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Abstract

Piano is a complex instrument, which humans learn to play after many years of practice.

This paper investigates the complex dynamics of the embodied interactions between a

human and piano, in order to gain insights into the nature of humans’ physical dexterity and

adaptability. In this context, the dynamic interactions become particularly crucial for delicate

expressions, often present in advanced music pieces, which is the main focus of this paper.

This paper hypothesises that the relationship between motor control for key-pressing and

the generated sound is a manifold problem, with high-degrees of non-linearity in nature. We

employ a minimalistic experimental platform based on a robotic arm equipped with a single

elastic finger in order to systematically investigate the motor control and resulting outcome

of piano sounds. The robot was programmed to run 3125 key-presses on a physical digital

piano with varied control parameters. The obtained data was applied to a Gaussian Process

(GP) inference modelling method, to train a network in terms of 10 playing styles, corre-

sponding to different expressions generated by a Musical Instrument Digital Interface

(MIDI). By analysing the robot control parameters and the output sounds, the relationship

was confirmed to be highly nonlinear, especially when the rich expressions (such as a broad

range of sound dynamics) were necessary. Furthermore this relationship was difficult and

time consuming to learn with linear regression models, compared to the developed GP-

based approach. The performance of the robot controller was also compared to that of an

experienced human player. The analysis shows that the robot is able to generate sounds

closer to humans’ in some expressions, but requires additional investigations for others.

1 Introduction

Since the dawn of robotics there has been an interest in making machines perform artistic

and creative tasks in a human-like manner [1]. Music instrument playing, in particular, is an

important challenge, because the skills necessary to play music from physical instruments are
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often beyond state-of-the-art robotics technologies, while the attempt to mimic musicians

would give us insights into the artistic nature of humans [2].

Piano, among others, is a complex instrument with rich and complex acoustics, which

is difficult to master even for humans after many years of training. The production of rich

expressive sounds requires appropriate key-press trajectories with a suitable mechanical appa-

ratus. A key-press event, as performed through a finger by a human musician, can therefore

not be seen from the point of view of the finger, or the instrument, in isolation. Rather the

action of the finger and the instrument is coupled, where the dynamics of the piano are linked

to the bio-mechanics and neuromuscular dynamics of the pianist, and their coupling produces

rich and complex acoustic energy radiating from the soundboard [3, 4].

Previous attempts to reproduce piano playing by robots mainly focused on two aspects: the

mechanical actuation of the fingers and the algorithms for finger motion planning across keys.

A large variety of actuation mechanisms was proposed by using DC motors [5], servomotors

[6, 7], pneumatic cylinders [8, 9], and tubular solenoids [10]. These actuation mechanisms

were then integrated to various control and planning architectures, such as hard-coded motion

paths [6], optimal path planning algorithms [5, 7, 10, 11], and more advanced algorithms

including collision avoidance [5, 11].

Although these robotics studies demonstrated impressive accuracy and speed for complex

music playing, very little attention has been paid to the understanding of delicate embodied

interactions of players and instruments for expressive sound generation. So far [4, 12] have

analysed the importance of dynamic interactions for expressive playing, but it is still largely

unknown how music expressions can be systematically analysed and understood. Generally

speaking, expressive piano playing is a manifold problem involving the dynamics of the instru-

ment, note arrangement in music instructions (sheet musics), and player’s action, and we are

not able to independently investigate each of these components in isolation as they are mutu-

ally related to each other [3].

The problem addressed in this paper is therefore the development of a method to systemati-

cally analyse the relationship between these three components, by employing a state-of-the-art

digital piano, robot arm platform, and a statistical computational tool based on Gaussian Pro-

cess (GP) inference. For a systematic analysis and comprehensive understanding of the land-

scape of this framework, we employed a minimalistic approach where we consider 10 basic

playing styles, expressed by a single note, with a finger performing key-presses on a piano

instrument. As exemplified in later sections, even with this simplified setup, the systematic

understanding of expressive piano playing is nontrivial.

