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Abstract

Superlattice stacking fault propagation dominates the creep deformation behaviour of
nickel-based superalloys at intermediate temperatures. These planar defects may appear
under many different configurations depending on the dislocation arrangements and their
interactions with the precipitates. Whilst these have been spotted and described before,
no systematic way to explain their configurations has been provided. The current study
quantifies the types of faults in multiple grains within a tensile crept polycrystalline alloy
via a combination of scanning transmission electron microscopy and electron backscat-
ter diffraction. A new defect consisting of a superlattice intrinsic stacking fault in the
precipitates and an extrinsic stacking fault in the matrix is observed and a mechanism
for its formation is proposed. In combination with data from the literature on single
crystals, the results are incorporated into a robust framework to discern the orientation
dependencies of these faults. A comprehensive analytical model based on a series of one-
dimensional force balances on different dislocation configurations is developed first for
the case of athermal stacking fault propagation for the cases of cuboidal and spherical
precipitates. The model is then extended to include six configurations of superlattice
faults and microtwinning. This results in novel mechanistic maps that account for stress,
orientation and microstructure, with excellent qualitative agreement with experiments.
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1. Introduction

Stacking faults are planar defects that disrupt the periodic arrangement of crystallo-
graphic planes. These have multiple effects on the phase transformations and deformation
behaviour of alloys; e.g. in twinning reactions, acting both as obstacles for dislocation
glide [1] and accommodating deformation upon propagation [2]. Multiple configurations
of stacking faults appear in fcc materials (with an ...ABCABC... stacking sequence), but
even more develop in nickel-based superalloys due to the presence of short-range order
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within the L12 precipitates. The formulation of a comprehensive theoretical framework
to explain the origin of all these configurations as a function of fault energies, microstruc-
ture and loading orientation and magnitude remains a challenging task.

Slip in the fcc γ matrix occurs mainly on the 12 independent a
2 〈110〉{111} slip systems

[3]. According to Frank’s rule, each of these perfect dislocations may split into two
closely spaced a

6 〈112〉 Shockley partials bounding an intrinsic stacking fault (ISF) [4]
(...ABCyACxABC...). The dissociation width between these is typically high due to
the low stacking fault energy of these heavily alloyed materials. Under some loading
conditions a stacking fault may extend indefinitely if the leading partial continues to
glide while the trailing one is pinned [5]. This defect becomes an extrinsic stacking fault
(ESF) (...ABCyACBCxABC...) if an identical partial glides on an adjacent {111} plane,
and a twin (...ABCyBACBACxABC...) if the process is repeated on additional layers
[6].

Within γ′ precipitates, glide of a perfect dislocation leaves behind an antiphase bound-
ary (APB) which is then reverted back to the original structure by a trailing dislocation.
Alternatively, deformation in γ′ may be accommodated via the formation and propaga-
tion of superlattice stacking faults, i.e. superlattice intrinsic stacking fault (SISF) and
superlattice extrinsic stacking fault (SESF), driven by glide of combinations of a

6 〈112〉
partial dislocations. These depend upon two diffusion-controlled mechanisms. Firstly,
the segregation of γ-forming elements ahead of the stacking faults [7] lowers the energy
of the defects [8], which also lowers the shear resistance for the leading dislocations. Sec-
ondly, local atomic reordering transforms the initially formed high energy defect into a
superlattice fault of much lower energy [9, 10]. These thermally activated mechanisms
dominate the deformation behaviour during creep at intermediate temperatures and low
strain rates [11], where dislocation climb is not predominant. Observations of elemental
segregation to stacking faults have, so far, been confined to the L12 phase [12].

A number of mechanisms have been proposed for the creation of the superlattice
faults. Superpartials with a a

3 〈112〉 Burgers vector were thought to drive SISF propa-
gation, although their existence on a single plane would produce a wrong stacking on
the atomic layers [9]. Vorontsov et al. [13] were first to prove via high resolution trans-
mission electron microscopy (TEM) that the leading ends of the SISFs and SESFs have
a different character to that of the extended faults and are bounded by closely spaced
partials gliding on adjacent planes. This suggests the concomitant glide of dissimilar
Shockley partials is a possible pathway for the formation of these defects.

The spatial configuration of the superlattice faults also varies considerably. They
may appear either isolated within the precipitates or as extended bands running through
both phases [13, 14]. A more complex dislocation arrangement is that of a stacking
fault ribbon (SF ribbon), where the SISF-APB-SESF alternating character results from
the cooperative motion of partial dislocations [15, 16]. Another deformation mechanism
driven by partial dislocations is the formation and storage of microtwins [9, 17], with a
typical thickness of under 50 atomic planes [10], also formed by glide of identical Shockley
partials on adjacent planes [9]. An initial pseudo-twin (with an orthorhombic structure) is
then transformed back to the original L12 structure by a local atomic reordering process.
Segregation of γ-forming elements has also been observed ahead of the leading partials
driving microtwin propagation and thickening. As these defects grow in size, segregation
remains present at the twin boundaries but not within the twinned regions [18].

Investigations on the stress orientation dependence for the formation and propagation
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of ISFs have been performed mainly via simulations of individual dislocations by Douin
et al. [19] and subsequent studies [5, 20, 21]. However, rationalising the effects of loading
orientation on the propagation of superlattice faults is considerably more difficult due to
the different Shockley partials involved.

A recently developed orientation analysis framework [22] introduced a way of studying
slip via the angle φ between the resolved shear stress on an octahedral plane and its
closest a

2 〈110〉 slip direction. This angle ranges between -30◦ and 30◦, pointing in the
direction of the Burgers vector of a leading partial or a trailing partial, respectively. This
geometry is schematically shown in Figure 1(a). Under uniaxial tension, φ = −30◦ for
loading along an orientation on the line from 〈011〉 to 〈111〉 and φ = 30◦ on the 〈001〉
direction; these reverse upon uniaxial compression. The reader is referred to the original
work [22] for a more detailed description. This framework will be particularly useful
in this context as it simultaneously captures the stress states of all the slip systems on
a given slip plane, including the Schmid stress pushing the dislocations and the Escaig
stress (that perpendicular to the Schmid stress and on the same slip plane) influencing
the stacking fault width.

Figure 1(b) includes the results of multiple studies on uniaxial creep in single crystal
nickel-based superalloys, both in tension and compression, according to the most fre-
quent mechanism observed in each condition as a function of angle φ. The results were
included when there was a quantitative analysis or when it was clearly stated that a
specific mechanism appeared more than others. This description unequivocally shows
the orientation dependence and the proximities between the mechanisms of SISF and
SF ribbon, as well as SESF and microtwinning. Note that most of the studies have
been performed in orientations close to 〈001〉, 〈011〉 and 〈111〉; thus, there is insufficient
data for loading around φ = 0, orientations located roughly between the 〈012〉 and 〈123〉
directions.

