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Abstract
Sampling regulates stimulus intensity and temporal dynamics at the sense organ. Despite variations in sampling
behavior, animals must make veridical perceptual judgments about external stimuli. In olfaction, odor sampling
varies with respiration, which influences neural responses at the olfactory periphery. Nevertheless, rats were able
to perform fine odor intensity judgments despite variations in sniff kinetics. To identify the features of neural
activity supporting stable intensity perception, in awake mice we measured responses of mitral/tufted (MT) cells
to different odors and concentrations across a range of sniff frequencies. Amplitude and latency of the MT cells’
responses vary with sniff duration. A fluid dynamics (FD) model based on odor concentration kinetics in the
intranasal cavity can account for this variability. Eliminating sniff waveform dependence of MT cell responses
using the FD model allows for significantly better decoding of concentration. This suggests potential schemes for
sniff waveform invariant odor concentration coding.
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Introduction
Sensory systems acquire and process external stimuli.

Active sensing allows an animal to control the acquisition
of this information. The eyes target and scan objects of
interest. The hands grasp and palpate objects. However,

variation in sampling behavior introduces variability in the
acquired signal. Sensory systems must incorporate or cor-
rect for this variability to achieve perceptual constancy.

In olfaction, odor sampling is controlled by sniffing,
which determines the time course of odor stimulation
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Significance Statement

The principles underlying invariant object recognition are of broad interest. The sensory stimuli are subject
to external variability, and variability imposed by animal behavior. In olfaction active sampling, sniffing
regulates stimulus intensity and temporal dynamics at the sense organ. Does this interfere with the ability
to make accurate perceptual judgments about the physical stimulus? To address this question, we initially
established that perception of odor intensity is not affected by variations in sampling using behavioral
experiments. To identify the features of neural activity that support this invariance in intensity perception, we
developed a fluid dynamics (FD) model based on odor kinetics in the nose. This model allowed us to find
neural representation invariant with respect to sampling thus allowing a stable percept.
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(Wachowiak, 2011). In awake animals, sniff waveforms are
variable. Thus, odor stimuli at a fixed concentration will
result in varying stimuli at the olfactory epithelium. Nev-
ertheless, observations from human psychophysics sup-
port the idea of independence of odor intensity perception
on sniff airflow (Teghtsoonian et al., 1978; Teghtsoonian
and Teghtsoonian, 1984; Mainland et al., 2014). Additional
evidence comes from rodent behavioral experiments,
which show that animals can discriminate odors equally
well in a freely moving assay (fast sniffing) as in a head
restrained one (slow breathing; Wesson et al., 2009).
However, it may be problematic to compare results from
different behavioral assays.

Variation in sniffing has been shown to influence neural
responses of early olfactory neurons. Olfactory sensory
neuron (OSN) activation is coupled to inhalation and sig-
nificantly altered by changes in sampling frequency
(Spors et al., 2006; Verhagen et al., 2007; Carey et al.,
2009; Ghatpande and Reisert, 2011). Previous studies
using artificial sniffing found that responses of mitral/
tufted (MT) cells in the olfactory bulb (OB) of anesthetized
rats depend on sniff rate and magnitude (Courtiol et al.,
2011; Esclassan et al., 2012). Most MT cells are modu-
lated by respiration at low and moderate sniff frequencies.
At higher frequencies, response magnitude is reduced
(Bathellier et al., 2008; Carey and Wachowiak, 2011),
while response latency remains unchanged (Carey and
Wachowiak, 2011). Recordings from awake animals show
controversial results: Cury and Uchida (2010) showed that
responses do not depend on sniff frequency, while our
previous work showed MT cell response latencies scale
with parameters of the sniff cycle (Shusterman et al.,
2011). Given that MT cells’ responses vary with sniff
parameters, how is stable odor perception achieved?

Various candidate odor representations with sniff fre-
quency invariance have been proposed. Some studies
have argued that spike trains of MT cells are locked to the
phase of the sniff cycle (Chaput, 1986; Roux et al., 2006).
In this scheme, which we call “phase” transformation, all
spike trains were stretched or compressed to match the
duration of an average sniff cycle. In our previous work
(Shusterman et al., 2011), we proposed to do a more
elaborate transformation by independently stretching and
compressing the inhalation interval and the rest of the
sniff interval, “two-interval phase” transformation. An-
other proposed representation scales the whole sniff in-
terval based on the duration of the inhalation interval,
“inhalation proportional” transformation (Arneodo et al.,
2017). The purpose of all these transformations was to
eliminate the sniff waveform odor response dependences
and find a sniff frequency invariant representation. How-

ever, the thorough comparison of these models, and
quantification of how well they perform is still lacking.

In this study, we first tested whether sampling affects
odor perception. In rats performing a two-alternative
choice task, odor concentration discrimination does not
vary with sampling frequency, in agreement with accom-
panying paper (Jordan et al., 2018). To investigate which
features of the neural code underlie this stable perfor-
mance, we exploited the natural variability in the sniffing
pattern of awake mice and recorded MT cells’ responses
to different odorants and different concentrations of the
same odor. We found that for different sniff patterns, MT
cell responses during the early part of the sniff cycle are
less variable than the responses during the later part.
However, even early responses vary systematically with
sniff duration.

Based on physical principles of airflow propagation in
the nose, we proposed a simple fluid dynamics (FD)
model. Transformation of MT cells responses according
to the FD model explains the systematic variability in
neural responses. We compared odor responses after
transformation based on this model against four earlier
proposed transformations and showed that FD transfor-
mation provided the best description of the data. Further,
discriminant analysis showed that FD transformation im-
proves concentration discrimination. Based on these ob-
servations, we propose a transformation of MT cell
responses which is invariant to sniff wave form parame-
ters, and discuss how such a representation can be read
by higher brain areas. Further, this simple FD model is
sufficient to align MT cell responses without the partici-
pation of top down modulation via feedback projections.
Therefore, it should be equally valid for different air-
breathing species.

Materials and Methods
Behavioral experiments

All experimental procedures were conducted according
to the United States National Institutes of Health Guide-
lines for the Care and Use of Animals. Behavioral exper-
iments were performed at the Rockefeller University and
were reviewed and approved by the Institutional Animal
Care and Use Committee. A total of four male rats were
used in this study. Animals were housed in a 12/12 h
light/dark cycle, and behavioral testing was performed
during the dark cycle.

