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Abstract

For random d-regular graphs onN vertices with 1� d� N2/3, we develop a d−1/2 expansion
of the local eigenvalue distribution about the Kesten–McKay law up to order d−3. This result
is valid up to the edge of the spectrum. It implies that the eigenvalues of such random regular
graphs are more rigid than those of Erdős–Rényi graphs of the same average degree. As a first
application, for 1� d� N2/3, we show that all nontrivial eigenvalues of the adjacency matrix
are with very high probability bounded in absolute value by (2 + o(1))

√
d− 1. As a second

application, for N2/9 � d � N1/3, we prove that the extremal eigenvalues are concentrated
at scale N−2/3 and their fluctuations are governed by Tracy–Widom statistics. Thus, in the
same regime of d, 52% of all d-regular graphs have second-largest eigenvalue strictly less than
2
√
d− 1.

1. Introduction

1.1. Main results. Let P be the uniform probability measure on the set of d-regular graphs on
N vertices. We identify a graph with its adjacency matrix A = (Aij) ∈ {0, 1}N×N , defined as
Aij = 1 if and only if i and j are adjacent. Thus, P is the uniform probability measure on the set
of Hermitian matrices A ∈ {0, 1}N×N satisfying

∑N
j=1Aij = d and Aii = 0 for all i = 1, . . . , N .

Since A is d-regular, it is immediate that A has a trivial eigenvalue d with associated eigenvector
(1, 1, . . . , 1)∗. Moreover, by the Perron-Frobenius theorem, all other eigenvalues are bounded in
absolute value by d. For convenience, we shall consider the normalized adjacency matrix

H ..= (d− 1)−1/2A. (1.1)

We denote its eigenvalues by λ1 = d/
√
d− 1 > λ2 > · · · > λN > −d/

√
d− 1.
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Unless stated otherwise, all quantities depend on the fundamental parameter N , and we omit
this dependence from our notation. For the following statements, for deterministic N -dependent
quantities X and Y we write

X � Y if X = Oc(N−cY ) for some fixed c > 0. (1.2)

(See the conventions in Section 1.3 below.)
Our first main result is about the locations of the nontrivial extremal eigenvalues, λ2 and λN .

Theorem 1.1. Fix c > 0. For 1 � d � N2/3 and large enough N , with probability 1−N−1/c we
have

|λ2 − 2|, |λN + 2| 6 N c

(
1
d3 + 1

N2/3 + d2

N4/3

)
. (1.3)

An immediate consequence is the following optimal upper bound on the nontrivial eigenvalues.
It was conjectured for instance in [69, Conjecture 5.3] and [70, Conjecture 7.3].

Corollary 1.2. For 1 � d � N2/3, all nontrivial eigenvalues of the random d-regular graph are
with very high probability bounded in absolute value by (2 + o(1))

√
d− 1.

Our second main result is about the limiting distribution of the extremal eigenvalues.

Theorem 1.3. For N2/9 � d � N1/3 the distribution of N2/3(λ2 − 2) converges to the Tracy–
Widom1 distribution, the limiting distribution of the largest eigenvalue of a GOE matrix. The
analogous statement holds for −N2/3(λN + 2).

Universality for the edge statistics of Wigner matrices (the statement that the distribution of
the extremal eigenvalues converge to the Tracy–Widom law) was first established by the moment
method [63] under certain symmetry assumptions on the distribution of the matrix elements. The
moment method was further developed in [35,59] and [62]. A different approach to edge universality
for Wigner matrices based on the direct comparison with corresponding Gaussian ensembles was
developed in [34,65]. Edge universality for sparse Erdős–Rényi graphs was proven first in the regime
pN � N2/3 in the works [27,28] and then extended to the regime pN � N1/3 in [50]. For smaller
values of the average degree pN , edge universality no longer holds: it was proved in [39, 43] that,
in the regime 1 � pN � N1/3, the second-largest eigenvalue has Gaussian fluctuations instead of
Tracy–Widom fluctuations. These Gaussian fluctuations result from degree fluctuations which are
absent in regular graphs. Our Theorem 1.3 implies that the eigenvalues of random regular graphs
are indeed more rigid than those of Erdős–Rényi graphs of the same average degree. For random
regular graphs, it is expected that (1.3) is not optimal for small d, and in fact it is conjectured that
the extremal eigenvalues continue to have Tracy–Widom fluctuations down to degree d > 3.

As emphasized in [61], the Tracy–Widom1 distribution has positive measure on the set {x : x <
0}; in fact it has about 52% of its mass on negative values. Therefore Theorem 1.3 implies the
existence of many d-regular graphs whose second eigenvalue is less than 2

√
d− 1, provided that N

and d obey the conditions of Theorem 1.3.

Corollary 1.4. For d large enough and d3 � N � d9/2, 52% of d-regular graphs on N vertices
have second-largest eigenvalue bounded by 2

√
d− 1. An analogous statement holds for the smallest

eigenvalue.
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In [52], a d-regular graph whose largest nontrivial eigenvalue is bounded in absolute value by
2
√
d− 1 is called a Ramanujan graph. Corollary 1.4 states that for d large enough and d3 � N �

d9/2, precisely 52% of d-regular graphs have largest (respectively smallest) nontrivial eigenvalue
bounded from above by 2

√
d− 1 (respectively from below by −2

√
d− 1). Hence, at least 4% have

all nontrivial eigenvalues bounded by 2
√
d− 1 in absolute value. In fact, Theorem 1.3 and its proof

can be extended to show that in the regime N2/9 � d � N1/3 the largest and smallest nontrivial
eigenvalues converge in distribution to independent Tracy–Widom1 distributions; see Remark 9.9
and Theorem 9.10 below. As a consequence, we have the following result.

Corollary 1.5. For d large enough and d3 � N � d9/2, 27% of d-regular graphs on N vertices
have all nontrivial eigenvalues bounded in absolute value by 2

√
d− 1.

The conjecture [57,61] that a positive fraction of regular graphs of fixed d is Ramanujan remains
open. Explicit constructions of Ramanujan graphs with d = p+1 for some prime and prime powers
p were introduced in [52,55] (see also [61]); a construction that applies in the bipartite case for all
degrees is given in [53,54] and see [18] for polynomial time algorithm of this construction.

The following results on the extremal eigenvalues of random regular graphs are known. For
fixed degree d > 3, Friedman [36] proved that |λ2− 2|+ |λN + 2| = o(1) with high probability. This
result was recently reproved using an alternative method in [13]; see also [60]. For d tending to
infinity with the number of vertices, it was proved in [23,37] that the nontrivial extremal eigenvalues
are O(

√
d) for the permutation model of random regular graphs. Recently, in [20, 68] the bound

O(
√
d) was established with high probability for the uniform model of random regular graphs for

all 1� d 6 N/2. Previous results in this direction include [48].

1.2. Related results. In random matrix theory, the bulk spectral statistics of Wigner matrices
are well understood; see in particular [15,26,27,29–33,44,66]. For Erdős–Rényi random graphs and
random regular graphs with growing average degrees, the bulk spectral statistics were analysed in
[7,27,28,41,42], and complete eigenvector delocalization for logarithmically growing average degree
was proved in [9, 27, 40]. In the same regime, edge rigidity of Erdős–Rényi graphs was proved in
[4,10]. Similar results have also been proved for more general degree distributions [2]. These types
of results are false for Erdős–Rényi graphs with bounded average degree, whereas random regular
graphs are expected to have random matrix statistics even for bounded degree graphs; see [8] for
the proof of complete eigenvector delocalization in this regime. For a review of other results for
discrete random matrices, see also [69].

Macroscopic eigenvalue statistics for random regular graphs of fixed degree have been studied
using the techniques of Poisson approximation of short cycles [23, 45] and (non-rigorously) using
the replica method [56]. These results show that the macroscopic eigenvalue statistics for random
regular graphs of fixed degree are different from those of a Gaussian matrix. However, this is not
predicted to be the case for the local eigenvalue statistics. Spectral properties of regular directed
graphs have also been studied recently [19,21].

For the eigenvectors of random regular graphs with d ∈ [N c, N2/3−c], the asymptotic normality
was proved in [16]; see also the prior results for Wigner matrices [17, 47, 67]. For random regular
graphs of fixed degree, a Gaussian wave correlation structure for the eigenvectors was predicted in
[25] and partially confirmed in [5].

In the non-Hermitian setting, the limit of the empirical eigenvalue distribution of random ma-
trices with i.i.d. entries is governed by the circular law. The circular law for non-Hermitian random
matrices with i.i.d. entries with certain moment conditions was verified in [24, 38, 58], and the
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paper [64] established the circular law under the weakest moment condition. In the directed d-
regular graph setting, it was conjectured [14] that for any fixed degree d, the empirical eigenvalue
distribution converges to the oriented Kesten–McKay distribution,

1
π

d2(d− 1)
(d2 − (x2 + y2))21|z|6

√
d dx dy.

Up to rescaling by
√
d, this measure tends to the circular law as d tends to infinity. In the regime

that d grows with the size of the graph, the circular law for the directed d-regular was established
in [6, 22,51].

1.3. Notation and structure of paper. We use the convention N = {0, 1, 2, . . . }. We usually
omit the argument N from our notation, with the convention that most quantities are allowed to
depend on N and all of our estimates are uniform in them. Estimates are not uniform in quantities
that are explicitly constant or fixed. By definition, a random variable F is a function F (A) of the
adjacency matrix A. We shall often omit the explicit argument A from our notation, and simply
write F for a random variable evaluated at A. For n ∈ N we use the notation [[n]] ..= {1, 2, . . . , n}.
We use the usual big O notation O(·), and if the implicit constant depends on a parameter α we
indicate it by writing Oα(·). We use the letter c to denote a generic small positive constant. For
N -dependent random variables X and Y > 0 we write

X ≺ Y if P[|X| > N cY ] = Oc(N−1/c) for all c > 0. (1.4)

If X ≺ Y then we also write X = O≺(Y ). If the the implicit constant in Oc is the same for a
family of random variables, we say that the ≺ is uniform in that family. All of our uses of ≺ will
be uniform in the matrix indices and the spectral parameter of the Green’s function.

The rest of the paper is devoted to the proofs of Theorems 1.1 and 1.3. In Section 2 we introduce
the Green’s function, which is the main tool in the proof of Theorem 1.1. In Section 3 we discuss
switchings of graphs, which are the key operations on graphs that we use to generate self-consistent
equations. In Section 4, we introduce a family of polynomials of the Green’s functions entries that
underlies our proof of Theorem 1.1, and derive some basic estimates on them. In Section 5 we
derive the self-consistent equation for the Green’s function in expectation. In Section 6 we relate
the self-consistent equation derived in the previous section with the Kesten–McKay law. In Section
7, we upgrade the self-consistent equation from Section 5 to an equation in high probability. In
Section 8 we use the self-consistent equation from Section 7 to derive a local law around the spectral
edges, and as a consequence deduce Theorem 1.1. Finally, in Section 9 we use the rigidity estimates
of Theorem 9 to conclude edge universality and Theorem 1.3.

2. Green’s function

We consider the adjacency matrix A restricted to the subspace orthogonal to the vector 1 ..=
(1, . . . , 1)∗. More precisely, let P⊥ : RN → RN be the orthogonal projection onto 1⊥, explicitly
given by P⊥ = I − 11∗/N where I is the N × N identity matrix. Since H is the normalized
adjacency matrix of a regular graph, the matrices H and P⊥ commute: HP⊥ = P⊥H.

For a spectral parameter z ∈ C+ ..= {z ∈ C : Im[z] > 0} we define the Green’s function by

G(z) ..= P⊥(H − z)−1P⊥. (2.1)
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Thus, G and (H − z)−1 agree on the image of P⊥, which is the subspace of RN perpendicular to 1.
The Green’s function satisfies the relation

G(z)H = HG(z) = zG(z) + P⊥ = zG(z) + (I − 11∗/N). (2.2)

Moreover, ∑
i

Gij(z) =
∑
j

Gij(z) = 0. (2.3)

Here, and throughout the following, sums over indices run over i ∈ [[N ]]. We denote the normalized
trace of G, which is also the Stieltjes transform of the empirical spectral measure of H|1⊥ , by

m(z) ..= 1
N

∑
i

Gii(z). (2.4)

We refer to m(z) simply as the Stieltjes transform. Our goal is to approximate m(z) by md(z), the
Stieltjes transform of the Kesten–McKay law [46],

md(z) ..=
∫
R

ρd(x)
x− z

dx, ρd(x) ..=
(

1 + 1
d− 1 −

x2

d

)−1√[4− x2]+
2π .

The Kesten–McKay law ρd is the spectral measure at any vertex of the infinite d-regular tree
(see, for example, [3] or [8, Section 5]). It has support [−2, 2] in our normalization. The Stieltjes
transform md(z) is explicitly given by

md(z) = −
(
z + d

d− 1msc(z)
)−1

, (2.5)

where msc(z) is the Stieltjes transform of the Wigner semicircle law,

msc(z) ..=
∫
R

ρsc(x)
x− z

dx, ρsc(x) ..=
√

[4− x2]+
2π , (2.6)

satisfying the self-consistent equation

1 + zmsc(z) +m2
sc(z) = 0. (2.7)

Later we shall use that, alternatively, md(z) can be characterized by the self-consistent equation

P∞(z,md(z)) = 0, P∞(z, w) = 1 + zw + d

d− 1w
2 +

∑
k>2

(−2)k−1(2k − 3)!!
k!

d

(d− 1)k w
2k. (2.8)

Indeed, from (2.5) and (2.7) we get

1
md(z)

= 1
msc(z)

− msc(z)
d− 1 , (2.9)

from which we obtain, for large enough d,

msc(z) = d− 1
2md(z)

(√
1 + 4md(z)2

d− 1 − 1
)

= md(z) + d− 1
2md(z)

∑
k>2

(−1)k−1 2k(2k − 3)!!
k!

md(z)2k

(d− 1)k .
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Plugging this into 0 = 1 + zmd(z) + d
d−1md(z)msc(z), as follows from (2.5), yields (2.8).

We fix a large K > 0 and define the spectral domain

D ..= {z = E + iη : −K 6 E 6 K, N−1+1/K 6 η 6 K}. (2.10)

Here, and throughout the following, we use the notation

z = E + iη

for the real and imaginary parts of z. The local semicircle law for random regular graphs [9] shows
that m(z) is approximated by md(z) to order 1/

√
d (up to logarithmic corrections), at least away

from the edges ±2 of the spectral measure. The next result follows from [9, Theorem 1.1]. In fact,
[9, Theorem 1.1] gives a much better estimate for Λd for z away from the edge ±2.

Proposition 2.1 ([9, Theorem 1.1]). With the deterministic control parameters

Λo(z) ..= 1√
Nη

+ 1√
d

+ d3/2

N
, Λd(z) ..=

(
1√
Nη

+ 1√
d

+ d3/2

N

)1/2

, (2.11)

we have, for 1� d� N2/3 and all z ∈ D,

max
i 6=j
|Gij(z)| ≺ Λo(z), max

i
|Gii(z)−md(z)| ≺ Λd(z). (2.12)

One by-product of our proof is an improved estimate for the Green’s function entries close to
the edges ±2. The bound 1/

√
d is the best one can expect, since if Aij = 1, the off-diagonal Green’s

function entry Gij is of order 1/
√
d. In Proposition 8.4 below, we show that near the spectral edges

the estimate (2.12) in fact holds with the smaller control parameters

Λo(z) = Λd(z) = 1√
Nη

+ 1√
d

+ d3/2

N
. (2.13)

Averaging over the index i, the estimate (2.12) implies an estimate on the Stieltjes transform
m(z). Using additional cancelations from this average, in this paper we shall derive a more precise
estimate (see Theorem 8.1) from which we obtain our results about the extremal eigenvalues.

Throughout this paper, we consistently omit the spectral parameter z from our notation in
quantities such as G and m, unless it is needed to avoid confusion.

3. Switchings and exchangeability

Our analysis makes use of switchings for regular graphs and also makes some use of the invariance
under the permutation of vertices. We use ideas related to those introduced in [7], to which we also
refer for references to other uses of switchings.

3.1. Switchings. As in [7], we define the signed adjacency matrices

(∆ij)ab ..= δiaδjb + δibδja, ξklij
..= ∆ij + ∆kl −∆ik −∆jl, (3.1)

corresponding to an edge at ij respectively to a switching of the edges ij and kl; see Figure 1.
Clearly we have ξklij 1 = 0 and ξjlik = −ξklij . For any indices i, j, k, l, we denote the indicator function
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l
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Figure 1: A simple switching is given by replacing the solid edges by the dashed edges.

that the edges ij and kl are switchable (i.e. the edges ij and kl are present and the switching again
results in a simple regular graph) by

χklij (A) = AijAkl(1−Aik)(1−Ajl). (3.2)

In this section, we use switchings to estimate terms of the form

E
[

b∏
a=1

AiajaF (A)
]
, (3.3)

where F is any function which depends on the random graph A, and possibly on the indices
i1, j1, · · · , ib, jb. (Later, we shall take F to be a polynomial of the Green’s function entries {Gij}i,j∈[[N ]]
and the Stieltjes transform m.)

Proposition 3.1. If the indices i1, j1, k1, l1 · · · , ib, jb, kb, lb are distinct, we have the identity

E
[
F (A)

b∏
a=1

χkala
iaja

(A)
]

= E
[
F

(
A+

b∑
a=1

ξkala
iaja

)
b∏

a=1
χjalaiaka

(A)
]
, (3.4)

where the indicator function χ is as defined in (3.2).

Proof. Define the sets of graphs

G1 =
{
A :

b∏
a=1

χkala
iaja

(A) = 1
}
,

G2 =
{
A :

b∏
a=1

χjalaiaka
(A) = 1

}
.

(3.5)

By our assumption that the indices i1, j1, k1, l1 · · · , ib, jb, kb, lb are distinct, there is a simple bijection
between G1 and G2, namely

A ∈ G2 7→ A+
b∑

a=1
ξkala
iaja
∈ G1. (3.6)

Since P is the uniform probability measure on d-regular graphs, the claim follows from (3.6).

In the switching in (3.4), the indicator function χklij (A) enforces that the matrix A + ξklij is
again the adjacency matrix of a simple graph. Note that without this indicator function, such
as in the following corollary and elsewhere throughtout our proof, A + ξklij is not necessarily the
adjacency matrix of a simple graph, just a real symmetric matrix. This does however not affect
our arguments, which should be viewed as operating with general symmetric matrices instead of
adjacency matrices of simple graphs.
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Corollary 3.2. Fix indices i, j ∈ [[N ]] and i 6= j. Let F ≡ Fij be a random variable possibly
depending on ij. With the random control parameter

Cij(F,A) ..= |F (A)|+ max
kl
|F (A+ ξklij )|

we have the integration by parts formula

E[AijF (A)] = d

N
E[F (A)] + 1

Nd

∑
kl

E
[
AikAjl(F (A+ ξklij )− F (A))

]
+ O

(
dE[AijCij(F,A)]

N

)
. (3.7)

Proof. Since
∑
klAkl = dN , we have

E[AijF (A)] = 1
Nd

∑
kl

E[AijAklF (A)] = 1
Nd

∑
kl:ijkl
distinct

E[χklij (A)F (A)]

+ O

 1
Nd

∑
kl:ijkl

not distinct

E[AijAkl|F (A)|] + 1
Nd

∑
kl

E[AijAkl(Aik +Ajl)|F (A)|]


= 1
Nd

∑
kl:ijkl
distinct

E[χklij (A)F (A)] + O
(
dE[AijCij(F,A)]

N

)
,

(3.8)

where we used that the row sums and column sums of A are d. By (3.4), the first term on the
right-hand side of (3.8) equals

1
Nd

∑
kl:ijkl
distinct

E[χjlik(A)F (A+ ξklij )] = 1
Nd

∑
kl

E[AikAjlF (A+ ξklij )]

+ O

 1
Nd

∑
kl:ijkl

not distinct

E[AikAjl|F (A+ ξklij )|] + 1
Nd

∑
kl

E[AikAjl(Aij +Akl)|F (A+ ξklij )|]


= 1
Nd

∑
kl

E[AikAjlF (A+ ξklij )] + O
(
dE[AijCij(F,A)]

N

)
,

(3.9)

where we used that Cij(F,A) is independent of indices k, l and we can sum over them. The claim
(3.7) follows from combining (3.8), (3.9) and the fact

∑
klAikAjl = d2.

For b, c > 0 and multi-indices i ∈ [[N ]]b and j ∈ [[N ]]c, we denote by ij ∈ [[N ]]b+c their concate-
nation. We shall often need the following random control parameter.

