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Abstract

We introducea framework for the reconstruction and representationof functions
in a setting where these objects cannot be directly observed, but only indi-
rect and noisy measurements are available, namely an inverse problem setting.
The proposed methodology can be applied either to the analysis of indirectly
observed functional images or to the associated covariance operators, represent-
ing second-order information, and thus lying on a non-Euclidean space. To deal
with the ill-posedness of the inverse problem, we exploit the spatial structure
of the sample data by introducing a �exible regularizing term embedded in the
model. Thanks to its ef�ciency, the proposed model is applied to MEG data,
leading to a novel approach to the investigation of functional connectivity.

Keywords: inverse problems, covariance operator, principal component analy-
sis, dynamic functional connectivity, magnetoencephalography

(Some �gures may appear in colour only in the online journal)

1. Introduction

An inverse problem is the process of recovering missing information from indirect and noisy
observations. Not surprisingly, inverse problems play a central role in numerous �elds such as,
to name a few, geophysics (Zhdanov 2002), computer vision (Hartley and Zisserman 2004),
medical imaging (Arridge 1999, Lustig et al 2008) and machine learning (De Vito et al 2005).
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Solving a linear inverse problem means �nding an unknown x, for instance a function or a
surface, from a noisy observation y, which is a solution to the model

y = Kx + ε, (1)

where y and ε belong to an either �nite or in�nite dimensional Banach space. The map K is
called a forward operator and is generally assumed to be known, although its uncertainty has
also been taken into account in the literature (Arridge et al 2006, Golub and van Loan 1980,
Gutta et al 2019, Kluth and Maass 2017, Lehikoinen et al 2007, Nissinen et al 2009, Zhu et al
2011). The term ε represents observational error.

Problem 1 is a well-studied problem within applied mathematics (for early works in the
�eld, see Adorf 1995, Calderón 1980, Geman 1990). Its main dif�culties arise from the fact
that, in practical situations, an inverse of the forward operator does not exist, or if it does, it
ampli�es the noise term. For this reason such a problem is called ill-posed. Consequently, the
estimation of the function x in (1) is generally tackled by minimizing a functional which is the
sum of a data (�delity) term and a regularizing term encoding prior information on the func-
tion to be recovered (see, among others, Cavalier 2008, Hu and Jacob 2012, Lefkimmiatis et al
2012, Mathé and Pereverzev 2006, Tenorio 2001). For convex optimization functionals, mod-
ern ef�cient optimization methods can be applied (Beck and Teboulle 2009, Boyd et al 2010,
Burger et al 2016, Chambolle and Pock 2011, Chambolle and Pock 2016). Alternatively, when
it is important to assess the uncertainty associated with the estimates, a Bayesian approach
could be adopted (Calvetti and Somersalo 2007, Kaipio and Somersalo 2005, Repetti et al
2019, Stuart 2010). The deep convolutional neural network approach has also been applied to
this setting (Jin et al 2017, McCann et al 2017).

In imaging sciences, it is sometimes of interest to �nd an optimal representation and per-
form statistics on the second order information associated with the functional samples, i.e. the
covariance operators describing the variability of the underlying functional images. This is, for
instance, the case in a number of areas of neuroimaging, particularly those investigating func-
tional connectivity. In this work, we establish a framework for reconstructing and optimally
representing indirectly observed samples C1, . . . , Cn, that are covariance operators, expressing
the second order properties of the underlying unobserved functions. The indirect observations
are covariance operators generated by the model

Si = Ki ◦ Ci ◦ K∗i + Ei, i = 1, . . . , n, (2)

whereK∗i denotes the adjoint operator and the term Eimodels observational error. The termKi ◦
Ci ◦ K∗i represents the covariance operator of KiX(i), with X(i) an underlying random function
whose covariance operator is Ci.

As opposed to more classical linear inverse problems formulations, problem 2 introduces
the following additional dif�culties:

• We are in a setting where each sample is a high-dimensional object that is a covariance
operator; it is important to take advantage of the information from all the samples to
reconstruct and represent each of them.
• The elements {Ci} and {Si} live on non-Euclidean spaces, as they belong to the posi-
tive semide�nite cone, and it is important to account for this manifold structure in the
formulation of the associated estimators.
• In an inverse problem setting it is fundamental to be able to introduce spatial regularization,
however it is not obvious how to feasibly construct a regularizing term for covariance
operators re�ecting, for instance, smoothness assumptions on the underlying functional
images.
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More general non-Euclidean settings could also be accommodated. Speci�cally, the error
term could be de�ned on a tangent space and mapped to the original space through the expo-
nential mapping. Another setting of interest is the case of error terms that push the observables
out of the original space. In our applications this is not an issue, as the contaminated observa-
tions are themselves empirical covariance matrices, which belong to the non-Euclidean space
of positive semide�nite matrices.

We tackle problem 2 by generalizing the concept of principal component analysis (PCA)
to optimally represent and understand the variation associated with samples that are indirectly
observed covariance operators. The proposedmodel is also able to deal with the simpler case of
samples that are indirectly observed functional images belonging to a linear functional space.

1.1. Motivating application—functional connectivity

In recent years, statistical analysis of covariance matrices has gained a predominant role in
medical imaging and in particular in functional neuroimaging. In fact, covariance matrices are
the natural objects to represent the brain’s functional connectivity, which can be de�ned as
a measure of covariation, in time, of the cerebral activity among brain regions. While many
techniques have been proposed to describe functional connectivity, almost all can be described
in terms of a function of a covariance or related matrix.

Covariancematrices representing functional connectivity can be computed from the signals
arising from functional imagingmodalities. The choice of a speci�c functional imagingmodal-
ity is generally driven by the preference to have high spatial resolution signals, and thus high
spatial resolution covariancematrices, versus high temporal resolution, and thus the possibility
to study the temporal dynamic of the covariancematrices. Functional magnetic resonance falls
in the �rst category, while electroencephalogram (EEG) and magnetoencephalography (MEG)
in the second. However, high temporal resolution does generally come at the price of indirect
measurements and, as shown in �gure 1 in the case of MEG data, the signals are in practice
detected on the sensors space. It is however of interest to produce results on the associated
signals on the cerebral cortex, which we will refer to as brain space. The signals on the brain
space are functional images whose domain is the geometric representation of the brain and are
associated with the neuronal activity on the cerebral cortex.We borrow here the notion of brain
space and sensors space from Johnstone and Silverman (1990) and we use it throughout the
paper for convenience, however it is important to highlight that the formulation of the problem
is much more general than the setting of this speci�c application.

The signals on the brain space are related to the signals on the sensors space by a forward
operator, derived from the physical modeling of the electrical/magnetic propagation, from the
cerebral cortex to the sensors. This is generally referred to as the forward problem. For soft-�eld
methods like EEG, MEG and functional near-infrared spectroscopy (Eggebrecht et al 2014,
Ferrari and Quaresima 2012, Mosher et al 1999, Singh et al 2014, Ye et al 2009), the forward
operator is de�ned through the solution to a partial differential equation of diffusion type. Such
a mapping induces a strong degree of smoothing and consequently the corresponding inverse
problem, i.e. the reconstruction of a signal on the brain space from observations in the sensors
space, is strongly ill-posed. In fact, signals with fairly different intensities on the brain space,
due to the diffusion effect, result in signals with similar intensities in the sensors space. In
�gure 1, we show an example of a signal on the brain space and the associated signal on the
sensors space.

From a practical perspective, it is crucial to understand how the different parts of the brain
interact, which is sometimes known as functional connectivity. A possible way to understand
these interactions is by analyzing the covariance function associatedwith the signals describing
the cerebral activity of an individual on the brain space (Fransson et al 2011, Lee et al 2013,
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Figure 1. On the top left, head model of a subject and superimposition of the 248 MEG
sensors positioned around the head, called ‘sensors space’. On the top right, brain model
of the same subject represented by a triangular mesh of 8k nodes, which represents the
‘brain space’. On the bottom left, an example of a synthetic signal detected by the MEG
sensors. The dots represent the sensors, the color map represents the signal detected by
the sensors. On the bottom right, intensity of the reconstructed signal on the triangular
mesh of the cerebral cortex.

Figure 2. Covariance matrices of the signal detected by the MEG sensors from three
different subjects of the human connectome project. The size of the matrices is 248×
248. The dark blue bands represent missing data, which are due to the exclusion of some
channels after a quality check of the signal.