Odors and odor delivery
For behavioral experiments, we used the following

odors pentyl acetate, ethyl acetate, (R)-(�)-limonene, (�)-
�-pinene, phenyl ethyl alcohol, and decanal. Odors were
selected based on rapid delivery kinetics from olfactom-
eter (Martelli et al., 2013). For behavioral studies we used
the same odor delivery setup and odor delivery principles
as for electrophysiological experiments described in Elec-
trophysiological experiments subsection of Materials and
Methods.
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Behavioral apparatus
Behavioral experiments were conducted in a custom

made behavior box (Bodyak and Slotnick, 1999). The
behavior box was built from acrylic and stainless steel to
avoid odor contamination. Air within the box was ex-
changed by a fan at a rate of 15 l/s. We used a three
“ports” design (Uchida and Mainen, 2003). The central
port was used for odor delivery and two side ports were
set up to provide water reward (0.023 ml). The central port
was a custom-made Teflon odor port, connected with the
output of the olfactometer. To ensure consistent nose
placement in the odor stream across trials, the orifice of
the odor port was narrow (8 mm). To reduce outside noise
and light, the box was surrounded by an additional alu-
minum enclosure with foam padding. We used infrared
camera to monitor animals externally.

Initial training
We used Long Evans rats from Charles River Labora-

tories. Training began when rats reached a weight of at
least 200 g. Throughout training, rats were water re-
stricted. At least once a week, animals had ad libitum
water access. After each behavioral session, rats were
given 15 min of ad libitum water access to ensure ade-
quate hydration. Weight and water intake were monitored
daily to ensure normal growth rates.

Initially, rats learned to poke into the reward ports
positioned on either side of a central odor port to obtain a
water reward (one session). Then, animals were trained to
initiate trials by nose poke (minimum poke time: 50 ms)
into the central odor port before getting a reward at either
of the reward ports (one to four sessions). After this
behavior reached stable performance, rats were shifted to
an odor/no odor task: an odor was introduced randomly
on some trials. Reward was delivered to the left water port
for odor present trials and to the right port for no odor
trials. No effort was made to correct for any biases or
alternation strategies. Rats readily learned to ignore the
unrewarded port on each trial (one to two sessions) after
which point reward was no longer given for “incorrect”
pokes (one to two sessions). At this point, rats were
trained to perform the concentration classification task.
Rats typically reached asymptotic performance in approx-
imately three sessions. Collection of experimental data
started after the rats established stable psychometric
functions: between 10 and 20 d after initiation of training.

Sniffing cannula and pressure sensor implantation
Rats were implanted with sniffing cannula in the same

procedure to sniffing cannula implantation in mice, de-
scribed in Electrophysiological experiments subsection of
Materials and Methods. A pressure sensor (24PCEFJ6G,
Honeywell) was mounted on the animals head. It was
attached to the skull with dental cement. The cannula was
connected to pressure sensor via short polyethylene tub-
ing (801000, A-M Systems). After surgery, a rat was given
at least 7 d for recovery.

Concentration classification task
Rats were run daily during the weekdays on the con-

centration classification task. On different days, rats were

tested with different odors at different dilutions (mineral
oil) in the vial. After switching between odor stimuli, rats
took one to four sessions to reach criterion performance
(perceived category bound �0.1 log units away from the
trained category bound). To ensure enough trials per
concentration, for this analysis we only used session
where the rats performed over 700 trials.

In each session, rats initiated trials by poking their nose
into the odor port triggering odor delivery from the olfac-
tometer for sampling. From the onset of the poke, it took
50 ms for the odor to reach the nose. Delivered odor
concentration was varied by flow dilution in eight steps
across one order of magnitude. On each trial, rats were
free to sample the odor for a maximum of one second.
Later for analysis we excluded trials in which sampling
was longer than one sniff cycle. Rats were rewarded for
going to the left reward port for the four “high” concen-
trations and the right port for the four “low” concentra-
tions. Trials on which the animals did not stay in the odor
port at least 50 ms or did not access the reward port were
not rewarded or analyzed further. Failures to seek reward
made up �1% of all trials. For each trial, behavioral
choice (left or right), odor sampling time, sniffing pressure
and response time were recorded. Odor sampling time
was counted as the duration of time the rat spent in the
odor port. After each trial, a three second intertrial interval
was enforced.

Electrophysiological experiments
Experiments

The analysis presented in this manuscript was performed
with electrophysiological data obtained in the experiments
described in previous publications (Shusterman et al., 2011;
Sirotin et al., 2015).

Animals
Electrophysiological data were collected in ten male

C57BL/6J mice and three male OMP-ChannelRhodopsin-
YFP heterozygous mice that have a targeted insertion in
the OMP locus (Smear et al., 2011). All mice had at least
one normal copy of OMP. No differences were observed
between these two groups of mice. Subjects were six to
eight weeks old at the beginning of behavioral training and
were maintained on a 12/12 h light/dark cycle (lights on at
8 P.M.) in isolated cages in a temperature- and humidity-
controlled animal facility. All animal care and electrophys-
iological procedures were in strict accordance with a
protocol approved by the Janelia Farm Research Campus
Institutional Animal Care and Use Committee.

Electrophysiology
Mitral/tufted cell spiking activity was recorded using 16

or 32 channel Silicon probes [NeuroNexus, model: a2x2-
tet-3mm-150-150-312 (F16), a4x8-5mm 150-200-312
(F32)] or using a home-made microdrive with 16 individ-
ually adjustable 3 MOhm PtIr electrodes (MicroProbes).
Cells were recorded from both ventral and dorsal mitral
cell layers. MT cells were identified based on criteria
established previously (Rinberg et al., 2006). The data
were acquired using a 32 channel Cheetah Digital Lynx
data acquisition system (Neuralynx) with opened band-
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pass filters (0.1–9000 Hz) at 32.556-kHz sampling fre-
quency.

Sniff monitoring
Sniff signals were monitored via a thin, stainless can-

nula (Small Parts capillary tubing, Ga 22-23) implanted in
the nasal cavity. In between experimental recordings, the
cannula was capped with a dummy plug. We used poly-
ethylene tubing (801000, A-M Systems) to connect the
cannula to a pressure sensor (MPX5050, Freescale Semi-
conductor or 24PCEFJ6G, Honeywell). The signal from
the pressure sensor was amplified with a homemade
preamplifier circuit and was recorded in parallel with elec-
trophysiological data on one of the analog data acquisi-
tion channels.