For this challenging problem, this paper argues that the relationship between the motor

control of a player and the corresponding expressive auditory output on the piano is intrinsi-

cally nonlinear, thus specific treatments are necessary when designing and analysing motor

control of piano players. The expressive piano playing is known to be analysable by the MIDI

format of music sound representations, in which expressive sounds are related to the velocities

of piano key-pressing and interval times between them. Based on this framework, we will

extend the analysis to robot control to show the non-linearity of the relationship between

expressive and a player’s motor control. The identification of this nonlinear nature of piano

playing is particularly important in order to understand players’ (bio)mechanical dynamics,

control, and learning processes. In this context, the mechanical dynamics (impedance) of play-

ers’ fingers, arms and hands are important. Additionally, linear regression methods may not

be flexible enough to cope with the nonlinear dynamics of this system, and other nonlinear

control optimisation (learning) processes become instead necessary.

In the past, humans have been shown to learn and make decisions with processes akin to

Bayesian inference, above all in tasks involving sensory-motor control [13]. It is in this context
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that we propose a fully probabilistic GP-based framework to capture the relationship between

the piano music and key-press events that generated it. Advantages of this approach include a

mathematically meaningful measure of uncertainty in key-press trajectory prediction. While

these implications are valid for both human and robot players, it would be particularly inter-

esting for designers of piano playing robots, because a hard-coded linear mapping of motor

control would not be sufficient for human-like playing of piano but an integrative view of mor-

phology and sensory-motor control become more valuable in the context of dexterous manip-

ulation tasks [14–16].

This paper is structured as follows. Section 2 reports the methods in this Paper, including

the GP-based Learning framework in Section 2.1, and the robotic experimental set up in Sec-

tion 2.2. In Section 3 we report the results of this work. Finally, in Section 4 a discussion and a

conclusion are provided.

2 Materials and methods

2.1 Learning framework

The framework developed for this work aims to capture the relationship between piano key-

press events and the corresponding piano sound outputs, thus optimizing the robot’s key-

press trajectories for different styles, through a single demonstration. Much like a human

player, the robot can perform key-presses on a piano, observe the resulting music output, and

then explore its own action space and the consequences of its actions through sound feedback

(Fig 1). The music styles chosen for the experiments are commonly used in piano playing to

evoke different musical expressions. Two types of fundamental musical parameters governing

musical events are explored, articulation and dynamics, for which a musical event is typically

a single note or phrase of notes. Music articulations shape the attack, decay and length of an

event, while dynamics determine the loudness of an event relative to the entire passage. Articu-

lation methods tenuto, staccatissimo and staccato were chosen for the experiment for their rele-

vance to the piano instrument and suitability for monophonic (single-note) playing. The styles

of fortissimo/ ff (very loudly) to pianissississimo/pppp (extremely softly) were instead chosen

for their dynamic range. These playing styles introduce a wide range of music which require

very diverse types of key-press action to be performed on the instrument.

2.1.1 Linear models. The first set of models are Linear models, capturing the relationship

between the detected key-press piano sounds and their corresponding robot key-press actions.

Fig 1a and 1b show a qualitative diagram of the framework in the context of these experiments.

For each key-press let~v be the dv dimensional vector of control parameters utilized for the

robot control, and~o the do dimensional vector of the corresponding sound outputs. An in-

detail explanation of the parameterization of the robot control and the sound output is irrele-

vant to the learning framework, and will be provided in later sections.

For notation’s sake we will impose x ¼~o and y ¼ ~vi . In this context, ~vi is a one dimensional

vector, corresponding to one dimension of the control action parameters (Fig 1b). The follow-

ing equations will be repeated for every control action dimension, thus i 2 [1. . .dv], where dv =

5 for the duration of the experiments.

For the Linear models we impose x0 = [x 1] and:

y ¼ ~wx0 ð1Þ

where ~w is a do + 1 dimensional vector of weights capturing the relationship between the

sound outputs and the control parameter ~vi under consideration. The values for ~w are approxi-

mated by a Least Square fit.
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2.1.2 Gaussian process framework. In the past, humans have been shown to learn and

make decisions with processes akin to Bayesian inference, above all in tasks involving sensory-

motor control [13]. In contrast to the linear models, a GP-based framework is used to capture

the relationship between the sound produced by the piano and the robot control of the key-

press generating it [17]. Given key sound observations x, generated by noisy robot-controlled

key-presses y, the relationship of sound output to motor control can be captured by:

y ¼ f ðxÞ þ � where � � N ð0; s2
yÞ ð2Þ

Fig 1. Adaptive piano playing diagram, including (a) the GP-based framework developed and (b) the model relationship between robot key-press and piano

sound outputs.