The current work expands on this analysis by considering the effects of stress orien-
tation of multiple grains within a polycrystalline superalloy. A series of one-dimensional
equations are then developed to set the basis of an analytical model that explains the
appearance of multiple stacking fault configurations as a function of stress, loading ori-
entation and microstructure.

2. Material and methods

The material investigated in this study was a development composition [30] produced
via powder metallurgy. Material from compacted and extruded -270 mesh (53 µm)
powder was isothermally forged and solution heat treated. It subsequently received a
post-solution heat treatment of 2 hours at 850 ◦C + 4 hours at 800 ◦C. An interrupted
tensile creep test was performed at 700 ◦C and 800 MPa at Swansea Materials Research
& Testing Ltd (SMaRT). A 0.23% total strain was selected anticipating the formation of
enough stacking faults for the analysis while also minimising lattice rotation.

TEM samples were cut from the gauge length of crept samples into 3 mm discs per-
pendicular to the loading axis. The discs were ground to a P2500 grit and electropolished
with a Tenupol-5 at -5 ◦C ± 1 ◦C in a 6% perchloric acid in methanol solution. TEM
characterisation was performed with a FEI Tecnai Osiris 80-200 operating at 200 kV in
a single sample. Multiple stacking faults in grains close to the hole were imaged through
scanning TEM (STEM) in two beam conditions with a high angle annular dark field
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Figure 1: (a) Schematic diagram of a {111} plane, where the atoms sit on the corners of the triangles
[22]. The arrows show the routes for an atom in the middle to move to a neighbouring position. Angle φ
is that between the shear stress and its closest 〈110〉 direction. (b) Map of the most frequently observed
stacking fault shearing mechanism as a function of angle φ and temperature in a series of uniaxial creep
studies in single crystal alloys [15, 16, 18, 21, 23–29]. Each annotation includes the alloy, loading mode
and reference.

(HAADF) detector. The character of the stacking faults was determined following the
methodology by Williams and Carter [31]: placing the origin of the g-vector at the cen-
tre of the fault in a dark field micrograph, it points towards the bright outer fringe if
it is intrinsic or away from it if it is extrinsic for 200, 222 and 440 reflections; a reverse
correlation occurs for 111, 220 and 400 reflections. Stacking faults near grain boundaries
were avoided as deviations from the stress in the interior of the grains are pronounced
in these regions [32].

Scanning electron microscopy (SEM) was performed in the same sample with a ZEISS
GeminiSEM 300 operating at 25kV. The backscattered electron detector (BSD) was used
to image the microstructure and the average size and volume fraction of the secondary
γ′ precipitates were estimated via a particle analysis in the ImageJ software package.
Electron backscatter diffraction (EBSD) data was acquired with an Oxford Instruments
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Symmetry EBSD detector. Orientation data was collected using Oxford Instruments
AZtechHKL software and subsequently analysed using MATLAB with the MTex v5.1.1
package [33]. The grain orientations were calculated using a 1◦ misorientation threshold
and data was de-noised using a spline smoothing function in order to minimise the effect
of unindexed pixels and wild spikes [34].

3. Results

The strain curve up to the point where the test was interrupted behaves linearly with
a strain rate of ∼ 2.7∗10−8 s−1. Characterisation of the material reveals an average grain
size of 30-40 µm. The microstructure, shown in Figure 2(a), consists of flowery secondary
γ′ with an average size of 0.25 µm and volume fraction of 44.7 %, and rounded tertiary
precipitates in-between. The majority of grains contain stacking faults and dislocations
in varying quantities. An example of this can be seen in Figure 2(b), although most grains
have fewer defects. Figure 2(c) shows the EBSD scan of the TEM sample with grains
coloured according to their crystallographic direction parallel to the loading axis. Other
regions of the sample were too thick to be imaged in the TEM. The grains numbered are
those where the stacking faults were quantified, which cover most of the stereographic
triangle in Figure 2(d).

The number and type of stacking faults observed are summarised in Table 1 together
with the value of the angle φ on their slip plane. Individual slip plane orientations are
quantified in grains with stacking faults on two non-coplanar slip systems. All configura-
tions recorded correspond to the secondary precipitates. Note that all tertiaries observed
showed either extended faults (continuous through the matrix and precipitates) or no
faults at all. Examples of the faults encountered are shown in Figure 3(a-g). Three
instances of a new fault configuration were found in grain 9, consisting of SISFs in the
precipitates with an ESF in the matrix (Figure 3(g)). To the knowledge of the authors
this type of fault has not been reported in the literature before.

Table 1: Number and type of superlattice stacking faults quantified in each grain.

Grain φ Isolated SESF SESF + ESF SESF + ISF Isolated SISF SISF + ISF SF ribbon SISF + ESF
1 -30◦ - - - 6 1 - -

-25.9◦ - 1 - 1 - - -
2 -25.6◦ 3 1 - 3 - 1 -
3 -18.2◦ - - 1 3 - - -

-17.1◦ 2 - - - - - -
4 -15.1◦ 5 2 1 10 4 - -
5 -12.3◦ 1 - - 4 2 2 -
6 -11.1◦ - 2 1 2 1 - -

-10.5◦ 3 - 1 1 - - -
7 -6.5◦ - 7 - 10 1 4 -
8 -1.8◦ 4 4 - 1 4 - -
9 0.9◦ 3 1 - - 3 - 3
10 4.1◦ - - - - - - -
11 6.6◦ - - - 1 5 - -
12 26◦ - - - 3 1 1 -
13 29.9◦ 3 - - 1 - 2 -

16.4◦ 1 - - 2 - 1 -

In many cases a single fault is observed to change its configuration, e.g. from an
isolated SESF to an extended SESF + ESF. In these situations the most predominant
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Figure 2: (a) BSD micrograph of the microstructure showing the precipitate morphology, (b) STEM
micrograph of a grain showing dislocations near the grain boundary and stacking faults propagating
towards the interior, and (c) EBSD map of the deformed TEM sample colour-coded according to the
grain orientations in (d) an inverse pole figure related to their crystallographic direction parallel to the
loading axis. Numbered grains are those were the stacking faults were quantified.

configuration is the one recorded in Table 1. SF ribbons were only considered as such
when both the SISF and SESF segments were seen in the micrograph. Note that these
defects are vulnerable to false negative errors if only the SISFs or SESFs segments of the
fault appear in the sample.