Li et al 2009). More recently, the interest has shifted from this static approach to a dynamic
approach. In particular, for a single individual, it is of interest to understand how these covari-
ance functions vary in time. This is a particularly active �eld, known as dynamic functional
connectivity (Hutchison et al 2013). Another element of interest is understanding how these
covariance functions vary among individuals. In �gure 2, we show the covariancematrices, on
the sensors space, computed from the MEG signals of three different subjects.
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The remainder of this paper is organized as follows. In section 2 we give a formal descrip-
tion of the problem. We then introduce a model for indirectly observed smooth functional
images in section 3 and present the more general model associated with problem 2 in section 4.
In section 5, we perform simulations to assess the validity of the estimation framework. In
section 6 we apply the proposed models to MEG data and we �nally give some concluding
remarks in section 7.

2. Mathematical description of the problem

We now introduce the problemusing our driving application as an example. To this purpose, let
M a be a closed smooth two-dimensional manifold embedded in R3, which in our application
represents the geometry of the cerebral cortex. An example of such a surface is shown on the
top right of �gure 1. We denote with L2(M) the space of square integrable functions onM.
De�ne X to be a random function with values in a Hilbert functional space F ⊂ L2(M) with
meanµ = E[X], �nite secondmoment, and assume the continuity and square integrability of its
covariance function CX(v, v′) = E[(X(v)− µ(v))(X(v′)− µ(v′))]. The associated covariance
operator CX is de�ned as CXg =

∫

MCX(v, v
′)g(v)dv, for all g ∈ L2(M).Mercer’s lemma (Riesz

and Szokefalvi-Nagy 1955) guarantees the existence of a non-increasing sequence {γr} of
eigenvalues of CX and an orthonormal sequence of corresponding eigenfunctions {ψr}, such
that

CX(v, v′) =
∞
∑

r=1

γrψr(v)ψr(v′), ∀v, v′ ∈M. (3)

As a direct consequence, X can be expanded5 as X = µ+
∑∞

r=1 ζrψr, where the random
variables {ζr} are uncorrelated and are given by ζr =

∫

M{X(v)− µ(v)}ψr(v)dv. The collec-
tion {ψr} de�nes the modes of variation of the random function X, in descending order of
strength, and these are called principal component (PC) functions. The associated random vari-
ables {ζr} are called PC scores. Moreover, the de�ned PC functions are the best �nite basis
approximation in the L2-sense, therefore for any �xed R ∈ N, the �rst R PC functions of X
minimize the reconstruction error, i.e.

{ψr}Rr=1 = argmin
({φr}Rr=1:〈φr ,φr′ 〉=δrr′ )

E

∫

M

{

X(v)− µ(v)−
R
∑

r=1

〈X − µ,φr〉φr(v)
}2

dv,

(4)

where 〈·, ·〉 denotes the L2(M) inner product and δrr′ is the Kronecker delta; i.e. δrr′ = 1 for
r = r′ and 0 otherwise.

2.1. The case of indirectly observed functions

In the case of indirect observations, the signal is detectable only through s sensors on the sensors
space. Let {Kl : l = 1, . . . ,m} be a collection of s× p realmatrices, representing the potentially
sample-speci�c forward operators relating the signal at p pre-de�ned points {vj : j = 1, . . . , p}
on the cortical surfaceM with the signal captured by the s sensors. The matrices {Kl} are

5More precisely, we have that limR→∞supv∈ME

{

X(v)− µ(v) −
∑R

r=1 ζrψr(v)
}2

= 0, i.e. the series converges
uniformly in mean-square.
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Figure 3. Illustration of the setting introduced with model (5).

discrete versions of the forward operatorK introduced in section 1. Moreover, de�ne the eval-
uation operatorΨ : F → Rp to be a vector-valued functional that evaluates a function f ∈ F at
the p pre-speci�ed points {v j} ⊂ M, returning the p dimensional vector ( f (v1), . . . , f (vp))T .
The operatorsΨ and {Kl} are known.However, in the described problem the random functionX
can be observed only through indirect measurements {yl ∈ Rs : l = 1, . . . , m} generated from
the model











xl = µ+

∞
∑

r=1

ζl,rψr

yl = KlΨxl + εl, l = 1, . . . , m

(5)

where {xl} are m independent realizations of X, and thus expandible in terms of the PC func-
tions {ψr} and the coef�cients {ζ l,r} given by ζl,r =

∫

M{xl(v)− µ(v)}ψr(v)dv. The terms {εl}
represent observational errors and are independent realizations of an s-dimensional normal ran-
dom vector, with mean the zero vector and variance σ2Ip, where Ip denotes the p-dimensional
identity matrix.

We consider the problem of estimating the PC functions {ψr} in (5), and associated scores
{ζ l,r}, from the observations {yl}. In �gure 3 we give an illustration of the introduced setting.
Note that it would not be necessary to de�ne the evaluation operator if the forward operators
were de�ned to be functionals {Kl : F → Rp}, relating directly the functional objects on the
brain space to the real vectors on the sensors space. It is however the case that the operators
{Kl} are computed in a matrix form by third party software (see section 6 for details) for a
pre-speci�ed set of points {v j} ⊂ M and it is thus convenient to take this into account in the
model through the introduction of an evaluation operatorΨ.

In the case of single subject studies, the surfaceM is the subject’s reconstructed cortical
surface, an example of which is shown on the right panel of �gure 1. In this case, it is natural
to assume that there is one common forward operator K for all the detected signals. In the
more general case of multi-subject studies,M is assumed to be a template cortical surface.
We are thus assuming that the individual cortical surfaces have been registered to the template
M, which means that there is a smooth and one-to-one correspondence between the points on
each individual brain surface and the template surfaceM, where the PC functions are de�ned.
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However, notice that when it comes to the computation of the forward operators, we are
not assuming the brain geometries of the single subjects to be all equal to a geometric tem-
plate, as in fact the model in (5) allows for sample-speci�c forward operators {Kl}. The
individual cortical surfaces could also have different number of mesh points, in that case the
subject-speci�c ‘resampling’ operator could be absorbed into the de�nition of sample-speci�c
evaluation operators {Ψl}.

The estimation of the PC functions in (5) has been classically dealt with by reconstruct-
ing each observation xl independently and subsequently performing PCA. However, such an
approach can be sub-optimal in particular in a low signal-to-noise setting, as when estimating
one signal, the information from all the other sampled signals is systematically ignored. The
statistical analysis of data samples that are random functions or surfaces, i.e. functional data,
has also been explored in the functional data analysis (FDA) literature (Ramsay and Silver-
man 2005), however, most of those works focus on the setting of fully observed functions.
An exception to this is the sparse FDA literature (see e.g. Yao et al 2005), where instead the
functional samples are assumed to be observable only through irregular and noisy evaluations.

In the case of direct but noisy observations of a signal, previous works on statistical estima-
tion of the covariance function, and associated eigenfunctions, have been made, for instance,
in Bunea and Xiao (2015) for regularly sampled functions and in Huang et al (2008), Yao
et al (2005) for sparsely sampled functions. A generalization to functions whose domain is a
manifold is proposed in Lila et al (2016) and appropriate spatial coherence is introduced by
penalizing directly the eigenfunctions of the covariance operator to be estimated, i.e. the PC
functions. In the indirect observations setting, Tian et al (2012) propose a separable model in
time and space for source localization. The estimation of PC functions of functional data in
a linear space and on linear domains, from indirect and noisy samples, has been previously
covered in Amini and Wainwright (2012). They propose a regularized M-estimator in a repro-
ducing kernelHilbert space (RKHS) framework.Due to the fact that in practice the introduction
of an RKHS relies on the de�nition of a kernel, i.e. a covariance function on the domain, this
approach cannot be easily extended to non-linear domains. In Katsevich et al (2015), driven
by an application to cryo-electron microscopy, the authors propose an unregularized estimator
for the covariance matrix of indirectly observed functions. However, a regularized approach
is crucial in our setting, due to the strong ill-posedness of the inverse problem considered. In
the discrete setting, also other forms of regularization have been adopted, e.g. sparsity on the
inverse covariance matrix (Friedman et al 2008, Liu and Zhang 2019).