https://doi.org/10.1371/journal.pone.0237826.g001
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i.e. the noisy key-press by the robot control are assumed to have a Gaussian process prior and

be drawn from:

y ¼ f ðxÞ � GPðmðxÞ; kðx; x0Þ þ dpqs
2
yÞ ð3Þ

where the mean is m(x) = 0, and the covariance of any two noisy observations yp and yq is:

cov½yp; yq� ¼ kðxp; xqÞ þ dpqs
2
y ð4Þ

where xp and xq are the inputs to the corresponding observations, and δpq = I(p = q). The rela-

tionship between y and x in Eq 3 is thus dictated by how any two musical outputs co-vary in

terms of their generating key-press trajectory. The covariance of any two points is governed

by Eq 4, and thus the choice of the kernel is here important. We build on a linear kernel, and

account for non-linearities in the relationship of x and y by a Radial Basis Function Kernel,

thus:

kðxp; xqÞ ¼ xpxqs
2
f eð�

kxp � xqk2

2l2
Þ ð5Þ

where s2
f and l are hyperparameters which decide the magnitude of influence of adjacency

when evaluating the function at any one point. From [18], we can write the mean μ� and vari-

ance S� for any new test audio input X�, prior inputs X and generating observed control key-

press y as:

m� ¼ kðX;X�Þ
TK � 1

y y ð6Þ

S� ¼ kðX�;X�Þ � kðX;X�Þ
TK � 1

y kðX;X�Þ ð7Þ

where Ky ¼ kðX;XÞ þ s2
yIN , to account for the noisiness of the observations.

Finally, it is desirable not to manually pick the hyperparameter s2
f and l of the covariance

function. We therefore perform model selection by initializing the s2
f and l to 1 and iteratively

minimizing the negative marginal log likelihood −log p(y|X) over 100 training steps as imple-

mented in [19].

The equations described can capture the relationship between any sound output parameter

~vi and control input~o. In this paper dv = 5 and do = 4, thus five 4-dimensional Gaussian Pro-

cesses are built to automatically capture the relationship between the sound output and robot

key-press control.

2.2 Experimental set-up

For the experiments we use a UR5 robotic arm, equipped with a custom end-effector (Fig 2a

and 2b). The music instrument is a Kawai Es8 Digital Piano, which provide the possibility to

retrieve event-based, MIDI audio messages when a key is pressed. An audio message is gener-

ated when one of two events is detected: a key press or a key release. For every pair of detected

MIDI message, four variables are going to be relevant for the purpose of the experiments in

this paper, namely: the velocity of the key-press, the time the key was held down, the velocity

of the key release and the wait time before performing the next key-press; the four variables

will be referred to on_velocity, hold_time, off_velocity and wait_time for the remainder of the

experiments.

2.2.1 Finger design. The finger was designed to be the simplest end-effector to allow the

UR5 robotic arm to perform single key-presses on a standard piano. The finger is a 80mm ×
15mm cylindrical attachment, with a flat origin and a rounded finish, to perform key-presses

PLOS ONE Gaussian process based robot control for expressive piano playing

PLOS ONE | https://doi.org/10.1371/journal.pone.0237826 August 14, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0237826


Fig 2. The set-up for the experiments. Fig. (a) shows robotics set up, including a schematic of the robot connection to

a processing unit and the musical instrument. Fig. (b) shows the 3D finger used for piano playing.

https://doi.org/10.1371/journal.pone.0237826.g002
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at various stroke angles without compromising the area of contact (Fig 2b). The finger was

3D-printed using FilaFlex, a Thermoplastic Polyether-Polyurethane elastomer (TPE) filament

of shore hardness 82A https://recreus.com/en/12-filaflex-original-82a, and thus it presents

some room from flexing and bending.

2.3 Robot control

The robot was controlled in Cartesian coordinates at�125Hz, acting upon the Z and Rx tool

axis, to generate the desired contact between the end-effector and piano key for a key-press.