Figure 4 maps the value of φ onto the stereographic triangle (except for grain 13 in
which another slip plane contains the highest shear stress) together with pie charts with
the quantified fractions of faults per grain. Most grains contain SISFs, whereas SESFs
appear more often for lower φ angles. The trend is similar to that in the single crystal
data, although with more scatter in the types of faults. A notable exception is grain 1,
where intrinsic faults appear in higher amounts than the expected extrinsic ones.

Perfect a
2 〈110〉 dislocations constantly appear near the grain boundaries but only pop-

ulate the matrix in the interior of the grains in a few instances. The highest dislocation
densities developed in grains 1, 2, 3, 10 and 11; the last two have the highest Schmid
factors for perfect dislocations. Only in grain 10 no stacking faults are observed, with the
exception of two short SESFs extending less than a micron away from grain boundaries.
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Figure 3: STEM micrographs of an (a) isolated SESF, (b) extended SESF + ESF, (c) extended SESF +
ISF, (d) isolated SISF, (e) extended SISF + ISF, (f) SF ribbon and an (g) extended SISF + ESF. The
corresponding reflections are drawn in each micrograph.

Thus, no planar faults are recorded for this grain.
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Figure 4: Stereographic triangle with the value of φ and pie charts with the fractions of each superlattice
fault configuration observed in each grain. No defects are registered for grain 10.

4. Analytical model

The following analysis is based on the framework presented in reference [22]. Consider
the coordinate system in Figure 5 positioned with respect to a a

2 〈110〉{111} dislocation

so that the x-axis is aligned with its Burgers vector b and the z-axis is perpendicular
to its slip plane. Regardless of the dislocation character θ, the dislocation moves in the
ŷ direction and the Burgers vectors of the corresponding leading and trailing Shockley
partials point at −30◦ and 30◦ angles from b, respectively.

Consider now an infinitely long dissociated dislocation in a frictionless and otherwise
perfect fcc crystal. The forces per unit length experienced by the partials are F1 =
Fa1 − γISF +Fint and F2 = Fa2 + γISF −Fint, where the subindices 1 and 2 refer to the
leading and trailing partials, Fa are the forces from the applied stress, γISF the intrinsic
stacking fault energy, Fint = A/d the dislocation interaction force with

A =
2− ν − 2ν cos 2θ

8π(1− ν)
Gb2p, (1)

d is the distance between the partials, G the shear modulus, bp = b/
√

3 the Burgers vector
of a partial dislocation and ν the Poisson’s ratio. In the current coordinate system,
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Figure 5: Coordinate systems for a perfect dislocation and its Shockley partials [22]. The arrows along
the dislocations represent the line vectors.

the Peach-Koehler forces from the applied stress are Fa1 = b
2τS −

b
2
√
3
τE and Fa2 =

b
2τS + b

2
√
3
τE , where the Schmid stress τS drives perfect dislocation glide and the Escaig

stress τE pushes both partials in opposite directions. A force balance F1 = F2 gives the
stacking fault width [22, 35]

dE =
A

γISF + b
2
√
3
τE
. (2)

However, both partials will continue to move in the same direction and at the same speed,
unless τS = 0. In order for the stacking fault to reach a true stable and immobile width,
i.e. F1 = F2 = 0, at least one more force in the form of an obstacle is required.

Forces opposing dislocation glide can appear in two forms. Firstly, as friction that
acts along every segment of a dislocation. The friction forces per unit length on the
partials Ff1 and Ff2 are different from that on a perfect dislocation Ff as they have
different dislocation characters [36]. Secondly, forces R1 and R2 from an obstacle or
series of obstacles (precipitates in the case of nickel-based superalloy) inhibit dislocation
motion either when they come into contact with the dislocation or, more realistically, by
introducing a stress gradient into the crystal.

Consider now the dissociated infinitely long dislocation but this time in a crystal
with friction and with the leading partial pushing against an obstacle, so that a new
force balance arises

Fa1 + Fint − γISF − Ff1 −R = 0 (3a)

Fa2 − Fint + γISF ± Ff2 = 0, (3b)

where R is the reaction force exerted by the obstacle and the ± sign accounts for the
two possible directions in which the trailing partial could move. Solving this system of
equations results in R = bτS − Ff1 ± Ff2 and

dσ =
A

γISF + b
2τS + b

2
√
3
τE ± Ff2

(4)

as the new range for a stable stacking fault width. This result shows how the Schmid
stress can have an effect on d when considering the presence of obstacles, but unlike the
Escaig stress, τS will only decrease its value.
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4.1. Athermal stacking fault propagation

Athermal propagation is used here to refer to the glide of partial dislocations driven
solely by the stress field without any effect of atomic diffusion. Analogous to classical
theory of precipitate hardening, it is possible to devise multiple paths individual Shockley
partials may take to overcome an obstacle. In nickel-based superalloys with a large γ′
volume fraction cuboidal precipitates are typically looped around via glide through the
narrow γ channels in-between. Alternatively, alloys with a lower volume fraction have
smaller and more spherical precipitates that can be surpassed via shearing or Orowan
looping. Depending on the sequence and whether the trailing partial is blocked or not,
the pathways drawn in Figure 6 can take place, leaving behind different defects. The
nomenclature used here for the different mechanisms follows this sequence: a number
indicating which partial it refers to, with following letters referencing the sequence of
mechanisms used (s for shearing and ` for looping); e.g. (2sl) refers to looping of the
trailing partial around a previously sheared precipitate. Appendix A describes in more
detail the critical forces required to overcome these obstacles.

Consider the conditions required for the athermal propagation of a stacking fault
subject to obstacles and friction forces as described above. The most favourable scenario
for the decorrelation of the partials is that with a stress state that promotes the formation
of an infinitely long stacking fault. This will occur when two conditions are met: (C1)
that the leading, and (C2) trailing partials, will always have the force to surpass the
obstacles in the -ŷ and ŷ directions, respectively. These conditions must apply even after
the partials are completely decorrelated, i.e. when d → ∞ and Fint = 0, and can be
written as

C1 : Fa1 − γISF − Ff1 ≥ R1 (5)

and
C2 : Fa2 + γISF + Ff2 ≤ −R1. (6)

In this situation the trailing partial behaves as the leading one but glides in the opposite
direction. A closer look at these conditions shows that whenever C2 holds true, then C1
does too.

If C2 is false, then the trailing partial will move in the ŷ direction until it encounters
obstacles. A semi-infinite stacking fault arises if two conditions are true: (C1) that the
leading partial will always have the force necessary to overcome the precipitates, and
(C3) that the trailing partial will never overcome the obstacles that have been previously
surpassed by the leading one, i.e.

