 dilution in EMSA blocking buffer, then
washed and detected by chemiluminescence. Finally, exposed on CL-XposureTM

films (ThermoFisher Scientific, catalogue no. 34089).

CRISPR/Cas9 editing around the rs73226617 variant. THP1 cells (ATCC, TIB-
202) were cultured in complete RPMI (RPMI-1640, Gibco,10% fetal bovine serum,
1× non-essential amino acids, 15 mM HEPES, 2 mM L-glutamine, 1 mM sodium
pyruvate, 0.05 2-mercaptoethanol, 1× penicillin-streptomycin). To disrupt the
putative enhancer region around the rs73226617 lead variant, we selected 3 syn-
thetic guide RNA (sgRNA, Synthego) molecules around rs73226617 (Supplemen-
tary Table 20) using Deskgen design tools (www.deskgen.com). We tested
homology of the guide RNA sequence using the Basic Local Alignment Search Tool
(BLAST) to confirm that the chosen sequences uniquely preferred the region
around rs73226617 in 3q23, and did not have additional targets in the genome. For
genomic editing, 40 μM total sgRNA and 40 μM of recombinant Cas9 protein (QB3
Microlabs) were mixed and incubated for 15 min at 37 °C to assemble CRISPR/
Cas9 ribonuclear protein (RNP) complexes. Subsequently, 2 × 105–106 cells were
nucleofected with 2 uL of RNPs in supplemented SG solution from the Cell line
nucleofector X kit (V4XC-3032 SG, Lonza) using Amaxa 4D nucleofector (SG
protocol: FF100). Bulk nucleofected cells were immediately topped with 37 °C pre-
warmed complete RPMI for 30 min, then cultured in a 24 well plate. RNA was
extracted from bulk-edited samples 14–18 days after nucleofection. After 3 weeks,
bulk-edited THP1 cells were single-cell sorted into four 96-well plates. The
workflow is described in Supplementary Fig. 16.

To confirm the sequences of the edited genomic region, DNA was extracted from
clonal THP1 cells using QuickExtract DNA Extraction Solution (Lucigen), and PCR-
amplified with Q5 high fidelity DNA polymerase (New England Biolabs) using the
protocol: 98 °C for 4’, 35 cycles of (98 °C for 10”, 65 °C for 30”, 72 °C for 1’), 72 °C
for 10’, and 4 °C. PCR primers to amplify edited sequence: (Forward: TCTGGAAT
TGAAGGGGCACA, and Reverse: AGCCCACCACACCTTTCTTT). Sizes and
sequences of edited amplicons were verified by gel electrophoresis, and Sanger
sequenced (GENEWIZ), respectively. Sequences were analyzed and aligned to the
reference from unedited THP1 cells using SnapGene software (Supplementary
Table 11).

Gene expression analysis of edited THP1 cells. RNA samples were extracted
from each of the bulk-edited THP1 cells, as well as single-cell clones with RNeasy
RNA isolation kit (Qiagen). RNA samples from expanded clones and three repli-
cates of bulk-edited THP1 cells from three independent experiments, with matched
Cas9 nucleofected cells without sgRNA were analyzed by low-input RNA
sequencing (Genomics platform, Broad Institute). Libraries were sequenced using
SmartSeq2 protocol.

For low-input RNA-seq, we used Kallisto version 0.43.162 to quantify gene
expression using the Ensembl 83 annotation. We included protein-coding genes,
pseudogenes, and lncRNA genes. We used log-transformed TPM (transcripts per
million) as our main expression measure, which accounts for library size and gene
size (specifically log2(TPM+1)). We considered as

expressed genes those with a TPM > 1 in at least 95% of the samples. We further
performed quantile normalization on the log2(TPM+1) values for our differential
expression analyses. To test for differential expression, we fitted a linear regression
model that included the first two principal components of gene expression as
covariates.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Summary statistics is available through the NHGRI-EBI GWAS Catalog https://www.ebi.
ac.uk/gwas/downloads/summary-statistics. Raw and processed RNA-sequencing data
from the edited THP1 clones have been deposited in the GEO accession GSE134419. All
scripts and data for generating figures presented in the manuscript are available at
https://github.com/immunogenomics/TB_progression_GWAS. The source data
underlying Figs. 2a and 3 and Supplementary Figs. 1, 3, 4, 5(c)–(d), 6, 7, 8, 10, 11, 12, 13,
14, 17 and 19 are provided as a Source Data file.
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