The x axis and Rx axis were controlled first, to align the robot’s end-effector with the key to be

pressed (x), and assume a rotation about the fingertip (Rx). Subsequently the robot was con-

trolled via the z axis, to perform a key-press. A hybrid sinusoidal displacement profile was

generated for the z axis, parameterized in both amplitude and frequency. The alignment, con-

trolled by the x axis, does not generally influence a key-press. The Rx and z axis, instead, influ-

ence each key-press uniquely. A total of 5 parameters were used to these two axis during each

key-press experiment (dv = 5), i.e. Rx, f1, f2, t1, t2 (Fig 3b).

For the Z axis of motion, a sinusoidal displacement over the course of the key-press is

defined as:

szðtÞ ¼

0 if 0 < t � Ta

1

2
Az cos 2pf1

2
ðt � TaÞ

� �
� 1

� �
if Ta < t � Tb

� Az if Tb < t � Tc

� 1

2
Az cos 2pf2

2
ðt � TcÞ

� �
þ 1

� �
if Tc < t � Td

:

8
>>>>>>><

>>>>>>>:

ð8Þ

where

Ta ¼ t1 ; Tb ¼ t1 þ
1

f1
;

Tc ¼ t1 þ
1

f1
þ t2 ; Td ¼ t1 þ

1

f1
þ t2 þ

1

f2

Fig 3. The robot control, including (a) an illustration of a robotic key-stroke, and (b) the hybrid sinusoidal control designed for the experiments.

https://doi.org/10.1371/journal.pone.0237826.g003
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Here, ‘t’ is the time, in seconds, elapsed since the start of the touch experiment and Az defines

the amplitude of the generated sinusoidal displacement for the key press, and it is here set to

32mm throughout the experiments. Additionally, a parameter Rx sets the angle of rotation of

the end-effector, between 0˚ and 90˚ throughout the experiments (Fig 3a). The x and Rx axis

of motion controls the robot’s ability to shift key along the piano as it plays different notes.

The control on the x axis is achieved through:

siðtÞ ¼
1

2
Ai½cosð 2p

2t1
tÞ � 1� if 0 < t � Ta

Ai if Ta < t � Td

8
<

:
ð9Þ

i 2 fRx; xg

where Ax = kdnk, kd represents the key-width and nk is the number of keys between the previ-

ous and current key. The standard modern piano keyboards are designed with white keys

23.5mm wide, thus we set kd = 23.6, taking into account the gap between keys. The following

sections will explore how different control parameters can approximate different playing

styles, and how these may be learned online through sound feedback.

3 Results

In the following sections we wish to understand the delicate embodied interactions of players

and instruments for expressive sound generation. We first show how expressive piano playing

is a manifold problem, involving the dynamics of the musical instrument, note arrangement,

and player’s action. Here, we show that the relationship between motor control and piano is

intrinsically non-linear. We will further show the viability of the GP-based framework devel-

oped in capturing the non-linear dynamic relationship of this system, and its advantages with

respect to simpler linear regression methods. Finally, the optimized controllers for 10 different

playing styles are compared with the performance of an expert human player.

3.1 Robot key-press control to sound feedback

In the first set of experiments we investigate the relationship between the robot control param-

eters and the generated sound outputs following the robot key-press control. This analysis is

based on observations on a large-scale set of over 3125 key-press experiments performed with

the set-up described in the previous section. Fig 4 shows example relationships between the

MIDI parameters of on_velocity and off_velocity with the control parameters of f1, f2, and Rx.

From Fig 4a, it is possible to see how the on_velocity increases as the robot control’s f1 parame-

ter increases, while all other control parameters are kept constant. However, the normalized

value of on_velocity saturates at�0.4 regardless of an increase in f1 from 6.6 Hz. Beyond a fre-

quency threshold of 6.6 Hz, any higher imposed frequencies in the key-press control appear

indistinguishable by the piano key’s velocity-sensitive trigger sensor. The piano key trigger has

not reached its velocity sensing saturation, as we observe from Fig 4e that at other finger rota-

tion angles (Rx), the normalized on_velocity values are able to reach up to�0.8 compared to

the saturation at�0.4 previously observed at f1 = 6.60 Hz. It is likely that this is in part due to

the elasticity of the finger, which is capable of flexing and bending to some degree, combined

with the sinusoidal parameterization of key-press trajectory. Both the finger’s make and the

choice of action parameterization for the robot key-press control, in fact, induce slight changes

in both the stiffness and contact point of the finger with respect to the stroked key during a

key-press, with higher angles inducing higher degrees of stiffness in the end-effector.
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Fig 4. The sample raw data corresponding to the MIDI sounds registered by the piano and the control parameters generating the key-

presses execution, averaged over 10 trials.