Definition 3.3. For fixed b, c > 0 we denote the b-tuples i = (i1, . . . , ib), j = (j1, . . . , jb), k =
(k1, . . . , kb), l = (l1, . . . , lb) and the c-tuple m = (m1, . . . ,mc). Let F = {Fijm} be a family of
random variables indexed by ijm. Define the random control parameter

C(F,A) ..= max
m

max
ijkl

(∣∣Fijm(A)
∣∣+ ∣∣∣∣∣Fijm

(
A+

b∑
a=1

ξkala
iaja

)∣∣∣∣∣
)
. (3.10)
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Corollary 3.4. Let Fijm be as in Definition 3.3. We have the integration by parts formula

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijm(A)
]

= 1
N2b+cd2b

∑
m

∑
ijkl

E
[

b∏
a=1

AiakaAjala

(
Fijm

(
A+

b∑
a=1

ξkala
iaja

)
− Fijm(A)

)]

+ 1
N2b+c

∑
m

∑
ij

E
[
Fijm(A)

]
+ O

(
dE[C(F,A)]

N

)
.

(3.11)

Proof. Since the row and column sums of A equal d, by introducing new indices k1, l1, · · · , kb, lb,
we rewrite the left-hand side of (3.11) as

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijm(A)
]

= 1
N2b+cd2b

∑
m

∑
ijkl

E
[

b∏
a=1

AiajaAkalaFijm(A)
]

= 1
N2b+cd2b

∑
m

∑
ijkl

distinct

E
[

b∏
a=1

χkala
iaja

(A)Fijm(A)
]

+ 1
N2b+cd2b

∑
m

∑
ijkl

not distinct

E
[

b∏
a=1

AiajaAkalaFijm(A)
]

+ 1
N2b+cd2b

∑
m

∑
ijkl

distinct

E
[(

b∏
a=1

AiajaAkala −
b∏

a=1
χkala
iaja

(A)
)
Fijm

]
.

(3.12)

The second last term of the last right-hand side in (3.12) can be estimated by∣∣∣∣∣∣∣∣
1

N2b+cd2b

∑
m

∑
ijkl

not distinct

b∏
a=1

AiajaAkalaFijm(A)

∣∣∣∣∣∣∣∣
6

1
N2b+cd2b

∑
m

∑
ijkl

not distinct

b∏
a=1

AiajaAkalaC(F,A)

6
1

N2bd2b

∑
ijkl

not distinct

b∏
a=1

AiajaAkalaC(F,A) 6 1
N
C(F,A),

(3.13)

where in the last line we used that
∑
iAij =

∑
j Aij = d, that Aii = 0, and hence that at least one

factor 1/N remains because of the constraint in the sum that ijkl be not distinct. Similarly, using
|AijAkl − χklij (A)| = AijAkl[Aik +Ajl −AikAjl] 6 AijAkl[Aik +Ajl], we have∣∣∣∣∣∣ 1

N2b+cd2b

∑
m

∑
ijkl

[(
b∏

a=1
AiajaAkala −

b∏
a=1

χkala
iaja

(A)
)
Fijm(A)

]∣∣∣∣∣∣ 6 d

N
C(F,A). (3.14)
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By plugging the estimates (3.13) and (3.14) into (3.12), we get

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijm(A)
]

= 1
N2b+cd2b

∑
m

∑
ijkl

distinct

E
[

b∏
a=1

χkala
iaja

(A)Fijm(A)
]

+ O
(
dE[C(F,A)]

N

)
.

(3.15)

By Proposition 3.1 and an estimate analogous to the one above, we have

1
N2b+cd2b

∑
m

∑
ijkl

distinct

E
[

b∏
a=1

χkala
iaja

(A)Fijm(A)
]

= 1
N2b+cd2b

∑
m

∑
ijkl

distinct

E
[

b∏
a=1

χjalaiaka
(A)Fijm

(
A+

b∑
a=1

ξkala
iaja

)]

= 1
N2b+cd2b

∑
m

∑
ijkl

E
[

b∏
a=1

AiakaAjalaFijm

(
A+

b∑
a=1

ξkala
iaja

)]
+ O

(
dE[C(F,A)]

N

)
.

(3.16)

The claim now follows from combining (3.15) and (3.16).

4. Polynomials in Green’s function entries

In this section we collect some estimates on the Green’s function G and the Stieltjes transform of
the spectral measure m. These will be used repeatedly in the rest of the paper. We also introduce
polynomials in the Green’s function entries, and record some of their basic properties. We work
under the following assumption throughout this section. Recall the Stieltjes transform md of the
Kesten–McKay law from (2.5).

Assumption 4.1. We assume that 1 � d � N2/3 and that there are deterministic z-dependent
control parameters Λo,Λd ∈ [d−1/2, 1] such that

max
i
|Gii −md| ≺ Λd, max

i 6=j
|Gij | ≺ Λo, (4.1)

for all z ∈ D defined in (2.10).

Note that, by Proposition 2.1, we know that Assumption 4.1 holds at least when Λo and Λd are
given by (2.11).

By our definition, the Green’s function G = P⊥(H − z)−1P⊥ is symmetric and satisfies (2.3).
The Ward identity states that the Green’s function G satisfies

1
N

∑
j

|Gij |2 = Im[Gii]
Nη

,
1
N

∑
ij

|Gij |2 = Im[m]
η

; (4.2)

it can be proved using the resolvent identity on G−G∗. Here recall that m is the Stieltjes transform
(2.4) of the empirical spectral measure. We record the following basic result, which we shall use
tacitly throughout the rest of the paper.
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Lemma 4.2. Suppose that 1� d� N2/3.
(i) For any c > 0, with probability at least 1−Oc(N−1/c) we have for all z ∈ D

max
xy
|Gxy| 6 2. (4.3)

(ii) Denoting by uα(i) the i-th component of the α-th normalized eigenvector of P⊥HP⊥, we have
the delocalization estimate

max
α

max
i
|uα(i)| ≺ 1/

√
N. (4.4)

Proof. The claim (i) follows from Proposition 2.1, the estimate |msc| 6 1, and a simple N−3-net
argument in D combined with a union bound to obtain a simultenous estimate for all z ∈ D. The
claim (ii) follows from [9, Corollary 1.2].

Remark 4.3. More explicitly, Lemma 4.2(i) says that maxxy|Gxy(A)| 6 2 with probability at least
1 − Oc(N−1/c). As a consequence, for any fixed b ∈ N we find using a simple resolvent expansion
that

max
xy

∣∣∣∣Gxy(A+
b∑

a=1
ξkala
iaja

)∣∣∣∣ 6 2 + O(d−1/2)

with probability at least 1 − Oc(N−1/c). Moreover, by a similar argument, using (4.1), for the
off-diagonal entries we have the estimate

max
x 6=y

∣∣∣∣Gxy(A+
b∑

a=1
ξkala
iaja

)∣∣∣∣ ≺ Λo.

We define the discrete and continuous derivatives for any indices i, j, k, l,

Dkl
ijF (A) ..= F (A+ ξklij )− F (A), ∂klijF (A) ..=

√
d− 1∂tF (A+ tξklij )

∣∣∣
t=0

, (4.5)

where the matrix ξklij was defined in (3.1). Note that ∂klij is the directional derivative in the direction
ξklij of the rescaled variable H = A/

√
d− 1. For the discrete derivative operator Dkl

ij , we have the
discrete product rule

Dkl
ij (FG) = (Dkl

ijF )G+ F (Dkl
ijG) + (Dkl

ijF )(Dkl
ijG), (4.6)

and the Taylor expansion with remainder gives

Dkl
ijF (A) =

b−1∑
n=1

1
n!

(
∂klij√
d− 1

)n
F (A) + 1

b!

(
∂klij√
d− 1

)b

F (A+ θξklij ), (4.7)

for some 0 6 θ 6 1.
For any indices i, j, k, l (which might be not distinct), the derivatives of the Green’s function

entries Gij and the Stieltjes transform m are given by

∂klijGij = −GiiGjj −GijGij −GikGlj −GilGkj +GilGjj +GiiGkj +GikGij +GijGlj , (4.8)

∂klijm = 2
N

N∑
a=1

(−GiaGja −GkaGla +GiaGka +GjaGla)

= 2
N

(−(G2)ij − (G2)kl + (G2)ik + (G2)jl).
(4.9)

A central object in our proof is the following notion of a polynomial in the entries of the Green’s
function.
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Definition 4.4. (i) Let F = F ({xst}rs,t=1) be a polynomial in the r2 abstract variables {xst}rs,t=1.
We denote its degree by deg(F ). For i ∈ [[N ]]r, we define its evaluation on the Green’s function
by

Fi = F ({Gisit}rs,t=1), (4.10)

and say that Fi is a polynomial in the Green’s function entries {Gisit}rs,t=1. By a slight abuse
of notation, we sometimes abbreviate F instead of Fi for the polynomials in the Green’s
function entries when there is no risk of confusion.

(ii) Let F = F ({xst}rs,t=1) be a monomial in r2 variables. Then the number of off-diagonal entries
of F is the total degree of variables xst with s 6= t. If the number of off-diagonal entries of F
is zero then we define χF = 1, otherwise we define χF = 0.

(iii) For U a polynomial in two variables, by a slight abuse of notation we often abbreviate U =
U(m, m̄) for the polynomial in the Stieltjes transform m and its complex conjugate m̄. For
r, r̄ ∈ N we abbreviate U (r,r̄) ..= ∂rm∂

r̄
m̄U .

Claim 4.5. Using (4.3) and (4.4), we have for any indices a, b ∈ [[N ]]∣∣∣∣ 1
Nk−1 (Gk)ab

∣∣∣∣ ≺ Im[m]
(Nη)k−1 ,

1
N2k−1 (|G|2k)ab ≺

Im[m]
(Nη)2k−1 . (4.11)

In particular,
1
N

N∑
j=1
|GajGjb| ≺

Im[m]
Nη

, (4.12)

and for distinct indices i, j, k, l, (∂klij )2Gij is a cubic polynomial in the Green’s function with at least
one off-diagonal factor,

|(∂klij )2Gij | ≺ Λo. (4.13)

We also have the following estimates for the derivatives of the Stieltjes transform m: for any
integer s > 1,

|(∂klij )sm| ≺ Im[m]
Nη

, (4.14)

and for any fixed polynomial U ,∣∣∣(∂klij )sU(m, m̄)
∣∣∣ ≺ max

r+r̄>1
|U (r,r̄)(m, m̄)|

( Im[m]
Nη

)r
. (4.15)

Proof. (4.11) follows directly from the spectral decomposition and the delocalization of the eigen-
vectors (4.4):∣∣∣∣ 1

Nk−1 (Gk)ab
∣∣∣∣ =

∣∣∣∣∣ 1
Nk−1

∑
α

uα(a)uα(b)
(λα − z)k

∣∣∣∣∣ ≺ 1
(Nη)k−2

1
N2

∑
α

1
|λα − z|2

= Im[m]
(Nη)k−1 ,∣∣∣∣ 1

N2k−1 (|G|2k)ab
∣∣∣∣ = 1

N2k−1

∣∣∣∣∣∑
α

uα(a)uα(b)
|λα − z|2k

∣∣∣∣∣ ≺ 1
(Nη)2k−2

1
N2

∑
α

1
|λα − z|2

= Im[m]
(Nη)2k−1 .

(4.16)

The claim (4.12) follows from Young’s inequality and (4.11) by taking k = 2,

1
N

N∑
j=1
|GajGjb| 6

1
N

N∑
j=1

(|Gaj |2 + |Gjb|2) = 1
N

(
(|G|2)aa + |G|2bb

)
≺ Im[m]

Nη
. (4.17)
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For (4.13), we notice that from (4.8), one can directly verify that none of the derivatives ∂ij , ∂kl, ∂ik, ∂jl
produces a diagonal term, and (4.13) follows from (4.3).

For (4.14), one can check using (4.9) that (∂klij )sm is a sum of terms in the following form

1
N

N∑
a=1

Gai1Gi2i3 · · ·Gi2sa (4.18)

where i1, i2, · · · , i2s ∈ {i, j, k, l}. Thanks to (4.3) and (4.12), we can bound (4.18) as∣∣∣∣∣ 1
N

N∑
a=1

Gai1Gi2i3 · · ·Gi2sa

∣∣∣∣∣ ≺
∣∣∣∣∣ 1
N

N∑
a=1

Gai1Gi2sa

∣∣∣∣∣ ≺ Im[m]
Nη

, (4.19)

and the claim (4.14) follows. For (4.15), the derivative (∂klij )sU(m) is a sum of terms of the form

U (r,r̄)(m, m̄)(∂klij )s1m(∂klij )s2m · · · (∂klij )srm(∂klij )s̄1m̄(∂klij )s̄2m̄ · · · (∂klij )s̄r̄m̄, (4.20)

where r + r̄ > 1, s1, s2, · · · , sr, s̄1, s̄2, · · · , s̄r̄ > 1 and s1 + · · · + sr + s̄1 + · · · + s̄r̄ = s. Thanks to
(4.14) we have

|(4.20)| ≺ |U (r,r̄)(m, m̄)|
( Im[m]

Nη

)r+r̄
. (4.21)

The claim (4.15) follows from (4.21).

Claim 4.6. Let U be a fixed polynomial of the Stieltjes transform m and its complex conjugate m̄.
For any indices i, j, k, l, a, b and fixed positive integer b > 0, we have

Dkl
ijGab(A) =

b−1∑
n=1

(−1)n

(d− 1)n/2
(G(ξklijG)n)ab + O≺(d−b/2) = O≺(d−1/2), (4.22)

Dkl
ijm(A) = O≺

( Im[m]
d1/2Nη

)
, (4.23)

Dkl
ijU(A) = O≺

(
1
d1/2 max

s+s̄>1
|U (s,s̄)(m, m̄)|

( Im[m]
Nη

)s+s̄)
. (4.24)

Proof. By the Taylor expansion (4.7),

Dkl
ijGab(A) =

b−1∑
n=1

1
n!(d− 1)n/2

(∂klij )nGab + 1
b!(d− 1)b/2

(∂klij )bGab(A+ θξklij ), (4.25)

for some random θ ∈ [0, 1]. Thanks to Lemma 4.2 and Remark 4.3,

(∂klij )nGab = (−1)nn!(G(ξklijG)n)ab ≺ 1, (∂klij )bGab(A+ θξklij ) ≺ 1. (4.26)

The expression (4.22) follows from the bound (4.26). The estimate (4.23) follows from averaging
(4.25) and using (4.19). The estimate (4.24) follows from (4.23) and the discrete product rule
(4.6).
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As an application of Claim 4.6, we have the following estimate, which says essentially that when
acting with discrete derivatives on a product of the form FU , where U is a polynomial in m and F
a polynomial in the Green’s function entries (recall Definition 4.4), the main contribution is given
by differentiating F .

Claim 4.7. Let F be a fixed polynomial of Green’s function entries {Gij}i,j∈[[N ]], and U a fixed
polynomial in the Stieltjes transform m and its complex conjugate m̄. For any indices b > 1,
i1, j1, k1, l1, · · · , ib, jb, kb, lb and positive integer b > 1, we have

FU

(
A+

b∑
a=1

ξkala
iaja

)
− FU(A) =

b−1∑
n=1

1
n!(d− 1)n/2

(
b∑

a=1
∂kala
iaja

)n
F (A)

U(A)

+ O≺

(
|U(A)|
db/2

+
|F (A+

∑b
a=1 ξ

kala
iaja

)|
d1/2 max

s+s̄>1
|U (s,s̄)(m, m̄)|

( Im[m]
Nη

)s+s̄)
.

(4.27)

Proof. We denote ξ =
∑b
a=1 ξ

kala
iajb

, and rewrite the left-hand side of (4.27) as

FU(A+ ξ)− FU(A) = (F (A+ ξ)− F (A))U(A) + F (A+ ξ)(U(A+ ξ)− U(A)). (4.28)

Since F is a polynomial of Green’s function entries {Gij}i,j∈[[N ]], by the same argument as for (4.22),
we have

F (A+ ξ)− F (A) =
b−1∑
n=1

1
n!(d− 1)n/2

(
b∑

a=1
∂kala
iaja

)n
F (A) + O≺

(
d−b/2

)
. (4.29)

Similarly, since U is a polynomial of the Stieltjes transform m and its complex conjugate m̄, by
(4.24), we have

U(A+ ξ)− U(A) = O≺

(
1
d1/2 max

s+s̄>1
|U (s,s̄)(m, m̄)|

( Im[m]
Nη

)s+s̄)
. (4.30)

The claim (4.27) follows from plugging (4.29) and (4.30) into (4.28).

We conclude this section with an elementary result for the operator ≺, which we shall use tacitly
throughout the following sections.

Lemma 4.8. Suppose that A and B are nonnegative random variables satisfying A 6 NC and
B > N−C for some constant C > 0. Then A ≺ B implies E[A] ≺ E[B].

5. Self-consistent equation in expectation

In this section we derive the self-consistent equation in expectation for the Stieltjes transform m;
in Section 7 below we shall extend this self-consistent equation to a high probability estimate.

Proposition 5.1. Suppose that Assumption 4.1 holds. For every fixed integer a > 1, there exists
a polynomial, depending on d and a but not N , and whose degree depends on a only,

Pa(z, w) = 1 + zw +Qa(w), (5.1)
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where

Qa(w) = dw2

d− 1 + 1
d

(
a3w

3 + a4w
4 + · · ·

)
, (5.2)

is a polynomial with bounded coefficients a3, a4, . . . such that, for any z ∈ D,

E[Pa(z,m)] ≺ 1
da/2

+ E[Im[m]]
Nη

+ d3/2Λo
N

. (5.3)

Remark 5.2. An expansion in expectation similar to Proposition 5.1 (with different coefficients)
would be possible for the Erdős–Rényi graph in the same regime of expected degree. The essential
difference between the random regular and the Erdős–Rényi graph is in the high moment estimates
in Section 7, using which we convert the expansion in expectation to one in high probability. For
the random regular graph, there are fundamental cancellations arising from the degree constraint,
which imply stronger concentration than possible for the Erdős–Rényi graph; these cancellations
are manifest only in the high probability expansion. We emphasize that without concentration, the
self-consistent equation in expectation does not lead to a closed equation for m (or its expectation),
and hence does not provide useful spectral information.

We shall show that the estimate (5.3) results from the switching invariance of random regular
graphs. It may be viewed as an approximate Schwinger–Dyson Equation for the random regular
graph ensemble; in statistical mechanics and field theory, such equations are typically derived by
integration by parts.

Before giving the proof of Proposition 5.1, we explain the mechanism behind it. Starting from
(2.2) we obtain

1 + zm =
∑
ij

AijGij
N(d− 1)1/2 + (error),

where we use (error) to denote a small error that we do not keep track of in this sketch. Taking
the expectation and using Corollary 3.2, recalling that

∑
iGij = 0 and recalling the notation (4.5),

we get
E[1 + zm] = 1

N2d(d− 1)1/2

∑
ijkl

E
[
AikAjlD

kl
ijGji

]
+ (error).

Using the integration by parts formula from Corollary 3.4 we therefore obtain

E[1 + zm] = d

N4(d− 1)1/2

∑
ijkl

E
[
Dkl
ijGji

]
+ 1
N4d3(d− 1)1/2

∑
ijklrstu

E
[
AirAksAjtAlu

(
(Dkl

ijGji)(A+ ξrsik + ξtujl )− (Dkl
ijGji)(A)

)]
+ (error).

(5.4)

For the first term on the right-hand side of (5.4), we use the Taylor expansion (4.7) to expandDkl
ijGji

as a polynomial in the entries of G, up to a small error. The leading term is −(d−1)−1/2GjjGii, and
it yields the first term of (5.2). The other terms are polynomials that either contain off-diagonal
entries of G or a higher order. Similarly, for the second term of (5.4), we keep on reapplying
inductively the integration by parts formula from Corollary 3.4, and expand all discrete derivatives
using Taylor’s formula (4.7).
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This procedure results in a proliferation of terms that contain products of factors of the form

1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijm

]
(5.5)

where F is a polynomial in the entries of G. Each application of Corollary 3.4 yields a main term
(second term on the right-hand side of (3.11)) with no factors of A and another term (first term on
the right-hand side of (3.11)) that is (after Taylor expansion of the discrete derivatives) of higher
order, in the sense of both the degree of Fijm and the power of d−1/2 in front of it. Any main term
that contains one or more off-diagonal can be shown to either vanish or be small enough. Hence,
we only need to keep track of terms of the form (5.5) with b = 0 and χF = 1 (recall Definition 4.4).