Surgery
Mice were anesthetized and implanted with a head

fixation bar, pressure cannula, and Microdrive with
mounted Silicon probe. For the sniffing cannula implan-
tation, a small hole was drilled in the nasal bone, into
which the cannula was inserted and fastened with glue
and stabilized with dental cement. For the electrode
chamber implantation, a small craniotomy (�1 mm2) was
drilled above the OB (contralateral to the sniffing cannula
position) and dura mater was removed. The Silicon probe
was inserted, and then the electrode chamber was fixed
by dental cement to the skull, posterior to the OB. A
reference electrode (75 �m PtIr PFA-insulated wire, A-M
Systems) was implanted in cerebellum. A mouse was
given at least 5 d after a surgery for recovery.

Odor delivery
We used multiple odorants obtained from Sigma-

Aldrich. The odorants were stored in liquid phase (diluted
1:5 in mineral oil) in dark vials. The odorant concentration
delivered to the animal was additionally reduced tenfold
by air dilution. Odorants used in the study are: acetophe-
none, amyl acetate, behzaldehyde, butyric acid, decanol,
ethyl acetate, ethyl tiglate, 1-hexanol, hexanoic acid,
hexanal, 2-hexanone, hexyl acetate, R-limonene, isopro-
pyl tiglate, methyl benzoate, methyl salicylate, 1-octanol,
2-undecanone.

For stimulus delivery, we used a nine-odor air dilution
olfactometer. To prepare different concentrations, air flow
through the selected odor vial was mixed with clean air in
a variable ratio configured electronically on each trial by
mass flow controllers (Bronkhorst or Alicat Scientific). The
air flow through each odor vial could vary between 10 and
100 ml/min. This odorized air was mixed with a 990- to
900-ml/min clean air carrier stream, so that total flow
coming out of olfactometer is always 1 L/min. A steady
stream of 1 l/min of clean air was flowing to the odor port
all the time except during stimulus delivery. After an odor
stimulus was prepared, a final valve (Dual 3-Way Shuttle
Valve SH360T042, NResearch) delivered the odor flow to
the odor port and diverted the clean airflow to the ex-
haust. All flows and line impedances were tuned to min-
imize the pressure shock due to line switching and
minimize the time of odor concentration stabilization after
opening the final valve. The temporal odor concentration
profile was checked by mini PID (200B, Aurora Scientific).

The concentration reached a steady state 25–40 ms after
final valve opening.

Stimulation protocol
After recovery from surgery, the animal was placed in

the head fixation setup. First, two short sessions were
used to adapt the animals to head fixation in the setup.
After habituation, we began recording sessions. In each
trial, one out of 2–10 odors was delivered in pseudo-
random sequence with an average interstimulus interval
of 7 s. Odor delivery was triggered by the offset of inha-
lation. Since odor cannot enter the nose during exhalation
phase, the duration of exhalation interval allowed enough
time for the odor stimulus to reach a steady state of
concentration by the time the animal begins next inhala-
tion. Each session usually contained 300–600 trials and
lasted for 45–90 min.

Code accessibility
Our code for model comparison is freely available as a

GitHub repository: https://github.com/RomaShust/Mod-
elComparisson. Step-by-step tutorial for executing our
code is available on GitHub.

Data analysis
All analysis was done in MATLAB (MathWorks).

Psychometric functions
Psychometric curves were fitted to behavioral data us-

ing maximum likelihood (Wichmann and Hill, 2001a). The
fitted psychometric function � had the following form:

��c ;�, �, �� � �1 � 2�� 	 F�c ;�, �� 
 � (1)

F�c ;�, �� �
1
2



1
2

	 erf��c � ��

� � (2)

where c is the odor concentration, � is the categorical
boundary, � is the noise, and � is the guess rate. Good-
ness of fit was assessed using deviance, computed as the
log likelihood ratio between the fitted and the saturated
models (Wichmann and Hill, 2001a). Confidence intervals
of the parameters were estimated by the bootstrap
method based on 250 repetitions (Wichmann and Hill,
2001b).

Spike extraction
Acquired electrophysiological data were filtered and

spike sorted. For spike sorting we used the M-Clust pro-
gram (MClust-3.5, A. D. Redish et al) and a software
package written by Alex Koulakov.

Odor responses
We compared the distributions of the neuronal activity

with and without odors. Distribution without stimulus was
sampled from five sniffs preceding the odor delivery
across trials (�1500–2000 sniffs for each session). For all
neurons, we determined the distribution of spikes for each
stimulus on the first sniff after stimulus onset. To establish
whether a cell responded to particular odorant, we tested
whether the cumulative distribution of spike counts dif-
fered significantly between background and stimulus dis-
tributions (Kolmogorov–Smirnov test, p � 0.05). The
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cumulative distributions were calculated using spike
times binned at 1 ms. The response was considered
excitatory/inhibitory if the first deviation from the back-
ground distribution was positive/negative.

Fitting FD model
To apply FD model to MT cells responses, for each trial

i we align all spike trains to specific time moments during
inhalation interval, �f

i, defined by the condition (Fig. 4A):

L � �
0

�f
i

ui�t�dt (3)

In this equation, L is an effective distance between a
nostril opening and the location of OSNs, activation of
which lead to a given MT cell response. L is unknown, but
we assume it to be identical for all sniffs for a given
cell-odor trials. ui�t� is an averaged across nostril cross-
section air velocity at trial i, which we assume to be
proportional to a pressure signal measured in the exper-
iment: ui�t� � �Pi�t�. During faster sniff cycles, it takes less
time �f for odor molecules to pass the same distance L.