https://doi.org/10.1371/journal.pone.0237826.g004
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We observe a similar trend between f2 and off_velocity in Fig 4c and 4d. The normalized

off_velocity detected by the piano increases as the f2 parameter is increased in the robot control,

while all other control parameters are kept constant. However, the value of off_velocity satu-

rates at values of f2 frequencies of�6.6Hz. Beyond a frequency threshold of 6.6Hz, higher

release velocities are indistinguishable by the trigger.

The non-linear relationships between Rx and audio parameters on_velocity and off_velocity
respectively are harder to capture as there are additional factors at play. As the finger’s material

is non-stiff material, and given its elongated structural composition, key-presses at different

angles may vary the finger’ stiffness, as the generated forces derived from the key-press may be

more or less normal to its longest side.

The non-linear relationships observed are also not representative of those observed at other

constant variable values. This is illustrated by comparing Fig 4a and 4b for which all constant

robot control variables are the same except for Rx = 20˚ for the data in Fig 4a and Rx = 30˚ for

that in Fig 4b: there is a less significant plateau observation of on_velocity in the latter as the

value continues to increase gradually to 0.8 at f1 = 10.9 Hz. This is likely because at the higher

rotation angle, the depth at which the piano key is electronically triggered corresponds to a dif-

ferent point along the gradient of the sinusoidal curve in Fig 3b, causing a velocity difference

that is distinguishable by the trigger as f1 increases. Other factors may also contribute to this

difference, such as the different mechanical properties of the finger at different rotation angles

and the differing point of contact of the finger on the key.

Similarly when comparing Fig 4c and 4d, which plot the data obtained from setting

Rx = 60˚ and 70˚ respectively, we observe a more significant plateau between f2 = 7.7 Hz and

f2 = 9.8 Hz in the latter figure, where the velocity change due to f2 is indistinguishable by the

key trigger.

The analysis of the raw data shows the complexity, multi-dimensionality and non-linearity

of problem at hand, where the physical interaction of the robot’s finger and the piano instru-

ment is quantified experimentally.

3.2 Gaussian process based framework analysis

As shown in the previous section, the relationship between the control parameters and result-

ing note musical outputs is both non-linear and multivariate dependent. Gaussian Processes

can capture both the non-linear nature of the relationship between the inputs and outputs, and

the dependence across parameters.

In the second set of experiments it is shown how the GP-based framework developed can

approximate a parametric fit during training. We initially thus ignore the complexity of multi-

variate fits and run the framework by optimizing a single control parameter with respect to

one MIDI output. We chose a control parameter and MIDI output which should show some

degree of correlation, e.g. f1 and on_velocity, and run the algorithm to train the robot over 12

key-press, or iterations. Fig 5 shows the algorithm at 5 different stages within the 12 iterations.

As shown in the figure, for each parametric value attempted by the robot, the uncertainty of

the fit at that point collapses, and is later related to the variance of the fit at that point. By itera-

tion 12, the robot has found a fit over almost the whole controllable parameter space. At this

point, the GP model trained on the same samples can be used to inference the control neces-

sary to reproduce a wanted MIDI output.

In the next set of analysis we now consider all parameters, i.e. five 4-dimensional GP mod-

els are fit, to capture the relationship between the 4-dimensional MIDI audio piano outputs

and each of the 5 control parameters. At each iteration, we use Eq 6 on the five 4-dimensional

GP models, to choose controls to approximate each of the playing styles shown in Fig 6a. We
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use MuseScore https://musescore.org/en, a digital score-writer computer program that sup-

ports MIDI output, to generate each playing style, and the resulting sound output. The actual

sound outputs generated by the inferred control can then be compared to the MIDI outputs to

reproduce, and an error can be computed by:

errors ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~oinv;� � ~os;midiÞ
T
ð~oinv;� � ~os;midiÞ

q
ð10Þ

where~oinv;� is the MIDI output generated by applying the inferred control μinv,� of the inverse

model, and~os;midi is the reference MIDI output for the playing style under consideration.