Such a term is in general not a polynomial in m; consider for instance the term 1
N

∑
i E[G2

ii].
An important ingredient of our argument is to rewrite such a term as a corresponding polynomial
in m, up to higher order terms; for instance,

1
N

∑
i

E[G2
ii] = 1

N2

∑
ij

E[GiiGjj ] + (higher order) + (error),

whereby 1
N2
∑
ij E[GiiGjj ] = E[m2]. To explain how this works, consider some polynomial Xi in

the Green function entries (think of e.g. Xi = Gii). We want to replace E[GiiXi] with E[GjjXi] up
to higher order terms and small errors. From (2.2) we get the equations

1− 1
N

+ zGii = (HG)ii, 1− 1
N

+ zGjj = (HG)jj .

Multiplying the first by GjjXi and the second by GiiXi and taking the difference, we obtain

(Gii −Gjj)Xi =
(
Gii(HG)jj −Gjj(HG)ii

)
Xi + (error)

= 1
(d− 1)1/2

∑
k

(
AjkGiiGkj −AikGkiGjj

)
Xi + (error).

We take the expectation, average over ij, and apply the integration by parts formula of Corollary 3.4
twice. Recalling that

∑
kGik = 0, we therefore obtain

1
N2

∑
ij

E[(Gii −Gjj)Xi]

= d

(d− 1)1/2N5

∑
ijkrs

E
[
Drs
jk(GiiGkjXi)−Drs

ik (GkiGjjXi)
]

+ (higher order) + (error).

We expand the discrete derivatives using (4.7). This yields

1
N2

∑
ij

E[(Gii −Gjj)Xi]

= d

(d− 1)N5

∑
ijkrs

E
[
∂rsjk(GiiGkjXi)− ∂rsik (GkiGjjXi)

]
+ (higher order) + (error)

= d

(d− 1)N5

∑
ijkrs

E
[
−GiiGkkGjjXi +GkkGiiGjjXi

]
+ (higher order) + (error),
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where we used that all other terms are small because they contain off-diagonal terms. Thus, the
leading order terms cancel exactly. We may therefore continue this expansion iteratively on the
terms (higher order), which will stop after a finite number of steps, as the order, and hence the
power of d−1/2, increases at each iteration.

We conclude this informal discussion by noting that the algorithm sketched above that generates
the polynomial Qa, while explicit, is quite complicated and tracking the actual coefficients of (5.2)
that it generates is difficult. This issue will be addressed in the next section, where, instead of
tracking the coefficients explicitly, we characterize them indirectly by showing that up to a small
error term the Stieltjes transform of the Kesten–McKay law md is a root of Pa(z, ·), which will
imply that the coefficients of Pa are close to those of (2.8). This concludes the outline of the proof
of Proposition 5.1.

The rest of this section is devoted to the proof of Proposition 5.1. Throughout, we fix an integer
a > 1. The spectral parameter z is always taken in the set D, and our estimates are uniform in z.
We shall always work under Assumption 4.1.

5.1. Estimates for moments of the Green’s function. We begin with a definition of a family
of fundamental terms that form the backbone of our expansion. They are classified by the order
of the variable d−1/2 and the degree of the polynomial in the entries of G. Both quantities are
important to keep track of. The former because it will allow us to stop the recursive application of
identities yielding high order terms after a fixed number, a, of steps, up to an error term of order
d−a/2. The latter is important to ensure that the polynomial in m that we shall ultimately generate
will have a large enough degree.

For the following statements, we recall that for multi-indices i ∈ [[N ]]b and j ∈ [[N ]]c, we denote
by ij ∈ [[N ]]b+c their concatenation (and analogously for ijk). Together with this notation, we recall
from Definition 4.4 that, for a polynomial F in (2b+c)2 variables and i, j ∈ [[N ]]b and m ∈ [[N ]]c, we
write Fijm for its evaluation in the Green’s function entries, and that for a polynomial U in m, m̄,
we abbreviate U(m, m̄) by U .

Definition 5.3. (i) For o ∈ N, we define the expressions

To(F,U) ..= 1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijm(A)U(A)
]
. (5.6)

(ii) For a given polynomial U = U(m, m̄) and integers o, d ∈ N, we use the symbol

To,d(U)

to denote a finite linear combination of terms of the form αTõ(F̃ , U), where õ > o, deg(F̃ ) > d,
and α = C

(
d/(d− 1)

)r for some r ∈ Z/2 and a deterministic constant C ∈ R.

Note that To depends on o ∈ N only by a multiplicative factor d−o/2. From (4.3), we have
|Fijm| ≺ 1, and thus by Lemma 4.8 we find the a priori estimate

|To(F,U)| ≺ 1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

Aiaja |U(A)|
]

= E[|U(A)|]
do/2

. (5.7)

Proposition 5.1 will follow from much more precise estimates that follow from an inductive applica-
tion of the following proposition, which extracts the leading term from (5.6) and shows that it can
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be expressed as a monomial in the trace m = 1
N TrG rather than the individual Green’s function

entries. To prove Proposition 5.1, we only need the special case U = 1; we allow for a general U
for later use in Section 7.

Aside from the notation introduced in Definition 5.3, recall that C(F,A) was defined in Defini-
tion 3.3, and that Fi, U , and χF were defined in Definition 4.4. Also recall Λo from (4.1).

Proposition 5.4. Fix o ∈ N. Let F be a fixed monic monomial in (2b + c)2 abstract variables,
with degree deg(F ). Then

1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijmU

]
= χFE[mdeg(F )U ]

do/2
+ To+1,deg(F )+1(U)

+ 1
do/2

O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ dE[C(U,A)]

N
+ Λ2−χF

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.8)

To prove Proposition 5.4, we shall use the following claims. The first claim states that the
averages of monomials with more than one off-diagonal Green’s function terms are subleading.

Claim 5.5. Let F be a fixed monomial in b2 abstract variables with at least two off-diagonal entries.
Then ∣∣∣∣∣ 1

N b

∑
i
E[FiU ]

∣∣∣∣∣ ≺ E[Im[m]|U |]
Nη

. (5.9)

Proof. Using |Gxy| ≺ 1 and U ≺ 1 from (4.3) to bound all except the two off-diagonal factors of
G in Fi and then using the Cauchy–Schwarz inequality, we have∣∣∣∣∣ 1

N b

∑
i
E[FiU ]

∣∣∣∣∣ ≺ 1
N b

∑
i
E
[
|Gi1i2 |2|U |

]
= 1
N2

∑
i1,i2

E
[
|Gi1i2 |2|U |

]
= E[Im[m]|U |]

Nη
, (5.10)

where the last equality is the Ward identity (4.2).

The following claim separates the leading order term of To(F,U) plus other terms of higher
order and much small error terms. It says that, to leading order, each factor of A in (5.6) can be
replaced with its expectation d/N .

Claim 5.6. Fix o ∈ N. Let F be a fixed monomial in (2b + c)2 abstract variables and let U be a
fixed polynomial in m. Then

1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijmU

]

= 1
do/2

1
N2b+c

∑
m

∑
ij

E
[
FijmU

]
+ To+1,deg(F )+1(U)

+ 1
do/2

O≺

(
E[|U |]
da/2

+ dE[C(U,A)]
N

+ Λ1−χFo
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.11)
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Proof. We prove the statement for o = 0; the general statement follows by multiplying both sides
by 1/do/2. By Corollary 3.4, the left-hand side of (5.11) is

1
N2b+c

∑
m

∑
ij

E
[
FijmU(A)

]

+ 1
N2b+cd2b

∑
m

∑
ijkl

E
[

b∏
a=1

AiakaAjala

(
FijmU

(
A+

b∑
a=1

ξkala
iaja

)
− FijmU(A)

)]
+ O≺

(
dE[C(U,A)]

N

)
,

(5.12)

where we used Remark 4.3 to estimate |Fijm| ≺ 1 as well as Lemma 4.8. For the second term in
(5.12), we use Claim 4.7 with F = Fijm. The term resulting from the first term on the right-hand
side of (4.27) gives rise to To+1,deg(F )+1(U). For the error terms, we note that, by Remark 4.3 we
have

1
N2b+cd2b

∑
m

∑
ijkl

b∏
a=1

AiakaAjala

∣∣∣∣∣Fijm

(
A+

b∑
a=1

ξkala
iaja

)∣∣∣∣∣ ≺ d

N
+ Λ1−χF

o 6 2Λ1−χF
o , (5.13)

where in the last step we used Assumption 4.1. In summary, the error terms resulting from the
application of Claim 4.7 to the second term of (5.12) are bounded by

O≺

(
E[|U |]
da/2

+ Λ1−χFo
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

The proof is therefore complete.

The following claim is a decoupling argument: when averaging over an index i that appears
in a diagonal Green’s function entry Gii and possibly many other places as well, up to some error
terms we can replace Gii with Gi′i′ , where i′ is a new summation index that appears in no other
place, over which we take the average. For example, this allows us to convert an expression of the
form 1

N

∑
i(Gii)2 to a polynomial in m of the form m2.

Claim 5.7. Fix o ∈ N. Let F be a fixed monomial in (1 + c)2 abstract variables. Then
1
do/2

1
N2+c

∑
ii′m

E[GiiFimU ]

= 1
do/2

1
N2+c

∑
ii′m

E[Gi′i′FimU ] + To+1,deg(F )+3(U)

+ 1
do/2

O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ d3/2ΛoE[C(U,A)]

N
+ Λ2−χF

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.14)

Proof. We prove the statement for o = 0, the general statement follows by multiplying both sides
by 1/do/2. By the definition of the Green’s function (2.2), we have(

1− 1
N

)
= −zGi′i′ +

N∑
j=1

Ai′jGji′√
d− 1

, (5.15)

(
1− 1

N

)
= −zGii +

N∑
j=1

AijGji√
d− 1

. (5.16)
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Multiplying (5.15) and (5.16) by GiiFimU and Gi′i′FimU respectively, averaging over the indices,
and then taking the difference, we get

1
N2+c

∑
ii′m

E[GiiFimU ] = 1
N2+c

∑
ii′m

E[Gi′i′FimU ] + O≺
(E[|U |]

N

)
+ 1
N2+c(d− 1)1/2

∑
ii′jm

(
E[Ai′jGji′GiiFimU ]− E[AijGjiGi′i′FimU ]

)
,

(5.17)

where we used that |GiiFim| ≺ 1 and |Gi′i′Fim| ≺ 1. We shall show that the difference of the two
terms on the right-hand side of (5.17) is of order o greater than 0, up to small error terms.

Using Corollary 3.4 we find

1
N2+c(d− 1)1/2

∑
ii′jm

E[Ai′jGji′GiiFimU ]

= 1
N3+cd(d− 1)1/2

∑
ii′jklm

E[Ai′kAjlDkl
i′j(Gji′GiiFimU)] + O≺

(
d3/2ΛoE[C(U,A)]

N

)
,

(5.18)

where we used that
∑
i′ Gji′ = 0, so that the main term in (3.11) vanishes, and from |Gji′ | we gain

an off-diagonal factor that is estimated by Λo. For the first term on the right-hand side of (5.18),
by the discrete product rule (4.6) and Claim 4.6,

Dkl
i′j(Gji′GiiFimU) = Dkl

i′j(Gji′GiiFim)U +Gji′GiiFimD
kl
i′j(U) +Dkl

i′j(Gji′GiiFim)Dkl
i′j(U)

= Dkl
i′j(Gji′GiiFim)U + O≺

(∣∣∣Gji′GiiFim +Dkl
i′j(Gji′GiiFim)

∣∣∣ 1√
d

max
s+s̄>1

|U (s,s̄)|
( Im[m]

Nη

)s+s̄)
.

(5.19)

We notice thatGji′GiiFim contains at least 2−χF off-diagonal entries andDkl
i′j(Gji′GiiFim) contains

at least 1− χF off-diagonal entries. Thus, by plugging (5.19) into (5.18), we get

1
N2+c(d− 1)1/2

∑
ii′jm

E[Ai′jGji′GiiFimU ]

= 1
N3+cd(d− 1)1/2

∑
ii′jklm

E[Ai′kAjlDkl
i′j(Gji′GiiFim)U ]

+ O≺

(
d3/2ΛoE[C(U,A)]

N
+ Λ2−χF

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])

= 1
N3+cd

a∑
n=1

1
n!(d− 1)(n+1)/2

∑
ii′jklm

E[Ai′kAjl(∂kli′j)n(Gji′GiiFim)U ]

+ O≺

(
E[|U |]
da/2

+ d3/2ΛoE[C(U,A)]
N

+ Λ2−χF
o max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
,

(5.20)

where the last step follows by Taylor expansion, as in Claim 4.7. The remaining derivative
(∂kli′j)n(Gji′GiiFim) is again a polynomial in {Gxy}x,y∈ii′jklm, and thus this term is in the form
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Tn−1,deg(F )+2+n(U). Treating the terms n = 1 and n > 2 separately, we get

1
N3+cd(d− 1)

∑
ii′jklm

E[Ai′kAjl∂kli′j(Gji′GiiFim)U ] + T1,deg(F )+4(U)

+ O≺

(
E[|U |]
da/2

+ d3/2ΛoE[C(U,A)]
N

+ Λ2−χF
o max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.21)

By Claim 5.6, the first term in (5.21) can be expanded as

1
N3+cd(d− 1)

∑
ii′jklm

E[Ai′kAjl∂kli′j(Gji′GiiFim)U ]

= d

N5+c(d− 1)
∑

ii′jklm
E[∂kli′j(Gji′GiiFim)U ] + T1,deg(F )+3(U)

+ O≺

(
E[|U |]
da/2

+ dE[C(U,A)]
N

+ Λ1−χFo
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.22)

Moreover, ∂kli′j(Gji′GiiFim) = Gji′∂
kl
i′j(GiiFim) + ∂kli′j(Gji′)GiiFim. The first term Gji′∂

kl
i′j(GiiFim)

contains at least two off-diagonal Green’s function entries. Thus, by the Claim 5.5, we have∣∣∣∣∣∣ d

N5+c(d− 1)
∑

ii′jklm
E[Gji′∂kli′j(GiiFim)U ]

∣∣∣∣∣∣ ≺ E[Im[m]|U |]
Nη

. (5.23)

To analyse the second term, we write ∂kli′j(Gji′) = −(Gξkli′jG)ji′ = −GjjGi′i′ +GjjGli′ +GjkGi′i′ −
Gji′Gji′ −GjkGli′ −GjlGki′ +Gji′Gki′ +GjlGji′ . Since the row and column sums of G are zero, all
but the first and fourth terms vanish when taking the average over the indices i′jkl. The fourth
term has two off-diagonal Green’s function entries and can therefore be estimated using Claim 5.5.
Thus we have

d

N5+c(d− 1)
∑

ii′jklm
E[∂kli′j(Gji′)GiiFimU ]

= − d

N5+c(d− 1)
∑

ii′jklm
E[GjjGi′i′GiiFimU ] + O≺

(E[Im[m]|U |]
Nη

)
.

(5.24)

By combining the estimates (5.20), (5.21), (5.22) and (5.23), we get

1
N2+c(d− 1)−1/2

∑
ii′jm

E[Ai′jGji′GiiFimU ]

= − d

N5+c(d− 1)
∑

ii′jklm
E[GjjGi′i′GiiFimU ] + T1,deg(F )+3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ d3/2ΛoE[C(U,A)]

N
+ Λ2−χF

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.25)
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Analogously, repeating the above argument for the last term in (5.17), we find

1
N2+c(d− 1)1/2

∑
ii′jm

E[AijGjiGi′i′Fim]

= − d

N5+c(d− 1)
∑

ii′jklm
E[GjjGi′i′GiiFimU ] + T1,deg(F )+3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ d3/2ΛoE[C(U,A)]

N
+ Λ2−χF

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.26)

Since the first terms on the right-hand sides of (5.25) and (5.26) are the same, they cancel upon
taking their difference, and our claim (5.14) follows by combining (5.17), (5.25) and (5.26). (Note
that the error term on the right-hand side of (5.17) can be absorbed into the third error term of
(5.14).)

Proof of Proposition 5.4. We prove the statement for o = 0, the general statement follows by
multiplying both sides by 1/do/2. By Claim 5.6, we have

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaFijmU

]

= 1
N2b+c

∑
m

∑
ij

E
[
FijmU

]
+ T1,deg(F )+1(U)

+ O≺

(
E[|U |]
da/2

+ dE[C(U,A)]
N

+ Λ1−χFo
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.27)

We now estimate the first term on the right-hand side, distinguishing three cases.
Case 1. The monomial Fijm has more than one off-diagonal Green’s function factors. Then, by
Claim 5.5,

1
N2b+c

∑
m

∑
ij

E
[
FijmU

]
≺ E[Im[m]|U |]

Nη
. (5.28)

Case 2. The monomial Fijm contains exactly one off-diagonal Green’s function factor. Then, with-
out loss of generality, we assume that Fijm = Grm1m1Gm1m2F̃ijm2···mc , where F̃ijm2···mc is a monomial
in terms of the Green’s function entries {Gxx}x∈{i1,j1,··· ,ib,jb,m2,··· ,mc} and r ∈ N. If r = 0 then Fijm
vanishes upon taking the average over m since

∑
m1 Gm1m2 = 0. For r > 1, we introduce new in-

dices m1
1,m

2
1, · · · ,mr

1, and repeatedly use Claim 5.7 to replace Grm1m1 by Gm1
1m

1
1
Gm2

1m
2
1
· · ·Gmr

1m
r
1
.
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This way we obtain

1
N2b+c

∑
m

∑
ij

E
[
Grm1m1Gm1m2F̃ijm2···mcU

]

= 1
N2b+c+r

∑
m1

1,··· ,m
r
1

∑
m

∑
ij

E
[

r∏
a=1

Gma
1m

a
1
Gm1m2F̃ijm2···mcU

]
+ T1,deg(F )+2(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ d3/2ΛoE[C(U,A)]

N
+ Λ2

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
= T1,deg(F )+2(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ d3/2ΛoE[C(U,A)]

N
+ Λ2

o max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
,

(5.29)

where in the last equality we used that
∑
m1 Gm1m2 = 0.

Case 3. The monomial Fijm contains only diagonal Green’s function terms. Then, by the same
argument as in Case 2, we can repeatedly use Claim 5.7 to get

1
N2b+c

∑
m

∑
ij

E
[
FijmU

]
= E[mdeg(F )U ] + T1,deg(F )+2(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ d3/2ΛoE[C(U,A)]

N
+ Λo max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.30)

By (5.27) and putting the three cases, (5.28), (5.29) and (5.30), together, the proposition follows.

5.2. Proof of Proposition 5.1. We prove the following proposition, from which Proposition 5.1
will follow easily by taking U = 1. The general form of Proposition 5.8 will be used in Section 7.

Proposition 5.8. Suppose that Assumption 4.1 holds. For every fixed integer a > 1, there exists
a polynomial, depending on d and a but not N , and whose degree depends on a only,

Qa(w) = dw2

d− 1 + 1
d

(
a3w

3 + a4w
4 + · · ·

)
,

with bounded coefficients a3, a4, . . . such that, for any z ∈ D,

1
N2d(d− 1)1/2

∑
ijkl

E[AikAjl(Dkl
ijGij)U ] + E[QaU ]

= O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.31)
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Proof. By (4.22) and Lemma 4.2,

1
N2

∑
ijkl

E[AikAjl(Dkl
ijGij)U ]

d(d− 1)1/2 =
∑
ijkl

E[AikAjl(∂klijGij)U ]
d(d− 1)N2

+
∑
ijkl

E[AikAjl((∂klij )2Gij)U ]
2d(d− 1)3/2N2 + T2,4(U) + O≺

(E[|U |]
da/2

)
.

(5.32)

For the first term on the right-hand side of (5.32), the derivative ∂klijGij is given by (4.8). For the
last four terms, GilGjj +GiiGkj +GikGij +GijGlj , using that

∑
j Gij = 0, we have∑

ijkl

1
d(d− 1)N2E[AikAjl(GilGjj +GiiGkj +GikGij +GijGlj)U ] = 0. (5.33)

For the term −GijGij , using (4.12), we have

−
∑
ijkl

1
d(d− 1)N2E[AikAjlGijGijU ] = −

∑
ij

d

(d− 1)N2E[GijGijU ] ≺ E[Im[m]|U |]
Nη

. (5.34)

For the term −GilGkj , we use (H − z)G = P⊥ and (4.12) to get

−
∑
ijkl

1
d(d− 1)N2E[AikAjlGilGkjU ] = − 1

d(d− 1)N2E[Tr(AGAG)U ]

= − 1
dN2E[Tr(z2G2 + 2zG+ P⊥)U ] ≺ E[Im[m]|U |]

dNη
+ E[|U |]

dN
≺ E[Im[m]|U |]

dNη
.

