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Abstract
A computational approach has been developed to automatically generate and analyse the structures of the intermediates of palla-
dium-catalysed carbon–hydrogen (C–H) activation reactions as well as to predict the final products. Implemented as a high-perfor-
mance computing cluster tool, it has been shown to correctly choose the mechanism and rationalise regioselectivity of chosen ex-
amples from open literature reports. The developed methodology is capable of predicting reactivity of various substrates by differ-
entiation between two major mechanisms – proton abstraction and electrophilic aromatic substitution. An attempt has been made to
predict new C–H activation reactions. This methodology can also be used for the automated reaction planning, as well as a starting
point for microkinetic modelling.
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Introduction
Periodically, our knowledge of chemistry is enriched with new
transformations that provide significant breakthroughs by
enabling new synthetic strategies. Such examples in recent
years include olefin metathesis [1] as well as C–C and C–N
coupling reactions [2], among the most obvious examples.
While these reactions undoubtedly had very significant impacts
on the development of much cleaner and efficient chemical syn-

thesis strategies, the early days of all new transformations are
invariably challenging, with very slow and protracted paths
from the initial discoveries to the demonstrations of broad sub-
strate applicability and robustness, that are expected of indus-
trial catalytic processes. Today, there exist a number of fairly
recently (re)discovered transformations, that are of potential
high industrial significance, and where one can observe the
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same problem of a lack of robustness. Thus, any approach that
may speed-up the transition from a discovery of a new transfor-
mation to it becoming a robust synthetic strategy, is highly
desired.

Recent years have seen the emergence of new methods of
research in chemistry and process development, which include
high-throughput experiments [3], autonomous self-optimising
reactors [4-6], as well as predictions of reaction outcomes and
of reaction conditions based on machine learning (ML) and arti-
ficial intelligence (AI) tools [7-9]. Especially the methods of
ML/AI for prediction of reaction outcomes are attracting a lot of
attention. Prediction accuracies in the order of 70–80% for the
reaction outcomes [9], and around 60–70% for reaction condi-
tions [10], were recently demonstrated. While machine learning
methods are showing great promise and continue to be im-
proved upon, it is also clear that a ML model is unlikely to ever
be able to compete in accuracy and interpretability with fully
predictive mechanistic models, were it not for the prohibitively
high cost of developing the mechanistic models based on accu-
rate quantum chemical methods, such as the density functional
theory (DFT) methods, decreases. Automation of DFT, as well
as using results of DFT to develop less expensive predictive
models, are the two approaches that may offer the alternatives
to the fully data-driven statistical methods.

Here we demonstrate an approach that was developed to auto-
mate the DFT-level calculations of energies of the auto-gener-
ated reaction intermediates. These results were further used to
generalize mechanistic knowledge of a class of reactions, and
the developed models were used for in silico prediction of reac-
tion outcomes. This approach was tested on the for green chem-
istry important class of C–H activation reactions. Whilst this
study does not completely solve the problem of developing a
robust chemical reaction, it offers an approach that is comple-
mentary to efforts of developing machine learning models for
predicting reaction outcomes.

C–H activation reactions allow conversion of relatively inex-
pensive and abundant hydrocarbons into the more sophisticated
value-added molecules [11]. With the notion of step-economi-
cal and environmentally friendly synthesis, direct functionaliza-
tion of C–H bonds is a powerful strategy for the synthesis and
derivatization of organic molecules [12]. Homogeneous cataly-
sis employing transition metal complexes has been widely
accepted as one of the most efficient ways to perform C–H acti-
vation-based synthesis with high selectivity under relatively
mild conditions [13]. In particular, reactions involving palla-
dium-catalysed activation of sp2 or sp3 C–H bonds of arenes or
alkanes have been extensively investigated due to their wide
scope and functional group tolerance [14].