2.2. The case of indirectly observed covariance operators

A natural generalization of the setting introduced in the previous section is considering obser-
vations that have group speci�c covariance operators. In detail, suppose now we are given a
set of n covariance functions {Ci : i = 1, . . . , n}, representing the underlying covariance opera-
tors {Ci : i = 1, . . . , n} on the brain space. In our driving application, each covariance function
Ci :M×M→ R describes the functional connectivity of the ith individual or the functional
connectivity of the same individual at the ith time-point.

We consider the problem of de�ning and estimating a set of covariance functions, that
we call PC covariance functions, which enable the description of {Ci} through the ‘linear
combinations’ of few components. Such a reduced order description is of interest, for example,
in understanding how functional connectivity varies among individuals or over time.

We de�ne a model for the PC covariance functions of {Ci} from the set of indirectly
observed covariance matrices, computed from the signals on the sensors space, and thus given
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Figure 4. Illustration of the setting introduced with model (6).

by {Si ∈ Rs×s, i = 1, . . . , n} with

Si = KiCiK
T
i + ETi Ei, i = 1, . . . , n, (6)

where Ci = (Ci(v j, v j′)) j j′ , and {vj : j = 1, . . . , p} are the sampling points associated with the
operatorΨ. The forward operators {Ki} act on both sides of the covariance functions {Ci}, due
to the linear transformationKiΨ applied to the signals on the brain space before being detected
on the sensors space. The term ETi Ei is an error term, where Ei is an s× s matrix such that
each entry is an independent sample of a Gaussian distribution with mean zero and standard
deviation σ. Model (6) could be regarded as an implementation of the idealized problem 2,
where the covariance operators are represented by the associated covariance functions. An
illustration of the setting introduced can be found in �gure 4.

The problem introduced in this section has not been extensively covered in the literature.
In the discrete case, Dryden et al (2009) introduce a tangent PCA model for directly observed
covariance matrices. An extension to directly observed covariance operators has been pro-
posed in Pigoli et al (2014). Also related to our work is the setting considered in Petersen
and Müller (2019), where the authors propose a regression framework for responses that are
random objects (e.g. covariance matrices) with Euclidean predictors. The proposed regression
model is applied to study associations between age and low-dimensional correlation matrices,
representing functional connectivity, which have been computed from a parcellation of the
brain. In section 4, we propose a novel PCA approach for indirectly observed high-dimensional
covariance matrices.

3. Principal components of indirectly observed functions

The aim of this section is to de�ne a model for the estimation of the PC functions {ψr} from
the observations {yl}, de�ned in (5). Although the model proposed in this section is not the
main contribution of this work, it allows us to introduce some of the concepts necessary to the
de�nition of the more general model for indirectly observed covariance functions in section 4.

3.1. Model

Now let z = (z1, . . . , zm)T be anm-dimensional real column vector andH2(M) be the Sobolev
space of functions in L2(M) with �rst and second distributional derivatives in L2(M). From
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now on F is instantiated with H2(M). We propose to estimate f̂ ∈ H2(M), the �rst PC
function of X, and the associated PC scores vector z, by solving the equation

(ẑ, f̂ ) = argmin
z∈Rm , f∈H2(M)

m
∑

l=1

‖yl − zlKlΨ f‖2 + λzTz

∫

M
∆

2
M f , (7)

where ‖ · ‖ is the Euclidean norm and ∆ is the Laplace–Beltrami operator, which enables
a smoothing regularizing effect on the PC function f̂ . The data �t term encourages KlΨf to
capture the strongest mode of variation of {yl}. The parameter λ controls the trade-off between
the data �t term of the objective function and the regularizing term. The second PC function
can be estimated by classical de�ation methods, i.e. by applying model (7) on the residuals
{yl − ẑlKlΨ f̂ }, and so on for the subsequent PCs. The proposed model can be interpreted as
a regularized least square estimation of the �rst PC function ψ1 in (5), with the terms {zl}
playing the role of estimates of the variables {ζ l,1}.

In the simpli�ed case of a single forward operator K :=K1 = · · · = Km, the minimization
problem (7) can be reformulated in a more classical form. In fact, �xing f in (7) andminimizing
over z gives

zl =
yTl KΨ f

‖KΨ f‖2 + λ
∫

M∆
2
M f

, l = 1, . . . , m, (8)

which can then be used to show that the minimization problem (7) is equivalent to maximizing

(Ψ f )TKTYTYK(Ψ f )

‖KΨ f‖2 + λ
∫

M∆
2
M f

, (9)

with Y an m× s real matrix, where the lth row of Y is the observation yTl . This reformulation
gives further insights on the interpretation of f̂ in (7). In fact, f̂ is such that KΨ f̂ maximizes
(KΨ f̂ )T

{

1
mY

T
Y
}

(KΨ f̂ ) subject to a norm constraint. The term
{

1
mY

T
Y
}

is the empirical
covariance matrix in the sensors space. The term zTz in (7) places the regularization term
λ
∫

M∆
2
M f in the denominator of the equivalent formulation (9). Thus, f̂ is regularized by

the choice of norm in the denominator of (9), in a similar fashion to the classic functional
principal component formulation of Silverman (1996). Ignoring the spatial regularization, the
point-wise evaluation of the PC functionΨf in (9) can be interpreted as the �rst PC vector com-
puted from the dataset of backprojected data [KT

1 y1, . . . , K
T
mym]

T , similarly to what is proposed
in Dobriban et al (2017) in the context of optimal prediction.

3.2. Algorithm

Here we propose a minimization approach for the objective function in (7), which we approach
by alternating the minimization of z and f in an iterative algorithm. In (7), a normalization
constraint must be considered to make the representation unique, as in fact multiplying z

by a constant and dividing f by the same constant does not change the objective function.
We optimize in z under the constraint ‖z‖ = 1, which leads to a normalized version of the
estimator (8):

zl =
yTl KlΨ f

√

∑m
l=1 y

T
l KlΨ f

, l = 1, . . . , m. (10)

9
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For a given z, solving (7) with respect to f will turn out to be equivalent to solving an
inverse problem, which we discretize adopting a mixed �nite elements approach (Azzimonti
et al 2014). Speci�cally, consider now a triangulated surfaceMT , union of the �nite set of
triangles T , giving an approximated representation of the manifoldM. We then consider the
linear �nite element space V consisting of a set of globally continuous functions overMT that
are af�ne where restricted to any triangle τ in T , i.e.

V = {v ∈ C0(MT ) : v|τ is af�ne for each τ ∈ T }.

This space is spanned by the nodal basis φ1, . . . ,φκ associated with the nodes ξ1, . . . , ξκ,
corresponding to the vertices of the triangulationMT . Such basis functions are Lagrangian,
meaning that φi(ξj) = 1 if i = j and φi(ξj) = 0 otherwise. Setting c = ( f (ξ1), . . . , f (ξκ))T and
φ = (φ1, . . . , φκ)T , every function f ∈ V has the form

f (v) =
κ
∑

k=1

f (ξk)φk(v) = cTφ(v) (11)

for all v ∈ MT . To ease the notation, we assume that the p points {vj} associated with the
evaluation operator Ψ coincide with the nodes of the triangular mesh ξ1, . . . , ξκ, and thus we
have that the coef�cients c are such that c = Ψf for any f ∈ V. Consequently, we are assuming
the forward operators {Kl} to be s× κmatrices, relating the κ points on the cortical surface of
the ith sample, in one-to-one correspondence to ξ1, . . . , ξκ, to the s-dimensional signal detected
on the sensors for the ith sample.

Let now M and A be the mass and stiffness κ× κ matrices de�ned as (M) j j′ =
∫

MT φ jφ j′

and (A) j j′ =
∫

MT∇MT φ j · ∇MT φ j′ , where ∇M is the gradient operator on the manifoldM.
Practically, ∇MT φ j is a constant function on each triangle ofMT , and can take an arbitrary
value on the edges6.

Let h = maxτ∈T (diam(τ )) denote themaximumdiameter of the triangles formingMT , then
the solution f̂ h of (7), in the discrete space V, is given by the following proposition.

Proposition 1. The surface �nite element solution f̂ h ∈ V of model (7), for a given unitary
norm vector z, is f̂ h = ĉTφ where ĉ is the solution of

ĉ =

(

m
∑

l=1

z2l K
T
l Kl + λAM−1A

)−1 m
∑

l=1

zlK
T
l yl. (12)

Equation (12) has the form of a penalized regression, where the discretized version of the
penalty term is AM−1A.