C3 : Fa2 + γISF − Ff2 < R2. (7)

If only C1 is false, then the leading partial will eventually get blocked and the resulting
finite stacking fault will be immobile. If only C3 is false, then the trailing partial will
start surpassing the precipitates and the stacking fault will become mobile.

If both conditions C1 and C3 are false, then the outcome will depend on which of
the two events occurs first. Adding the interaction force with its corresponding sign to
both conditions and turning them into equalities leads to the critical widths at which
the stacking fault will be blocked

dblocked =
A

−Fa1 + γISF +R1 + Ff1
(8)
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Figure 6: Schematic diagrams of the mechanisms for Shockley partial precipitate bypassing where dis-
locations glide from left to right. The defects left after the sweeping of each partial are annotated.

or become mobile

dmobile =
A

Fa2 + γISF −R2 − Ff2
. (9)

Combining them and rearranging the terms results in a new condition

C4 : τS >
1

b
(R1 +R2 + Ff1 + Ff2) (10)

for the resulting stacking fault to be mobile.
After the width dmobile is reached, the force on the leading partial is still bigger than

that on the trailing one, thus continuing to extend the stacking fault. This will stop
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whenever the leading partial cannot surpass the obstacles any longer (d = dblocked) or
when both dislocations feel the same force and start moving in a correlated way. This
last condition will occur at a separation of

dcorrelated =
A

γISF + b
2
√
3
τE +

R1−R2+Ff1−Ff2
2

. (11)

Whenever condition C4 is met, then dcorrelated < dblocked, meaning that overall correlated
motion of partials will happen with a stacking fault width given by equation (11). As
expected, if R1 = R2 and Ff1 = Ff2, then the mobile stacking fault width will be dE .
Moreover, the condition for the uncorrelated motion of partials in the ŷ direction becomes

C5 : τE ≤ −
√

3

b
(2γISF +R1 −R2 + Ff1 − Ff2) . (12)

With this set of conditions it is possible to estimate the behaviour of the dislocation
under any stress state. By rearranging all of them in the form of equations one gets
a series of straight lines that subdivide a map of τS vs. τE into five main dislocation
regimes, as shown in Figure 7. Diagrams similar to this one have been obtained before via
dislocation dynamics simulations [19, 37] (more details in Section 5). Stress orientation
maps like those in reference [22] can then be superimposed onto such a plot to determine
the behaviour of each slip system. Note that this is only possible if the obstacles offer the
same resistance in every direction, which would not be the case if R1 had an orientation
dependence, e.g. for non-spherical precipitates with a preferential orientation or for forest
dislocations that do not provide the same glide resistance in different slip systems due
to latent hardening [38].

Most of the features in Figure 7 are constrained due to the nature of the conditions.
The slopes of the inclined lines are fixed at

√
3 and −

√
3 as they are forces that oppose

glide of the partials. The position of point P as determined by equations (10) and (12)
is critical to the occurrence of athermal stacking faults as will be discussed later. It must
also be noted that condition C4 is different from the boundary for glide resistance of a
perfect dislocation R, i.e. R 6= R1+R2. This is due to the difference between the tensions
of a Shockley partial and a perfect dislocation [39]. If the partials are not decorrelated
yet, this boundary and the regions around point P should be modified accordingly.

4.2. Thermally activated stacking fault propagation

At higher temperatures, other mechanisms of stacking fault propagation are facil-
itated by atomic diffusion. To the knowledge of the authors no general explanation
has yet accounted for all the configurations that have been observed experimentally. In
this section we rationalise the effects of orientation and microstructure underlying the
propagation of these defects, which include:

• Isolated SISFs

• Extended SISFs + ISF

• Stacking fault ribbons

• Isolated SESFs
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Figure 7: Schematic plot of the different athermal glide regimes for a dissociated a
2
〈110〉{111} dislocation

with an aspect ratio of 1:1. The boundaries are defined by conditions C1-C5.

• Extended SESFs + ESF

• Extended SESFs + ISF

• Microtwins

The observed SISF + ESF configuration is not included in this analysis because its
dislocations have not been identified yet, but comments and a proposed mechanism for
its formation and propagation are described in Section 5. Segregation assisted shear by
perfect a

2 〈110〉 dislocations is also not included as it was not experimentally quantified,
but its occurance may have a similar orientation dependence to that of athermal glide of
correlated partials (equation (10)) with a lower stress threshold.

Modelling in this section is restricted to the propagation of faults and it leaves for later
the nucleation mechanisms, which are not yet fully understood. The segregation-assisted
plasticity theory [23] has shown that γ-stabiliser elements diffuse towards such faults,
lowering their energy penalties [8]. In the current framework this constitutes a difficulty
as it is hard to pinpoint what the actual energies of the different faults are. The values
from the literature used here may be considered upper bounds as the real faults would
form in a more γ like structure due to elemental segregation. Also note that the unstable
energies from the generalised stacking fault energy should be considered, rather than only
the stable points [40–43]. For simplicity and due to the lack of concentration dependent
data, all the forces coming from planar defects in this work are assumed to come from
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the stable fault energies. Moreover, the description for large cuboidal precipitates is
used in this section for simplicity, disregarding the effect of tertiary precipitates and
the additional tension from the segments in the matrix. Athermal bypassing of the
precipitates is then only opposed by the stresses required to glide through a γ channel,
R1c and R2c, as defined in Appendix A (equations (A.1) and (A.2)).

4.2.1. SISF-related mechanisms

Consider first the case of a SISF formed by glide of a dislocation of Burgers vector
a
3 〈112〉, depicted in Figure 8. It is envisioned that two coplanar dislocations with different
leading but similar trailing partials will first meet on adjacent planes at a γ/γ′ interface.
Glide into the precipitate of a full dislocation and an additional leading partial will
result in an arrangement such as that in Figure 8(b), where a complex extrinsic stacking
fault (CESF) is followed by an APB. A local diffusive reordering scheme is necessary to
transform the latter into a SISF with a much lower fault energy [10, 13].

Figure 8: Dislocation structure of a SISF (a) before and (b) after shearing through the γ′ precipitates.
Each figure includes an edge-on view of the slip planes (left) and a top view of the Burgers vectors on
a {111} plane of the partials involved (right), where the atoms sit on the corners of the triangles. The
arrows in (b) correspond to the circled superdislocation and the trailing partial in (a).

A slip plane with φ = 30◦ has two equally active slip systems with the same trailing
partial, as shown in Figure 8(a). The angle between the Burgers vector of the two
leading partials is 120◦, meaning that they will attract each other. This construction
gives the leading end of a SISF its extrinsic character observed experimentally. By
moving together, this a

3 〈112〉 superdislocation will have a total Burgers vector with the
same orientation as the remaining a

6 〈112〉 trailing partial and twice its magnitude. This
is again the slip direction with the highest resolved shear stress, thus facilitating the
viscous motion of the dislocations controlled by the diffusive processes of segregation
and reordering.