Under these assumptions, we are searching for L,
which minimizes the neural response variability. As we do
not know the value of the coefficient �, we perform a
search in normalized distance variables, so that a maximal
distance, Lmax, traveled by odor molecules during the
whole inhalation tinh averaged across all trials is equal to
1: � � L/�Lmax

i �. Here ��� means averaging across all trials,

Lmax
i � �

0

tinh

�Pi�t�dt, (4)

� � L/�Lmax
i � � �

0

�f
i

�Pi�t�dt/� �
0

tinh

�Pi�t�dt�, (5)

Thus, the relationship between �, �f
i, and Pi�t� is as

follows:

� �
1

Qnorm
�

0

�f
i

Pi�t�dt, (6)

where

Qnorm � � �
0

tinh

Pi�t�dt�. (7)

We first used Equation 7 to estimate Qnorm, and normal-
ize all pressure traces (Fig. 4B,C). Then, for a fixed �, at a
given trial, we estimate FD delay time, �f

i, using Equation 6,
and shift spiking activity for a time interval t � �f

i � ��f
i�,

where ��f
i� is an average FD delay across all trials; (Ex-

tended Data Fig. 4-1). Using shifted trials, we estimate
peri-stimulus time histogram (PSTH) and an average log-
likelihood of individual spike trains fit by an average PSTH
on the held-out data. We varied � between 0 and 1, with
a step size of 0.05. Estimation of �opt that provides the
best fit, was assessed by a polynomial fit of the second
order to the dependence of log-likelihood on �. We as-

sumed that the best fit corresponded to minimal neuronal
variability due to the sniff wave form signal.

Model comparison
To fit each model, we transform the spike trains �tj�i in

individual trial i according to that model’s alignment rule
(Fig. 5A; Extended Data Fig. 5-1):

�t̃j�i � T	�tj�i, Pi�t�
 (8)

where Pi�t� is the sniff wave form in trial i, and T is an
alignment rule. Then we calculated PSTHs of transformed
spike trains:

f̃�t̃� � PSTH	�t̃j�i
 (9)

To evaluate the goodness of fit of different models, we
evaluate their average log-likelihood in held out sniff cy-
cles (test set). To this end, we first inversely transform
each model’s PSTH according to the duration parameters
(inhalation and the remaining part) of a given sniff cycle Si

in the test set using interpolation:

fi�t� � T�1	f̃�t̃�, Si
 (10)

We then evaluate the Poisson process log-likelihood,
given the inversely transformed PSTH, for the spike train
during that sniff cycle (Extended Data Fig. 4-1B,E):

logP��tj�ifi�t�� � �
tj

log fi�tj� � �
0

Ti

fi�t�dt (11)

Finally, for each model we average the calculated
single-sniff log-likelihoods over all sniffs to obtain that
model’s average log-likelihood. We performed this anal-
ysis on 192 excitatory responses each consisting of at
least 30 trials per response.

Odor concentrations classification analysis
For each concentration, we calculate PSTHs in real time

and after FD alignment using the methods described in
the model comparison section above. For each alignment
type, we discriminate between low and high concentra-
tions using a likelihood ratio test. To this end, for each
concentration, we evaluate the log-likelihood of a ran-
domly drawn single trial spike train given the inversely
transformed PSTH for that concentration. Repeating this
procedure 300 times, we calculate the probability that the
log-likelihood given the PSTH of the correct concentration
is larger than log-likelihood given the PSTH of the other
concentration. This yields a measure of discrimination
success rate.

Results
Odor concentration perception does not depend on
sniff duration

To test whether odor intensity perception depends on
sniff duration, we trained rats to classify odor concentra-
tions in a two-alternative choice task (Fig. 1A,B). On each
trial, we presented randomly one of eight odor concen-
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trations. Rats were trained to go to the left water port for
four higher concentrations and to go to the right water
port for the four lower concentrations (Fig. 1A). Rats
performed on average �700–800 trials per session which
results in �80–100 trials per each concentration. We
estimated behavioral performance using psychometric
functions (Fig. 1C) with three parameters: �, the decision
boundary between high and low concentrations; �, the
curve slope, which corresponds to odor concentration
discriminability (sensitivity); and �, lapse rate, the percent-
age of trials on which the animal guessed the answer
(Eqs. 1, 2; Wichmann and Hill, 2001a).

At the first sniff after odor exposure, rats exhibited a
broad range of sniff durations (across all rats: median: 143
ms, range: 74–441 ms; Fig. 1D, insets). To quantify the
dependence of animal performance on sniff duration we
split all trials into two groups: with fast/slow sniffs (sniff
duration was shorter/longer than the median sniff duration
for a given rat). We fit psychometric functions indepen-
dently for each group of trials (Fig. 1D). The differences

between groups for the decision boundaries �� �
�fast � �slow, sensitivities �� � �fast � �slow, and lapse rates
�� � �fast � �slow did not statistically differ from zero (��: p
� 0.77, ��: p � 0.18 ��: p � 0.36, Wilcoxon signed-rank
test Table 1). These results suggest that neither concen-
tration sensitivity, �, nor biases in perceived concentra-
tion, �, depend on the sniff duration. Therefore,
behavioral performance in this concentration discrimina-
tion task does not depend on sniff duration. The accom-
panying study yielded identical results on mice (Jordan
et al., 2018)

Odor responses vary with sniff duration
To investigate which features of neural code are invari-

ant to variations in sniff pattern, we exploited the natural
variability in the sniffing pattern of awake animals. We
recorded MT cell responses (13 mice, 200 cells) to differ-
ent odorants and different concentrations of the same
odor in head-restrained mice (Fig. 2A; see Materials and
Methods). Sniffing was monitored via an intranasal pres-
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Figure 1. Behavioral discrimination of odor concentrations is sniff frequency invariant. A, Two-alternative choice odor discrimination
task. Rats initiate trials by poking into an odor port (OP), which activates presentation of one out of eight odor concentrations. After
being exposed to one of four low/high concentrations, rats are rewarded for poking into right/left water port (WP). Light brown bars
above the water ports represent the different concentrations the rat must discriminate. B, Task trial structure and pressure signal.
Downward and upward deflections of the pressure signal reflect inhalation and exhalation, respectively. Light brown shading marks
odor presentation time interval. C, Average concentration classification performance (n � 4 rats). Error bars denote SDs across all
sessions for all rats. The continuous line is an error function fit to the data. D, Example performance during a single session for fast
(black) and slow (red) sniff cycles. Each point denotes probability of going left (high concentration). Each inset is a sniff duration
histogram for a given concentration. E, Differences in psychometric parameters between fast and slow sampling for decision
boundary, �� � �fast - �slow, and sensitivity, �� � �fast - �slow: histograms for all sessions (top) and values for individual sessions
(bottom). Lines are 95% confidence intervals assessed via bootstrap. Sessions from different animals are presented in alternating
black and gray colors.
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sure cannula (Fig. 2A). Responses of each MT cell were
recorded typically to 5–10 odorants, making in total 1409
cell-odor pairs. Out of 200 MT cells, 134 cells were re-
corded in sessions with a presentation of multiple odor
concentrations (548 unit-odor-concentration triplets). Out
of all responses, 28% demonstrated initially excitatory
activity and 28% initially inhibitory (Fig. 2B; see Materials
and Methods).