A number of different mechanisms are proposed in the litera-
ture, explaining the experimental observations for C–H activa-
tion reactions, depending on the nature of a ligand (Ln) and
transition metal (M) in the catalytically active species (LnM).
These mechanisms include four elementary steps: oxidative ad-
dition, σ-bond metathesis, electrophilic substitution and 1,2-ad-
dition, respectively [15]. Even though the mechanisms are
inherently different, three most important aspects should be
primarily taken into account when classifying and rationalising
C–H activation reactions:

1. the proximity of C–H bond to the transition metal;
2. the energy of C–H bond cleavage within the transition

metal coordination sphere;
3. the energy of a new M–C bond formed and the thermo-

dynamic stability of organometallic product.

With new developments in computational chemistry, mechanis-
tic studies using density functional theory (DFT) provide valu-
able insights into the reactivity of organometallic complexes in
C–H activation reactions. Along with the huge increase in
computing power, this method becomes practically feasible to
build model systems that provide parameters of the actual ex-
perimental systems with acceptable accuracy [16]. Recently, a
predictive tool using quantum mechanics descriptors was pro-
posed for classifying whether the carbon atoms are active or
inactive toward electrophilic aromatic substitution [17]. Also, a
quantum mechanical approach was introduced to compute
ortho-directing groups (DGs) in palladium-catalysed aromatic
C–H activation reactions [18]. However, there is a big chal-
lenge remaining which is to apply the computational analysis to
a large number of mechanistically different transformations,
both described and novel, in order to start generating accurate in
silico reaction predictions. Here, we report an algorithm with
high-performance computing (HPC) implementation, which has
been developed to automatically generate and analyse the struc-
tures of the intermediates, and which allows prediction of the
final products. The application of the developed methodology is
in predicting reactivity for various substrates within a class of
reactions. Using analysis of the computational data, a threshold
to distinguish between two possible reaction mechanisms was
established.

Computational Methods
The NWChem, an open source software package, was used for
the DFT calculations. It is easily scalable and designed to solve
large scientific computational problems efficiently employing
modern supercomputer clusters [19]. The structures were gener-
ated by the Python module developed in house and explained in
detail elsewhere [20]. Electronic energies were evaluated using
Becke’s three-parameter hybrid B3LYP functional, while the
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Figure 1: An approximate energy map for the electrophilic aromatic substitution mechanism.

molecular orbitals are expanded in triple-zeta all electron 6-31
set with added polarization and diffuse functions [6-31g(d,p)]
[21]. B3LYP functional was proven to give accurate descrip-
tion of geometries, frequencies, relative stabilities of different
conformers and the energy profile calculation [22]. Implementa-
tion of the tools is available at GitHub: https://github.com/sus-
tainable-processes/Pd-catalysed_C-H_activation_reaction_predi
ction.

Results and Discussion
Computational approach to rationalise
reactivity in Pd-catalysed C–H bond
activation reactions
Chemical reactivity is simultaneously influenced by many
factors including catalysts, reactants, reaction conditions, and so
on [23]. In order to achieve accurate and efficient reaction
prediction, a mechanism-based method was chosen to direct
quantum chemistry calculations and predictions, see Figure 1.

For the Pd(II)-catalysed C–H activation reactions, there are two
main commonly accepted mechanisms: a) electrophilic aromat-
ic substitution (SEAr) mechanism and b) proton abstraction
(PA) mechanism. The key step for the electrophilic aromatic
substitution is an electrophilic attack by Pd(II) onto the aromat-
ic substrate that also defines the regioselectivity of the overall
process [24]. The key feature of the proton abstraction (PA)
mechanism [25] is that the formation of the metal–carbon bond
(M–C) occurs simultaneously with the cleavage of the
carbon–hydrogen (C–H) bond, while the hydrogen is being
transferred to a basic centre, Scheme 1.