The CESF formed constitutes a glide barrier upon forming at the interface but not
once it enters the γ′. The equilibrium distance between the partials bounding this fault
dCESF can be found with a similar derivation to that of equation (4). Considering both
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ends of the CESF to be stopped by a resisting frontal force, as well as a fully formed
SESF,

dCESF =
At

γCESF − γSISF + b
2τS + b

2
√
3
τE − Ff2

. (13)

Condition C1I for the leading superpartial to propagate through γ′ is

C1I : 2Fa2 − γSISF − 2Ff1 − Ff2 > 0, (14)

resulting in a SISF + ISF defect. Orowan looping of the trailing partial may also appear
if

C2I : Fa2 + γISF − Ff2 > R1c. (15)

This would result in the formation of isolated SISFs within γ′ precipitates. As both
conditions have the same slope, a region where only the trailing partial is blocked will
only appear if

γSISF + 2γISF + 2Ff1 − Ff2 < 2R1c, (16)

which is promoted by narrower γ channels. A schematic diagram of conditions C1I and
C2I is shown in Figure 9(a). The fault formed will be that where the coordinates of the
slip system within the domain of φ (from −30◦ to 30◦) fall.

Figure 9: Schematic plot of the segregation assisted (a) SISF and (b) SESF shearing mechanisms with
an aspect ratio of 1:1. The boundaries are labelled according to the conditions that form them.

The formation of stacking fault ribbons may only appear if the stress on the trailing
partial is not large enough for athermal looping of the obstacles, appearing also in the
extended SISF + ISF region. For this mechanism to occur, the planar fault undergoes
the transition SISF-APB-SESF due to the passage of further a

6 < 112 > partials [16],
with occurrence depending on the availability of suitable dislocations. In this scenario
the trailing partial will shear the precipitate followed by an additional pair of dislocations
that produce similar transformations in the planar faults, but this time forming a SESF
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rather than a SISF. Again the Burgers vectors of the superdislocation is the one with
the highest Schmid factor in configurations with a high value of φ.

4.2.2. SESF-related mechanisms

The dislocation structure of a SESF involves two partials with the same Burgers
vector gliding through the precipitates on consecutive planes. Elastic interactions in
this case make these partials glide separated from each other by a small distance with a
complex intrinsic stacking fault (CISF) in-between. A SESF is then formed after glide
of the second partial followed by local atomic reordering [9]. Motion of both leading
partials in this scenario is most favourable for orientations close to φ = 30◦.

The repulsive force between the leading partials with equal Burgers vectors results in
a CISF of width

dCISF =
At

γCISF − γSESF + b
2τS −

b
2
√
3
τE − Ff1

. (17)

Then, a condition C1E for SESF propagation based on a force balance reads

C1E : 2Fa1 − γSESF − 2Ff1 > 0. (18)

For φ = 30◦ there will be two coplanar slip systems sharing the same leading partial but
with different trailing dislocations. As in the SISF analysis, the SESF might be originated
by two dislocations with these Burgers vectors pushing against the γ/γ′ interface in
adjacent planes [44], as shown in Figure 10(a). There would be an attractive force
between both trailing partials and their combined Burgers vector would equal that of
each leading partial, as shown in Figure 10(b).

Figure 10: Dislocation structure of a SESF (a) before and (b) after shearing through the γ′ precipitates.
Each figure includes an edge-on view of the slip planes (left) and a top view of the Burgers vectors on
a {111} plane of the partials involved (right), where the atoms sit on the corners of the triangles. The
arrows in (b) correspond to the circled dislocations in (a).

Upon decorrelation and glide of the leading ends, the trailing partials may evolve
in three ways. Firstly, both of them could glide together in the matrix bypassing the
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precipitates via Orowan looping if

C2E : Fa1 + γESF − 2Ff2 > R1c, (19)

resulting in isolated SESFs. Secondly, looping of a single partial while the other one
remains pinned, converting the ESF in the matrix into an ISF with a similar energy
penalty [45]. Note that the resulting dislocation structure around the precipitates would
be identical to that experimentally observed by Décamps et al. [46] in a polycrystalline
alloy. Kinetically this mechanism would occur if condition C2E is false and

C3E : Fa2 + γESF − γISF − Ff2 > R1c. (20)

This will happen only if one of the trailing partials experiences a higher force than the
other one, which occurs for partial b2 as φ moves away from −30◦. These SESF conditions
are schematically shown in Figure 9(b). A SESF/ISF alternating character would then
appear if the coordinates of only one of the three coplanar slip systems lie in the b2
looping region. Thirdly, an extended extrinsic fault (SESF + ESF) would be promoted if
both of these points are in the region of pinned trailing partials. Note that according to
equations (18) and (19), the second and third options will only be possible for a material
in which

γSESF + 2γESF + 2Ff1 − 4Ff2 < R1c, (21)

Lastly, segregation assisted microtwinning can be seen as a variation of the SESF
mechanism in which more leading partials shear the matrix and the precipitates on
adjacent planes. Different pathways for the order in which the planes are sheared have
been proposed both in fcc and L12 structures [47] but the resulting stress orientation
dependence is the same; glide on consecutive adjacent planes is considered here. It
is not fully clear how microtwins nucleate, but the athermal stopping of the trailing
partials may be a necessary condition. This would explain why this mechanism appears
at lower stresses than SESFs [18, 21]. Pinned trailing partials would give time for more
dislocations to reach planes adjacent to the fault and increase the microtwin thickness
as they thermally shear the precipitates (and athermally the matrix).

A leading partial gliding on a plane adjacent to a SESF would transform this fault
into a 3-layer pseudo-twin, which after a series of local atomic reshuffling steps becomes
a microtwin with two corresponding twin boundaries [9, 10]. The force balance reads

CT : Fa1 + γSESF − 2γTp − Ff1 > 0, (22)

where γTp is the twin boundary energy in the precipitates. Simultaneously, the ESF in
the matrix is replaced by two twin boundaries with energy γTm. Studies have shown
that the energy difference between a 2- and a 3-layer fault is rather small both in the
fcc and the L12 phases, i.e. γISF ≈ γESF ≈ 2γTm [48, 49] and γSESF ≈ 2γTp [47, 50].
The stress required to activate twinning from equation (22) is then expected to be low,
as shown in Figure 9(b). Upon forming an extended SESF + ESF, microtwin thickening
may be mostly limited by the diffusion and not by an additional stress requirement.