To visualize MT cell odor response dependence on sniff
duration, we aligned responses by the beginning of the
first inhalation after the onset of odor presentation. Trials
in the raster plots were ordered by the duration of the first
odorized sniff cycle. These raster plots reveal the clear
dependence of MT cell responses on sniff frequency (Fig.
2D). While earlier temporal features of MT response are
preserved across different sniff durations, the later fea-
tures are often absent on trials with short sniff cycles (Fig.
2D). Thus, the temporal pattern across the full sniff cycle
depends on the sniff duration.

Amplitude and latency of the response but not spike
count depend on sniff duration

Visual inspection of the raster plots (Fig. 2D) suggests
that responses during the early part of the sniff cycle are
more similar for fast and slow sniffs than the later part. To
quantify this observation, we estimated the distribution of
sniff durations for all mice and all sessions and divided the
sniffs into two groups, fast sniff trials with the sniff dura-
tion in the left third of the distribution, and slow - in the
right two thirds of the distribution (Fig. 2C). The boundary
between these groups was 221 ms (see Materials and
Methods; Fig. 2C). MT cell activity during short and long
sniff cycles was averaged separately (Fig. 2D). MT cell
responses during slow sniff cycles contain on average 2.3
times more spikes than responses during fast sniff cycles.
However, the average spike count during the first 221 ms
remains almost the same (Fig. 3A). The distribution of the
spike count differences for fast and slow sniffs for all
cell-odor pairs is centered around zero (Fig. 3A, inset; p �
0.43, Wilcoxon signed-rank test). Thus, spike count over
this early time window is invariant to changes in sniff
frequency.

Integration of spiking activity over a long time widow
(�200 ms) may not serve as an informative cue for many
odor driven behavioral decisions, which are often rela-
tively fast (Resulaj and Rinberg, 2015; Wilson et al., 2017).
Thus, we looked into finer features of MT cell responses,
such as the amplitude of the response, which is a com-
bined characteristic of instantaneous firing rate and spike
timing precision, and the latency of the response (Fig. 2D).
We calculated these parameters for fast and slow sniffs
separately. We present the data for individual cell-odor
pairs as scatter plots of peak amplitudes (Fig. 3B) and
peak latencies (Fig. 3C) for fast and slow sniffs. The
response amplitude is slightly lower for slow sniffs than
that for fast sniffs (Fig. 3B, inset; �A � 5.7 Hz, p � 0.013,
Wilcoxon signed-rank test). The response latencies also
differ between fast and slow sniffs: fast sniff latencies are
slightly shorter that those of slow sniffs (Fig. 3C, inset; ��
�10.4 ms, p � 0.007, Wilcoxon signed-rank test; see also
Jordan et al., 2018). Further analysis of the response
latencies showed that latency differences �� between
slow and fast sniffs increases with latency (Fig. 3D; re-
gression parameters: slope � 0.36 � 0.11, intercept �
–22.6 � 11.2). Thus, fine temporal features of the odor
response vary with the sniff duration.

How significant are these sniff duration-dependent dif-
ferences in response latency and peak amplitude? To
answer this question, we compare the time and amplitude
changes due to sniff variability to those due to concen-
tration changes. Based on our previous work (Sirotin
et al., 2015), a time difference of �� � 10 ms corresponds
to a 3-fold concentration change, and an amplitude dif-
ference of �A � 6 Hz corresponds to a 2-fold concentra-
tion change. So, the temporal features of MT cell
responses vary with sniff duration as much as they vary
for 2–3-fold concentration differences.

These observations raise two questions. First, what is
the mechanism responsible for the sniff wave form de-
pendent variability? And second, is there a representation
of the odor response which is invariant to the sniff dura-
tion? These two questions are related: defining the mech-
anism will allow us to find a better representation, and
vice versa: finding a better representation will help reveal

Table 1. Statistical table

Data structure Type of test Power
�� � �fast � �slow Fitted data, non-normal Wilcoxon signed-rank test p � 0.77
�� � �fast � �slow Fitted data, non-normal Wilcoxon signed-rank test p � 0.18
Spike count differences

for fast and slow sniffs
Fitted data, non-normal Wilcoxon signed-rank test p � 0.43

Difference in response
amplitudes �A

Fitted data, non-normal Wilcoxon signed-rank test p � 0.013

Difference in response
latencies ��

Fitted data, non-normal Wilcoxon signed-rank test p � 0.007

Latency differences ��
as function of latency

Fitted data, non-normal Linear regression Slope � 0.36 � 0.11,
Intercept � –22.6 � 11.2

Pairwise model comparisons Normal distribution Wilcoxon signed-rank test
on Log-likelihoods

FD versus time comparison p � 5.7e-19;
FD versus phase comparison,
p � 9.5e-04; FD versus two-interval
phase comparison, p � 9.9e-03;
FD versus inhalation proportional
comparison, p � 3.5e-02
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the mechanism. To address these questions, we formu-
late a simple model based on the FD of odor propaga-
tion in the nasal cavity which may explain the sniff
dependent variability. We then compare our model with
the previously proposed representations described
above. For quantitative comparison, we propose a met-
ric of how well these representations reduce sniff wave
form related odor response variability. Lastly, we dis-
cuss the applicability of such transformations for anal-
ysis of olfactory coding.

FD model
We observed that faster sniffs evoke earlier odor re-

sponses with higher amplitude. Also, on average, faster
sniffs have larger pressure amplitude changes (Extended
Data Fig. 3-1; Youngentob et al., 1987; Walker et al.,

1997). We assume that the pressure measured via can-
nula is a good proxy of the air velocity inside the nasal
cavity. Given this assumption, we propose a FD-based
model which can explain the dependence of response
latency on a sniff waveform.