(5.35)

Summarizing, we can rewrite the first term on the right-hand side of (5.32) as

∑
ijkl

E[AikAjl(∂klijGij)U ]
d(d− 1)N2 = − d

d− 1E[m2U ]−
∑
ijkl

E[AikAjlGikGjlU ]
d(d− 1)N2 + O≺

(E[Im[m]|U |]
Nη

)
.

(5.36)

By Corollary 3.4,
∑
j Gij = 0 and the trivial extension of the product rule (4.6) and (4.24) to

differences in the direction ξi′k′ik + ξj
′l′

jl , the second term on the right-hand side of (5.36) is

∑
ijkl

E[AikAjlGikGjlU ]
d(d− 1)N2 = O≺

(
dE[C(U,A)]

N

)

+ 1
d3(d− 1)N4

∑
ii′jj′kk′ll′

E
[
Aii′Akk′Ajj′All′

(
GikGjlU

(
A+ ξi

′k′
ik + ξj

′l′

jl

)
−GikGjlU(A)

)]
= 1
d3(d− 1)N4

∑
ii′jj′kk′ll′

E
[
Aii′Akk′Ajj′All′

(
GikGjl

(
A+ ξi

′k′
ik + ξj

′l′

jl

)
−GikGjl(A)

)
U
]

+ O≺

(
dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])

= 1
d3(d− 1)3/2N4

∑
ii′jj′kk′ll′

E
[
Aii′Akk′Ajj′All′(∂i

′k′
ik + ∂j

′l′

jl )(GikGjl)U
]

+ T2,4(U) + O≺

(
E[|U |]
d(a+1)/2 + dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
,

(5.37)
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where in the first equality, we used Remark 4.3 and that GikGjl contains two off-diagonal terms,
and in the second equality we used Claim 4.7. For the first term on the right-hand side of (5.37),
we notice that (∂i′k′ik + ∂j

′l′

jl )(GikGjl) contains at least one off-diagonal term. By Proposition 5.4 we
get

1
d3(d− 1)3/2N4

∑
ii′jj′kk′ll′

E
[
Aii′Akk′Ajj′All′(∂i

′k′
ik + ∂j

′l′

jl )(GikGjl)U
]

= T2,4(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]
d(a+1)/2 + dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.38)

It follows by combining (5.36), (5.37), and (5.38) that

∑
ijkl

E[AikAjl(∂klijGij)U ]
d(d− 1)N2 = − d

d− 1E[m2U ] + T2,4(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]
d(a+1)/2 + dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.39)

For the second term on the right-hand side of (5.32), we notice that (∂klij )2Gij contains at least
one off-diagonal term. By Proposition 5.4 we get

∑
ijkl

E[AikAjl((∂klij )2Gij)U ]
2d(d− 1)3/2N2 = T2,3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]
d(a+1)/2 + dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.40)

We plug (5.39) and (5.40) into (5.32), which yields

1
N2

∑
ijkl

E[AikAjl(Dkl
ijGij)U ]

d(d− 1)1/2 = − d

d− 1E[m2U ] + T2,3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ dE[C(U,A)]

N
+ Λ2

o
d1/2 max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
.

(5.41)

Next, we apply Proposition 5.4 repeatedly to the term T2,3(U) on the right-hand side of (5.41).
For o > 2 and d > 3, Proposition 5.4 yields

To,d(U) = 1
do/2

E[pU ] + To+1,d+1(U)

+ 1
d

O≺

(
E[Im[m]|U |]

Nη
+ E[|U |]

da/2
+ dE[C(U,A)]

N
+ Λo max

s+s̄>1
E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄])
, (5.42)

where p is a polynomial in m, with bounded coefficients depending only on d, of degree at least
d. Applying (5.42) to T2,3(U) in (5.41) and then iterating (5.42) a times concludes the proof, by
(5.7).
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Proof of Proposition 5.1. Let Qa(w) be as constructed in Proposition 5.8. By taking the nor-
malized trace on both sides of (2.2), we have

1 + zm = 1
N

+
∑
ij

AijGij
N(d− 1)1/2 = 1

N
+
∑
i 6=j

AijGij
N(d− 1)1/2 , (5.43)

where the last equality follows since Aii = 0. By Corollary 3.2 with F = Gij , we have for i 6= j,
|F (A)|+ maxkl |F (A+ ξklij )| ≺ Λo (since Λo > d−1/2, see also Remark 4.3), and

E[1 + zm] = 1
N(d− 1)1/2

∑
i 6=j

E[AijGij ] + 1
N

= 1
N2

∑
ijkl

( 1
d(d− 1)1/2E[AikAjlDkl

ijGij ]
)

+ O≺

(
d3/2Λo
N

)
.

(5.44)

By Proposition 5.8 with U = 1, we have
1
N2

∑
ijkl

( 1
d(d− 1)1/2E[AikAjlDkl

ijGij ]
)

+ E[Qa] ≺
E[Im[m]]
Nη

+ 1
da/2

+ d

N
. (5.45)

The claim (5.3) follows from combining (5.44) and (5.45), and Λo > 1/
√
d,

E[1 + zm+Qa(m)] = O≺

(
1
da/2

+ E[Im[m]]
Nη

+ d3/2Λo
N

)
. (5.46)

This finishes the proof of Proposition 5.1.

6. Identification of the self-consistent equation

The algorithm that generates the polynomial Pa from Proposition 5.1 is explicit but quite compli-
cated, so that explicitly tracking the resulting coefficients of Pa is a hopeless task beyond the first
few orders. In this section we characterize these coefficients (asymptotically) as those of the power
series P∞(z, w) from (2.8), characterizing the Stieltjes transform md of the Kesten–McKay law.
Proposition 6.1. Uniformly in z ∈ C+, the polynomial Pa(z, w) = 1 + zw+Qa(w) constructed in
Proposition 5.1 satisfies

Pa(z,md(z)) = O(d−a/2), (6.1)
where md is the Stieltjes transform of the Kesten–McKay law, given by (2.5).
Corollary 6.2. Let Pa be the polynomial constructed in Proposition 5.1. Then Pa(z, w)−P∞(z, w) =
Qa(w) − Q∞(w) is a power series in w, which converges on the whole complex plane. Each of its
coefficients is of order O(d−a/2).

Definition 6.3. We write P ′a(z, w) ..= ∂wPa(z, w), and similarly P (k)
a (z, w) for the k-th derivative

in the variable w.
Corollary 6.4. The polynomial Pa constructed in Proposition 5.1 satisfies

|P ′a(z,md(z))| �
√
|κ|+ η + O(d−a/2), P ′′a (z,md(z)) = 2 + O(d−1/2), P ′′′a (z,md(z)) = O(1),

(6.2)
where z = 2 + κ + iη or z = −2 − κ + iη for η 6 K,−2 6 κ 6 K, where the constant K is from
(2.10).
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6.1. Proof of Proposition 6.1. The main ingredient of the proof of the proposition is the ideal
Green’s function Ĝ introduced in the following definition.

Definition 6.5. For z ∈ C+ define the ideal Green’s function Ĝ(z) = (Ĝij(z))i,j∈[N ] through

Ĝij ..= md δij −
mdmsc√
d− 1

Aij . (6.3)

Note that while Proposition 6.1 is deterministic, Ĝ is random. However, we remark that when i
and j have distance at most 1 in the random regular graph defined by A, the ideal Green’s function
Ĝij coincides with the Green’s function of the infinite d-regular tree

Gtree
ij = md

(
− msc√

d− 1

)dist(i,j)

(see [8, Proposition 5.1]) for vertices i and j with the same distance, while it is set to be 0 for all
pairs of vertices i, j with greater distance. Because it agrees with the tree Green’s function locally,
the ideal Green’s function is a random matrix that shares key algebraic properties with the true
Green’s function of the random graph, while its normalized trace is equal to the deterministic md.
As a consequence, we shall show that md = 1

N Tr Ĝ satisfies the same self-consistent equation as
m = 1

N TrG, up to small error terms, which will imply Proposition 6.1.

Lemma 6.6. The ideal Green’s function Ĝ has the following properties, uniformly in z ∈ C+.

(i) For any i ∈ [[N ]], |Ĝii| = O(1), and for i 6= j, |Ĝij | = O((d− 1)−1/2);

(ii)
∑N
i=1 Ĝii = Nmd;

(iii)
∑N
i=1 |Ĝij | =

∑N
j=1 |Ĝij | = O(d1/2);

(iv)
∑N
i=1 |Ĝij |2 =

∑N
j=1 |Ĝij |2 = O(1).

(v) For any i ∈ [[N ]],

1 =
(
(H − z)Ĝ

)
ii

= −zĜii +
N∑
j=1

AijĜij√
d− 1

. (6.4)

Proof. Properties (i)–(iv) are immediate consequences of the definition and md,msc = O(1). The
identity (6.4) follows from (2.5).

Crucially, under perturbation by a switching ξklij of A, the ideal Green’s function Ĝ satisfies
the same resolvent expansion as the real Green’s function G. The intuitive reason behind this
behaviour is the following. Take two edges, ij and kl, that are switchable. Then, in the limit where
dist(ij, kl) tends to infinity, the Green’s functions Ĝ and Gtree, when restricted to the vertices ijkl,
have identical behaviour under the switching ξklij .

To state this precisely, we introduce some notation. For an N × N matrix M = (Mij)i,j∈[[N ]]
and V ⊂ [[N ]] , we denote by M |V ..= (Mij)i,j∈V the submatrix induced by the set V . In particular,
A|V is the adjacency matrix of the graph A restricted to the vertex set V . We also frequently
abbreviate subsets of [[N ]] as {i, j} ≡ ij, and so on.
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Claim 6.7. Let i, j, k, l be distinct indices such that A|ijkl = ∆ik + ∆jl (i.e. χjlik(A) = 1). Then

Ĝ(A+ ξklij )|ijkl =
((
Ĝ(A)|ijkl

)−1 + (d− 1)−1/2ξklij |ijkl
)−1

. (6.5)

Proof. By the definition of Ĝ(A), we have

Ĝ(A)|ijkl =


md 0 −mdmsc√

d−1 0
0 md 0 −mdmsc√

d−1
−mdmsc√

d−1 0 md 0
0 −mdmsc√

d−1 0 md

 =


1
msc

0 1√
d−1 0

0 1
msc

0 1√
d−1

1√
d−1 0 1

msc
0

0 1√
d−1 0 1

msc


−1

, (6.6)

where in the last equality we used the identity (2.9) and 1 + zmsc +m2
sc = 0. Analogously,

Ĝ(A+ ξklij )|ijkl =


1
msc

1√
d−1 0 0

1√
d−1

1
msc

0 0
0 0 1

msc
1√
d−1

0 0 1√
d−1

1
msc


−1

=
((
Ĝ(A)|ijkl

)−1 + (d− 1)−1/2ξklij |ijkl
)−1

,

(6.7)

where the last equality follows from (6.6). This proves (6.5).

By definition, the ideal Green’s function of course has a trivial perturbation expansion under
switchings since it is an affine linear function of A. However, when perturbed by the specific
direction and magnitude of a switching, its behaviour can be written in a more complicated but
more useful way, which matches precisely the corresponding resolvent expansion for switchings of
the true Green’s function. Indeed, as a consequence of Claim 6.7, we obtain the following resolvent
expansion for the transformation by switching of the ideal Green’s function.

Claim 6.8. For b, c ∈ N consider tuples i = (i1, . . . , ib), j = (j1, . . . , jb), k = (k1, . . . , kb),
l = (l1, . . . , lb), m = (m1, . . . ,mc) such that the indices ijklm are distinct and A|ijklm = A|m +∑b
a=1(∆iaka + ∆jala). Then(

Ĝ

(
A+

b∑
a=1

ξkala
iaja

)
− Ĝ(A)

)∣∣∣∣∣
ijklm

=
(∑
n>1

1
(d− 1)n/2

Ĝ(A)
(
−

b∑
a=1

ξkala
iaja

Ĝ(A)
)n)∣∣∣∣∣

ijklm

. (6.8)

Proof. We shall prove that

Ĝ

(
A+

b∑
a=1

ξkala
iaja

)∣∣∣∣∣
ijklm

=
((
Ĝ(A)|ijklm

)−1
+ (d− 1)−1/2

b∑
a=1

ξkala
iaja
|ijklm

)−1

, (6.9)

and the claim (6.8) then follows from the resolvent expansion, which converges for large enough
d because Ĝij = O(1) by Lemma 6.6. By assumption, A|ijklm is a block matrix with b + 1
blocks, indexed by {i1, j1, k1, l1}, {i2, j2, k2, l2}, · · · , {ib, jb, kb, lb} and {m1, · · · ,mc}. By our defi-
nition (6.3) of ideal Green’s function Ĝ, both Ĝ(A +

∑b
a=1 ξ

kalb
iaja

)|ijklm and Ĝ(A)|ijklm have this
same block structure. Thus both sides of (6.9) vanish except for the submatrix indexed by
{i1, j1, k1, l1}, {i2, j2, k2, l2}, · · · , {ib, jb, kb, lb} and {m1, · · · ,mc}, and (6.9) follows from (6.5).
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Claim 6.8 says that the ideal Green’s function Ĝ has exactly the same behaviour under a
switching A 7→ A +

∑b
a=1 ξ

kala
iaja

as the true Green’s function G. To make this precise, we need the
following definition, which is to be compared with Definitions 4.4 and 5.3.

Definition 6.9. (i) For any polynomial F in r2 abstract variables and i ∈ [[N ]]r, denote by
F̂i = F ({Ĝisit}ris,it=1) the corresponding polynomial in the ideal Green’s function entries.
Hence, F̂i is obtained from Fi by replacing every factor Gij in Fi by Ĝij .

(ii) For a polynomial F̂ijm in the ideal Green’s function entries and o ∈ N, we define T̂o(F, 1) as
the right-hand side of (5.6) with U = 1 and Fijm replaced with F̂ijm.

With this definition, we can rewrite the right-hand side of (6.8) as

∑
n>1

1
n!(d− 1)n/2

(
b∑

a=1
∂kala
iaja

)n
G(A)

̂
∣∣∣∣∣∣∣
ijklm

Thus, Claim 6.8 implies the following result, which is the analogue of Claim 4.7.

Claim 6.10. Let ijklm satisfy the assumptions of Claim 6.8, and let Fijm be a polynomial in the
Green’s function entries. Then for any positive integer a > 1 we have

F̂ijm

(
A+

b∑
a=1

ξkala
iaja

)
− F̂ijm(A) =

a−1∑
n=1

1
n!(d− 1)n/2

(
b∑

a=1
∂kala
iaja

)n
Fijm(A)

̂+ O
( 1
da/2

)
.

Tha main ingredient in the proof of Proposition 6.1 is the following result, which is the analogue
of Proposition 5.4 for the ideal Green’s function.

Proposition 6.11. Fix o ∈ N. Let F be a fixed monic monomial in (2b + c)2 abstract variables,
with degree deg(F ), and let F̂ijm be the corresponding monomial in the ideal Green’s function entries
from Definition 6.9(i). Recall the definition of χF from Definition 4.4. Then

1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaF̂ijm

]
= χF m

deg(F )
d

do/2
+ T̂o+1,deg(F )+1(1) + 1

do/2
O
( 1
da/2

+ d

N

)
,

(6.10)

where the term T̂o+1,deg(F )+1(1) is equal to the corresponding term To+1,deg(F )+1(1) from (5.8) with
G replaced by Ĝ (see Definition 6.9(ii)).

Proof. The proof involves repeating the proof of Proposition 5.4 with U = 1 almost verbatim,
replacing Claim 4.7 and (5.16) with Claim 6.10 with (6.4) respectively.

More precisely, the proof of Proposition 5.4 relies only on the following ingredients:
∑
iGij = 0,

Claim 5.5, Claim 5.6, and Claim 5.7. Each of these has the following analogue for the ideal Green’s
function Ĝ. We replace

∑
iGij = 0 with Lemma 6.6(iii). For Claim 5.5, we replace (5.9) with

U = 1 by ∣∣∣∣∣ 1
N b

∑
i
E
[
F̂i
]∣∣∣∣∣ = O

( 1
N

)
,
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as follows from Lemma 6.6(iv). For Claim 5.6, we replace (5.11) with U = 1 by

1
do/2

1
N b+cdb

∑
m

∑
ij

E
[

b∏
a=1

AiajaF̂ijm

]

= 1
do/2

1
N2b+c

∑
m

∑
ij

E
[
F̂ijm

]
+ T̂o+1,deg(F )+1(1) + 1

do/2
O
( 1
da/2

+ d

N

)
,

where T̂o+1,deg(F )+1(1) is obtained from To+1,deg(F )+1(1) in (5.11) by replacing G with Ĝ. Here we
used Claim 6.10 instead of Claim 4.7. Finally, for Claim 5.7, we replace (5.14) with U = 1 by

1
do/2

1
N2+c

∑
ii′m

E[ĜiiF̂im] = 1
do/2

1
N2+c

∑
ii′m

E[Ĝi′i′F̂im] + T̂o+1,deg(F )+3(1) + 1
do/2

O
( 1
da/2

+ d

N

)
,

where T̂o+1,deg(F )+3(1) is obtained from To+1,deg(F )+3(1) in (5.14) by replacing G with Ĝ. Here we
used Claim 6.10 and (6.4) instead of Claim 4.7 and (5.15), (5.16), respectively.

This concludes the proof.

Proof of Proposition 6.1. The polynomial Pa(z, w) in Proposition 5.1 was constructed by re-
peatedly applying Proposition 5.4. Using Proposition 6.11 instead, we can repeat its proof verbatim
to obtain

Pa(z,md) = O
( 1
da/2

+ d

N

)
. (6.11)

Since the left-hand side does not depend on N (recall Proposition 5.1), taking the limit N → ∞
yields the claim.

6.2. Proof of Corollaries 6.2 and 6.4.

Proof of Corollary 6.2. We define the power series

R(w) = Pa(z, w)− P∞(z, w). (6.12)

It follows from Proposition 6.1 that for any z ∈ C,

R(md(z)) = Pa(z,md(z)) = O(d−a/2). (6.13)

Next, we remark that the disk {w ∈ C : |w| 6 d−1
d } lies in the image md(C). Indeed, from (2.7)

we find that the image msc(C) is the closed unit disk in C, and the above claim then follows from
the identity md = (d−1)msc

d−1−m2
sc
, which follows from (2.5) and (2.7). As a consequence, we have that for

any w such that |w| 6 d−1
d ,

R(w) = O(d−a/2). (6.14)

For any fixed degree k, the coefficients of wk in the infinite series R(w) is given by

1
2πi

∮
|w|=(d−1)/d

R(w)
wk+1 dw = O(d−a/2), (6.15)

since d > 2. This finishes the proof.
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Proof of Corollary 6.4. By Corollary 6.2, we have

P
(k)
a (z,md(z)) = P (k)

∞ (z,md(z)) + O(d−a/2), k = 1, 2. (6.16)

Since P∞(z,md(z)) = 0 for z ∈ C+, by the chain rule,

0 = ∂zP∞(z,md(z)) = md(z) + P ′∞(z,md(z))∂zmd(z). (6.17)

Rearranging the above expression gives

P ′∞(z,md(z)) = − md(z)
∂zmd(z)

, (6.18)

so that an elementary analysis of (2.5) and (2.7) yields
∣∣P ′∞(z,md(z))

∣∣ � √|κ|+ η,

and the first relation of (6.2) follows from combining (6.16) and (6.18). The second relation of (6.2)
follows from (6.16) and

P ′′∞(z,md(z)) = 2 + O(d−1/2). (6.19)

This completes the proof.

7. Moment estimate for the self-consistent equation

In order to establish the self-consistent equation for m in the sense of high probability, in this
section we derive a recursive moment estimate for the high moments of Pa(z,m), where Pa is the
polynomial constructed in Proposition 5.1. In the next section, we establish eigenvalue rigidity
estimates using a careful analysis of this recursive moment estimate and an iteration argument.

Proposition 7.1. Suppose that Assumption 4.1 holds, and that Λd > Λo > 1/
√
d. Let Pa(z, w) be

the polynomial constructed in Proposition 5.1. Fix r ∈ N. Abbreviating Pa ≡ Pa(z,m(z)), we have
for any z ∈ D,

E[|Pa|2r] ≺
Λ2

d
d1/2E

[ Im[m]|P ′a|
Nη

|Pa|2r−2
]

+ E
[ Im[m]|P ′a|

(Nη)2 |Pa|2r−2
]

+ Λo
d1/2E

[
Im[m]|P ′a|2

(Nη)3 |Pa|2r−3
]

+
(

1
da/2

+ d3/2Λo
N

)
E[|Pa|2r−1] + max

16s62r
E
[( Im[m]

Nη

)s
|Pa|2r−s

]

+
(

Λd
d

+ Λ2
o

d1/2 + dΛo
N

)
max

16s62r−1
E
[( Im[m]|P ′a|

Nη

)s
|Pa|2r−s−1

]
.