The sparsity of the linear system (12), namely the number of zeros, depends on the sparsity
of its components. The matrices M and A are very sparse, howeverM−1 is not, in general. To
overcome this problem, in the numerical analysis of partial differential equations literature,
the matrix M−1 is generally replaced with the sparse matrix M̃−1, where M̃ is the diagonal
matrix such that M̃ j j =

∑

j′M j j′ (Fried and Malkus 1975, Zienkiewicz et al 2013). The penalty

operator AM̃−1A approximates very well the behavior of AM−1A.
Moreover, in the case of longitudinal studies that involve only one subject, we have a single

forward operator K :=K1 = · · · = Km common to all the observed signals, and consequently

6 Formally, these are weak derivatives, hence uniquely de�ned almost everywhere (i.e. up to a set of measure zero)
and are always evaluated in an integral form (see Dziuk and Elliott 2013, for further details).

10
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Algorithm 1. Inverse problems—PCA algorithm

1: Initialization:
(a) Computation of M and A
(b) Initialize z, the scores vector associated with the �rst PC function

2: PC function’s estimation: compute c such that
(
∑m

l=1 z
2
l K

T
l Kl + λAnM−1A

)

c =
∑m

l=1 zlK
T
l yl

fh← cTφ

3: Scores estimation:

zl←
yTl KlΨ fh

√

∑m
l=1 y

T
l KlΨ fh

, l = 1, . . . , m

4: Repeat steps 2 and 3 until convergence

equation (12) can be rewritten as the sparse overdetermined system
[

K√
λM̃−1/2A

]

c =

[

YTz
0

]

, (13)

to be interpreted in a least-square sense. A sparse QR solver can be �nally applied to ef�ciently
solve the linear system (13).

In algorithm 1 we summarize the main algorithmic steps to compute the PC functions and
associated PC scores for indirectly observed functions. The initializing scores z can be chosen
either at random or, when there is a correspondence between the detectors of different samples
(e.g. K1 = · · · = Km), with the scores obtained by performing PCA on the observations in the
sensors space.

3.3. Eigenfunctions of indirectly observed covariance operators

Suppose now we are in the case of a single forward operator K. Combining steps 2 and 3 of
algorithm 1, and moving the normalization step from (zl) to fh, we obtain the iterations

(KTK + λAM−1A)c = KT
m
∑

l=1

(yly
T
l )KΨ fh

fh← cTφ; fh→
fh
‖ fh‖

.

The obtained algorithm depends on the data only through
∑m

l=1 yly
T
l that up to a constant is the

covariancematrix computed on the sensors space. The proposed algorithm can thus be applied
to situations where the observations {yl} are not available, but we are given only the associated
s× s covariance matrix on the sensors space, computed from {yl}. This could be of interest in
situations where the temporal resolution is very high and the spatial resolution is low, therefore
it is convenient to store the covariance matrix rather than the entire set of observations.

4. Reconstruction and representation of indirectly observed covariance

operators

Consider now n sample covariance matrices S1, . . . , Sn, each of size s× s, representing n dif-
ferent connectivity maps on the sensors space. Three of such covariance matrices, associated
with three different individuals, are shown in �gure 2. Recall moreover that we denote withM
the brain surface template and with {Ki ∈ R

s×p} the set of subject-speci�c forward operators,

11
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relating the signal at the p pre-speci�ed points {vj} on the cortical surfaceM with the signal
detected on the s sensors.

The aim of this section is to introduce a model for the reconstruction and representation
of the covariance functions {Ci}, on the brain space, associated with the actually observed
covariance matrices {Si}, on the sensors space. The matrices {Si} are related to the covariance
functions {Ci} through formula (6) that we recall here being

Si = KiCiK
T
i + ETi Ei, i = 1, . . . , n,

with Ci = (Ci(v j, vl)) jl, and {vj} the sampling points associated with the operator Ψ.
First, in section 4.1, we see how the PC model introduced in section 3 could be applied to

individually reconstruct the covariance functions {Ci}. In section 4.2, we introduce a pop-
ulation model that achieves both reconstruction and joint representation of the underlying
covariance functions {Ci}.

4.1. A subject-specific model

Let S1/2i be a square-root decomposition of Si, which is a decomposition such that Si =

(S1/2i )TS1/2i , for all i = 1, . . . , n. This could be given, for instance, by S1/2i = D1/2
i VT

i where

Si = ViDiVT
i is the spectral decomposition of Si and D

1/2
i denotes the diagonal matrix whose

entries are the square-root of the (non-negative) entries ofDi. Each square-root decomposition
S1/2i can be interpreted as a data-matrix whose empirical covariance is Si. Another possible

choice for the square-root decompositions is S1/2i = ViD
1/2
i VT

i . The output of the proposed
algorithms will not depend on the speci�c choice of the square-root decompositions.

In the most general setting, each covariancematrix Si is an indirect observation of an under-
lying covariance functionCi, which can be expressed in terms of its spectral decomposition as

Ci(v, v′) =
∞
∑

r=1

γirψir(v)ψir(v′), ∀v, v′ ∈M,

where, for each i, γ i1 > γ i2 > · · · > 0 is a sequence of non-increasing variances and {ψir}r a
set of orthonormal eigenfunctions. Introduce now { f̂ i ∈ H2(M)} and {ẑi ∈ R

s}, obtained by
applying model (7) to each sample independently, i.e.

{

(ẑi, f̂ i)
}

i
= argmin
{zi}⊂Rs,{ fi}⊂H2(M)

‖S1/2i − zi(KiΨ fi)T‖2F + λ‖zi‖2
∫

M
∆

2
M fi, i = 1, . . . , n,

(14)

with ‖ · ‖F denoting the Frobenius matrix norm. Each estimate f̂ i, from model (14), can be
interpreted as a regularized estimate of the leading PC function of S1/2i and thus of the eigen-
function ψi1. The subsequent eigenfunctions can be estimated by de�ation methods, i.e. by
removing the estimated components ẑi(KiΨ f̂ i)T from S1/2i and reapplying model (14). This
leads to a set of estimates { f̂ ir} and {ẑir}.

The unregularized version of model (14) is equivalent to a singular value decomposition
applied to each matrix S1/2i independently, which would lead to a set of orthogonal estimates
{ẑir}r ⊂ Rs, for each i = 1, . . . , n. In the regularizedmodel orthogonality is not enforced, how-
ever the estimated PC components can be orthogonalized post-estimation by means of a QR
decomposition.

12
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De�ne now the empirical variances to be γ̂ir = ‖ f̂ ir‖2L2(M)
and consider the L2(M)-

normalized version of { f̂ ir}. An approximate representation of Si = (S1/2i )TS1/2i is thus given
by

Si = Ki
∑

r

{

γ̂ir(Ψ f̂ ir)(Ψ f̂ ir)T
}

KT
i , (15)

and the associated approximate representation of Ci, in terms of {γ̂ir} and { f̂ ir}, is

Ci =
∑

r

γ̂ ir f̂ ir ⊗ f̂ ir,

where γ̂ ir is an estimate of the variance γir and f̂ ir is an estimate of ψir. The tensor prod-
uct f̂ ir ⊗ f̂ ir is such that ( f̂ ir ⊗ f̂ ir)(v, v′) = f̂ ir(v) f̂ ir(v′) for all v, v′ ∈ M. The regularizing
terms in (14) introduce spatial coherence on the estimated { f̂ ir} and thus on the estimated
eigenfunctions of {Ci}, fundamental in an inverse problems setting.

The reconstructed covariance functions {Ci} could be discretized on a dense grid, leading
to a collection of covariance matrices (Ci(v j, vl)) jl. Following the approach in Dryden et al
(2009), a Riemannian metric could be de�ned on the space of covariance matrices, followed
by projection of (Ci(v j, vl)) jl on the tangent space centered at the sample Fréchet mean. PCA
could then be carried out on vectorizations of the tangent space representations. A related
approach, for covariance functions, has been adopted in Pigoli et al (2014).

However, the aforementioned approaches could be prohibitive in our setting. In fact, per-
forming PCA on tangent space projections produces modes of variation that are geodesics
passing through the mean, and whose interpretation in a high-dimensional setting is often chal-
lenging. Therefore, in the next section, we propose an alternative model that enables joint
reconstruction, and representation on a ‘common basis’, of indirectly observed covariance
functions.