Let us assume that response latency, �, of a MT cell
odor response consists of two terms: first is a FD term
that depends on the sniff wave form, �f	u�t�
 where, u�t� is
an averaged across nostril cross-section instantaneous
air velocity wave form, and square brackets symbolize the
dependence on the whole wave form function, rather than
instantaneous values. Here, for simplicity, we ignore non-
uniform distribution of air velocity. Second term, �n, is the
delay due to neural processing which may depend on the
odor and a specific MT cell, but is independent of the sniff
wave form:
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Figure 2. Differences in MT cell responses between fast and slow sniff cycles. A, Schematic of the experiment. A head-fixed mouse
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form of a typical breathing cycle. Red dots indicate the inhalation onsets and offsets. The blue line is the parabolic fit to the first
minimum after the inhalation onset. The sniff offset was defined as the second zero crossing of the parabolic fit. The gray shaded area
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� � �f	u�t�
 
 �n (12)

To model the dependence of �f on the sniff wave form,
we propose that odor is carried into the nose by an air flux
with time-dependent velocity u�t� (Fig. 4A). Suppose, the
receptors are located at an approximate distance L from
the nasal opening. Then the relationship between air ve-
locity u�t� and distance L is following:

L � �
0

�f

u�t�dt (13)

In our model, L does not depend on the sniff wave form,
and the velocity is proportional to the measured pressure:
u�t��P�t� (Zwicker et al., 2018). The pressure changes
due to the air flow have two main terms, the first one is
due to the viscosity of the air is a narrow tube, i.e., it is a
drag term which is proportional to the air velocity. The
second is FD Bernoulli term which is proportional to ve-
locity square: P�1 / 2�V2 (� is air density �1.2 kg/m3).
Typical peak velocity during inhalation is �1 m/s (Youn-
gentob et al., 1987), which corresponds to �1 Pa pres-
sure difference. This is significantly smaller than the peak
pressure deviation measured in our system �50 Pa. We
consider that we can neglect non-linear velocity depen-

dencies. Under these conditions, during faster sniff cy-
cles, air velocity is higher, therefore it takes less time �f to
odor molecules to pass the same distance L. While L is
unknown, we can treat it as a model parameter which is
estimated by minimizing neural response variability. The
detailed procedure is shown in Figure 4B,C and in Mate-
rials and Methods. Briefly, for a given fraction, �, of
normalized length, (� � L), and for each sniff i, we find the
FD time, �f

i. Then we estimate an average FD delay ��f
i�

across all trials and shift spiking activity during trial i by a
time interval ti � �f

i � ��f
i�. We repeat this procedure for

different values of Lambda between 0 and 1. Then, using
log-likelihood estimation, we find the value of � that min-
imizes trial-by-trial variability of the neural response. The
transformation of spike trains for different values of � is
shown in Figure 4D for one cell-odor pair (Extended Data
Fig. 4-1). On average, the best transformation of odor
responses is achieved for � � 0.3 (Extended Data Fig.
4-2).

This model-based procedure reduces odor response
variability compared to an original representation in time
relative to the onset of inhalation, which corresponds to
� � 0. In sensory systems, neuronal responses are often
tightly locked to the time of stimulus presentation (Rich-
mond et al., 1990). In olfaction, this time may be the
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Figure 3. Comparison of response features for fast and slow sniff durations. A–C, Comparison scatter plots of average spike count
during the first 221 ms (A), average peak amplitude (B), and average response latency (C) for fast versus slow sniff cycles. Each dot
represents comparison for a single cell-odor pair. Diagonal plots are distributions of differences of corresponding values. Spike counts
are statistically indistinguishable for slow and fast sniffs. On average, peak amplitudes are larger (p � 0.013; Wilcoxon signed-rank
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lines mark the limits of the 95% confidence interval (slope � 0.35). See also Extended Data Figure 3-1.
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moment when odor concentration crosses a receptor’s
threshold. This timing varies with the sniff pattern. Al-
though our model is oversimplified, it may allow us to
remove the influence of sniffing on spike pattern and
better understand sniff invariant odor processing. Next,
we perform model-based comparison of different repre-
sentations to find a transformation that best describes
sniff invariant odor representation.

Model comparison
To infer the best sniff invariant odor representation, we

apply different models to transform individual spike
trains based on the corresponding waveforms and esti-
mate an average odor response. The optimal transforma-
tion should minimize trial to trial response variability.
Using maximum likelihood estimation (MLE), we evaluate
which of the average responses better fits experimental
data (see Materials and Methods). We consider the fol-
lowing spike time transformations, most of which were
previously discussed in the literature, while the last one is
proposed here (Fig. 5A):

(1) Time model: spike times aligned to onset of inhala-
tion, with no further transformation. (2) Phase model:
spike times relative to onset of inhalation are scaled pro-
portionally to the duration of the whole sniff cycle. (3)
Two-interval phase model: the sniff cycle is split into the
inhalation interval and the rest of the cycle. Spike times
during the inhalation interval are scaled proportionally to

the duration of the inhalation, while spikes times occurring
in the rest of the sniff cycle are scaled proportionally to the
duration of that interval (Shusterman et al., 2011). (4)
Inhalation proportional model: spike times during the
whole sniff cycle are scaled proportionally to the duration
of the inhalation (Arneodo et al., 2017). (5) FD-based
model: spike times are shifted by a specific value deter-
mined by the sniff waveform integral in that trial (Fig. 4).
Note that only this model has an additional adjustable
parameter, optimization of this parameter was done using
the same MLE procedure.

An example of transformation for all five models of two
cell-odor responses is shown in Figure 5A. To fit each
model, we transform the spike trains in individual trials
according to that model’s alignment rule (Fig. 5A) and
calculate PSTHs using the transformed spike trains (Ex-
tended Data Fig. 5-1). To evaluate the goodness of fit of
different models, we evaluate their average log-likelihood
in held out sniff cycles. To this end, we first inversely
transform each model’s PSTH according to the duration
parameters of a given sniff cycle using interpolation. We
then evaluate the Poisson process log-likelihood, given
the inversely transformed PSTH, for the spike train during
that sniff cycle (Fig. 5B). Finally, we average the calculated
single-sniff log-likelihoods for a model over all sniffs to
obtain that model’s average log-likelihood. We performed
this analysis on 192 excitatory responses each consisting
of at least 30 trials per response. On average, the FD

0 200 400
time (ms)

C

A

onset of
inhalation

ai
r 

ve
lo

ci
ty

, u
(t)

ef
fe

ct
iv

e 
di

st
an

ce
, L

1

0

B

L
u(t)