(7.1)

The rest of this section is devoted to the proof of Proposition 7.1. We begin by writing
Pa(z,m) = 1 +mz +Qa(m) (see (5.1)) and then apply the identity (see (2.2))

1 + zm = 1
N

∑
ij

HijGij + 1
N
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to obtain

E[|Pa|2r] = E[(1 + zm)P r−1
a P̄ ra ] + E[QaP

r−1
a P̄ ra ]

= 1
(d− 1)1/2N

∑
ij

E[AijGijP r−1
a P̄ ra ] + E[QaP

r−1
a P̄ ra ] + O

(
E[|Pa|2r−1]

N

)
.

(7.2)

For the first term on the second line of (7.2), we use Corollary 3.2 with the random variable
F = GijP

r−1
a P ra and note that for i 6= j

|F (A)|+ max
kl
|F (A+ ξklij )| ≺ ΛoC(P r−1

a P̄ ra , A),

where we recall the definition (3.10) and we used Remark 4.3. This yields

1
(d− 1)1/2N

∑
ij

E[AijGijP r−1
a P̄ ra ] = d

(d− 1)1/2N2

∑
i 6=j

E[GijP r−1
a P̄ ra ]

+ 1
N2d(d− 1)1/2

∑
i 6=j

∑
kl

E[AikAjlDkl
ij (GijP r−1

a P̄ ra )] + O≺

(
d3/2Λo
N

E[C(P r−1
a P̄ ra , A)]

)

= 1
N2d(d− 1)1/2

∑
ijkl

E[AikAjlDkl
ij (GijP r−1

a P̄ ra )] + O≺

(
d3/2Λo
N

E[C(P r−1
a P̄ ra , A)]

)
,

(7.3)

where in the last equality we used Λo > 1/
√
d. To estimate the error term, we remark that for

U = P r−1
a P̄ ra we have

max
s+s̄>1

E
[
|U (s,s̄)|

( Im[m]
Nη

)s+s̄]
≺ max

16s62r−1
E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
, (7.4)

as can be seen after some elementary algebra. Using (4.24) for U = P r−1
a P̄ ra we get

C(P r−1
a P̄ ra , A) ≺ |Pa|2r−1 + 1√

d
max

16s62r−1
E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
. (7.5)

By the discrete product rule (4.6), the first term in the last line of (7.3) equals

E[AikAjlDkl
ij (GijP r−1

a P̄ ra )] = E[AikAjlDkl
ij (Gij)P r−1

a P̄ ra ]
+ E[AikAjlGijDkl

ij (P r−1
a P̄ ra )] + E[AikAjlDkl

ij (Gij)Dkl
ij (P r−1

a P̄ ra )].
(7.6)

At this point we note the crucial cancellation, by Proposition 5.8, of the first term on the right-hand
side of (7.6) with E[QaP

r−1
a P̄ ra ] from (7.2). Indeed, by Proposition 5.8 for U = P r−1

a P̄ ra , recalling
(7.4) and (7.5), we find

1
N2d(d− 1)1/2

∑
ijkl

E[AikAjlDkl
ij (Gij)P r−1

a P̄ ra ] + E[QaP
r−1
a P̄ ra ] ≺ E

[( 1
da/2

+ Im[m]
Nη

+ d

N

)
|Pa|2r−1

]

+
(
d1/2

N
+ Λ2

o
d1/2

)
max

16s62r−1
E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
.

(7.7)

32



What remains, therefore, is to estimate the contributions of the second and third terms on the
right-hand side of (7.6). For the second term on the right-hand side of (7.6), we claim that

1
N2d(d− 1)1/2

∑
ijkl

E[AikAjlGijDkl
ij (P r−1

a P̄ ra )] ≺ E
[ΛoΛd
d1/2

Im[m]|P ′a|
Nη

|Pa|2r−2
]

+ E
[ Im[m]|P ′a|

(Nη)2 |Pa|2r−2
]

+ Λo
d

max
16s62r−1

E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]

+ Λo
d1/2E

[( Im[m]
Nη

)2
|Pa|2r−2

]
+ Λo
d1/2E

[
Im[m]|P ′a|2

(Nη)3 |Pa|2r−3
]
.

(7.8)

Essentially, this estimate will arise from the three off-diagonal Green’s function entries obtained
from Gij and the derivative on P r−1

a P̄ ra .
For the third term on the right-hand side of (7.6), we claim that

1
N2d(d− 1)1/2E[AikAjlDkl

ij (Gij)Dkl
ij (P r−1

a P̄ ra )] ≺ Λ2
d

d1/2E
[ Im[m]|P ′a|

Nη
|Pa|2r−2

]
+ d

N
E[|Pa|2r−1]

+
(
d1/2

N
+ Λd

d
+ Λ2

o
d1/2

)
max

16s62r−1
E
[(

Im[m]|P ′a|
Nη

+
( Im[m]

Nη

)2)s
|Pa|2r−s−1

]
+ E

[ Im[m]
Nη

|Pa|2r−1
]
.

(7.9)

This estimate will arise from certain special cancellations arising from the d-regular graph structure.
Proposition (7.1) follows from combining the estimates (7.2), (7.3), (7.4), (7.6), (7.7), (7.8) and

(7.9). In the remainder of this section, we prove these estimates (7.8) and (7.9).

7.1. Proof of (7.8). By (4.7), left-hand side of (7.8) can be written as

O(1)
N2d3/2

∑
ijkl

E[AikAjlGijDkl
ij (P r−1

a P̄ ra )] =
b−1∑
n=1

O(1)
N2d(n+3)/2

∑
ijkl

E[AikAjlGij(∂klij )n(P r−1
a P̄ ra )]

+ O(1)
N2d(b+3)/2

∑
ijkl

E
[
AikAjlGij

(
(∂klij )b(P r−1

a P̄ ra )(A+ θξklij )
)]
,

(7.10)

for some random θ ∈ [0, 1]. In fact, for the terms corresponding to n > 3 in (7.10), we have the
following simple estimate.

Claim 7.2. For the terms in (7.10) with n > 3,

1
N2d(n+3)/2

∑
ijkl

E[AikAjlGij(∂klij )n(P r−1
a P̄ ra )]

≺ Λo
d(n−1)/2 max

16s62r−1
E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
.

(7.11)

Proof. Thanks to (4.15) and chain rule, we have

(∂klij )n(P r−1
a P̄ ra ) ≺ max

16s62r−1

(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s. (7.12)
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Using maxi 6=j |Gij | ≺ Λo and maxi |Gii| ≺ 1, it leads to

1
N2d(n+3)/2

∑
ijkl

E[AikAjlGij(∂klij )n(P r−1
a P̄ ra )]

≺ 1
N2d(n+3)/2

 max
16s62r−1

∑
i 6=j

∑
kl

E
[
AikAjlΛo

(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]

+ max
16s62r−1

∑
ikl

E
[
AikAil

(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

])

≺ Λo
d(n−1)/2 max

16s62r−1
E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
,

(7.13)

where in the last inequality we used that
∑
i 6=jklAikAjl = N2d2 and

∑
iklAikAil = Nd2 and

Λo > 1/N .

Moreover, by choosing b large enough, depending on r, it follows that the second line of (7.10)
is bounded by N−2r.

In the following, we estimate the terms on the right-hand side of (7.10), corresponding to n = 1
and n = 2.

Claim 7.3. For the term in (7.10) with n = 1,

1
N2d2

∑
ijkl

E[AikAjlGij∂klij (P r−1
a P̄ ra )] ≺ E

[ Im[m]|P ′a|
(Nη)2 |Pa|2r−2

]
. (7.14)

Proof. For the derivative ∂klij (P r−1
a P̄ ra ), we have

∂klij (P r−1
a P̄ ra ) = (r − 1)∂klijmP ′aP r−2

a P̄ ra + (· · · ), (7.15)

where (· · · ) denotes analogous terms with complex conjugates obtained by applying the derivatives
to P̄a instead of Pa. We estimate the error from the first term, for which we can first sum over the
indices i, j, k, l. By (4.9),

1
N2d2

∑
ijkl

AikAjlGij∂
kl
ijm = 2

N3d2

∑
ijkl

AikAjlGij(−(G2)ij − (G2)kl + (G2)ik + (G2)jl). (7.16)

There are four terms on the right-hand side of (7.16). For the first term, using (4.11),

1
N3d2

∑
ijkl

AikAjlGij(G2)ij = 1
N3

∑
ij

Gij(G2)ij = 1
N3 TrG3 ≺ Im[m]

(Nη)2 . (7.17)
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For the second term on the right-hand side of (7.16), using that (H − z)G = P⊥ and (4.11),

1
N3d2

∑
ijkl

AikAjlGij(G2)kl = 1
N3d2 Tr(GAGAG)

= 1
N3d2 Tr(G(A−

√
d− 1z)G(A−

√
d− 1z)G)

+ 2
N3d2 Tr(G(

√
d− 1z)G(A−

√
d− 1z)G)

+ 1
N3d2 Tr(G(

√
d− 1z)G(

√
d− 1z)G)

= O(1)
N3d

TrG+ O(1)
N3d

TrG2 + O(1)
N3d

TrG3 = O≺
( Im[m]
d(Nη)2

)
.

(7.18)

For the last two terms on the right-hand side of (7.16), since
∑
j Gij = 0,

1
N3d2

∑
ijkl

AikAjlGij(G2)ik = 1
N3d

∑
ijk

AikGij(G2)ik = 0,

1
N3d2

∑
ijkl

AikAjlGij(G2)jl = 1
N3d

∑
ijl

AjlGij(G2)jl = 0.
(7.19)

By combining expressions (7.17), (7.18) and (7.19), we obtain the estimate

1
N2d2

∑
ijkl

AikAjlGij∂
kl
ijm ≺

Im[m]
(Nη)2 , (7.20)

for (7.16), and the Claim 7.3 follows.

Claim 7.4. For the term in (7.10) with n = 2,

1
N2d5/2

∑
ijkl

E[AikAjlGij(∂klij )2(P r−1
a P̄ ra )] ≺ E

[ΛoΛd
d1/2

Im[m]|P ′a|
Nη

|Pa|2r−2
]

+ Λo
d1/2E

[( Im[m]
Nη

)2
|Pa|2r−2

]
+ Λo
d1/2E

[
Im[m]|P ′a|2

(Nη)3 |Pa|2r−3
]

+ Λo
d
E
[( Im[m]|P ′a|

Nη

)2
|Pa|2r−3

]
.

(7.21)

Proof. For the derivative ∂klij (P r−1
a P̄ ra ), we have

(∂klij )2(P r−1
a P̄ ra ) = ((∂klij )2m)P ′aP r−2

a P̄ ra + (∂klijm)2P ′′a P
r−2
a P̄ ra + ((∂klijm)P ′a)2P r−3

a P̄ ra + (· · · ), (7.22)

where (· · · ) denotes analogous terms with complex conjugates obtained by applying the derivatives
to P̄a instead of Pa. We consider the terms separately.

For the first term in (7.22), we use the explicit formula

(∂klij )2m = 2
N

N∑
a=1

∂klij (−GiaGja −GkaGla +GiaGka +GjaGla) = 2
N

N∑
a=1

(GiiG2
ja + · · · ), (7.23)
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where · · · denotes 31 other terms obtained by applying the product rule for differentiation for ∂klij .
Using that

∑
j Gij = 0 and (4.11), the first term gives

1
N3d5/2

∑
ijkla

AikAjlGijGiiG
2
ja = 1

N3d1/2

∑
ij

GijGii(G2)jj ,

= 1
N3d1/2

∑
ij

Gij(Gii −m)(G2)jj ≺
ΛoΛd
d1/2

Im[m]
Nη

.

(7.24)

An analogous calculation can be performed for all terms on the right-hand side of (7.23). Indeed,
every such term has three factors ofG, exactly two of which have an index a, and the third remaining
factor is either diagonal (in which case the same argument as above applies) or off-diagonal (in which
case we gain Λo instead of Λd). Since Λd > Λo, it leads to the estimate

1
N2d5/2

∑
ijkl

E[AikAjlGij((∂klij )2m)P ′aP r−2
a P̄ ra ] ≺ E

[ΛoΛd
d1/2

Im[m]|P ′a|
Nη

|Pa|2r−2
]
. (7.25)

For the second term in (7.22), we can directly apply (4.14) to get the bound

1
N2d5/2

∑
ijkl

E[AikAjlGij(∂klijm)2P ′′a P
r−2
a P̄ ra ] ≺ Λo

d1/2E
[( Im[m]

Nη

)2
|P ′′a ||Pa|2r−2

]
, (7.26)

which is enough by P ′′a ≺ 1.
For the third term in (7.22), we have (∂klijm)2 = 4((G2)ij +(G2)kl−(G2)ik−(G2)jl)2/N2. There

are ten different terms, which we estimate one by one. For the term (G2)ij(G2)ij , we use (4.11) to
get

1
N4d5/2

∑
ijkl

AikAjlGij(G2)ij(G2)ij = 1
N4d1/2

∑
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Gij(G2)ij(G2)ij
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∑
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∣∣∣2 + 1
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∑
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∣∣∣(G2)ii
∣∣∣2

= 1
N4d1/2 Λo Tr |G|4 + 1

Nd1/2

( Im[m]
Nη

)2
≺ Λo
d1/2

Im[m]
(Nη)3 + 1

Nd1/2

( Im[m]
Nη

)2
.

(7.27)

For the term (G2)ij(G2)kl, we use (4.11) and (H − z)G = P⊥ to get

1
N4d5/2

∑
ijkl

AikAjlGij(G2)ij(G2)kl = 1
N4d5/2

∑
ij

Gij(G2)ij(AG2A)ij

= d− 1
N4d5/2

∑
ij

Gij(G2)ij(z2G2 + 2zG+ P⊥)ij

≺ 1
N2d3/2

∑
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|Gij |
Im[m]2

(Nη)2 ≺
Λo
d3/2

( Im[m]
Nη

)2
,

(7.28)

where in the second equality we used that AG2A = (d−1)(H−z+z)G2(H−z+z) = (d−1)(z2G2 +
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2zG+ P⊥). For the term (G2)ij(G2)ik, we use (4.11) and (H − z)G = P⊥ to get

1
N4d5/2

∑
ijkl

AikAjlGij(G2)ij(G2)ik = 1
N4d3/2

∑
ij

Gij(G2)ij(AG2)ii

= (d− 1)1/2

N4d3/2

∑
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Gij(G2)ij(zG2 +G)ii

≺ 1
N2d

∑
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|Gij |
Im[m]2

(Nη)2 ≺
Λo
d

( Im[m]
Nη

)2
,

(7.29)

where in the second equality we used that AG2 = (d − 1)1/2(H − z + z)G2 = (d − 1)2(zG2 + G).
The term (G2)ij(G2)jl can be estimated in the same way. For the term (G2)kl(G2)kl, we use (4.11)
and (H − z)G = P⊥ to get

1
N4d5/2

∑
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∑
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Im[m]2
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( Im[m]
Nη

)2
,

(7.30)

where in the second equality we used that AGA = (d− 1)(H − z+ z)G(H − z+ z) = (d− 1)(z2G+
zP⊥ + HP⊥), and in the last inequality, we used Λo > 1/

√
d and

∑
kl |(z2G + zP⊥ + HP⊥)kl| ≺

N2Λo + d1/2N 6 N2Λo. For the term (G2)kl(G2)ik, we use (4.11) and (H − z)G = P⊥ to get

1
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(Nη)2 ≺
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d

( Im[m]
Nη

)2
,

(7.31)

where in the second line we used AG = (d− 1)1/2(H − z + z)G = (d− 1)1/2(zG+ P⊥), and in the
last inequality we used

∑
l |(zG + P⊥)il| 6 NΛo. The term (G2)kl(G2)jl can be estimated in the

same way. For the term (G2)ik(G2)ik, we use that
∑
j Gij = 0 to get

1
N4d5/2

∑
ijkl

AikAjlGij(G2)ik(G2)ik = 1
N4d3/2

∑
ijk

AikGij(G2)ik(G2)ik = 0. (7.32)

The term (G2)jl(G2)jl can be estimated in the same way. For the term (G2)ik(G2)jl, we use (4.11)
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and (H − z)G = P⊥ to get

1
N4d5/2

∑
ijkl

AikAjlGij(G2)ik(G2)jl = 1
N4d5/2

∑
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∑
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N2d3/2

∑
ij

|Gij |
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Nη

)2
.

(7.33)

where in the second equality, we used AG2 = (d− 1)1/2(H − z + z)G2 = (d− 1)1/2(zG2 +G).
We combine the above estimates together, and find that the third term in (7.22) is bounded by

1
N2d5/2

∑
ijkl

E[AikAjlGij((∂klijm)P ′a)2P r−3
a P̄ ra ]

≺ Λo
d1/2E

[
Im[m]|P ′a|2

(Nη)3 |Pa|2r−3
]

+ Λo
d
E
[( Im[m]|P ′a|

Nη

)2
|Pa|2r−3

]
.

(7.34)

The Claim 7.4 follows from combining (7.25), (7.26) and (7.34).

7.2. Proof of (7.9). By (4.7), the left-hand side of (7.9) can be written as

1
N2d(d− 1)1/2

∑
ijkl

E[AikAjlDkl
ij (Gij)Dkl

ij (P r−1
a P̄ ra )]

=
b1−1∑
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AikAjl

(
(∂klij )b1(Gij)(A+ θξklij )

)
Dkl
ij (P r−1

a P̄ ra )
]
,

(7.35)

for some random θ ∈ [0, 1]. As above, by choosing b1 large enough, depending on r, we find that
the last line of (7.35) is bounded by N−2r. Moreover, for terms corresponding to n1 > 3 in (7.35),
we have the following simple estimate.

Claim 7.5. For the terms n1 > 3 on the right-hand side of (7.35),

1
N2d(d− 1)(n1+1)/2

∑
ijkl

E
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AikAjl(∂klij )n1(Gij)Dkl
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]
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Nη
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]
.

(7.36)

Proof. Thanks to (4.7) and (7.12), we have

Dkl
ij (P r−1

a P̄ ra ) ≺ max
16s62r−1

(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s |Pa|2r−1−s

d1/2 . (7.37)
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Combining with (∂klij )n1Gij ≺ 1 we obtain

1
N2d(d− 1)(n1+1)/2

∑
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Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]

= 1
dn1/2

max
16s62r−1

E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
.

In the following, we estimate the terms on the right-hand side of (7.35), corresponding to n1 = 1
and n1 = 2.

Claim 7.6. For the term n1 = 1 on the right-hand side of (7.35),
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(7.38)

Proof. The derivative ∂klijGij is given by

∂klijGij = −GiiGjj +GilGjj +GiiGkj −GijGij −GikGlj −GilGkj +GikGij +GijGlj . (7.39)

We shall show that the biggest term is −GiiGjj , and that the other terms are smaller. We first
estimate those terms in (7.39) which contain two off-diagonal terms, i.e., −GijGij − GikGlj −
GilGkj +GikGij +GijGlj . For the term GijGij , using (7.37) to bound Dkl

ij (P r−1
a P̄ ra ),

1
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.

(7.40)

The same argument applies to the other terms with two off-diagonal indices.
We next estimate those terms in (7.39), which contain exactly one off-diagonal term, i.e.,

GilGjj +GiiGkj . For the term GilGjj ,
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,

(7.41)
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for some random θ ∈ [0, 1]. As above, by choosing b2 large enough, depending on r, we find that
the last line of (7.41) is bounded by N−2r. Moreover, for terms corresponding to n2 > 2 in (7.35),
by the same argument as (7.40) and maxi 6=l |Gil| ≺ Λo, we have the simple estimate

1
N2d(d− 1)1+n2/2

∑
ijkl

E
[
AikAjlGilGjj(∂klij )n2(P r−1

a P̄ ra )
]

≺ Λo
dn2/2

max
16s62r−1

E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
.

(7.42)

Using the above estimate in (7.41), we get

1
N2d(d− 1)

∑
ijkl

E
[
AikAjlGilGjjD

kl
ij (P r−1

a P̄ ra )
]

= 1
N2d(d− 1)3/2

∑
ijkl

E
[
AikAjlGilGjj∂

kl
ij (P r−1

a P̄ ra )
]

+ O≺

(
Λo
d

max
16s62r−1

E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

])
.