We compare the robot note error over the 10 different playing styles when learning through

the GP-based framework developed, against a linear fit of the x−y parameters in Section 2. In

both cases the robot searches the space of each control parameter in a breadth-first grid-search

fashion, with a parametric discretization of each parameter into 5 equally spaced values. The

robot searches each parameter combinatorially, so a total 3125 key-press are performed to

incrementally train the linear and GP models. Fig 7a shows the sound errors of testing key-

presses on the piano, after testing the fits every 30 training key-press iterations. For each test-

ing epoch, the robot is made to test each playing style 3 times for the linear model, and three

for GP-based framework, bringing the total number of experiments to 9375 piano key-press

for both training and testing, with a split of 50% and 50% respectively. From Fig 7a it is clear

how the GP-based framework developed is capable of outperforming the simpler linear model,

Fig 5. The GP-based exploration fit over different iteration steps when running the framework with simple f1 control on the on_velocity parameter.

https://doi.org/10.1371/journal.pone.0237826.g005

Fig 6. The 10 different playing styles addressed in this work. (a) The playing styles generated by MuseScore digital score writer, and (b) The play styles as played

by the human player. The variance between the MIDI parameters shows the fundamental differences between the various styles.

https://doi.org/10.1371/journal.pone.0237826.g006
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bringing the lowest error to 0.0747 MIDI units as opposed to 0.117. More interestingly, the

GP-based framework reaches convergence after approximately 1000 iterations, a factor of

three times smaller than the time necessary to approximate the playing styles by the linear

models.

Fig 7e sheds some light into the limitation of robotic piano playing with a set up analogous

to our own. The robot, in fact, is incapable of matching the key-press velocity necessary to

approximate each playing styles, when learning off sound feedback through simple linear

models. The GP-based framework outperforms the linear models by a larger margin in 8 out

of 10 playing styles. The framework results better suited in capturing duration relationships

between target temporal patterns and control key-stroke dynamics, additionally to highly

accurate control on slow-speed downward key-strokes, effectively reaching lower MIDI errors

for the styles of normal, tenuto, staccatissimo, staccato, mp, p, pp and pppp. The Linear model

results capable of better capturing the relationship between high speed robot control for down-

ward key-press actions, regulated by f1, and target louder sound outputs, finally achieving bet-

ter performance in the styles of ff and f. The difference in performance for the styles of f and ff
can be explained by the intrinsic tendency of the linear model to overestimate the levels of

downward velocities required to achieve high on_velocity outputs. The downward velocity lev-

els, regulated by f1, can in fact be observed to saturate at certain levels in Fig 4a and 4b, levels

which depend mainly on the finger angle to the piano key. The linear model will not be able to

capture the on_velocity plateau, overestimating downward key-stroke velocities, but effectively

achieving louder outputs for the f and ff styles.

Fig 8 shows the control parameter values attempted by the robot as generated from the GP

model prediction. It is clearly shown that for playing styles normal, tenuto, staccatissimo and

staccato, control parameters Rx, f1 and f2 have very similar values, at approximately 60˚, 8.5Hz
and 4.5Hz respectively. The control parameters t1 and t2 vastly vary across these playing styles,

showing variations within 0.5s, and indicating a large contribution of these in the playing

style’s unique characteristics. On the other hand, for playing styles ff, f, mp, p, pp, pppp, the

change in dynamics, which clearly defines these playing styles’ unique characteristics, is largely

Fig 7. The comparison between the Linear and GP fits to approximate 10 different piano playing styles. (a) The testing Error over 3125 training key-press, and

(b) the average testing error by play-style, for the best validating epoch during training for the linear and GP models respectively.

https://doi.org/10.1371/journal.pone.0237826.g007
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contributed by control parameters Rx, f1 and f2, with observed changes of the magnitude of

15˚, 6Hz and 3Hz respectively. Moreover, an invaluable advantage of the GP framework pro-

posed is the uncertainty estimation. Analogously to the prediction computation through Eq 6,

we use Eq 7 to compute the uncertainty, or variance, of a control when attempting to generate

a target sound output. In Fig 8, the uncertainties are shown in terms of normalized variance

for each prediction, to better visualize the plot trends. From the figure it is clear how the robot

results more confident in generating both rotations and downward velocities. Temporal

parameters (controlled by t1 and t2) and upward velocities (controlled by f2) result somewhat

harder to grasp over the different playing styles. The high uncertainty over t1, t2 is indicative of

one of two factors: one, that the grid-search parametric exploration of t1 and t2 did not attempt

any combination which was close to perform any of the playing styles accurately, and thus no

ample evidence is present for the inferred control parameters; two, the robot wait time control

through t1 and t2 shows high degrees of variability in terms of the actual wait time outcome.