4.2. A population model

Let {ẑi}ni=1 ⊂ Rs and f̂ ∈ H2(M) be given by the following model:

({ẑi}, f̂ ) = arg min
{zi}⊂Rs, f∈H2(M)

n
∑

i=1

‖S1/2i − zi(KiΨ f )T‖2F + λ

n
∑

i=1

‖zi‖2
∫

M
∆

2
M f .

(16)

The newly de�ned model, as opposed to model (14), has now a subject-speci�c s-dimensional
vector zi and a term f that is common to all samples. As in the previous model, the subsequent
components can be estimated by de�ation methods, leading to a set of estimates f̂ r and ẑir.

De�ne now the empirical variances to be γ̂ir = ‖ẑir‖2‖ f̂ r‖2L2(M) and consider the L2(M)-

normalized version of { f̂ r}. The empirical term in model (16) suggests an approximate
representation of Si, that is

Ci =
∑

r

γ̂ ir f̂ r ⊗ f̂ r, (17)

13
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where each underlying covariance function Ci is approximated by the sum of the product
between a subject-speci�c constant γ̂ ir and a component f̂ r ⊗ f̂ r common to all the obser-
vations. The regularizing term in (16) introduces spatial coherence on the estimated functions
{ f̂ r}.

The covariance operators {Ci} are said to be commuting if CiCi′ = Ci′Ci for all i, i′ =
1, . . . , n. This property can be equivalently characterized as

Ci(v, v
′) =

∞
∑

r=1

γirψr(v)ψr(v
′), ∀v, v′ ∈ M, (18)

with {γir}r subject-speci�c variances and {ψr} a set of common orthonormal functions. Thus,
a collection of commuting covariance operators is such that its covariance operators can be
simultaneously diagonalized by a basis {ψr}. In this case, the functions { f̂ r} can be regarded
as estimates of {ψr} and {γ̂ ir} estimates of {γir}.

On the one hand, model (16) constrains the estimated covariances to be of the form Ci =
∑

rγ̂ ir f̂ r ⊗ f̂ r and not of the more general form Ci =
∑

rγ̂ ir f̂ ir ⊗ f̂ ir. On the other hand, such
a model takes advantage of all the n samples to estimate the components { f̂ r ⊗ f̂ r}. Moreover,
the associated variables {γ̂ir} give a convenient approximate description of the ith covariance,
as they are comparable across samples, as opposed to the one computed from model (14).
In fact, the ith covariance function can be represented by the variance vector (γ̂ i1, . . . , γ̂ iR)T ,
for a suitable truncation level R, where each entry is associated with the rank-one component
f̂ r ⊗ f̂ r. For each r, a scatter plot of the variances {γir}i, as the one in �gure 14, helps under-
stand what the average contribution of the rth components is and what its variability across
samples is. Model (17) could also be interpreted as a common PCA model (Benko et al 2009,
Flury 1984), as { f̂ r} are the estimated regularized eigenfunctions of the pooled covariance
C = 1

n

∑n
i=1 Ci.

Potentially, PCA could be performed on the descriptors (γ̂i1, . . . , γ̂iR)T to �nd rank-R com-
ponents that maximize the variance of linear combinations of {γ̂ir} (i.e. the variance of the vari-
ances). However, results would be more dif�cult to interpret, as they would involve variations
that are rank-R covariance functions around the rank-Rmean covariance function.

4.3. Algorithm

The minimization in (14), for each �xed i, is a particular case of the one in (7) (see section 3.2),
so we focus on the minimization problem in (16) which is also approached in an iterative
fashion. We set

∑n
i=1 ‖zi‖2 = 1 in the estimation procedure. This leads to the estimates of

{zi}, given f, that are

zi =
z̃i

√

∑n
i=1 ‖z̃i‖2

, i = 1, . . . , n,

with

z̃i = S1/2i KiΨ fh, i = 1, . . . , n.

The estimate of f given {zi}, in the discrete space V introduced in section 3.2, is given by
the following proposition.
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Algorithm 2. Inverse problems—covariance PCA algorithm.

1: Square-root decompositions

(a) Compute the representations S1/21 , . . . , S1/2n from S1, . . . , Sn as

S1/2i = D1/2
i VT

i ,
with Si = ViDiVT

i the spectral decomposition of Si.
2: Initialization:

(a) Computation of M and A
(b) Initialize {zi}ni=1, the scores of the �rst PC

3: PC function’s estimation from model (14): compute c such that
(
∑n

i=1 ‖zi‖2KT
i Ki + λAM−1A

)

c =
∑n

i=1K
T
i (S

1/2
i )Tzi

fh← cTφ

4: Scores estimation from model (14):

zi← S1/2i KiΨ fh, i = 1, . . . , n
zi← zi

√

∑n
i=1 ‖zi‖2

, i = 1, . . . , n

5: Repeat step 3 and 4 until convergence

Proposition 2. The surface �nite element solution f̂ h ∈ V of model (16), given the vectors
{zi}, is f̂ h = ĉTφ where ĉ is the solution of

(

n
∑

i=1

‖zi‖2KT
i Ki + λAM−1A

)

ĉ =

n
∑

i=1

KT
i (S

1/2
i )Tzi. (19)

Algorithm 2 contains a summary of the estimation procedure. From a practical point of
view, the choice to de�ne the representation basis to be a collection of rank one (i.e. separable)
covariance functions, of the type Fr = f̂ r ⊗ f̂ r, is mainly driven by the following reasons.
Firstly, rank-one covariance functions are easier to interpret due to their limited degrees of
freedom. Secondly, on a rank one covariance function Fr = f̂ r ⊗ f̂ r spatial coherence can be
imposed by regularizing f̂ r, as in fact done formodel (14), and this is fundamental in the setting
of indirectly observed covariance functions. Finally, due to their size, it might not be possible
to store the full reconstructions of the covariance functions {Ci} on the brain space, instead,
the representation model in (17) allows for an ef�cient joint representation of such covariance
functions in terms of rank-one components.

5. Simulations

In this section, we perform simulations to assess the performances of the proposed algorithms.
To reproduce as closely as possible the application setting, the cortical surfaces and the for-
ward operators are taken from the MEG application described in section 6. The details on the
extraction and computation of such objects are left to the same section. For the same reason, the
signals on the brain space considered here are vector-valued functions, speci�cally functions
from the brain spaceM to R3, as is the case in the MEG application. The proposed method-
ology can be trivially extended to successfully deal with this case, as shown in the following
simulations.

5.1. Indirectly observed functions

We considerMT to be a triangular mesh, with 8k nodes, representing the cortical surface
geometry of a subject, as shown on the left panel of �gure 1. Each of the 8k nodeswill represent
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Figure 5. From top to bottom the components and the energy maps of the PC functions
ψ1, . . . ,ψ4.

a location vj associated with the sampling operator Ψ. The locations of the nodes {vj} on the
brain space, the location of the 241 detectors on the sensors space and a model of the subject’s
head, enable the computation of a forward operatorK describing the relation between the signal
generated on the locations {vj}, on the brain space, and the signal detected on the 241 sensors
in the sensors space. In practice, the signal on each node vj is described by a three dimensional
vector, characterized by an intensity and a direction, while the signal detected on the sensors
space is a scalar signal. Thus, the forward operator is a 241× 24k matrix.

We �rst want to assess the performances of the proposed model in the case of indi-
rect functional observations belonging to a linear space. To this purpose, we produce syn-
thetic data following the generative model (5). Speci�cally, onMT , we construct the four
L2(MT ) orthonormal vector-valued functions {ψr = (ψr,1,ψr,2,ψr,3) : r = 1, . . . , 4}, with
ψr :MT → R3. These represent the PC functions to be estimated. In �gure 5 we show the
four components of {ψr} and the associated energy maps {‖ψr(v)‖2 : v ∈MT }, with ‖ · ‖
denoting the Euclidean norm in R3. We then generatem = 50 smooth vector-valued functions
{xl} onMT by

xl = zl1ψ1 + zl2ψ2 + zl3ψ3 + zl4ψ4 l = 1, . . . , m,

where {zlr} are i.i.d realizations of the four independent random variables {zr ∼ N(0, γr) : r =
1, . . . , 4}, with γ1 = 32, γ2 = 2.52, γ3 = 22 and γ4 = 1.