A summary of the thermal mechanisms described here is shown in Figure 11, together
with the defects left by the partials when overcoming the precipitates. The thermally
activated mechanisms should only occur if no athermal alternative is possible, as this al-
lows the dislocations to push against the obstacles and drive the atomic diffusion process.
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Figure 11: Schematic diagrams of the segregation assisted stacking fault shearing mechanisms driven by
the glide of Shockley partials from left to right. A dot or square on top of a dislocation indicates that it
is gliding on an adjacent plane. Black and red arrows denote the athermal or thermally-assisted nature
of the mechanism, respectively. The defects left after the sweeping of each partial are annotated.
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A remaining question is: why do multiple types of faults appear during a single test?
Looking at Figure 9 it is evident that the regions for the SISF and SESF mechanisms
overlap in certain regions. These mechanisms can coexist as long as the appropriate dis-
locations meet at a γ/γ′ interface. The models for both superlattice stacking faults share
the b1 + b2 dislocation, which in an orientation map for a single slip plane corresponds
to the point with the highest Schmid factor. The other two coplanar slip systems are
then the additional dislocation in each model; the one with the highest Escaig factor for
the SISF and that with the lowest for the SESF. The combinations of these two pairs
of points determine the faults that will be promoted. Figure 12 shows the superposition
of the mechanistic maps for thermal and athermal mechanisms for an alloy with a γ
channel of 20 nm, where the overlap of different mechanisms is denoted by the striped
regions. Just from the geometry of the constraints it can be seen that SISF and SESF
propagation will be promoted for positive and negative values of φ, respectively.

Figure 12: Regions for the athermal and segregation assisted mechanisms of precipitate bypassing in
an alloy with cuboidal precipitates. The striped regions indicate that the mechanisms of both colours
are operative. The values used for the calculation are H = 20 nm, ν = 0.33, µ = 58.6 GPa, b = 0.253
nm, α = 1, γISF = 10 mJ/m2, γESF = 10 mJ/m2, γAPB = 276 mJ/m2, γCISF = 196 mJ/m2,
γCESF = 268 mJ/m2, γSISF = 62 mJ/m2, γSESF = 74 mJ/m2.

5. Discussion

The analytical model for the athermal propagation of ISFs builds on a number of
previous studies. Mechanistic maps like the one in Figure 7 have been generated be-
fore by simulations of individual partials for the case of Frank-Read sources [37], narrow

19



channels [5, 19] and precipitates arrays [5, 20, 21], but the current analytical approach en-
compasses these to give a comprehensive prediction of dislocation behaviour. Moreover,
the infinitely long stacking fault regime has never been described. Another implication
of this analysis is that none of the conditions depend on the interaction force between
the partials. Considering the anisotropic elasticity of the crystal would add another ori-
entation dependence for the dissociation width [43], without any effect on the boundaries
plotted.

An analysis of microstructures with multimodal precipitate size distributions may
clarify the effects of secondary and tertiary precipitates on the stacking fault formation.
Figure 13 shows a parametric analysis that considers the obstacle resistance forces for
the corresponding defects via equations (A.7-A.10), calculated with typical parameters
of nickel-based superalloys: ν = 0.33, µ = 58.6 GPa, b = 0.253 nm, f = 0.1, γISF = 10
mJ/m2 [39], γAPB = 276 mJ/m2 and γCISF = 196 mJ/m2 [45], with θ = 90◦, α = 1
and ξ = 1. There is a transition from shearing to looping for the leading partial similar
to that of perfect dislocations [51] at a radius r = rc. The trailing partial experiences a
very small resistance in the former regime because the energy of a CISF is very similar
to that of an APB [42, 52], promoting further shearing. However, larger precipitates are
bypassed via looping of both partials, which generates the large peak in R2 seen in the
plot. A combination of these mechanisms is expected accounting for the variability in
precipitate sizes and spacings. Yet, large secondary precipitates bypassed via Orowan
looping promote the formation of athermal stacking faults, whereas smaller tertiaries are
only sheared.

Figure 13: Precipitate resistance R/bp for the leading and trailing partial dislocations as a function
of mean particle size. The solid lines denote the actual resistance and the dashed lines represent the
individual mechanisms. The transition rc from shearing to looping for the leading partial is marked for
reference.

In a more general context, consider now the angle

θP = − arctan

(√
3(2γISF +R1 −R2 + Ff1 − Ff2)

R1 +R2 + Ff1 + Ff2

)
(23)
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between the horizontal axis and a line from the origin to point P in Figure 7. This can
be interpreted as the parameter determining the likelihood for an fcc crystal to develop
athermal stacking faults compared to perfect dislocation glide. If this is lower than
−30◦, then it is impossible to promote stacking fault propagation without first reaching
the glide of correlated partials regime in a coplanar slip system. This conclusion arises
by considering the constraints regarding the stress state in coplanar slip systems [22].
The minimum resolved shear stress for stacking fault propagation in this condition is
then that of point P . Inspection of equation (23) shows that the key parameters to
promote ISF propagation are a low stacking fault energy and a high trailing partial glide
resistance R2 + Ff2, which is in agreement with the parametric analysis in Figure 13.

The analysis on the different configurations of superlattice stacking faults paves the
way towards a sound understanding of the dislocation pathways to accommodate plastic
deformation in this creep regime. From experimental evidence in the literature and in
the current work, it is clear that there is a strong stress orientation dependence behind
the formation and propagation of these faults. Equations (13) and (17) for the complex
stacking faults widths, calculated with γCESF = 268 mJ/m2, γSISF = 62 mJ/m2 [45],
γSESF = 74 mJ/m2 [45] and the stress attained in a high resolution TEM study (τS = 343
MPa and τE = 149 MPa) [13], result in dCESF = 1.05 nm and dCISF = 1.76 nm. These
values are 19% lower and 37% higher than the experimental measurements, respectively.
With all the assumptions made these results are reassuringly accurate, which validates
the simple force balances employed as a first approach.

Due to geometric constraints on the slip systems, the angle φ can effectively capture
the transition from intrinsic to extrinsic faults due to the different partials experiencing
dissimilar shear stresses [22]. The mechanistic maps from Figure 12 can be condensed
into those in Figure 14, which cover all the possible shear stresses and orientations that
a single slip plane may experience. Here these are plotted for different channel widths
to showcase the large effect of the microstructure morphology, showing that an increase
in the channel width promotes the formation of isolated faults. This occurs, according
to equations (16) and (21), because athermal dislocation glide along the matrix becomes
easier and the trailing partials are no longer pinned. Simultaneously, athermal perfect
dislocation glide becomes easier for the same reason. It must be emphasised that all the
predictions here refer to the critical channel width and not its mean value, as it only takes
a few pinning points to hold back the dislocation. Also note that there is a difference in
reading the appearance of athermal and thermally assisted faults from the mechanistic
maps. The latter rely on the stresses of two coplanar a

2 〈110〉 slip systems, which can be
extracted uniquely from the region within the domain of the angle φ, as shown in Figure
14. The athermal faults are instead formed from individual perfect dislocations, so their
appearance is better understood from a full map as that in Figure 7.