Assuming the reaction proceeds through the formation of a rela-
tively unstable intermediate (Figure 1) [26], the Hammond
postulate can be applied to the electrophilic substitution reac-
tions. The Hammond postulate states that a transition state will
be structurally and energetically similar to the species (reactant,
intermediate or product) nearest to it on the reaction path. In
this case, the intermediates are likely to be close to, and
resemble, transition states. Due to that, their relative energy of
formation can be translated to relative reaction kinetic barriers
and thus be used, as the first approximation, to predict distribu-
tions of the final products, as well as the relative reactivity of
the substrates [27]. For the PA mechanism, it has not been
shown that the Hammond postulate can also be employed.
Nevertheless, it is still reasonable to propose that the Hammond
postulate can similarly be applied as a first approximation to
produce in silico predictions.

Employing the Python module [20] and OpenBabel executables
[28], the 3D structures of the most stable conformers were
generated from the 2D structure of a substrate. Subsequently,
structures of all possible palladium intermediates representing
both mechanisms (PA and SEAr) were built for each conformer.
A quick geometry optimization (maximum number of iteration
steps was set to 5) was then applied to refine the intermediates
and discard the ones with high energy (energy cut off of
10 kcal·mol−1). Full geometry optimisation followed by the fre-
quency and thermochemistry analysis was then performed for
the selected intermediates to obtain electronic energies.
Multiple error handlers were implemented in order to automati-
cally reprocess computational analysis for the intermediates
when initial geometry optimisation failed. These include:

https://github.com/sustainable-processes/Pd-catalysed_C-H_activation_reaction_prediction
https://github.com/sustainable-processes/Pd-catalysed_C-H_activation_reaction_prediction
https://github.com/sustainable-processes/Pd-catalysed_C-H_activation_reaction_prediction
https://github.com/sustainable-processes/Pd-catalysed_C-H_activation_reaction_prediction
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Scheme 1: Schematic representation of the two mechanisms of Pd-catalysed C–H activation reaction considered in this study.

(i) erroneous optimisation to a saddle point where the final
structure is changed by applying a move along imaginary coor-
dinate followed by standard geometry optimisation, (ii) failed
optimisation due to the need of updating Hessian in cases where
significant geometry change occurred – standard resubmission
starting from the last coordinate, (iii) failure to perform initial
guess due to particularly bad initial geometry – discard the
conformer/intermediate, (iv) decomposed intermediate (no
Pd–C bond determined by interatomic distance analysis) –
discard intermediate.

Literature validation
In order to test the developed algorithm, a representative litera-
ture data selection of Pd-catalysed C–H activation reactions,
consisting of reactant, reagents, and product structures as well
as reaction conditions, was taken and analysed. Thus, twelve
substrates shown in Table 1 were submitted to the algorithm,
assuming that both mechanisms are possible. Using the relative
energies of the intermediates obtained, the theoretically ex-
pected regioselectivity of the selected reactions was devised and
then compared against the previously reported experimental
data.

For all the examples regioselectivity predicted by at least one
mechanism matched the previously reported experimental
results, see Table 1. In the cases where only one product was
predicted it is expected to be isolated in high yield without the
need of further purification from any other regioisomer. For the

examples where formation of multiple products was expected
due to the close energies of the respective reaction intermedi-
ates, the ratio of products was calculated from the relative ener-
gies of these intermediates using the Boltzmann distribution
equation.

Establishing the threshold between the two
mechanisms
Although both, the proton-abstraction and the electrophilic aro-
matic-substitution, mechanisms are well established and de-
scribed in the literature, it is not trivial to suggest the preferred
mechanism for a given substrate based on a simple computa-
tional analysis. Through analysis of the results described above,
the two-step evaluation algorithm was suggested.

Firstly, the optimised geometries were manually examined to
ensure they represent the intermediates according to the particu-
lar mechanism. In particular, the bond length between the palla-
dium atom and the corresponding carbon atom was given a
maximum value of 2.4 Å to filter out inappropriate intermedi-
ates where there is no stable Pd–C bond [40].