The functions {xl} are sampled at the 8k nodes, and the forward operator is applied to the
sampled values, producing a collection of vectors {yl} each of dimension 241, the number of
active sensors. Moreover, on each entry of the vectors {yl}, we add Gaussian noise with mean
zero and standard deviation σ, for different choices of σ, to reproduce different signal-to-noise
ratio regimes.
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In the following, we compare the PC model (7) to an alternative approach that we call the
naive approach. In fact, the individual functions {xl} could be estimated from {yl} by use of
classical inverse problem estimators. Here, we adopt the estimates {x̂l} de�ned as

x̂l = argmin
f=( f1, f2, f3):
f1, f2, f3∈H2(M)

m
∑

l=1

‖yl − KΨf‖2 + λ

∫

M
‖∆Mf‖2, l = 1, . . . , m, (20)

where each x̂l is de�ned in such a way that it balances the �tting term and the regularization
term in (20). Due to the fact that f is vector-valued, ‖∆Mf‖2 is de�ned as

‖∆Mf‖2 = ∆
2
M f1 +∆

2
M f2 +∆

2
M f3,

with { fq : q = 1, 2, 3} denoting the components of f. The same penalty operator is also adopted
to generalize to vector-valued functions the PC models introduced in sections 3 and 4. In this
approach, the constant λ is chosen independently for each of the m functions by partitioning
the 241 detectors in roughly equally sized K = 2 groups and applying K-fold cross-validation.
The criterion for the optimal λ is the average reconstruction error, on the sensors space, com-
puted on the validation groups. Once we obtain the estimates {x̂l} we can compute the esti-
mated PC functions {ψr} by applying classical multivariate PC analysis on the reconstructed
objects x̂l.

The estimates are compared to those of the proposed PC function model, as described in
algorithm 1, with 15 iterations. Note that, instead, a tolerance could be �xed to test if the
algorithm has converged. However, 15 iterations give satisfactory convergence levels in our
simulations and application studies. We partition the m observations in equally sized K = 2
groups and perform K-fold cross-validation for the choice of the penalty. Speci�cally, we
choose the coef�cientλ that minimizes the sensors space reconstruction error, on the validation
groups.

To evaluate the performances of the two approaches, we generate 100 datasets as previously

detailed. The quality of the estimated rth PC function is then measured with E
(

ψr, ψ̂r

)

=
∑3

q=1 ‖∇M(ψr,q − ψ̂r,q)‖2. The results are summarized in the boxplots in �gure 6, for two
different signal-to-noise ratios, where the Gaussian noise has standard deviation σ = 5 and
σ = 10. In �gure 7 we show an example of a signal on the brain space corrupted with the
speci�ed noise levels.

The boxplots highlight the fact that the proposed approach provides better estimates of the
PC functions (i.e. lower estimation errors E(ψr, ψ̂r)), when compared to the naive approach.
Differences in the estimation error are higher in a low signal-to-noise regime, as it is for the
estimation of the fourth PC function, where intuitively, the low variance associated to the PC
function makes it more dif�cult to distinguish this structured signal from the noise component.
Also surprising is the stability of the estimates of the proposed algorithm across the gener-
ated datasets, as opposed to the naive approach of reconstructing the functional observations
independently, which instead returns multiple particularly unsatisfactory reconstructions. An
example of such reconstructions is shown in �gure 8.

5.2. Indirectly observed covariance functions

In this section, we considerMT to be a 8k nodes triangular mesh, this time representing a
template geometry of the cortical surface, which is shown in �gure 10. This contains only the
geometric features common to all subjects. Moreover, each subject’s cortical surface is also
represented by a 8k nodes triangular surface, which is used, together with the locations of the
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Figure 6. On the left, a summary of the results in a medium signal-to-noise ratio regime.
On the right, a summary of the results in a low signal-to-noise ratio regime. Each boxplot
displays the paired differences of the estimation errors E(ψr , ψ̂r) between the estimates
of the two steps naive method and those obtained by applying algorithm 1. A paired
difference greater than 0 indicates that, for the dataset in question, algorithm 1 has
performed better than the two steps naive approach.

Figure 7. From left to right, the energy map of a generated function xl, the associated
signal yl on the sensors space with respectively no additional error, Gaussian error of
standard deviation σ = 5 and Gaussian error of standard deviation σ = 10.

241 detectors on the sensors space, and the head model, to compute a forward operator Ki for
the ith subject. The 8k nodes of each subject’s triangular mesh are in correspondence with the
8k nodes of the template meshMT . This allows the model to be de�ned on the templateMT .

As in the previous section, we construct four L2 (MT ) orthonormal functions
{

ψr =
(

ψr,1,ψr,2,ψr,3
)

: r = 1, . . . , 4
}

. The energy maps of {ψr} are shown in �gure 9. We
generate synthetic data from model (6) as follows:

Ci =
4
∑

r=1

z2irψr ⊗ψr =

4
∑

r=1

z2ir





ψr,1 ⊗ ψr,1 ψr,1 ⊗ ψr,2 ψr,1 ⊗ ψr,3
ψr,2 ⊗ ψr,1 ψr,2 ⊗ ψr,2 ψr,2 ⊗ ψr,3
ψr,3 ⊗ ψr,1 ψr,3 ⊗ ψr,2 ψr,3 ⊗ ψr,3



 ,

where zi1, . . . , zi4 are i.i.d realizations of the four independent random variables
{zr ∼ N(0, γr) : r = 1, . . . , 4}, with γ1 = 32, γ2 = 2.52, γ3 = 22 and γ4 = 1. The matrix-
valued form of the covariance functions arises from the fact that the observed functions on the
brain space are vector-valued. Subsequently, we construct the point-wise evaluations matri-
cesCi ∈ R

24k×24k, from which the correspondent covariance matrices on the sensors space are
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Figure 8. On the �rst row the energy maps of the true four PC components to be esti-
mated, on the second row the estimations given by the two steps naive method, and on
the third row the reconstructions obtained by applying algorithm 1.

Figure 9. On the top row, the energy maps ofψ1, . . . ,ψ4. On the bottom row the energy
maps of the estimates ψ̂1, . . . , ψ̂4 obtained by applying algorithm 2.

de�ned as

Si = KiCiK
T
i + ETi Ei, i = 1, . . . , n.

The term ETi Ei is an error term, where Ei is an s× s matrix with each entry that is an indepen-
dent sample from a Gaussian distribution with mean zero and standard deviation 5. We then
apply algorithm 2 with 15 iterations, feeding in input {Si}. The results are shown in �gure 9, in
terms of energy maps of the reconstructed functions

{

ψ̂r

}

. These are a close approximation

of the underlying functions {ψr}. The �delity measure
∑3

q=1 ‖∇M
(

ψr,q − ψ̂r,q
)

‖2 of such
estimates is 6.8× 10−2, 6.1× 10−1, 6.8× 10−1 and 7.4× 10−1, for ψ1, . . . ,ψ4 respectively,
which is comparable in term of order of magnitude to the results obtained in the case of PCs
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of indirectly observed functions. Across the generation of multiple datasets, results are stable,
with the exception of few situations where the cross-validation approach suggests a penaliza-
tion coef�cient λ that under-smoothes the solution, due to very similar associated signals on
the sensors space of the under-smoothed solution and the real solution. However, the cross-
validation is only a possible approach to the choice of the penalization constant, and many
other options have been proposed in the inverse problems literature (Vogel 2002). Some of
these, however, involve visual inspection.

6. Application

In this section, we apply the developed models to the publicly available human connectome
project (HCP) young adult dataset (Van Essen et al 2012). This dataset comprises multi-modal
neuroimaging data such as structural scans, resting-state and task-based functionalMRI scans,
and resting-state and task-based MEG scans from a large number of healthy volunteers. In the
following, we brie�y review the pre-processing pipeline, applied to such data by the HCP, to
ultimately facilitate their use.

6.1. Pre-processing

For each individual a high-resolution 3D structural MRI scan has been acquired. This returns
a 3D image describing the structure of the gray and white matter in the brain. Gray matter is
the source of large parts of our neuronal activity. White matter is made of axons connecting
the different parts of the gray matter. If we exclude the sub-cortical structures, gray matter is
mostly distributed at the outer surface of the cerebral hemispheres. This is also known as the
cerebral cortex.