It is possible to translate these results for specific loading modes by projecting the
mechanistic maps onto the plot of the loading axis on the stereographic triangle for the
most highly stressed slip plane. Figures 15(a) and 15(b) accomplish this for the case
of uniaxial tension and compression by accounting for the shear stress on the primary
slip plane for every possible loading axis. The inserts on the top left correspond to the
range of Schmid and Escaig stresses that may be attained for each load configuration,
and effectively map these coordinate systems onto the crystal stereographic projection.
While the maps in Figure 14 are very valuable due to their universality, the equivalent in
the inverse pole figures facilitates a direct comparison between models and experiments.
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Figure 14: Stress-orientation maps of athermal and segregation assisted precipitate bypassing mecha-
nisms for alloys with (a) narrow or (b) wide γ channels. The striped regions indicate that the mechanisms
of both colours are operative.

Whilst these plots do not account for the microstructure variability, they give an idea of
how the regions in the φ maps translate to real crystal orientations and stresses.

Figure 15: Inverse pole figures for (a) uniaxial tension and (b) uniaxial compression with the predicted
stacking fault mechanisms, where the white curved triangles in the inserts on the top left represent the
stresses attained by the slip plane with the highest stress for all possible orientations. The values used
for the calculations correspond to those used to plot Figure 14(a) and an axial stress of 800 MPa.

Data from the literature for single crystals in Figure 1(b) seems to match the analyt-
ically obtained orientation dependence. Whilst these tests were performed with different
alloys, temperatures and applied stresses, the overall tendencies are successfully repro-
duced.

Grains with different orientations in the polycrystalline nickel-based superalloy stud-
ied here show broadly similar trends, as seen by comparing Figure 15(a) with Figure
4. While SISFs appear in most grains, SESFs clearly increase in numbers as the tensile
axis moves away from a 〈001〉 direction. In addition, more isolated faults are observed
near the left and right edges of the inverse pole figure, whereas extended configurations
appear more towards the centre, in agreement with the predictions of the model.

There is clearly more scatter in the types of faults found in each grain compared
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to observations in single crystals. One of the reasons for this is the large variability
of precipitate sizes and γ-channel widths, specially for the flowery secondary γ′. This
presents each dislocation with a series of obstacles with different resistances along the
glide plane that may promote a change in the deformation mechanism, e.g. the observed
isolated SESFs that then turn into extended SESFs+ESF upon stopping of the trailing
partials.

Another factor responsible for the deviations from the predicted behaviour in poly-
crystals must be the need for strain compatibility between neighbouring grains. Consider
for example grain 1 loaded close to a 〈111〉 direction, which has a low Schmid factor
and a high axial stiffness [53] making it harder to deform compared to its neighbouring
grains. Due to load partitioning the shear stresses in this grain may not only increase
in magnitude, as hinted by the observed larger dislocation density, but also rotate to
promote more SISFs. These incompatibility effects must also affect other grains but to a
lesser degree. Whilst the more complex stress states developed in polycrystalline alloys
makes them harder to investigate, this study shows that the stress orientation analysis
is effective at capturing the deformation behaviour even for these small plastic strains.
Incorporation of the introduced stress and orientation dependencies into crystal plastic-
ity models may elucidate more effects related to the interactions between grains during
creep of polycrystalline alloys.

A further novel finding of the current study is the observation of a SISF + ESF
configuration, for which we propose the mechanism presented in Figure 16. Consider the
formation of an ISF in the matrix with pinning of the b2 trailing partial and SISFs in
the precipitates driven by a b1 partial and a b3 + b2 perfect dislocation, i.e. mechanism
(1I) in Figure 11. If an additional b1 leading partial glides on a plane adjacent to the
ISF, forming an ESF in the matrix, it will be impeded from shearing a precipitate as
this would transform the SISF into a complex defect with an energy closer to that of
an APB. Instead, athermal Orowan bowing would result in SISFs with b1 loops around
them and an ESF in the matrix, as long as the trailing partial of the new dislocation is
also pinned. The stress requirements for this mechanism are those needed for the SISF
+ ISF configuration, in addition to condition

C3I : Fa1 + γISF − γESF − Ff1 > R1c, (24)

analogous to equation (20). This mechanism would then be promoted in a region in
Figure 14 similar to that of the extended SESF + ISF but mirrored along the τS axis,
for φ ∼ 0◦. Further investigations into this new type of fault are necessary to validate
this mechanism.

The combined Burgers vector of all the partials involved in the mechanisms analysed
are drawn in Figure 17, regardless of whether the faults develop over one or more ad-
jacent planes. While all the equations developed in this study show in the mechanistic
maps as lines perpendicular to the Burgers vectors of either the leading or the trailing
partial, the regions where each mechanism appears are consistent with the orientation
of the combined Burgers vector. The only exception are the extended faults with alter-
nating character, which appear switched in Figure 12 because the athermal looping of
precipitates requires a higher stress than the formation of the superlattice faults. In the
case of larger channels, as those in this alloy, the boundaries from equations (20) and (24)
shift these regions closer to φ ∼ 0◦, where both of these faults are found experimentally.
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Figure 16: Sequence of the proposed mechanism for a SISF + ESF configuration. From a SISF + ISF
configuration, a b1 partial glides on an adjacent plane looping around the precipitates converting the
ISF into an ESF.

Figure 17: Schematic diagram of a {111} plane with arrows that represent the combined Burgers vector
of all the partials that glide over multiple adjacent slip planes for each mechanism. The dashed arrows
represent the stacking faults with alternating character and the grey arrow the Burgers vector of a perfect
dislocation.

This general picture of the superlattice faults in nickel-based superalloys offers an
overview of how crystals find intricate ways to accommodate deformation in the direction
of the shear stress. While the detailed scrutiny of the shear stress in the slip plane may be
enough to analyse the propagation of these defects, nucleation remains unclear. Further
studies in this subject are required to elucidate the mechanisms by which dislocations
with different Burgers vectors end up on adjacent planes pushing against the precipitates,
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possibly via cross slip from the dislocation tangles near the grain boundaries.