Secondly, among the intermediates refined at the previous step,
their relative Gibbs energies can be used to set a threshold
establishing the likeliness of electrophilic aromatic substitution
mechanism for C–H activation of a particular substrate. The
more stable the ipso-complex between palladium acetate and
the substrate is, the more likely the substrate is to follow the
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Table 1: Comparison of the published experimental results with the computational predictions for the Pd(OAc)2-catalysed reactions.a

No [ref] Starting
molecule

Exp. cond. Predicted active centre Experimentally isolated
productVia acidity mechanism Via electrophilic

mechanism

1
[29]

CO, EtOH,
Pd(OAc)2,
Cu(OAc)2, KOAc,
DMF, KI,
100 °C, 13 h

no stable intermediate

2
[30]

CO, Pd(OAc)2,
Cu(OAc)2, PivOH,
mesitylene,
120 °C, 6 h

3
[31]

Cu(OAc)2,
Pd(OAc)2, K2CO3,
DMF,
60 °C, 0.6 h

4
[32]

PhCOCO2H
Pd(OAc)2,
K2S2O8, MeCN,
25 °C, 16 h

5
[33]

PhSi(OMe)3,
Pd(OAc)2,
AgF, dioxane,
80 °C, 16 h

6
[32]

Ph-CHO,
Pd(OAc)2,
TBHP, toluene,
110 °C, 5 h

7
[34]

Ph-CHO,
Pd(OAc)2,
xylene, O2
120 °C, 24 h

electrophilic mechanism. After performing the computational
analysis of 12 examples which include five structures following
the electrophilic mechanism, a threshold has been developed by
choosing the example 6 as the reference, Table 1, and intro-

ducing the ipso-complex stability parameter. We define this pa-
rameter to be the energy difference between the most stable
intermediate of the SEAr mechanism and the one of the PA
mechanism.
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Table 1: Comparison of the published experimental results with the computational predictions for the Pd(OAc)2-catalysed reactions.a (continued)

8
[35]

PhCOCO2H,
Pd(OAc)2,
Ag2CO3, DMF,
120 °C, 24 h

9
[36]

H-COOPh,
Pd(OAc)2,
I2, K2CO3, DMF,
100 °C, 12 h

10
[37]

PhB(OH)2,
Pd(OAc)2,
TEMPO, phen,
DMAc,
O2,
100 °C, 48 h

11
[38]

benzene,
Pd(OAc)2,
O2, HOAc, DMA,
130 °C, 20 h

12
[39]

Pd(OAc)2,
CuCO3, dioxane,
DMSO,
140 °C, 16 h

aProtons marked green are those that react under the conditions reported in the literature. Protons marked red and blue are the predicted active
centres via the acidity and the electrophilic mechanisms, respectively.

By comparing the computational results obtained to the litera-
ture experimental data, the two mechanisms can be segregated
based on the following rules:

1. If the relative stability is below zero, the starting mole-
cule will follow the proton abstraction mechanism.

2. If the relative stability is above five, the starting mole-
cule will follow the electrophilic aromatic substitution
mechanism.

3. If the relative stability is between zero and five, both
mechanisms are regarded as plausible.

Although the rules set above seem rather approximate, they are
consistent with the given examples, and further work aimed at
increasing the accuracy and the scope of the algorithm is
on-going. Based on the suggested rules, the predicted reactive
centres for eight commercially available aromatic and
heteroaromatic substrates as well as the most likely mecha-
nisms are shown in Table 2.

In order to test the algorithm and the value of the threshold, an
additional set of six examples was analysed, and the results are
shown in Table 3. Both selectivity and mechanism were
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Table 2: Predicting C–H activation bond for heteroaromatic compounds.a

No. Starting
molecule

Pred.
mec.