λ=0

λ=0.1

λ=0.2

λ=0.3

λ=0.4

λ=0.5

tf tf tf

tf  

1 2 3

mean

D

P(t)

P(t)dt

P(t)

Figure 4. A FD model explaining latency of MT cell activation. A, Simple physical model of odor molecules delivery to the receptors.
During inhalation, odorized air (yellow) is drawn into the nose with velocity u(t). The OSNs (green) are located at an average distance
L from nasal opening. Air velocity is proportional to pressure measured via cannula u(t) � P(t). B, A schematic of pressure signal
temporal profiles, P(t) for three representative sniff cycles. C, Integrals of pressure signals: L � �0

�f u�t�dt� �0
�f P�t�dt. Left panel, A

schematic distribution of values of integrals over the whole inhalation interval normalized to their mean value, � � L/�Lmax�. For a given
value of an integral, for example, ��0.5 in normalized coordinates, we estimate time points �f
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line shows end of the inhalation. See also Extended Data Figures 4-1, 4-2.
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model better predicted the time course of instantaneous
firing rates than any of the other models (Fig. 5B; for
details, see Materials and Methods). Pairwise compari-
sons were done using the Wilcoxon signed-rank test on
population log-likelihoods (FD vs time comparison, p �
5.7e-19; FD vs phase comparison, p � 9.5e-04; FD vs two
interval phase comparison, p � 9.9e-03; FD vs inhalation
proportional comparison, p � 3.5e-02). Since the FD
model has an extra fitting parameter, we tested models
performances on held out data to ensure that better per-
formance is not trivial consequence of overfitting. Among
other models the best is two-interval phase model, which
we used previously in our studies to discover higher
temporal precision of odor responses (Shusterman et al.,
2011). The difference between two-interval phase and
inhalation proportional models is insignificant (p � 0.12)
and may be different for different datasets (Arneodo et al.,
2017).

Decoding of odor concentration in FD
transformation is better than in real time

If a model-based transformation of spike trains reduces
sniff wave form related variability, then stimulus decoding
using that transformation should be improved. Response
profiles of the same cell across odorants are highly di-
verse (Shusterman et al., 2011). Therefore, odor identity
can be decoded with high success rate irrespective of
how or whether they are transformed (Bathellier et al.,
2008; Cury and Uchida, 2010; Shusterman et al., 2011). In
contrast, the type of transformation should play a more
significant role in decoding odor concentration, which is

encoded mainly by the fine temporal structure of spike
trains (Bolding and Franks, 2017). As we pointed out
above, sniff wave form-related variability is similar to a
2–3-fold uncertainty in concentration estimation. To test if
the FD alignment allows for better decoding of odor con-
centration than time alignment, we evaluated the accu-
racy with which responses of MT cells to two odor
concentrations (Fig. 6A,B) can be discriminated in each
alignment, on a trial-by-trial basis (see Materials and
Methods). We performed this analysis on 93 cell-odor-
concentration triplets. On average, discrimination suc-
cess rate between odor concentrations is better after FD
transformation than in time coordinates: 70.2% versus
78.3% (t test, p � 8e-03; Fig. 6C).

Discussion
Sensory systems must extract accurate representa-

tions of the outside world despite variability in sampling
behavior. We studied whether odor representation is in-
variant to changes in sampling frequency. We found that
behavioral performance in an odor concentration discrim-
ination task does not depend on sniff frequency, suggest-
ing that odor representations are indeed sniff frequency
invariant. To identify neural signatures of this invariance,
we studied responses of MT cells to different odors and
concentrations. The amplitude and the latency of MT
cells’ responses varied systematically with sniff duration.
We proposed a FD model that explains this response
variability and provides the best description of the odor
responses. Further, transforming odor responses based
on the FD model makes the responses invariant to sniff

Figure 5. Model comparison of different alignment methods. A, left, Schematics of the effect of each of the transformation on sniff
cycles. Right: raster plots of responses of two cell-odor pairs aligned according to each schematic. B, Log-likelihood of each model
across the population of responses. Pairwise comparisons were done using the Wilcoxon signed-rank test (FD vs time comparison,
p � 5.7e-19; FD vs phase comparison, p � 9.5e-04; FD vs two interval phase comparison, p � 9.9e-03; FD vs inhalation proportional
comparison, p � 3.5e-02). See also Extended Data Figure 5-1.
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wave form variability and allows much more accurate
concentration discrimination.

Strengths and limitations of proposed FD-based
model

We propose a very simple FD model for odor propaga-
tion in the nose. Although nasal cavities have complex
geometries, the airflow within them is predominantly lam-
inar and thus can be approximated using simple models
(Zwicker et al., 2018). Obviously, our simple model does
not capture all the subtleties of odor propagation, how-
ever, it does provide a reasonable explanation for the
observed variability in sniff waveforms which contribute to
variability in MT cell odor responses. Importantly, the FD
model proposes that variability in the latency of MT cells
activation is due to flow dynamics in the nasal cavity.
Therefore, no top-down processes such as behavioral
state or motor efference copy should affect alignment.
Moreover, we believe that the FD model will be equally
valid for other species. A few questions remain to be
discussed: What are the limitations of our simple model?
Is it compatible with our results on the concentration
dependence of the odor responses? Lastly, given a pro-
posed model of odor delivery to the receptors, how does
coding of odor identity and concentration work?

According to our FD model, the front of odor-laden air
propagates in the nose with a velocity which increases
and then decreases during an inhalation, approximately
proportional to nasal cavity pressure (Fig. 7A). In a simple
version of this model, the propagating front has a sharp
boundary, such that odor concentration at the receptors’

location will rise as a step function (Fig. 7B). In reality, the
front boundary is not sharp (Nachbar and Morton, 1981).
Rather, it spreads as the front propagates along the nasal
cavity (Fig. 7C). There are few factors which contribute to
this effect: (1) due to friction or air viscosity, flow close to
the edge of the channel moves more slowly than flow near
the center of the channel; (2) due to adsorption by respi-
ratory and olfactory epithelium, odorant concentration
decreases along the way. Adsorption depends strongly
on the physical-chemical properties of an odorant and
may significantly differ for hydrophobic and hydrophilic
molecules. Thus, concentration increases gradually in any
given location of the epithelium (Fig. 7C). In addition,
receptors of the same type are not localized to one point,
but rather are spread through the epithelium, which slows
the effective concentration rise even further. In future
work, these effects can be modeled or simulated. At
present, our FD model provides a simple explanation of
how odor propagation in the nose causes MT cell re-
sponses to vary with sniff wave form.