Given further results shown in Section 3.3, the first case is more likely. The f2 parameter is also

not capable of achieving full control of piano key-release velocities. This is likely due to the

dynamics of the piano key-release action, which limits the speed at which each key springs

back to its original position after a key-press. For higher key-lift velocities performed by the

robot, and controlled by f2, then, the detected velocity of a key release by the piano will eventu-

ally saturate.

3.3 Human vs robot piano playing

Finally, we investigate the ability of the robot to perform the 10 different playing styles in Fig

6a as compared to an expert human pianist. We use the controllers optimised by the GP-based

framework developed. The human performer is a veteran pianist with 15 years of history in

piano playing. To perform this comparison, we do not track the human hand trajectory whilst

performing the key-press. Instead, we focus directly on the outcome of this trajectory by

recording MIDI events during the human playing, and directly comparing these events with

the ones triggered by the robot playing. Upon listening to the sound output the pianist is made

to reproduce the note on the piano. We collect 10 different key-press samples at 40 beats per

minute (BPM) or 1 key-press every 1.5s, performed 4 times by the human pianist, for each

playing style, so as to have an idea of the playing variation within each style. The resulting nor-

malised MIDI output from the pianist’s playing is shown in Fig 6b. We let the robot perform

according to the μinv,� (Eq 6) extracted for each playing style after learning through 3125 itera-

tions, log the resulting~oinv;� from the robot playing and~ohuman;� from the human player, and

compute errors with respect to the computer generated MIDI for each playing styles.

Fig 9 compares the human and robot’s normalized error performance for each playing

style. Fig 9a shows the error of the human and robot’s performances in terms of on_velocity.

Fig 8. The final predictions, after 3125 learning epochs, of the required control parameters for 10 different playing styles. The Confidence intervals are shown

as normalized predictive variance, and show the predictive uncertainty of the GP model.

https://doi.org/10.1371/journal.pone.0237826.g008
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The performances of the robot and the human are highly similar for most playing styles, on

average within 0.05 normalized error units from each other for all playing styles. The GP-opti-

mized robot’s errors are 0.05 and 0.03 units higher than the human player at ff and f as the

robot is unable to achieve equally high downward velocity required for the loud playing. On

the other hand, the robot’s errors are lower at mp, p, pp and pppp, with error differences rang-

ing from 0.05 to 0.02 normalized units. The precise motion control at low velocities achieved

by the robot is, in fact, capable of precisely approximate soft key-presses, which the robot opti-

mizes with respect to the reference MIDI target style. Fig 9b shows the differences between the

human player and the MuseScore generated playing styles in terms of off_velocity. Due to an

innately more dynamic and highly varied key release motion by the human player, the human

tends to show a diverse range of release velocities, with errors of up to 0.4 normalized units.

The robot, on the other hand, has low variance and error across all play styles due to its consis-

tent speed control for key releases. In Fig 9c we compare the human and the robot perfor-

mance over the wait_time parameter, i.e. the time necessary to wait between key-presses for

each playing style. Surprisingly, the robot playing error results higher than the human of 0.1 to

0.4 normalized units in most playing styles, as it is unable to play a melody consistently at 40