6. Conclusions

This work develops the first ever comprehensive theory of stress, orientation and
microstructure dependence for the appearance of planar faults in nickel-based superalloys.
The main findings are:

• Athermal stacking fault configurations depend mainly on the microstructure of the
material, whereas thermally assisted superlattice faults have a larger dependence
on stress orientation.

• There is a good qualitative agreement between this model and results from the
literature for single crystals. Larger deviations exist in polycrystals likely due to
strain compatibility phenomena and the variability in precipitate morphologies.

• A new extended superlattice stacking fault configuration is identified for the first
time, consisting of an ESF with SISFs in the precipitates. A dislocation pathway to
produce such fault is proposed, although further experimental validation is required.
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Appendix A. Obstacle surpassing mechanisms

Obstacle surpassing mechanisms depend on the line tension T of the dislocation as the
radius of curvature % it will adopt is inversely proportional to the force applied F through
the relation % = T/F . This tension, which can be thought of as the self-energy per unit
distance of the dislocation, is proportional to Gb2, but it also depends on the character
and even on whether it belongs to a perfect dislocation or is a completely isolated partial
[39]. Modelling of this parameter has been performed before in a more complete way
[39], although for simplicity it is here assumed to be T = αGb2/2 in agreement with
other approaches in the literature, where α is a dimensionless parameter close to one.

In microstructures with large cuboidal precipitates (Figure A.18(a)) the antiphase
boundary energy restricts most of the deformation to the channels in-between. The
required stress for a dislocation to enter a channel of width H is τ = 2T/Hb, which in
the current framework becomes a resistance for the leading and trailing partials of

R1c =
αGb2p
H

(A.1)

and

R2c =
αGb2p
H − 2dc

, (A.2)
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Figure A.18: Schematic diagram of dislocation glide (a) through a γ channel and (b) pushing against an
array of spherical precipitates.

respectively, where dc is the stacking fault width in the x̂-direction.
The trailing partial needs to overcome a larger resistance due to the repulsion force

from the segments left by the leading partial pushing against the obstacles. Assuming
that both dislocations are already decorrelated and far from each other, the trailing
partial will start gliding through the channel when

Fa2 + γISF − Ff2 = R2c. (A.3)

Simultaneously, the force balance in the x̂-direction on a straight segment of one of the
trailing partials reads

Fa2 + γISF − Ff2 −
A

dc
− At
H − 2dc

− A

H − dc
= 0, (A.4)

where At/x is the interaction force between two parallel dislocations separated by a
distance x on the same slip plane and with the same Burgers vector, and

At =
4− 2ν − 2ν sin (π/6 + 2θ2)

8π(1− ν)
Gb2p. (A.5)

Note that both A and At in equation (A.4) must be obtained for a dislocation character
θ2 = θ+π/2 because these segments are perpendicular to the moving end of the partials.
Rearranging and solving equations (A.2), (A.3) and (A.4) gives two solutions, only one
of which has a physical meaning:

dc=
H

−4+8π(1−ν)+2ν+2ν sin (π/6+2θ2)

(
4π(1−ν)−2ν cos (2θ2)+ν sin (π/6+2θ2)

−
√

16π2(1−ν)2+2(2−ν)2−8π(2−3ν+ν2)−4(2−ν)ν cos (2θ2)+4ν2 cos (2θ2)2−(4−8π(1−ν)−2ν)ν sin (π/6+2θ2)+ν2 sin (π/6+2θ2)2

)
.

(A.6)

This means that dc is proportional to H by a factor that only depends on ν and θ2, and
ranges between 0.07 and 0.139 for a typical value of ν = 0.3.

The analysis of an array of spherical obstacles (Figure 13(b)) constitutes a challenge
due to the variability in the morphology and surroundings of the precipitates. Classical
models of precipitate strengthening [51, 54, 55] are applied here to the individual partials
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considering that the promoted mechanism is that with the lowest critical resolved shear
stress.

The force balance at the point of maximum particle resistance during shearing of
a precipitate cross section with an energy penalty of γP by a dislocation with Burgers
vector b leads to a general resistance

Rs =
2r

λ(b, γP )
γP , (A.7)

where r is the mean precipitate radius,

λ(b, γP ) =

(
αG

2γP r

)1/2

ξbL (A.8)

the Friedel sampling length of the dislocation [56], ξ a correction parameter and L =
(2π/3f)1/2r the mean precipitate spacing [57]. Equations (A.7) and (A.8) can be used
to calculate the forces R1s and R2ss. These Friedel statistics capture the effect of the
microstructure variability on the effective precipitate spacing λ. This parameter has
been analysed in detail in multiple 2D simulations by looking at the evolution of one
dislocation gliding along a material with discrete obstacles. This is also the way in which
single Shockley partials evolve when fully decorrelated, as out-of-plane glide and pile-
ups are not an option. Deviations from equation (A.8) have been systematically studied
for different precipitate strengths [58] and ranges of volume fractions [59], all of which
are incorporated into ξ. The reader is referred to reference [56] for further details and
numerical evaluations of this parameter.

Alternatively, Orowan looping is analogous to glide through γ channels. The obstacle
force for a leading partial is given by

R1` =
αGb2p
L− 2r

. (A.9)

A variation introduced by Unocic et al. [5] considers the elastic contribution of the trailing
dislocation pushing via the interaction force that results in a curved boundary in Section
4.1. These effects are ignored here for simplicity, but adding them is straightforward.
Then, the force required for a trailing partial to loop a precipitate with a b1 loop around
it is

R2`` =
αGb2p

L− 2r − 2d``
, (A.10)

where d`` can be found by substituting H with (L−2r) in equation (A.6). Alternatively,
the trailing partial may induce the required stress for the loop to collapse and annihilate
by shearing the precipitate. Due to the more complicated geometry of the dislocation
configuration, a proper analysis would require a discretised line tension approach.
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[22] F. D. León-Cázares, C. M. F. Rae, A Stress Orientation Analysis Framework for Dislocation Glide
in Face-Centred Cubic Metals, Crystals 10 (6) (2020) 445.

[23] D. Barba, E. Alabort, D. Garcia-Gonzalez, J. Moverare, R. Reed, A. Jérusalem, A thermody-
namically consistent constitutive model for diffusion-assisted plasticity in Ni-based superalloys,
International Journal of Plasticity 105 (2018) 74–98.

[24] B. Décamps, A. J. Morton, M. Condat, On the mechanism of shear of γ’ precipitates by single
(a/2)<110> dissociated matrix dislocations in Ni-based superalloys, Philosophical Magazine A
64 (3) (1991) 641–668.

[25] B. Décamps, J.-M. Pénisson, M. Condat, L. Guétaz, A. J. Morton, High resolution imaging of
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