(7.43)

The first term on the right-hand side of (7.43), arising from n2 = 1, needs to be estimated more
precisely. It can be written as

1
N2d(d− 1)3/2

∑
ijkl

E
[
AikAjlGilGjj∂

kl
ij (P r−1

a P̄ ra )
]

= O(1)
N2d5/2

∑
ijkl

E
[
AikAjlGilGjj

(
(r − 1)∂klijmP ′aP r−2

a P̄ ra + r∂klij m̄P̄
′
a|Pa|2r−2

)]
.

(7.44)

We estimate
∑
iklAikAjlGil∂

kl
ijm, and the other term

∑
iklAikAjlGil∂

kl
ij m̄ can be estimated in the

same way. Recalling (4.9), we have

∂klijm = 2
N

(−(G2)ij − (G2)kl + (G2)ik + (G2)jl). (7.45)

We first estimate the terms in (7.45) which do not contain the index l. For the terms (G2)ij+(G2)ik,
using the definition of the Green’s function (H − z)G = P⊥ and then using (4.12),

1
N3d5/2

∑
ijkl

AikAjlGil(−(G2)ij + (G2)ik) = 1
N3d5/2

∑
ijk

Aik(AG)ij(−(G2)ij + (G2)ik)

= (d− 1)1/2

N3d5/2

∑
ijk

Aik(zG+ P⊥)ij(−(G2)ij + (G2)ik)

≺ 1
N2d2

∑
ijk

Aik|(zG+ P⊥)ij |
Im[m]
Nη

≺ Λo
d

Im[m]
Nη

,

(7.46)

where in the second equality we used that AG = (d − 1)1/2(H − z + z)G = (d − 1)1/2(zG + P⊥).
For the terms which do not contain the index i, (G2)jl − (G2)lk, analogously,

1
N3d5/2

∑
ijkl

AikAjlGil((G2)jl − (G2)lk) ≺
Λo
d

Im[m]
Nη

. (7.47)
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We plug the estimates (7.46) and (7.47) into (7.44), and get

1
N2d(d− 1)3/2

∑
ijkl

E
[
AikAjlGilGjj∂

kl
ij (P r−1

a P̄ ra )
]
≺ Λo

d
E
[ Im[m]|P ′a|

Nη
|Pa|2r−2

]
. (7.48)

The same argument applies to the term GiiGkj , and we have the same estimate as (7.48).
To estimate the term −GiiGjj in (7.39) we use the following Claim 7.7, which concludes the

proof.

The following claim uses a cancellation that exploits that the graph is regular.

Claim 7.7. We have

1
N2d(d− 1)

∑
ijkl

E
[
AikAjlGiiGjjD

kl
ij (P r−1

a P̄ ra )
]
≺ Λ2

d
d1/2E

[ Im[m]|P ′a|
Nη

|Pa|2r−2
]

+ d

N
E[|Pa|2r−1]

+
(
d1/2

N
+ Λd

d

)
max

16s62r−1
E
[(

Im[m]|P ′a|
Nη

+
( Im[m]

Nη

)2)s
|Pa|2r−s−1

]
+ E

[ Im[m]
Nη

|Pa|2r−1
]
.

(7.49)

Proof. Using
∑
ij(Aij − d/N) = 0 and Corollary 3.2 with the random variable F = m2P r−1

a P ra we
have

0 = 1
N(d− 1)

∑
ijkl

E[(Aij −
d

N
)m2(P r−1

a P̄ ra )]

= 1
N2d(d− 1)

∑
ijkl

E[AikAjlDkl
ij (m2(P r−1

a P̄ ra ))] + O≺
(
d

N
E
[
C(P r−1

a P̄ ra , A)
])

= 1
N2d(d− 1)

∑
ijkl

E[AikAjlm2Dkl
ij (P r−1

a P̄ ra )] + O≺

(
d

N
E
[
C(P r−1

a P̄ ra , A)
]

+ max
16s62r

E
[( Im[m]

Nη

)s
|Pa|2r−s

])
,

(7.50)

where we used (4.24), the discrete derivative rule (4.6), and (7.12). The error C(P r−1
a P̄ ra , A) is

estimated in (7.5).
Therefore, subtracting (7.50) from the left-hand side of (7.49), we get

1
N2d(d− 1)

∑
ijkl

E
[
AikAjlGiiGjjD

kl
ij (P r−1

a P̄ ra )
]

= 1
N2d(d− 1)

∑
ijkl

E
[
AikAjl(GiiGjj −m2)Dkl

ij (P r−1
a P̄ ra )

]

+ O≺

(
d

N
E
[
C(P r−1

a P̄ ra , A)
]

+ max
16s62r

E
[( Im[m]

Nη

)s
|Pa|2r−s

])
.

(7.51)
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Using (4.7), we rewrite the first term on the right-hand side as

O(1)
N2d2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)Dkl

ij (P r−1
a P̄ ra )

]

=
b2−1∑
n2=1

1
n2!N2dn2/2+2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)(∂klij )n2(P r−1

a P̄ ra )
]

+ 1
b2!N2db2/2+2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)

(
(∂klij )b2(P r−1

a P̄ ra )(A+ θξklij )
)]

(7.52)

for some random θ ∈ [0, 1]. As above, by choosing b2 large enough, depending on r, we find that
the last line of (7.52) is bounded by N−2r. Moreover, for terms corresponding to n2 > 2 in (7.52),
we have the following simple estimate. Using |Gii−m| ≺ Λd, (7.12), and that

∑
k Aik =

∑
lAjl = d,

we find

1
N2dn2/2+2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)(∂klij )n2(P r−1

a P̄ ra )
]

≺ O(1)
N2dn2/2+2 max

16s62r−1

∑
ijkl

E
[
AikAjlΛd

(
Im[m]|P ′a|

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−s−1

]

≺ Λd
dn2/2

max
16s62r−1

E
[(

Im[m]|P ′a|
Nη

+
( Im[m]

Nη

)2)s
|Pa|2r−s−1

]
.

(7.53)

For the term in (7.52) corresponding to n2 = 1, the estimate is more involved. We start by
writing

O(1)
N2d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)∂klij (P r−1

a P̄ ra ))
]

= O(1)
N2d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)

(
r(∂klij m̄)P̄ ′a|Pa|2r−2 + (r − 1)(∂klijm)P ′aP̄ 2

a |Pa|2r−3
)]
.

(7.54)

We estimate the term
∑
klAikAjl∂

kl
ijm; its complex conjugate

∑
klAikAjl∂

kl
ij m̄ is estimated analo-

gously. We use (4.9) and estimate the resulting four terms one by one. For the term −(G2)ij ,

1
N3d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)(G2)ijP̄ ′a|Pa|2r−2

]
= 1
N3d1/2

∑
ij

E
[
(GiiGjj −m2)(G2)ijP̄ ′a|Pa|2r−2

]
= 1
N3d1/2

∑
ij

E
[
((Gii −m)m+ (Gjj −m)m+ (Gii −m)(Gjj −m))(G2)ijP̄ ′a|Pa|2r−2

]
= 1
N3d1/2

∑
ij

E
[
(Gii −m)(Gjj −m)(G2)ijP̄ ′a|Pa|2r−2

]
≺ Λ2

d
d1/2E

[ Im[m]|P ′a|
Nη

|Pa|2r−2
]
,

(7.55)
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where in the third equality, we used that the first two terms vanish after summing over index j and
i respectively because

∑
j(G2)ij = 0 =

∑
i(G2)ij , and in the last inequality, we used |Gii−m| ≺ Λd

and (4.11). For the term (G2)ik,

1
N3d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)(G2)ikP̄ ′a|Pa|2r−2

]
= 1
N3d3/2

∑
ij

E
[
(GiiGjj −m2)(AG2)iiP̄ ′a|Pa|2r−2

]

= (d− 1)1/2

N3d3/2

∑
ij

E
[
(GiiGjj −m2)(zG2 +G)iiP̄ ′a|Pa|2r−2

]
≺ Λd

d
E
[ Im[m]|P ′a|

Nη
|Pa|2r−2

]
,

(7.56)

where we used that AG2 = (d − 1)1/2(H − z + z)G2 = (d − 1)1/2(zG2 + G) and (4.11). We have
the same estimate for the term (G2)jl,

1
N3d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)(G2)jlP̄ ′a|Pa|2r−2

]
≺ Λd

d
E
[ Im[m]|P ′a|

Nη
|Pa|2r−2

]
. (7.57)

For the term −(G2)kl, we use (4.11)

1
N3d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)(G2)klP̄ ′a|Pa|2r−2

]
= 1
N3d5/2

∑
ij

E
[
(GiiGjj −m2)(AG2A)ijP̄ ′a|Pa|2r−2

]
= d− 1
N3d5/2

∑
ij

E
[
(GiiGjj −m2)(z2G2 + 2zG+ P⊥)ijP̄ ′a|Pa|2r−2

]
≺ Λd
d3/2E

[ Im[m]|P ′a|
Nη

|Pa|2r−2
]
,

(7.58)

where in the third equality, we used AG2A = (d− 1)(H − z + z)G2(H − z + z) = (d− 1)(z2G2 +
2zG+ P⊥). We combine the estimates (7.55), (7.56), (7.57) and (7.58), and use that Λd > 1/

√
d,

O(1)
N2d5/2

∑
ijkl

E
[
AikAjl(GiiGjj −m2)∂klij (P̄a|Pa|2r−2))

]
≺ Λ2

d
d1/2E

[ Im[m]|P ′a|
Nη

|Pa|2r−2
]
. (7.59)

The Claim 7.7 follows from combining (7.51), (7.53) and (7.59).

Claim 7.8. For the term n1 = 2 on the right-hand side of (7.35),

1
N2d(d− 1)3/2

∑
ijkl

E
[
AikAjl(∂klij )2(Gij)Dkl

ij (P r−1
a P̄ ra )

]

≺ Λo
d

max
16s62r−1

E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
.

(7.60)
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Proof. For i 6= j we use (∂klij )2Gij ≺ Λo from (4.13),

1
N2d(d− 1)3/2

∑
ijkl

E
[
AikAjl(∂klij )2(Gij)Dkl

ij (P r−1
a P̄ ra )

]
≺ Λo
N2d5/2

∑
ijkl

E
[
AikAjl|Dkl

ij (P r−1
a P̄ ra )|

]
+ 1
N2d5/2

∑
ikl

E
[
AikAil|Dkl

ii (P r−1
a P̄ ra )|

]

≺ Λo
d

max
16s62r−1

E
[(
|P ′a| Im[m]

Nη
+
( Im[m]

Nη

)2)s
|Pa|2r−1−s

]
,

(7.61)

where we used (7.37) for the second inequality.

8. Analysis of self-consistent equation and proof of Theorem 1.1

In this section we analyse the recursive moment estimate (7.1) from Proposition 7.1, around the
spectral edges ±2, and obtain an improved estimate for the Stieltjes transform m(z).

In the following, we focus on the right spectral edge; an analogous argument applies to the left
edge. For a fixed integer a > 1 and the same large constant K > 0 as in (2.10), we define the
spectral domain for the right edge (around the point z = 2) by

De =
{

2 + κ+ iη : 0 6 η 6 K, 0 6 2 + κ 6 K

|κ|+ η >
1
da/2

+ d

N
+ d3

N2 + d3/2

N(Nη)1/2 + 1
d3/2Nη

+ 1
(Nη)2

}
.

(8.1)

Also recall md from (2.5).

Theorem 8.1. Fix an integer a > 1. For 1 � d � N2/3, the following holds uniformly for any
z = 2 + κ+ iη ∈ De.

• If κ > 0 then

|m(z)−md(z)| ≺
(1
d

+ d

N
+ 1

(dNη)1/2

)1/3 1
Nη2/3(|κ|+ η)1/3

+ 1√
|κ|+ η

(
1
da/2

+ d

N
+ d3

N2 + 1
N1/2d3/2 + d3/2

N3/2η1/2 + 1
Nη1/2 + 1

d3/2Nη
+ 1

(Nη)2

)
.

(8.2)

• If κ 6 0 then

|m(z)−md(z)| ≺
1

(Nη)1/2

(
1
Nη

+ d5/2

N2 + 1
d3/2

)1/2

+ 1√
|κ|+ η

(
1
da/2

+ d

N
+ d3

N2 + d3/2

N
√
Nη

)
.

(8.3)

The analogous statement holds around the left edge.
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In this section, we use the notation X . Y to mean X = O(Y ) and X � Y to mean X . Y
and Y . X.

The estimate for the extremal eigenvalues of the random d-regular graphs, Theorem 1.1, follows
as a corollary of Theorem 8.1 and [20, Theorem 1.1], which states that with high probability, the
second-largest eigenvalue and the smallest eigenvalue of a random d-regular graph is of order O(1).

Proposition 8.2 ([20, Theorem 1.1]). Fix c > 0. For 1 6 d . N2/3 and large enough N , there
exists a constant K depending on c such that, with probability at least 1−N−1/c,

max{λ2,−λN} 6 K. (8.4)

Proof of Theorem 1.1. We recall the following elementary estimates on md(z) which hold for
bounded |z|. Let z = 2 + κ+ iη or z = −2− κ+ iη for 0 6 η 6 K, 0 6 2 + κ 6 K. Then

Im[md(z)] �


√
|κ|+ η if κ 6 0,
η√
|κ|+η

if κ > 0. (8.5)

This estimate follows from (2.5) and the analogous estimate formsc; see, for example, [26, Lemma 6.2].
We choose a = 6 in Theorem 8.1, and take z = 2 + κ+ iη ∈ De, where

κ = N c

(
1
d3 + 1

N2/3 + d2

N4/3

)
, η = N c/2

N
√
κ
.

In particular, η � κ. Then under our assumption 1� d� N2/3, (8.2) implies

|m(z)−md(z)| �
1
Nη

. (8.6)

Since Im[md(z)] � η/
√
κ � 1/Nη, we get Im[m(z)] � 1/Nη. Since any eigenvalue in [2 + κ −

η, 2 + κ+ η] would yield a positive contribution of size at least 1/Nη to Im[m(z)], this implies that
there cannot be any eigenvalue on the interval [2 +κ− η, 2 +κ+ η]. Since we can take any κ in the
interval [N c(d−3 +N−2/3 +d2N−4/3),K−2], combining with Proposition 8.2, we conclude that with
probability 1− 2N−1/c we have λ2 6 2 +N c(d−3 +N−2/3 + d2N−4/3). Since c > 0 is arbitrary this
implies the same conclusion with probability 1 − N−1/c as in the statement of the theorem. The
lower bound for λN follows from the same argument. This finishes the proof of Theorem 1.1.

8.1. Stability of self-consistent equation. Recall from Corollary 6.4 that for z ∈ De,

|P ′a(z,md(z))| �
√
|κ|+ η + O(d−a/2), P ′′a (z,md(z)) = 2 + O(d−1/2), P ′′′a (z,md(z)) = O(1).

(8.7)

The following proposition on the stability of the self-consistent equation, relying on the above
square root behaviour at the edge, is essentially [12, Lemma 4.5].

Proposition 8.3. Fix an integer a > 1. There exists a constant ε > 0 such that the following holds.
Suppose that δ : De → C satisfies N−2 6 δ(z) 6 ε for z ∈ De, and that δ is Lipschitz continuous
with Lipschitz constant N . Suppose moreover that for each fixed κ, the function η 7→ δ(2 + κ+ iη)
is nonincreasing for η > 0. Suppose that for all z ∈ De we have

|Pa(z,md(z))|+ |Pa(z,m(z))| 6 δ(z). (8.8)
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Then we have for z = 2 + κ+ iη ∈ De,

|m(z)−md(z)| = O
(

δ(z)√
|κ|+ η + δ(z)

)
, (8.9)

where the implicit constant is independent of z and N .

Proof. Let z = 2 + κ+ iη ∈ De. By Taylor expansion, (8.7), and Proposition 2.1, it follows that

Pa(z,m(z)) = Pa(z,md(z)) + P ′a(z,md(z))(m(z)−md(z))
+ (P ′′a (z,md(z)) + o(1))(m(z)−md(z))2/2.

(8.10)

We abbreviate R(z) ..= Pa(z,m(z)) − Pa(z,md(z)). There exists a(z) �
√
|κ|+ η and b(z) � 1,

such that

R(z) = a(z)(m(z)−md(z)) + b(z)(m(z)−md(z))2. (8.11)

With (8.11), Proposition 8.3 follows by a continuity argument that is essentially the same as
[12, Lemma 4.5].

8.2. Estimates on individual Green’s function entries. In the following we first prove some
estimates on the individual entries of Green’s function, which slightly improve the estimates on the
diagonal Green’s function entries from [9, Theorem 1.1] using the results from the previous sections.

Proposition 8.4. Fix 1 � d � N2/3. Uniformly for z = 2 + κ+ iη ∈ De, we have (4.1) with Λo
and Λd given by (2.13). The analogous statement holds for the left edge.

Proof. From Proposition 2.1, we have (4.1) for all z ∈ De, with Λo and Λd given by (2.11). (In all
all bounds below, Λo and Λd will continue to be given by (2.11).) By the rough bounds Im[m] ≺ 1
and |P ′a| ≺ 1, it follows from Proposition 7.1 that

E[|Pa|2r] ≺
Λ2

d
d1/2E

[
|Pa|2r−2

Nη

]
+
(

1
da/2

+ d3/2Λo
N

)
E[|Pa|2r−1]

+ max
16s62r

E
[
|Pa|2r−s

(Nη)s

]
+
(

Λd
d

+ Λ2
o

d1/2 + dΛo
N

)
max

16s62r−1
E
[
|Pa|2r−s−1

(Nη)s

]
.

(8.12)

By Jensen’s inequality, we get from (8.12) that for any r > 1,

E[|Pa(z,m(z))|2r] ≺ 1
dra

+ Λ2r
d
dr

+ 1
(Nη)2r + d3rΛ2r

o
N2r . (8.13)

Therefore

|Pa(z,m(z))| ≺ 1
da/2

+ Λ2
d

d1/2 + 1
Nη

+ d3/2Λo
N

, (8.14)

uniformly for z ∈ De. Taking

δ(z) = N c

(
1
da/2

+ Λ2
d

d1/2 + 1
Nη

+ d3/2Λo
N

)
, (8.15)
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in Proposition 8.3, where c > 0, we obtain

|m(z)−md(z)| ≺
1
da/4

+ Λd
d1/4 + 1

(Nη)1/2 + d3/4Λ1/2
o

N1/2 ≺ 1
d1/2 + d3/2

N
+ 1√

Nη
. (8.16)

where the last bound follows from the definitions of Λo and Λd in (2.11) and taking a > 2. The
proof is completed by applying [9, Lemma 5.4]. Indeed, thanks to [9, Lemma 5.4], we have

1 + (m(z) + z)Gii(z) = O≺

(
1
d1/2 + d3/2

N
+ 1√

Nη

)
. (8.17)

With (8.16) as input and noticing that |msc(z)−md(z)| = O(1/d), we get

1 + (msc(z) + z)Gii(z) = O≺

(
1
d1/2 + d3/2

N
+ 1√

Nη

)
. (8.18)

Using (2.7) we obtain

Gii(z)−msc(z) = O≺

(
1
d1/2 + d3/2

N
+ 1√

Nη

)
, (8.19)

from which we deduce that

max
i
|Gii(z)−md(z)| ≺

1
d1/2 + d3/2

N
+ 1√

Nη
, (8.20)

as claimed.

8.3. Proof of Theorem 8.1. Throughout this section, we abbreviate Λ(z) = |m(z) − md(z)|,
and Φ(z) = Im[md(z)]. Then Im[m] = Φ(z) + O(Λ(z)), and P ′a(z,m(z)) = P ′a(z,md(z)) + O(Λ(z))
from Corollary 6.4. Moreover, we take Λo and Λd to be given by (2.13). By Proposition 8.4, we
know that (4.1) holds for any z ∈ De. Notice that Proposition 7.1 implies that, for any z ∈ De,

E[|Pa|2r] ≺
Λ2

o
d1/2 max

16s62r−1
E
[( Im[m]|P ′a|

Nη

)s
|Pa|2r−s−1

]
+ E

[ Im[m]|P ′a|
(Nη)2 |Pa|2r−2

]

+ Λo
d1/2E

[
Im[m]|P ′a|2

(Nη)3 |Pa|2r−3
]

+
(

1
da/2

+ d3/2Λo
N

)
E[|Pa|2r−1] + max

16s62r
E
[( Im[m]

Nη

)s
|Pa|2r−s

]
.

(8.21)

We notice that for z = 2 + κ+ iη ∈ De, |P ′a(z,m(z))| .
√
|κ|+ η+ Λ(z). By Jensen’s inequality, it

follows from (8.21) that

E
[
|P (z,m(z))|2r

]
≺ E

[(
1
Nη

+ Λ2
o

d1/2

)r((Φ + Λ)(
√
|κ|+ η + Λ)
Nη

)r]

+ E
[(Φ + Λ

Nη

)2r]
+ E

[( Λo
d1/2

)2r/3 (Φ + Λ)2r/3(
√
|κ|+ η + Λ)4r/3

(Nη)2r

]
+ E

( 1
da/2

+ d3/2Λo
N

)2r
.