By segmentation of the 3D structural MRI, it is possible to separate gray matter from white
matter, in order to extract the cerebral cortex structure. Subsequently a mid-thickness surface,
interpolating the mid-points of the cerebral cortex, can be estimated, resulting in a 2D surface
embedded in a 3D space that represents the geometry of the cerebral cortex. In practice, such
a surface, sometimes referred to as cortical surface, is a triangulated surface. Moreover, from
the 3D structural MRI, a surface describing the individuals’ head can be extracted. The latter
plays a role in the derivation of the model for the electrical/magnetic propagation of the signal
from the cerebral cortex to the sensors. An example of the cortical surface of a single subject,
is shown on the right panel in �gure 1, instead the associated head surface and MEG sensors
positions are shown on the left panel of the same �gure.

Moreover, a surface based registration algorithm has been applied to register each of the
extracted cortical surfaces to a triangulated template cortical surface, which is shown in
�gure 10. Post registration, the triangulated template cortical surface is sub-sampled to a 8k
nodes surface.Moreover, the nodes on the cortical surface of each subject are also sub-sampled
to a set of 8k nodes in correspondence to the 8k nodes of the template. For each subject, a
248× 24kmatrix, representing the forward operator, has been computedwith FieldTrip (Oost-
enveld et al 2011) from its head surface, cortical surface and sensors position. Such a matrix
relates the vector-valued signals in R3, on the nodes of the triangulation of the cerebral cortex,
to the one detected from the sensors, consisting of 248 magnetometer channels.

With the aim of studying the functional connectivity of the brain, for each subject, three
6 min resting state MEG scans have been performed, of which one session is used in our
analysis. During the 6 min, data are collected from the sensors at 600k uniformly distributed
time-points. Using FieldTrip, classical pre-processing is applied to the detected signals, such
as low quality channels and low quality segments removal. Details of this procedure can be
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Figure 10. Top side and bottom side views of the template triangular meshMT
composed of 8k nodes.

found in the HCP MEG reference manual. Moreover, we apply a band pass �lter, limiting the
spectrum of the signal to the [12.5, 29]Hz, also known as the beta waves. For the signal of each
channel we compute its amplitude envelope (see �gure B.1) which describes the evolution of
the signal amplitude. The measure of connectivity between channels that we adopt in this work
is the covariance of the amplitude envelopes. Other connectivity metrics, such as phase-based
metrics, have been proposed in the literature (see Colclough et al 2016, and references therein).

6.2. Analysis

Here we apply the population model introduced in section 4.2 to the HCP MEG data. The �rst
part of the analysis focuses on studying dynamic functional connectivity of a speci�c subject.
For this purpose, we subdivide the 6 min session in n = 40 consecutive intervals. Each of these
segments is used to compute a covariancematrix in the sensors space, resulting in n covariance
matrices S1, . . . , Sn. In this setting, we have one forward operatorK = K1 = · · · = Kn. The aim
is understanding the main modes of variation of the functional connectivity on the brain space
of the subject. Thus, algorithm 2, with 20 iterations, is applied to S1, . . . , Sn to �nd the PC
covariance functions.

A regularization parameter λ common to all the PC components is chosen by inspecting the
plot of the regularity of the �rst R = 10 PC covariance functions (

∑R
r=1

∫

M‖∇ψr‖2) versus
the residual norm, for different choices of the parameter. This is a version of the L-curve plot
(Hansen 2000) and is shown on the left panel of �gure B.2. Here we show the results for
λ = 102, in the appendices we show the results for λ = 10. The energy maps of the estimated
ψ̂1, ψ̂2 and ψ̂3 resulting from the analysis are shown in �gure 11. These are associated with the
�rst three PC covariance functions ψ̂1 ⊗ ψ̂1, ψ̂2 ⊗ ψ̂2 and ψ̂3 ⊗ ψ̂3. High intensity areas, in
yellow, indicate which areas present high average interconnectivity, either by means of positive
or negative correlation in time.

In �gure 12, we show the plot of variances associated with each time segment, describing
the variation in time of the PC covariance functions, hence the variation in interconnectivity.
The variance can be either de�ned on the sensors space, by normalizing the PC covariance
functions {Kψ̂r}, with K the forward operator, or on the brain space, by normalizing the PC
covariance functions on the brain space {ψ̂r}. Due to the presence of invisible dipoles, which
are dipoles that display zero magnetic �eld on the sensors space, the two norms can be quite
different, leading to different average variances for each PC covariance function. Due to the
high sensitivity of the source space variances on the choice of the regularization parameter, we
focus on the estimated variances on the sensors space.

We have also applied ourmodel to the covariances obtained by subdividing theMEG session
in n = 80 segments. As expected the PC covariance functions, shown in �gure B.5 are very
similar. However, the variances, in �gure B.4, show higher variability in time, which can be
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Figure 11. Top side and bottom side views of the estimated energy maps ψ̂1, ψ̂2 and
ψ̂3 obtained by applying algorithm 2 to the covariance matrices computed from the
MEG resting state data of a single subject on n = 40 consecutive time intervals. On the
right panel, the covariance functions associated with these energy maps. On the top right
panel we highlight with red circles the areas with high average interconnectivity, which
correspond to the neighborhoods of the red crossed vertices in the plot of the energy map
of ψ1.

partially explained by the fact that shorter time segments lead to covariance estimates that have
higher variability.

The second part of the analysis focuses on applying the proposed methodology to a multi-
subject setting. Speci�cally, n = 40 different subjects are considered. For each subject, the
6min scan is used to compute a covariancematrix, resulting in n covariancematrices S1, . . . , Sn.
The template geometry in �gure 10 is used as a model of the brain space. Algorithm 2 is then
applied to �nd the PC covariance functions on the template brain, associated with S1, . . . , Sn.
We run the algorithm for 20 iterations, and choose the regularizing parameter to be λ = 102 by
inspecting the L-curve plot in the right panel of �gure B.2. The results for λ = 10 are shown in
the appendices. The energy maps of the estimated functions ψ̂1, ψ̂2 and ψ̂3 and the associated
�rst three covariance functions ψ̂1 ⊗ ψ̂1, ψ̂2 ⊗ ψ̂2 and ψ̂3 ⊗ ψ̂3, are shown in �gure 13. High
intensity areas, in yellow, indicate which areas present high average connectivity. In �gure 14,
we show the subject-speci�c associated variances, both in the sensors space and the brain space.

The presented methodology opens up the possibility to understand population level varia-
tion in functional connectivity, and indeed, whether, just as we need different forward operators
for individuals (due to anatomical differences), we should also be considering both population
and subject-speci�c connectivity maps when analyzing connectivity networks. In fact, it is of
interest to note that in both the single and multi-subject settings, the areas with high intercon-
nectivity, displayed in yellow in �gures 11 and 13, seem to be at least partially overlappingwith
the brain’s default network (Buckner et al 2008, Yeo et al 2011). The brain’s default network
consists of the brain regions known to have highly correlated hemodynamic activity (i.e. high-
est functional connectivity levels), and to be most active, when the subject is not performing
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Figure 12. Plots of the segment-speci�c variances of the �rst R = 10 PC covariance
functions. On the left, the estimated variances on the sensors space, on the right, the
estimated variances on the brain space.

Figure 13. Top side and bottom side views of the estimated energy maps ψ̂1, ψ̂2 and
ψ̂3 obtained by applying algorithm 2 to the covariance matrices computed from the
MEG resting state data of n = 40 different subjects. On the right panel, the covariance
functions associated with these energy maps.
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Figure 14. Plots of the subject-speci�c variances associated with the �rst R = 10 PC
covariance functions. On the left, the estimated variances on the sensors space, on the
right, the estimated variances on the brain space.

any speci�c task. An image of the spatial con�guration of the default network can be found,
for instance, in �gure 2 of Buckner et al (2008). From the plots of the associated variances in
the sensors space (left panel of �gures 12 and 14) we can see that these areas are also the ones
that show high variability in connectivity across time or across subjects. This might suggest
that the brain’s default network is also the brain region that shows among the highest levels of
spontaneous variability in connectivity.

The plots of the variances on the brain space (right panel of �gure 14), when compared to
those on the sensors space (left panel of �gure 14), demonstrate that these type of studies are
highly sensitive to the choice of the regularization, not only in terms of spatial con�guration
of the results, but also in terms of estimated variances on the brain space. With a naive ‘�rst
reconstruct and then analyze’ approach,where the reconstructed data on the brain space replace
those observed on the sensors space, this issue could go unnoticed, as the variability that does
not �t the chosenmodel is implicitly discarded in the reconstruction step and does not appear in
the subsequent analysis. Also, importantly, our analysis deals with statistical samples that are
entire covariances, overcoming the limitations of seed-based approaches, where prior spatial
information is required to choose the seed. Seed locations are usually informed by fMRI stud-
ies and this comes with the risk of biasing the analysis when comparing electrophysiological
networks (MEG) and hemodynamic networks (fMRI).