The next important step in our model is to define how
OSN signals are triggered and conveyed to the OB. Most
simply, we may assume that OSNs spike when the con-
centration of a ligand reaches some threshold level. Under
this assumption, in the case of sharp boundary wave form
propagation (Fig. 7B), no matter what the external odorant
concentration is, the ligands will arrive at the receptor
location at the same time. Therefore, time of activation of
OSNs and downstream MT cells will be concentration
independent. However, if ligand concentration at the ep-
ithelium gradually increases (Fig. 7C), higher stimulus
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concentrations will activate OSNs earlier relative to the
sniff cycle (Fig. 7E) which is consistent with our previous
observations (Sirotin et al., 2015). Thus, the qualitative
extension of FD model predicts that the latency of OSN
activations and following MT cell responses will be shorter
for higher stimulus concentration, which will manifest in a
smaller effective distance, �. Based on our measurements
of the responses of the same cell to the same odor with
different concentrations, at higher concentration � is
smaller than that for low concentration (Extended Data
Fig. 7-1).

Coding of odor identity and odor concentration
Given the FD model, how might odor coding work? MT

cells in the OB are the first recipients of sensory informa-
tion from the OSNs and the only cells that project their
axons outside the bulb to olfactory cortices (OCs). The
information that OCs receive about odor stimuli is a se-
quence of MT cell activations (Hopfield, 1995; Margrie
and Schaefer, 2003; Schaefer and Margrie, 2007; Shus-
terman et al., 2011; Wilson et al., 2017). This code can be
read based on synchrony between multiple simultane-
ously activated MT cells (Franks and Isaacson, 2006;
Haddad et al., 2013; Sanders et al., 2014; Bolding and
Franks, 2017). During a given 10-ms time window in the
sniffing cycle, hundreds of MT cells can be activated
simultaneously in response to an odor (Shusterman et al.,
2011). The anatomic finding that MT cells from multiple

glomeruli converge to one pyramidal cell in the cortex
(Miyamichi et al., 2011), and electrophysiological record-
ings demonstrating that pyramidal cells integration time
window is �10 ms (Poo and Isaacson, 2009; Davison and
Ehlers, 2011), as well as work in anesthetized animals on
sensitivity of cortical neurons to timing of MT cells acti-
vation (Haddad et al., 2013), are consistent with a
synchrony-based model of reading the MT cells’ code.

The recently-proposed primacy coding hypothesis
(Bolding and Franks, 2017; Wilson et al., 2017), states that
identity-carrying responses occur during an early and
narrow time window after inhalation onset. This coding
scheme is robust to sniff wave form variability, because
the earliest-activated OSNs and following MT cell re-
sponses would remain the same for different sniff dura-
tions and are subject to less variability (Figs. 2, 3).

How is odor concentration encoded? Both sniff wave
form and odor concentration affect OSN activation laten-
cies. The sniff wave form regulates the speed of odor
propagation, which affects the onset, and steepness of
the concentration profile (Fig. 7D). Concentration changes
will only affect the steepness (Fig. 7E). An earlier or
steeper rise of odor concentration, whatever its cause, will
compress the timing of odor responses, as well as shift
them earlier in the sniff cycle. Nevertheless, concentration
judgments maintain constancy despite varying sniff pa-
rameters (Fig. 1; Teghtsoonian and Teghtsoonian, 1984).
How might the olfactory system achieve this perceptual
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Figure 7. Effect of sniff rate and odor concentration on spiking latency. A, top, Schematics of the FD model. Same as in Figure 4A.
Bottom, Schematic of the air velocity temporal profile in the nose during inhalation. B, Schematics of the odor concentration
wave-fronts at different times from the beginning of inhalation in a simple model presented at A, top, and a correspondent temporal
concentration profile at a specific point in the nasal cavity positioned at the distance L from the nasal cavity opening (bottom). C, More
realistic case of odor molecules’ delivery to the receptors, in which friction and epithelial adsorption smear the odorized air front. Top,
Propagation of an odorized air front inside the nasal cavity according to the model from A. Bottom, Rise time of odor concentration
at the receptor location. D, Effects of increase in sniff frequency on spiking latency of MT cells. Top, Air velocity profile during fast
(green) and slow (red) inhalation. Center, Corresponding temporal profile of odor concentration at the receptor location. Bottom, MT
cell spiking driven by corresponding OSNs which are activated at different concentration levels. E, Same as D for two different
concentrations of the same odor. See also Extended Data Figure 7-1.
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constancy? One possibility is that the olfactory system
has access to the sniff wave form parameters. This idea is
supported by the accompanying study (Jordan et al.,
2018) and by the finding that mice can report the latency
of OSN activation relative to inhalation (Smear et al.,
2011). To generate a sniff representation, the mouse may
use reafference, as many OSNs are mechanosensitive
(Grosmaitre et al., 2007), and could therefore sense air-
flow in the nose. Another possible mechanism for repre-
sentation of the sniff wave form is through efference copy,
although we are aware of no evidence to support this
claim, nor is there a candidate anatomic pathway be-
tween breathing centers and the olfactory system, to our
knowledge. However, it also remains possible that the
animal does not use timing information. Higher odor con-
centration leads to larger number of activated OSNs
(Stewart et al., 1979; Rubin and Katz, 1999). There are
multiple normalization mechanisms in the OB (Cleland
et al., 2012), though it does not preclude existence of
channels transmitting overall level of activation. However,
the latter mechanism probably requires accumulating sig-
nals during longer time period, which is not well sup-
ported by behavioral data (Wesson et al., 2008; Resulaj
and Rinberg, 2015; Wilson et al., 2017). Another possibil-
ity for concentration encoding may arise from the fact that
based on our arguments beyond a simple FD model, the
concentration increase may evoke a stronger temporal
compression of the spike trains, then that evoked by
faster sniffing (Fig. 7E). This will in turn increase the level
of synchrony, which has been observed in cortical record-
ings (Bolding and Franks, 2017). Quite possibly all of the
above mechanisms participate in multiplexed transmis-
sion of the information about concentration. Future work
will be required to dissect and define their contributions.
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