(8.22)

Before proving Theorem 8.1, we prove the following weaker estimate which will be used as an
input in the Proof of Theorem 8.1.
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Proposition 8.5. Uniformly for any z = 2 + κ+ iη ∈ De, we have

Λ(z) = |m(z)−md(z)| ≺
√
|κ|+ η. (8.23)

Proof. Thanks to (8.5), we have Φ(z) ≺
√
|κ|+ η. From our choice of the spectral domain De in

(8.1), we have

1
Nη

6
√
|κ|+ η,

1
da/2

,
d3/2Λo
N

,
Λ2

o
d1/2

1
Nη

6 |κ|+ η. (8.24)

Thus (8.22) implies

E
[
|Pa(z,m(z))|2r

]
≺ (|κ|+ η)2r + (|κ|+ η)rE

[
Λ(z)2r

]
. (8.25)

We have the Taylor expansion (8.10)

Pa(z,m(z)) = Pa(z,md(z)) + P ′a(z,md(z))(m(z)−md(z)) + (1 + o(1))(m(z)−md(z))2, (8.26)

where we used that P ′′a = 2 + O(1/d1/2 + d/N), P ′′′a = O(1), and Λ(z) � 1. Rearranging the last
equation (8.26) and using the definition of Λ, we have arrived at

Λ(z)2 . Λ(z)
√
|κ|+ η + |Pa(z,m(z))|+ |Pa(z,md(z))|, (8.27)

and thus

E[Λ(z)4r] . (|κ|+ η)rE[Λ(z)2r] + E[|Pa(z,m(z))|2r] + |Pa(z,md(z))|2r, (8.28)

for any fixed integer r > 1. Now we replace E[|Pa(z,m(z))|2r] in (8.28) by the right-hand side of
(8.25). Moreover, on the domain De, from Proposition 6.1, we have |Pa(z,md(z))| 6 |κ|+ η. With
E[Λ(z)2r] 6 E[Λ(z)4r]1/2 by the Cauchy–Schwarz inequality, we thus obtain

E[Λ(z)4r] ≺ (|κ|+ η)2r, (8.29)

for any r > 1. The claim Λ(z) ≺
√
|κ|+ η follows from Markov’s inequality.

Proof of Theorem 8.1. We assume that there exists some deterministic control parameter Θ(z),
for any z = 2 + κ+ iη ∈ De, we have the a priori estimate

|m(z)−md(z)| ≺ Θ(z) .
√
|κ|+ η. (8.30)

From (8.22) we get

|Pa(z,m(z))| ≺
(

1
Nη

+ Λ2
o

d1/2

)1/2((Φ + Θ)
√
|κ|+ η

Nη

)1/2

+ Φ + Θ
Nη

+
( Λo
d1/2

)1/3 (Φ + Θ)1/3(|κ|+ η)1/3

Nη
+ 1
da/2

+ d3/2Λo
N

.

(8.31)
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Since Φ + Θ .
√
|κ|+ η, (8.31) simplifies to

|Pa(z,m(z))| ≺
(

1
Nη

+ d5/2

N2 + 1
d3/2

)1/2((Φ + Θ)
√
|κ|+ η

Nη

)1/2

+
( Λo
d1/2

)1/3 (Φ + Θ)1/3(|κ|+ η)1/3

Nη
+
(

1
da/2

+ d

N
+ d3

N2 + d3/2

N
√
Nη

)
.

(8.32)

To conclude the proof, we consider the cases κ 6 0 and κ > 0 separately. If κ 6 0, then we
have Φ(z) �

√
|κ|+ η, and (8.32) simplifies to

|Pa(z,m(z))| ≺
(

1
Nη

+ d5/2

N2 + 1
d3/2

)1/2( |κ|+ η

Nη

)1/2
+
(

1
da/2

+ d

N
+ d3

N2 + d3/2

N
√
Nη

)
. (8.33)

Thanks to Proposition 8.3, by taking δ(z) the right-hand side of (8.33) times N c, we get

|m(z)−md(z)| ≺
1

(Nη)1/2

(
1
Nη

+ d5/2

N2 + 1
d3/2

)1/2

+ 1√
|κ|+ η

(
1
da/2

+ d

N
+ d3

N2 + d3/2

N
√
Nη

)
.

(8.34)

This finishes the proof of (8.3).
If κ > 0, then Φ(z) � η/

√
|κ|+ η, and (8.32) simplifies to

|Pa(z,m(z))| ≺ 1
da/2

+ d

N
+ d3

N2 + 1
N1/2d3/4 + d3/2

N3/2η1/2 + 1
Nη1/2

+
( Λo
d1/2

)1/3((|κ|+ η)1/3

Nη
Θ1/3 + (|κ|+ η)1/6

Nη2/3

)

+
(

1
Nη

+ d5/2

N2 + 1
d3/2

)1/2(√|κ|+ η

Nη

)1/2

Θ1/2.

(8.35)

Thanks to Proposition 8.3, by taking δ(z) to be the right-hand side of (8.35) times N c, we get

|m(z)−md(z)| ≺
1√
|κ|+ η

(
1
da/2

+ d

N
+ d3

N2 + 1
N1/2d3/4 + d3/2

N3/2η1/2 + 1
Nη1/2

)

+
( Λo
d1/2

)1/3( 1
Nη(|κ|+ η)1/6 Θ1/3 + 1

Nη2/3(|κ|+ η)1/3

)

+
(

1
Nη

+ d5/2

N2 + 1
d3/2

)1/2( 1
Nη
√
|κ|+ η

)1/2

Θ1/2.

(8.36)

Since the exponent of Θ on the right-hand side of (8.36) is less than 1, by iterating (8.36) a bounded
number of times and recalling the definition of ≺, we get

|m(z)−md(z)| ≺
(1
d

+ d

N
+ 1

(dNη)1/2

)1/3 1
Nη2/3(|κ|+ η)1/3

+ 1√
|κ|+ η

(
1
da/2

+ d

N
+ d3

N2 + 1
N1/2d3/2 + d3/2

N3/2η1/2 + 1
Nη1/2 + 1

d3/2Nη
+ 1

(Nη)2

)
.

(8.37)

This finishes the proof of (8.2).
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9. Edge universality: proof of Theorem 1.3

In this section we prove the edge universality of random d-regular graphs in the regime N2/9 � d�
N1/3 where Theorem 1.1 provides optimal bounds on the extremal eigenvalues. Thus, throughout
this section we assume that there exists a universal constant e such that

N2/9+e 6 d 6 N1/3−e. (9.1)

Our strategy is based on the usual three-step approach of random matrix theory [26]. Starting
from the (rescaled) adjacency matrix H = H0 from (1.1), we run a matrix-valued Brownian motion
H(t). Using the rigidity estimates from Theorems 1.1 and 8.1 combined with [49], we deduce that
for t� N−1/3 the matrix H(t) has GOE edge statistics; see Proposition 9.8 below. The main work
in this section is a comparison argument to show that H0 and H(t), t � N−1/3, have the same
edge statistics; see Proposition 9.11 below. This comparison argument has the same spirit as the
one from [7]. Its underlying principle is that for large d, a Markovian switching dynamics of the
graph that leaves the random regular graph invariant is well approximated by Brownian motion,
when considering observables that characterize the local spectral statistics. The main difference to
[7] is that, since we are working at the edge, we need to incorporate precise rigidity estimates on
the locations of the eigenvalues near the spectral edge, and the necessary cancellations are more
delicate.

We recall the constrained GOE W as introduced in [7, Section 2.1]: W is the centred Gaussian
process on the space M ..= {H ∈ RN×N : H = H∗, H1 = 0} with covariance E〈W ,X〉〈W ,Y 〉 =
〈X ,Y 〉, where 〈X ,Y 〉 ..= N

2 Tr(XY ) for X,Y ∈M. Explicitly, its covariance is given by

E[WijWkl] = 1
N

(
δik −

1
N

)(
δjl −

1
N

)
+ 1
N

(
δil −

1
N

)(
δjk −

1
N

)
. (9.2)

It may be viewed as the usual Gaussian Orthogonal Ensemble restricted to matrices with vanishing
row and column sums. The following result is a straightforward consequence of (9.2).

Lemma 9.1. For the constrained GOE W we have the integration by parts formula

E[WijF (W )] = 1
N3

∑
kl

E[∂klijF (W )]. (9.3)

Next, we define the matrix-valued process

H(t) ..= e−t/2H +
√

1− e−tW, (9.4)

where H was defined in (1.1) in terms of the adjacency matrix of the d-regular graph. Thus,
H(0) = H and H(∞) = W .

We recall the projection matrix P⊥ = I−11∗/N from Section 2. Then the matrix H(t) and P⊥
commute, i.e. H(t)P⊥ = P⊥H(t). For z ∈ C+ = {z ∈ C : Im[z] > 0}, we define the time-dependent
Green’s function by

G(t; z) ..= P⊥(H(t)− z)−1P⊥, (9.5)

so that G(t; z) and (H(t) − z)−1 agree on the image of P⊥, i.e. the subspace of RN perpendicular
to 1 which carries the nontrivial spectrum of H(t). The matrix H(t) has a trivial eigenvalue
λ1(t) = e−t/2d/

√
d− 1 with eigenvector 1. We denote the remaining eigenvalues of H(t) by λ2(t) >
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λ3(t) > · · ·λN−1(t) > λN (t), and the Stieltjes transform of the empirical eigenvalue distribution of
H(t)P⊥ by m(t; z),

m(t; z) = 1
N

TrG(t; z) = 1
N

N∑
i=2

1
λi(t)− z

. (9.6)

Definition 9.2. An event holds with very high probability if for any c > 0 it has probability at
least 1−Oc(N−1/c).

Under the assumption (9.1), we have the following corollary of Theorems 1.1 and 8.1.

Corollary 9.3. Fix a constant e > 0 and suppose that N2/9+e 6 d 6 N1/3−e. Then, for any fixed
c > 0 we have with very high probability

|λ2(0)− 2|, |λN (0) + 2| 6 N−2/3+c, (9.7)

and uniformly for any z = E + iη, with −4 6 E 6 4 and η > N−2/3,

|m(0; z)−md(z)| 6 N c

(
1
Nη

+ d

N
√
η

)
. (9.8)

Remark 9.4. As an easy consequence of Corollary 9.3, we have that for any z = E + iη, with
−4 6 E 6 4 and η > N−2/3+c, Im[m(0; z)] � Im[md(z)].

9.1. Free convolution. The asymptotic eigenvalue density of the matrix H(t) is governed by
the free additive convolution of the rescaled Kesten–McKay measure with the semicircle law at
time s = 1 − e−t. We recall some properties of measures obtained by the free convolution with a
semicircle distribution from [11]. The semicircle density ρsc(x) is given by (2.6), and the semicircle
density of variance s is s−1/2ρsc(s−1/2x). Given a probability measure µ on R, we denote its free
convolution with a semicircle distribution of variance s by µs. The Stieltjes transforms of µ and µs
are given by Gµ(z) =

∫ dµ(x)
x−z and Gµs(z) =

∫ dµs(x)
x−z respectively. Then the following holds [11].

(i) We denote the set Us = {z ∈ C+ :
∫ dµ(x)
|z−x|2 <

1
s}. Then z 7→ z − sGµ(z) is a homeomorphism

from Ūs to C+∪R and conformal from Us to C+. We denote its inverse by Fµs : C+∪R 7→ Ūs.

(ii) The Stieltjes transform of µs is characterized by Gµ(z) = Gµs(z − sGµ(z)), for any z ∈ Us.

By the inversion formula for the Stieltjes transform, we deduce from (ii) that the density of µs
is given by dµs(x)/dx = Im[Gµ(Fµs(x))]/π.

The asymptotic eigenvalue density of W is the semicircle density ρsc(x) and the asymptotic
eigenvalue density of

√
1− e−tW is the semicircle density at time s = 1−e−t. The asymptotic eigen-

value density of H(t) is the free convolution of rescaled Kesten–McKay law µ(dx) = et/2ρd(et/2x)dx
at time e−t and the semicircle density at time 1 − e−t. We denote its density by ρd(t;x) and its
Stieltjes transform by md(t; z) =

∫ ρd(t;x)
x−z dx. Since Gµ(e−t/2z) = et/2md(z), we deduce from (i) and

(ii) above that

md(t; ξd(t; z)) = et/2md(z), (9.9)

where

ξd(t; z) ..= e−t/2z − et/2(1− e−t)md(z) (9.10)
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is a homeomorphism from the set {z ∈ C+ :
∫ ρd(x)
|x−z|2 dx 6 1

et−1} to C+ ∪ R. We denote the
functional inverse of ξd(t; z) by Fd(t; z) which is a homeomorphism from C+ ∪ R to the set {z ∈
C+ :

∫ ρd(x)
|x−z|2 dx 6 1

et−1}. Thus, ρd(t;x) = Im[md(Fd(t;x))]/π. To find the support of the measure
ρd(t;x), we notice that there exists z±d (t) ∈ R such that {z ∈ C+ :

∫ ρd(x)
|x−z|2 dx = 1

et−1} consists
of the intervals (−∞, z−d (t)] ∪ [z+

d (t),∞) and an arc C from z−d (t) to z+
d (t). Those two endpoints

z±d (t) ∈ R are the largest and smallest real solutions to∫
ρd(x)
|x− z|2

dx = 1
et − 1 , (9.11)

and the function Fd(t;x) maps the support of ρd(t;x) to the arc C. As a consequence, the right
and left edges of the measure ρd(t;x) are given by

E±d (t) = ξd(t; z±d (t)) = e−t/2z±d (t)− et/2(1− e−t)md(z±d (t)). (9.12)

Lemma 9.5. Let Lt = 2 + t/d. Then the right and left edges of the measure ρd(t;x) are given by

E±d (t) = ±
(
Lt + O

(
t3 + 1

d3

))
. (9.13)

Proof. From (2.7) and (2.5) we recall that for any z ∈ C,

z = −msc(z)−
1

msc(z)
, md(z) = msc(z)

1−m2
sc(z)/(d− 1) . (9.14)

By taking the derivative we obtain

m′d(z) = m2
sc(z)(1 +m2

sc(z)/(d− 1))
(1−m2

sc(z))(1−m2
sc(z)/(d− 1))2 . (9.15)

We can solve for z±d (t) using (9.11) and (9.15),

1
et − 1 =

∫
ρd(x)

|x− z±d (t)|2
dx = m′d(z±d (t)) = m2

sc(z±d (t))(1 +m2
sc(z±d (t))/(d− 1))

(1−m2
sc(z±d (t)))(1−m2

sc(z±d (t))/(d− 1))2 . (9.16)

In the regime t� 1 and d� 1, we can solve for msc(z±d (t)) from (9.16) and get

msc(z±d (t)) = ±
(

1− t

2 −
3t
2d −

t2

8 + O
(
t3 + 1

d3

))
. (9.17)

Using (9.14), (9.17) implies that

z±d (t) = −msc(z±d (t))− 1
msc(z±d (t))

= ∓
(

2 + t2

4 + O
(
t3 + 1

d3

))
,

md(z±d (t)) = msc(z±d (t))
1−m2

sc(z±d (t))/(d− 1)
= ±

(
1− t

2 + 1
d

+ O
(
t2 + 1

d2

))
.

(9.18)

Lemma 9.5 follows by plugging (9.18) into (9.12) and expanding the exponents to third order.
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9.2. Rigidity and edge universality of H(t). In this section we collect some estimates on the
Green’s function G(t; z) and the Stieltjes transform m(t; z) of H(t), and state the edge universality
result for H(t) when t� N−1/3. All statements and estimates in this section follow directly from
[1,16,49].

First, using the rigidity estimates of Corollary 9.3 as input, the rigidity estimates on the Stieltjes
transform m(t; z) of H(t) follow from [1,49].

Proposition 9.6. Fix a constant e > 0 and N2/9+e 6 d 6 N1/3−e. For an arbitrarily small
constant c > 0 and any time 0 6 t� 1, with very high probability we have

|λ2(t)− Lt|, |λN (t) + Lt| 6 N−2/3+c, (9.19)

and uniformly for any z = E + iη, with −4 6 E 6 4 and η > N−2/3,

|m(t; z)−md(t; z)| 6 N c

(
1
Nη

+ d

N
√
η

)
, (9.20)

where Lt = 2 + t/d and md(t; z) is defined by (9.9) and m(t; z) by (9.6).

Using the rigidity estimates from Corollary 9.3 and the estimates on the Green’s function
entries of H(0) from Proposition 8.4 as input, the entrywise estimates on Green’s function of H(t)
with t > 0 follow from an argument similar to the proof of [16, Theorem 2.1]. We remark that
in the statement of [16, Theorem 2.1], it assumed that Im[m0] is bounded from below and that
t� η∗. However, in the proof of [16, Theorem 2.3], these assumptions are only used to show that
|mt(z)−mfc,t(z)| is small. With the required estimate of |mt(z)−mfc,t(z)| already established by
(9.20), the remaining part of [16, Theorem 2.1] does not use that Im[m0] is bounded from below
or that t� η∗. Therefore, with (9.20) given, the remaining proof of [16, Theorem 2.1] applies and
gives the following result on the entrywise estimates of Green’s function of H(t).

Proposition 9.7. Fix constant e > 0 and suppose that N2/9+e 6 d 6 N1/3−e. For an arbitrarily
small constant c > 0 and any time 0 6 t� 1, with very high probability we have

|Gij(t; z)− δijmd(t; z)| 6 N c
( 1
d1/2 + 1√

Nη

)
, (9.21)

uniformly for any z = E + iη, with −4 6 E 6 4 and η > N−2/3.

The edge universality of H(t) for t� N−1/3 follows from the following result due to [49].

Proposition 9.8. Fix a constant e > 0 and suppose that N2/9+e 6 d 6 N1/3−e. Let d > 0 be a
sufficiently small constant and set t = N−1/3+d. Let H(t) be as in (9.4), which has an eigenvalue
λ1(t) = e−t/2d/

√
d− 1, and we denote its remaining eigenvalues by λ2(t) > λ3(t) > · · ·λN−1(t) >

λN (t). Fix k > 1 and s1, s2, · · · , sk ∈ R. Then

PH(t)
(
N2/3(λi+1(t)− Lt) > si, 1 6 i 6 k

)
= PGOE

(
N2/3(µi − 2) > si, 1 6 i 6 k

)
+ o(1),

(9.22)

where Lt = 2 + t/d is as defined in Lemma 9.5, and µ1 > µ2 > · · · > µN are the eigenvalues of a
the Gaussian Orthogonal Ensemble. The analogous statement holds for the smallest eigenvalues.
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Remark 9.9. By an appropriate modification of the analysis of Dyson Brownian motion from [49],
Proposition 9.8 also holds for the joint distribution of the k largest and smallest eigenvalues. In
particular, this implies that, under the same assumption as in the previous proposition, the asymp-
totic joint distribution of N2/3(λ2(t) − Lt,−λN (t) − Lt) is a pair of independent Tracy–Widom1
distributions. Moreover, Proposition 9.11 below can be extended, by merely cosmetic changes, to
also cover the joint distribution of k largest and smallest eigenvalues. Thus, we get the following
extension of Theorem 1.3.

Theorem 9.10. Suppose that N2/9 � d� N1/3. Fix k > 1 and s±1 , s
±
2 , · · · , s

±
k ∈ R. Then

PH
(
N2/3(λi+1 − 2) > s+

i , N
2/3(−λN+1−i − 2) > s−i , 1 6 i 6 k

)
= PGOE

(
N2/3(µi − 2) > s+

i , N
2/3(−µN+1−i − 2) > s−i , 1 6 i 6 k

)
+ o(1).

9.3. Green’s function comparison. In this section we prove the following short-time compar-
ison result for the edge eigenvalue statistics of H(t).

Proposition 9.11. Fix a constant e > 0 and suppose that N2/9+e 6 d 6 N1/3−e. Let d > 0 be a
sufficiently small constant and set t = N−1/3+d. Let H(t) be as in (9.4), which has an eigenvalue
λ1(t) = e−t/2d/

√
d− 1, and we denote its remaining eigenvalues by λ2(t) > λ3(t) > · · ·λN−1(t) >

λN (t). Fix k > 1 and s1, s2, · · · , sk ∈ R. Then

PH
(
N2/3(λi+1(0)− 2) > si, 1 6 i 6 k

)
= PH(t)

(
N2/3(λi+1(t)− Lt) > si, 1 6 i 6 k

)
+ o(1),

(9.23)

where Lt = 2 + t/d is as defined in Lemma 9.5. The analogous statement holds for the smallest
eigenvalues.