In general, care should be taken when drawing conclusions fromMEG studies. Establishing
static and dynamic functional connectivity from MEG data remains challenging, due to the
strong ill-posedness of the inverse problem. It is known that other variables, such as the choice
of the frequency band or the choice of the connectivitymetric can in�uence the analysis. While
the choice of the neural oscillatory frequency band could be seen as an additional parameter
in MEG functional connectivity studies, there is no general agreement on the choice of the
connectivity metrics (Gross et al 2013). It is important to highlight that in this paper we focus
on methodological contributions to the speci�c problem of reconstructing and representing
indirectly observed functional images and covariance functions.
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7. Discussion

In this work we introduce a general framework for the reconstruction and representation of
covariance operators in an inverse problem context. We �rst introduce a model for indirectly
observed functional images in an unconstrained space, which outperforms the naive approach
of solving the inverse problem individually for each sample. Thismodel plays an important role
in the case of samples that are indirectly observed covariance functions, and thus constrained
to be positive semide�nite. We deal with the non-linearity introduced by such constraint by
working with unconstrained representations, yet incorporating spatial information in their esti-
mation. The proposed methodology is �nally applied to the study of brain connectivity from
the signals arising from MEG scans.

The models proposed here can be extended in many interesting directions. From an applied
prospective, it is of interest to apply them to different settings, not necessarily involving
neuroimaging, where studying second order information has been so far prohibitive. Direct
examples are second order analysis of the dynamics of meteorological observations, such as
temperature.Another possible application is the study of the dynamics of ocean currents, where
the irregularity of the spatial domain, and its complex boundaries, can be easily accounted for
thanks to the manifold representation approach in our models.

From a modeling point of view, it is of interest to take a step further toward the integration
of the inverse problems literature with the approachwe adopt in this paper. For instance, penal-
ization terms that have been shown to be successful in the inverse problems literature, e.g. total
variation penalization, could be introduced in our models.
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Appendix A. Discrete solutions

Proof of proposition 1. We want to �nd a minimizer f̂ ∈ H2(M), given z with ‖z‖ = 1,
of the objective function in (7):

m
∑

l=1

‖yl − zlKlΨ f‖2 + λzTz

∫

M
∆

2
M f

∝ (Ψ f )T
(

m
∑

l=1

z2l K
T
l Kl

)

Ψ f − 2(Ψ f )T
(
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∑

l=1

zlK
T
l yl
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+ λ

∫

M
∆

2
M f . (21)

An equivalent formulation of a minimizer f̂ ∈ H2(M) of such objective function is given by
satisfying the equation

(Ψϕ)T
(

m
∑

l=1

z2l K
T
l Kl

)

Ψ f̂ + λ

∫

M
∆Mϕ∆M f̂ = (Ψϕ)T

(

m
∑

l=1

zlK
T
l yl

)

(22)

for every ϕ ∈ H2(M) (see Braess 2007, chapter 2). Moreover, such minimizer is unique if
A(ϕ, f ) = (Ψϕ)T

(
∑m

l=1 z
2
l K

T
l Kl
)

Ψ f + λ
∫

M∆Mϕ∆M f is positive de�nite. Given that for a
closed manifoldM,

∫

M∆
2
M f = 0 iff f is a constant function (Dziuk and Elliott 2013), the
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positive de�niteness condition is equivalent to assuming that ker
(
∑m

l=1 z
2
l K

T
l Kl
)

, the kernel of
∑m

l=1 z
2
l K

T
l Kl, does not contain the subspace of p-dimensional constant vectors.

Moreover, we can reformulate equation (22) in a form that involves only �rst-order deriva-
tives by integration by parts against a test function. We then look for a solution in the discrete
space V ⊂ H1(M), i.e. �nding f̂ , g ∈ V














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

(Ψϕ)T
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T
l Kl

)

Ψ f̂ + λ
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M
∇Mϕ · ∇Mg = (Ψϕ)T

(

m
∑

l=1

zlK
T
l yl

)

∫

M
∇M f̂ · ∇Mw −

∫

M
gw = 0

(23)

for all ϕ,w ∈ V. The operator∇M is the gradient operator on the manifoldM. The gradient
operator ∇M is such that (∇Mw) (v), for w a smooth real function onM and v ∈ M, takes
value on the tangent space at v. We denote with · the scalar product on the tangent space.

We recall here the de�nition of the κ× κ matrices to be (M) j j′ =
∫

MT φ jφ j′ and (A) j j′ =
∫

MT∇MT φ j · ∇MT φ j′ . Note that requiring (23) to hold for allϕ,w ∈ V is equivalent to requir-
ing that (23) holds for all ϕ,w that are basis elements of V, thus exploiting the basis expansion
formula (11) we can characterize (23) with the solution of the linear system
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where ĉ and q̂ are the basis coef�cients of f ∈ V and g ∈ V, respectively. Solving (24) in ĉ leads
to

(

m
∑

l=1

z2l K
T
l Kl + λAM−1A

)

ĉ =

m
∑
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zlK
T
l yl. (25)

�

Proof of proposition 2. We want to �nd a minimizer f̂ ∈ H2(M), given {zi} with
∑n

i=1 ‖zi‖2 = 1, of the objective function in (14):

n
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Comparing (26) with (21) it is evident that by following the same steps of the proof of
proposition 1 we obtain the desired result, which is

ĉ =
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Appendix B. Application—additional material

Here we present further material complementing the analysis in section 6. In �gure B.1 we
show the amplitude envelope computed from a �ltered version of a signal detected by an MEG
sensor. The covariance of the amplitude envelopes across different sensors is the measure of
connectivity used in this work.

In �gure B.2 we show the L-curve plots associated with the PC covariance models applied
to the dynamic and multi-subject functional connectivity studies.

In �gures B.3 and B.4 we show respectively the plots of the estimated PC covariance
functions and associated variances from the dynamic functional connectivity study on n = 40
segments with regularization parameter λ = 10.

In �gures B.5 and B.6 we show the estimated PC covariance functions and associated
variances from the dynamic functional connectivity study on n = 80 time segments with
regularization parameter λ = 102.

In �gures B.7 and B.8 we show the estimated PC covariance functions and associ-
ated variances from the multi-subject functional connectivity study on n = 40 subjects with
regularization parameter λ = 10.

Figure B.1. Amplitude envelope (in red) of the �ltered signal (in blue) detected by an
MEG sensor.

Figure B.2. Plots of the regularity of the �rstR = 10 PC covariance functions, measured
as

∑10
r=1

∫

M‖∇ψr‖2 versus the residual norm in the data, for different choices of log(λ).
On the left panel, the plot refers to the dynamic connectivity study, on the right panel
the plot of the multi-subject connectivity study.
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Figure B.3. Energy maps of the estimated ψ̂1, ψ̂2 and ψ̂3 obtained by applying
algorithm 2, with lower regularization (λ = 10), to the covariance matrices computed
from theMEG resting state data of a single subject on n = 40 consecutive time intervals.
On the right panel, the covariance functions associated with these energy maps.

Figure B.4. Plots of the segment-speci�c variances of the �rst R = 10 PC covariance
functions in time when a smaller regularization parameter is chosen (λ = 10).
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Figure B.5. Energy maps of the estimated ψ̂1, ψ̂2 and ψ̂3 obtained by applying
algorithm 2, with λ = 102, to the covariance matrices computed from the MEG resting
state data of a single subject on n = 80 consecutive time intervals. On the right panel,
the covariance functions associated with these energy maps.

Figure B.6. Plots of the segment-speci�c variances of the �rst R = 10 PC covariance
functions in time, with λ = 102, when the MEG resting state data is split into n = 80
consecutive time intervals.
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FigureB.7. Energymaps of the estimated ψ̂1, ψ̂2 and ψ̂3 obtained by applying algorithm
2, with lower regularization (λ = 10), to the covariance matrices computed from the
MEG resting state data of n = 40 different subjects. On the right panel, the covariance
functions associated with these energy maps.

Figure B.8. Plots of the subject-speci�c variances associated with the �rst R = 10 PC
covariance functions computed from n = 40 subject, with regularization parameter λ =

10.
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