Computational prediction

Acidity mechanism Electrophilic mechanism

1 SEAr H1:0.0 H1:0.0

2 SEAr H1:0.0 H1:0.0
H2:0.5

3 PA H1:0.0
H2:0.7

H2:0.0
H3:0.9

4 PA
H1:1.9
H5:9.8
H6:0.0

H1:0.0
H2:3.9
H3:2.9
H4:2.9
H5:4.2

5 PA

H1:0.0
H2:2.7
H3:9.7
H4:6.2

no stable intermediate

6 PA/SEAr

H1:0.2
H2: 0.0
H3: 0.3
H4:0.9
H5:2.6

H2:0.0
H3:2.7

7 PA
H1:0.0
H2:2.8
H3:10.0

no stable intermediate

8 PA

H1:0.0
H2:0.8
H3:5.5
H4:4.3
H5:6.0

H1:0.1
H2:0.0
H3:14.9
H4:15.0
H5:15.8

aMost probable intermediates for each mechanism are shown, and relative Gibbs free energy are given in kcal mol–1. If only one possible intermedi-
ate is given, it means that either the other intermediates are unstable or the other intermediates have 10 more kcal mol−1 Gibbs free energy than the
most probable one. ‘no stable intermediate’ means instead of sitting on the corresponding carbon, the palladium sits on alternative atom. The pre-
dicted mechanism is given based on the threshold described in the previous section.

correctly identified by the algorithm applying the previously set
threshold to the SnAr intermediate stability (intermediates 5),
which is shown in Table 4.

Conclusion
A computational algorithm rationalising the existing palladium
catalysed C–H activation reactions has been developed. Compu-
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Table 3: A comparison of the published experimental results with the computational predictions for the Pd(OAc)2-catalysed reactions.a

No [ref] Starting
molecule

Exp. cond. Predicted active center Experimentally isolated
product

Via acidity mechanism Via electrophilic
mechanism

1
[41]

Pd(OAc)2, TBHP,
toluene, 120 °C,
6 h

2
[42]

Pd(OAc)2, TBHP,
DCE
80 °C, 16 h

H1:0.0
H2:26.0
H3:27.5

3
[43]

Pd(OAc)2, TBHP,
toluene, TFA,
40 °C, 3 h

H1:0.0
H2:1.9
H3:7.6

H1:0.0
H2:3.2

4
[44]

Pd(OAc)2,
toluene, TBHP,
110 °C, 5 h

no stable intermediate

5
[45]

Pd(OAc)2,
1,4-dioxane,
AcOH, DMSO,
TBHP,
110 °C, 24 h
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Table 3: A comparison of the published experimental results with the computational predictions for the Pd(OAc)2-catalysed reactions.a (continued)

6
[46]

Ag2CO3,
Pd(OAc)2,
NaOAc, CO,
1,4-dioxane,
130 °C, 18 h

H1:0.0
H2:2.6
H3: 2.2
H4:2.5
H5:2.2
H6:2.8

aProtons marked red and blue are the predicted active centres via the acidity and the electrophilic mechanisms, respectively.

Table 4: A mechanism threshold tested based on the literature examples.a

Entry Gibbs free
energy of

Pd–substrate
[Hartree]

d(Pd–C)
[Å]

Relative stability Predicted mechanism Reported mechanism

1 −355.5652 2.3005 3.0777 PA/SEAr PA/SEAr
2 −355.5577 2.3778 −1.6369 PA PA
3 −355.5626 2.1345 1.4558 PA SEAr PA/SEAr
4 no stable intermediate – – PA PA
5 355.5717 7.1781 2.2326 SEAr SEAr
6 −355.5254 2.1680 −21.9298 PA PA

aGibbs free energy of Pd-substrate is obtained by calculating the Gibbs free energy difference between starting molecule and the most probable inter-
mediate in Hartree. The distance between the palladium atom and the corresponding carbon are measured based on the web-based molecular struc-
ture virtualization, which can be accessed through https://leyscigateway.ch.cam.ac.uk/index.php.

tational threshold to distinguish between the two main mecha-
nisms, proton abstraction (PA) and electrophilic aromatic sub-
stitution (SEAr) mechanism, has been proposed and tested
against literature experimental data. This model can give not
only the most probable reactive site and the appropriate mecha-
nism, but also provides information for further kinetic studies
and process development, thus contributing to the development
of robust new chemical transformations.
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