Before proving Proposition 9.11 we use it to conclude the proof of edge universality of random
d-regular graphs, Theorem 1.3.

Proof of Theorem 1.3. Combine Propositions 9.8 and 9.11.

The rest of this section is devoted to the proof of Proposition 9.11. For any E, we define

Nt(E) ..= |{i > 2 : λi(t) > Lt + E}|, (9.24)

and we write N0(E) as N (E). We take ` = N−2/3−d/9 and η = N−2/3−d. Then with very high
probability, from Propositions 9.6 and 9.7, with (8.5) and (9.9), and with the fact that η Im[m(t;Lt+
κ+iη)] is a monotone decreasing function of η (which is immediate from the spectral representation),
for any |κ| 6 N−2/3+d, we have

Im[m(t;Lt + κ+ iη)] 6 N−1/3+Cd, (9.25)

and similarly, since maxij η|Gij(t;Lt + κ+ iη)| is decreasing in η (see [9, Lemma 2.1]),

max
ij
|Gij(t;Lt + κ+ iη)| 6 NCd,

∑
ij

|Gij(t;Lt + κ+ iη)|2 6 N4/3+Cd. (9.26)
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Moreover, we have |∂zm(t; z)| 6 Im[m(t; z)]/ Im[z] 6 N1/3+Cd for any z with |Re[z]− Lt| 6
N−2/3+d and N−2/3−d 6 Im[z] 6 N−2/3. Therefore, by integrating from z = 2 + κ + iη to
z = 2 + κ+ iN−2/3, we get with very high probability

m(t;Lt + κ+ iη) = m(t;Lt + κ+ iN−2/3) + O(N−1/3+Cd)
= md(t;Lt + κ+ iN−2/3) + O(N−1/3+Cd) = md(t;E+

d (t)) + O(N−1/3+Cd) = −1 + O(1/d)
(9.27)

where we used Lemma 9.5, Proposition 9.6 and the square root behavior of the density ρd(t;x):

|md(t;Lt + κ+ iN−2/3)−md(t;E+
d (t))| �

√
|Lt + κ+ iN−2/3 − E+

d (t)| . N−1/3+Cd, (9.28)

which follows from [1, Proposition A.1].
Next, we define

χE(x) = 1[E,N−2/3+d](x− Lt), θη(x) ..= η

π(x2 + η2) = 1
π

Im 1
x+ iη . (9.29)

We have that λ1(t) = e−t/2d � Lt and with very high probability it holds λ2(t) 6 Lt + N−2/3+d

by Proposition 9.6. By the same argument as in [47, Lemma 2.7], we get that

Tr(χE+` ∗ θη)(H(t))−N−d/9 6 Nt(E) 6 Tr(χE−` ∗ θη)(H(t)) +N−d/9 (9.30)

with very high probability. Let Ki : R 7→ [0, 1] be a monotonic smooth function satisfying,

Ki(x) =
{

0 if x 6 i− 2/3,
1 if x > i− 1/3. (9.31)

Since 1Nt(E)>i = Ki(Nt(E)) and Ki is monotonically increasing, we have

Ki(Tr(χE+` ∗ θη)(H(t))) + O(N−d/9) 6 1Nt(E)>i 6 Ki(Tr(χE−` ∗ θη)(H(t))) + O(N−d/9). (9.32)

In this way we can express the locations of eigenvalues in terms of integrals of the Stieltjes transform
of the empirical eigenvalue densities:

EH(t)

[
k∏
i=1

Ki

(
Im
[
N

π

∫ N−2/3+d

siN−2/3+`
m(t;Lt + y + iη) dy

])]
+ O

(
N−d/9

)

6 PH(t)
(
N2/3(λi+1(t)− Lt) > si, 1 6 i 6 k

)
= E

[
k∏
i=1

1Nt(siN−2/3)>i

]

6 EH(t)

[
k∏
i=1

Ki

(
Im
[
N

π

∫ N−2/3+d

siN−2/3−`
m(t;Lt + y + iη) dy

])]
+ O

(
N−d/9

)
.

(9.33)

For the product of the functions of Stieltjes transform, we have the following comparison theo-
rem.

Proposition 9.12. Fix constant e > 0 and N2/9+e 6 d 6 N1/3−e. Let d > 0 be sufficiently small
and set t = N−1/3+d and η = N−2/3−d. Let F : Rk 7→ R be a fixed smooth test function. Then for
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E1, E2, · · · , Ek = O(N−2/3) we have

EH

F
{Im

[
N

∫ N−2/3+d

Ei

m(0;L0 + y + iη) dy
]}k

i=1


= EH(t)

F
(

Im
[
N

∫ N−2/3+d

Ei

m(t;Lt + y + iη) dy
]}k

i=1

+ O
(
N2/3+Cdt

d3/2 + N1/3+Cdt

d1/2

)
.

(9.34)

Proof of Proposition 9.11. Since d > N2/9+e and t = N−1/3+d, for d small, the error terms in
(9.34) are of order O(N−d). By combining (9.33) and (9.34), we thus get

PH(t)
(
N2/3(λi+1(t)− Lt) > si + 2N2/3`, 1 6 i 6 k

)
6 EH(t)

[
k∏
i=1

Ki

(
Im
[
N

π

∫ N−2/3+d

siN−2/3+`
m(t;Lt + y + iη) dy

])]
+ O

(
N−d/9

)
6 PH

(
N2/3(λi+1(0)− L0) > si, 1 6 i 6 k

)
+ O

(
N−d/9

)
6 EH(t)

[
k∏
i=1

Ki

(
Im
[
N

π

∫ N−2/3+d

siN−2/3−`
m(t;Lt + y + iη) dy

])]
+ O

(
N−d/9

)
6 PH(t)

(
N2/3(λi+1(t)− Lt) > si − 2N2/3`, 1 6 i 6 k

)
+ O(N−d/9).

(9.35)

Since N2/3` = N−d/9 � 1, (9.23) follows.

Proof of Proposition 9.12. For simplicity of notation, we only prove the case k = 1; the general
case can be proved in the same way. Let

Xt = Im
[
N

∫ N−2/3+d

E
m(t;Lt + y + iη) dy

]
. (9.36)

We shall prove that

|E[F (Xt)]− E[F (X0)]| 6 NCd

(
N2/3t

d3/2 + N1/3t

d1/2

)
. (9.37)

The derivative of E[F (Xt)] with respect to the time t is

d
dtE[F (Xt)] = E

[
F ′(Xt)

dXt

dt

]
= E

F ′(Xt) Im
∫ N−2/3+d

E

N∑
ij

Ḣij(t)
∂m

∂Hij
+ L̇t

∑
ij

G2
ij

dy


= E

F ′(Xt) Im
∫ N−2/3+d

E

−∑
ija

Ḣij(t)GaiGaj + L̇t
∑
ij

G2
ij

dy


(9.38)

where we abbreviate G(t;Lt+y+iη) and m(t;Lt+y+iη) by G and m respectively. In the following,
we estimate the right-hand side. By definition,

Ḣij(t) = −1
2e−t/2Hij + e−t

2
√

1− e−t
Wij . (9.39)
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In the following, we use the notation ∂klij applied to a function of H(t), such as G or m, to denote
the directional derivative (4.5) with respect to H(t). For any directional derivative ∂ we therefore
have

∂

∂H
F (H(t)) = e−t/2 ∂F (H(t)), ∂

∂W
F (H(t)) =

√
1− e−t ∂F (H(t)).

Plugging (9.39) into (9.38), and using the Gaussian integration by parts (9.3), we therefore obtain

−
∑
ija

E
[
Ḣij(t)F ′(Xt)GaiGja

]
= 1

2
∑
ija

E
[(

e−t/2Hij −
e−t√

1− e−t
Wij

)
F ′(Xt)GaiGja

]

= e−t/2

2
√
d− 1

∑
ija

E
[
Aij(F ′(Xt)GaiGja)

]
− e−t

2N3

∑
ijkla

E[∂klij (F ′(Xt)GaiGja)].
(9.40)

To estimate the first term, we apply Corollary 3.2 with the random variable Fij = F ′(Xt)GaiGja in
(3.7). Since Cij(Fij , A) ≺ |GaiGja|, using the Ward identity (4.2) and

∑
ij Aij = Nd, the resulting

error term is bounded by

1√
d− 1

∑
ija

dE[AijCij(Fij , A)]
N

≺ d1/2

N

∑
ija

E[Aij |GaiGja|] ≺ d3/2E[Imm]
η

6 Cd3/2N1/3+Cd ; (9.41)

in the last inequality, we used (9.25) and that η = N−2/3−d and |κ| 6 N−2/3+d. In summary, Taylor
expanding the discrete derivative in (3.7) and noting that the first term on the right-hand side of
(3.7) vanishes by

∑
iGai = 0, we find that (9.40) is bounded by

e−t

2Nd(d− 1)
∑
ijkla

E
[
AikAjl∂

kl
ij (F ′(Xt)GaiGja)

]
− e−t

2N3

∑
ijkla

E[∂klij (F ′(Xt)GaiGja)]

+
b∑

n=2

e−(n+1)t/2

2Nd(d− 1)(n+1)/2n!
∑
ijkla

E
[
AikAjl(∂klij )n(F ′(Xt)GaiGja)

]
+ O

(
d3/2N1/3+Cd

) (9.42)

for some constant b. The terms in (9.42) are estimated in the following two claims; we postpone
their proofs to the end of this section.

Claim 9.13. For the first two terms in (9.42) we have,

e−t

2Nd(d− 1)
∑
ijkla

E
[
AikAjl∂

kl
ij (F ′(Xt)GaiGja)

]
− e−t

2N3

∑
ijkla

E[∂klij (F ′(Xt)GaiGja)]

= 3
d

∑
ij

E[F ′(Xt)G2
ij ] + O

(
N1+Cd

d1/2

)
.

(9.43)

Claim 9.14. For any n > 2, let,

Jn ..= e−(n+1)t/2

2Nd(d− 1)(n+1)/2n!
∑
ijkla

E
[
AikAjl(∂klij )n(F ′(Xt)GaiGja)

]
. (9.44)

Then, we have the estimates

J2 = −12
d

∑
ij

E[F ′(Xt)G2
ij ] + O

(
N4/3+Cd

d3/2 + N1+Cd

d1/2

)
, (9.45)
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J3 = 8
d

∑
ij

E[F ′(Xt)G2
ij ] + O

(
N4/3+Cd

d3/2 + N1+Cd

d

)
, (9.46)

and for any n > 4, Jn = O(N4/3+Cd/d(n−1)/2).

It follows from Claims 9.13 and 9.14 and (9.42) that (9.40) can be estimated by

−
∑
ija

E
[
Ḣij(t)F ′(Xt)GaiGja

]
= 3
d

∑
ij

E[F ′(Xt)G2
ij ]−

12
d

∑
ij

E[F ′(Xt)G2
ij ]

+ 8
d

∑
ij

E[F ′(Xt)G2
ij ] + O

(
N4/3+Cd

d3/2 + N1+Cd

d1/2

)

= −1
d

∑
ij

E[F ′(Xt)G2
ij ] + O

(
N4/3+Cd

d3/2 + N1+Cd

d1/2

)
.

(9.47)

From Lemma 9.5, we recall that Lt = 2 + t/d, i.e., L̇t = 1/d. Therefore plugging (9.47) into (9.38),
the two terms in (9.38) cancel up to an error, and we get

d
dtE[F (Xt)] = E

[∫ N−2/3+d

E
O
(
N4/3+Cd

d3/2 + N1+Cd

d1/2

)
dy
]

= O
(
N2/3+Cd

d3/2 + N1/3+Cd

d1/2

)
, (9.48)

and (9.37) follows. This finishes the proof of Proposition 9.12.

Proof of Claim 9.13. We have

∂klij (F ′(Xt)GaiGja) = ∂klij (F ′(Xt))GaiGja + F ′(Xt)∂klij (GaiGja). (9.49)

For the first term in (9.49), with very high probability we have

|∂klijF ′(Xt)| =
∣∣∣∣∣F ′′(Xt) Im

[
N

∫ N−2/3+d

E
∂klijm(t;Lt + y + iη) dy

]∣∣∣∣∣ 6 N−1/3+Cd, (9.50)

where we used (4.14) and (9.25). Therefore, the sum arising from the first term in (9.49) can be
estimated as

e−t

2Nd(d− 1)
∑
ijkla

E
[
AikAjl∂

kl
ij (F ′(Xt))GaiGja

]

= e−t

2Nd(d− 1)
∑
ijkla

d2

N2E
[
∂klij (F ′(Xt))GaiGja

]
+ O

(
N1+Cd

d1/2

)

= e−t

2N3

∑
ijkla

E
[
∂klij (F ′(Xt))GaiGja

]
+ O

(
N1+Cd

d1/2

)
.

(9.51)

where we used Corollary 3.4, (9.50) and that with very high probability
∑
ij |(G2)ij | = N Im[m(t;Lt+

y + iη)]/η 6 N4/3+Cd from (9.25). For the sum corresponding to the second term in (9.49), we use

58



the notation A(t) =
√
d− 1H(t) and write

e−t

2Nd(d− 1)
∑
ijkla

E
[
AikAjlF

′(Xt)∂klij (GaiGja)
]

= 1
2Nd(d− 1)

∑
ijkla

E
[
Aik(t)Ajl(t)F ′(Xt)∂klij (GaiGja)

]

− e−t/2
√

1− e−t
2Nd(d− 1)1/2

∑
ijkla

E
[
(AikWjl +WikAjl)F ′(Xt)∂klij (GaiGja)

]

− (1− e−t)
2Nd

∑
ijkla

E
[
WikWjlF

′(Xt)∂klij (GaiGja)
]
.

(9.52)

We can estimate the second and third term on the right-hand side of (9.52) using Lemma 9.1, e.g.

e−t/2
√

1− e−t
2Nd(d− 1)1/2

∑
ijkla

E
[
WikAjlF

′(Xt)∂klij (GaiGja)
]

= e−t/2(1− e−t)
2N4d(d− 1)1/2

∑
ijkli′k′a

E
[
Ajl∂

i′k′
ik (F ′(Xt)∂klij (GaiGja))

]

= O
(

(1− e−t)
2N4d(d− 1)1/2

∑
ijkli′k′

E[Ajl Im[m]/η]
)

= O
(
N1+Cd

d1/2

)
,

(9.53)

where in the third line we used (4.12) and (9.25). In the same way, we in fact have that the second
and third term on the right-hand side of (9.52) are all bounded by O(N1+Cd/d1/2).

In the following we estimate the first term on the right-hand side of (9.52). These are terms in
the form

∑
ijklaAik(t)Ajl(t)F ′(Xt)×{monomial of Green’s function entries}, where, we recall, the

Green’s function is that of H(t) = (d− 1)−1/2A(t). For them we can

(i) sum over indices which appear only once and use the relations
∑
iAij(t) =

∑
j Aij(t) = e−t/2d

and
∑
iGij =

∑
j Gij = 0 to get expressions involving TrG2, TrG3, or A(t)G;

(ii) simplify the expressions using the identity A(t)G = GA(t) = (d − 1)1/2(H(t) − z + z)G =
(d− 1)1/2(zG+ P⊥);

(iii) estimate the final expressions using (4.11), (4.12), (9.27), z = 2+O(N−1/3+d), maxi 6=j |Gij | ≺
1/
√
d and maxi |Gii + 1| ≺ 1/

√
d from Proposition 9.7.

Using the above procedure, we get that∑
ijkla

Aik(t)Ajl(t)∂klij (GaiGja)

= −2e−td2(TrG3 +NmTrG2) + 4(d− 1)N TrG2 + O(N7/3+Cd),
(9.54)

and ∑
ijkla

∂klij (GaiGja) = −2N2(TrG3 +NmTrG2). (9.55)
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It follows by combining (9.51), (9.54) and (9.55) that

e−t

2Nd(d− 1)
∑
ijkla

E
[
AikAjl∂

kl
ij (F ′(Xt)GaiGja)

]
− e−t

2N3

∑
ijkla

E[∂klij (F ′(Xt)GaiGja)]

= 1
2Nd(d− 1)

∑
ijkla

E
[
Aik(t)Ajl(t)F ′(Xt)∂klij (GaiGja)

]

− e−t

2N3

∑
ijkla

E[F ′(Xt)∂klij (GaiGja)] + O
(
N1+Cd

d1/2

)

= − e−t

(d− 1)N E
[
F ′(Xt)(TrG3 +NmTrG2)

]
+ 2
d
E[F ′(Xt) TrG2] + O

(
N1+Cd

d1/2

)

= 3
d
E[F ′(Xt) TrG2] + O

(
N1+Cd

d1/2

)
,

where in the last line we used (4.11) and (9.27).

Proof of Claim 9.14. For (9.45), similarly to (9.50), we have |(∂klij )2F ′(Xt)| 6 N−1/3+Cd with
very high probability and

J2 = e−3t/2

4Nd(d− 1)3/2

∑
ijkla

E
[
AikAjlF

′(Xt)(∂klij )2(GaiGja)
]

+ O
(
N1+Cd

d1/2

)
. (9.56)

Thanks to Proposition 9.7, we have maxi 6=j |Gij | ≺ 1/
√
d. Those terms from (∂klij )2(GaiGja) that

contain four off-diagonal terms yield a contribution of the form

e−3t/2

4Nd(d− 1)3/2

∑
ijkla

E
[
AikAjlF

′(Xt){terms with 4 off-diagonal terms}
]

= O
(
N4/3+Cd

d3/2

)
. (9.57)

The leading contributions are from those terms from (∂klij )2(GaiGja) which contain two or three
off-diagonal Green’s function entries. By the same estimate as in (9.52), we have

e−3t/2

4Nd(d− 1)3/2

∑
ijkla

E
[
AikAjlF

′(Xt){terms with 6 3 off-diagonal terms}
]

= e−t/2

4Nd(d− 1)3/2

∑
ijkla

E
[
Aik(t)Ajl(t)F ′(Xt){terms with 6 3 off-diagonal terms}

]
+ O

(
N1+Cd

d

)
.

(9.58)

Those terms in (9.58) can be treated by the same procedure as described in the proof of Claim 9.13,
and we get

(9.58) = −12
d

∑
ij

E[F ′(Xt)G2
ij ] + O

(
N4/3+Cd

d3/2 + N1+Cd

d1/2

)
. (9.59)

The claim (9.45) follows from combining (9.56), (9.57), (9.58) and (9.59).
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In the following we prove (9.46). Similarly to (9.50), we have |(∂klij )3F ′(Xt)| 6 N−1/3+Cd with
very high probability and

J3 = e−2t

12Nd(d− 1)2

∑
ijkla

E
[
AikAjlF

′(Xt)(∂klij )3(GaiGja)
]

+ O
(
N1+Cd

d

)
. (9.60)

Thanks to Proposition 9.7, we have maxi 6=j |Gij | ≺ 1/
√
d. Those terms from (∂klij )3(GaiGja) which

contain at least three off-diagonal terms yield a contribution of the form

e−2t

12Nd(d− 1)2

∑
ijkla

E
[
AikAjlF

′(Xt){terms with > 3 off-diagonal terms}
]

= O
(
N4/3+Cd

d3/2

)
. (9.61)

The leading contribution is from those terms that contain exactly two off-diagonal terms. By the
same estimate as in (9.52), we have

e−2t

12Nd(d− 1)2

∑
ijkla

E
[
AikAjlF

′(Xt){terms with 2 off-diagonal terms}
]

= e−t

12Nd(d− 1)2

∑
ijkla

E
[
Aik(t)Ajl(t)F ′(Xt){terms with 2 off-diagonal terms}

]
+ O

(
N1+Cd

d3/2

)
.

(9.62)

We can estimate above terms using the procedure as described in the proof of Claim 9.13, and get

e−t

12Nd(d− 1)2

∑
ijkla

E
[
Aik(t)Ajl(t)F ′(Xt){terms with 2 off-diagonal terms}

]
= 8
d
E
[
F ′(Xt) TrG2

]
+ O

(
N4/3+Cd

d3/2

)
.

(9.63)

The claim (9.46) follows from combining (9.60), (9.61), (9.62) and (9.63).
For fixed n > 4, we have the trivial bound

|Jn| .
1

Nd(n+3)/2

∑
ijkla

E[AikAjl(∂klij )n(F ′(Xt)GaiGja)]

.
1

Nd(n+3)/2

∑
ijkl

E[AikAjl Im[m]/η] = O
(
N4/3+Cd

d(n−1)/2

)
.
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