BPM with the required waiting time between notes. This is likely due to the inherent delays in

the robot’s online control when switching commands between key-presses, a consequence of

the chosen parameterization and robot key-press control in the experiments, while the human

player has a good grasp of rhythm and plays each note at consistent intervals. The robot per-

forms more consistently than the human player in terms of hold_time error, with errors lower

than 0.1 normalized units across playing styles as shown in Fig 9d, due to the precise clock

control during the holding phase of the key-press. In terms of wait_time and hold_time, the

human player’s style errors are higher than the robot’s for tenuto, staccatissimo, staccato and ff,
with error value differences varying from 0.1 to 0.5 normalized units. The timing of these artic-

ulation styles are exaggerated by the human for greater impact and variation in expression,

thus deviating further from the MuseScore generated ground truth. Also note that the error

for wait_time and hold_time (Fig 9c and 9d) show similar trends for the human player, due to

the aforementioned good grasp of rhythm; there is no delay between notes and a longer wait_-

time is always compensated by a shorter hold_time for that note played. On the other hand, the

robot’s delays between key-press commands are strongly reflected only in the wait_time error.

Finally, the overall normalized error by play-style shown in Fig 9e shows an interesting picture.

After 3125 learning epochs, the robot is able to perform similarly to the human player for nor-
mal, tenuto and pppp playing styles, with normalized error differences lower than 0.01 units.

The robot achieves lower errors ranging from 0.1 to 0.4 normalized units for the syles of stac-
catissimo, staccato and ff, largely due to its accurate off_velocity, wait_time and hold_time per-

formance. The robot, however, performs with errors between 0.1 and 0.2 normalized units

Fig 9. Comparison of the playing score of the robot optimized to play the 10 different playing styles after 3125 learning epochs, a human player playing the

same, and the computer generated outputs.

https://doi.org/10.1371/journal.pone.0237826.g009
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higher than the human player for the styles of f, mp, p, and pp, largely due to its poor wait_time
performance.

4 Discussion and conclusion

We investigate the ability for a robot to play the piano according to 10 different playing styles,

like a human player. We propose a GP-based framework for the robot to incrementally model

the relationship between the control utilized for piano key-press actions, to the resulting

sound output, and learn appropriate controllers to play according to each music style. We

show that the relationship between control and sound is non-linear in nature, and that differ-

ent control parameters are not independent with respect to the generated note from the corre-

sponding key-press. The GP-based model can faithfully capture the relationship between

control and generated music output, outperforming simpler linear model.

To be able to play different playing styles faithfully it is necessary for the robot to explore its

action space, so to find appropriate key-press for each style. The resulting combinatorial explo-

sion in parametric search presents itself as an issue. A second advantage of the proposed GP-

based framework is its ability to quickly converge to appropriate controllers for each style. In

fact, we observe the GP convergence to be a factor of 3-times faster than linear models, with

respect to the learning of the playing styles considered in this work.

The main limitation of the approach lies with the drawbacks of GP modelling. As the model

takes into account every single sample to compute the fit, it can eventually be computationally

expensive to fit the control to MIDI relationship. This, can in part be obviated by methods

which do not need a full kernel representation, and by the dismissal of points far away in time

with a sliding learning windows [20].

Finally we compare the ability of the robot to approximate each of the playing styles, with

respect to an expert human player. We show the comparison sheds some light to several inter-

esting aspects of robotic piano playing. The robot is capable of performing comparatively to

the human player in the syles of normal, tenuto, staccato and pppp, largely due to the precise

control at low speeds, and clock waiting times. The human-player, however, exhibits a much

more dynamic and varied playing, which allows them to achieve lower style error to the Muse-

Score generated playing styles in ff, f, mp, and p. These styles, in fact, require higher downward

key-press speeds and dynamic playing. A limitation factor, in this context, is the nature of the

comparison, which was applied directly to the MIDI outcome of a key-press. A future interest-

ing direction involves the employment of technology capable to track the trajectory of motion

of the human hand whilst performing a key-press [21, 22]. This trajectory can then be com-

pared to the optimized key-press performed by the robot to gain additional insights as to how

machine can approach human capabilities for instrument playing.

The dynamic and varied behaviour exhibited by the human player is one of the many advan-

tages complex tools like human hands can possess. Partly, the lack of dynamism is indeed due to

the stiffness and simplicity of the robotic end-effector. With the advent of soft-robotics and con-

tinuum robots, however, these limitations can be revoked, and the next generation of robots

might indeed be able to move away from stiff and hard-robotics solutions, towards a softer

human-like touch [23, 24]. These experiments shed some light into the limitations of robotic-

piano playing, and the issues to be faced when attempting to go beyond monotonic piano playing.
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