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ABSTRACT   
Controlling absorption and emission of organic molecules is crucial for efficient light-emitting diodes, 
organic solar cells and single-molecule spectroscopy.  Here, a new molecular absorption is activated inside 
a gold plasmonic nanocavity, and found to break selection rules via spin-orbit coupling. 
Photoluminescence excitation scans reveal absorption from a normally spin-forbidden singlet to triplet 
state transition, while drastically enhancing the emission rate by several thousand fold. The experimental 
results are supported by density functional theory, revealing the manipulation of molecular absorption by 
nearby metallic gold atoms. 
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INTRODUCTION 
Selection rules govern absorption and emission of light in atomic and molecular systems1, that stem from 
quantum mechanical symmetries dictating which atomic, electronic or vibrational transitions are allowed 
or forbidden1,2. Allowed transitions are desired for lasers and light emitting diodes, but forbidden 
transitions are typically inaccessible to optical excitation. Mechanisms that break these selection rules to 
allow forbidden transitions yield novel and efficient devices3–6.  

Molecular light emission is typically limited to an internal quantum yield of only 25% through the singlet-
singlet transitions, while 75% of pathways are spin forbidden singlet-triplet transitions (Fig. 1a). To allow 
these forbidden transitions, spin-orbit coupling is induced by interacting the angular motion of electron 
spins with the magnetic dipole created by local massive atomic nuclei1,7. This is achieved in organo-
transition-metal complexes8–11 via internal heavy atom effect when a metal-to-ligand charge transfer state 
is formed, allowing intersystem crossing from the excited singlet state 𝑆1 to excited triplet state 𝑇1 
(Fig. 1b). External heavy-atom effects induce spin mixing by placing heavy atoms near an emitter without 
actual bond formation7. Heavy atom effects have been used to enhance emission rates12–14, thermally- 
and optically-activate ‘delayed’ fluorescence15–18, reversibly control emission19–21 and activate light 
emitting diodes (LEDs)8,22,23. These approaches enhance triplet emission 𝑇1 → 𝑆0 through exciting 𝑆0 →
𝑆1, then followed by intersystem crossing 𝑆1 → 𝑇1 (Fig. 1b) in bulk ensembles of molecules. Due to weak 
spin-orbit coupling, directly accessing such forbidden singlet-triplet transition (𝑆0 → 𝑇1) has thus been 
inaccessible at the molecular level. Manipulating spin mixing to activate absorption and emission 
pathways at the nanoscale has however promising implications for nano-LEDs24, nano-lasers25, nano-solar 
cells26, single molecule spectroscopy27,28, opto-magnetism29,30, as well as single-photon quantum 
emitters31,32. 



 

Here we activate a direct absorption from 𝑆0 → 𝑇1 (a forbidden transition) using a nanophotonic construct 
that induces spin mixing to allow absorption from the forbidden transition (Fig. 1c). Instead of organo-
metallic complexes, we employ a nanoparticle-on-mirror (NPoM) plasmonic nanocavity that achieves an 
extreme optical field confinement below 25 nm3,33 with fields enhanced up to 300 times in these deeply 
subwavelength nanogaps (Fig. 1d,e). The NPoM nanocavities each consist of an 80 nm Au nanoparticle on 
a Au film spaced by a monolayer of the molecular emitter Rubpy [Tris(2,2′-bipyridine) ruthenium(II) hexa-
fluorophosphate], with ~30 strongly emitting molecules under each Au nanoparticle34 (for sample 
preparation see Supplementary Information 1). Rubpy is a widely studied triplet emitter with a quantum 
yield of <3%8, absorbing in the ultraviolet ~450 nm and has a large Stokes shift with a phosphorescence 
peak at 620 nm (Fig. 1f). The tail of this broad emission is coupled here to the NPoM cavities which have 
a fundamental plasmon resonance in the near- infrared at 830 ± 30 nm, set by the Rubpy monolayer 
height which creates a gap size ~1 nm35. 

RESULTS AND DISCUSSION 
A single nanocavity is first irradiated at the forbidden transition 𝑆0 → 𝑇1 with an excitation wavelength of 
640 nm, close to the phosphorescence peak using 1 ps pulses (for experimental setup see SI 2). With 
average power of 1 μW on individual NPoMs, a broad spectral emission is seen with a maximum at 
~700 nm and a broad tail beyond 800 nm (Fig. 2a). The broad emission has additional sharp peaks 
attributed to surface-enhanced resonant Raman scattering (SERRS). This emission is completely absent 
for Rubpy in solution (80 μM, Fig.2a, solid green) and for the Au mirror away from the NPoM (due to 
quenching). To check the nature of this emission from NPoMs, the total emission intensity is found to be 
linearly proportional to input power (Fig. 2b). This confirms the emission comes from one-photon 
excitation rather than multiphoton excitation or other nonlinear processes, and no saturation is observed. 
Time-correlated single photon counting (TCSPC) gives the emission lifetime as 𝜏rad = 520 ± 10 ns in bulk, 

Figure 1. (a-c) Energy levels of allowed and forbidden transitions in molecular emitters embedded in different 
geometries, with (a) electron spin configurations of singlet 𝑆0,  𝑆1 (antiparallel electron spin pairs) and triplet 𝑇1 
(unpaired parallel electron spins) states. (d) Nanoparticle-on-mirror (NPoM) construct with Rubpy spacer. (e) 
Finite-difference time domain simulation of field enhancement in the NPoM gap at 𝜆=750 nm. Dashed lines show 
boundaries of Au nanoparticle and Au film, scale bar is 10 nm. (f) Absorption (blue) and emission (green) curves 
of Rubpy in solution with 520 nm excitation. Grey curve is darkfield scattering showing dominant coupled mode 
of a NPoM. 



 

which is drastically shortened to < 0.2 ± 0.1 ns in NPoMs (Fig. 2c). While this NPoM Rubpy measurement 
is limited by the TCSPC instrument response, it shows over three orders of magnitude reduction in 
spontaneous lifetime due to the high optical density of states in these nanocavities. Finite-difference time 
domain (FDTD) simulations reveal that there is a Purcell factor of ~106 for these 1 nm nanogaps, 
suggesting lifetimes ~500 fs (for FDTD results, see SI Fig. S4). Moreover, the emission quantum yield 
increases more than ten-fold to 35% for Rubpy, due to the resulting increase in radiative decay rate inside 
the nanocavity. Thus, there is an observable emission from NPoMs instead of quenching (as occurs for 
emitters close to an isolated single plasmonic nanoparticle [36,37]). Over long timescans of > 1000 
seconds at 0.1 μW excitation, we observe no significant reduction in intensity which implies that these 
emitters are stable in NPoMs and there is no observable bleaching (SI Fig. S6).  

To further probe the forbidden 𝑆0 → 𝑇1 transition, photoluminescence excitation (PLE) pump wavelength 
scans are performed from 𝜆ex = 590 - 720 nm. At each 𝜆ex, the average laser power on the sample is set 
to 1μW, precalibrated to account for power variations from wavelength-dependent transmission through 
the optical beamline. A consistent broad emission between 700 nm and 800 nm with additional SERRS 
peaks is seen for all 𝜆ex (Fig. 3a), increasing and then decreasing as 𝜆ex is increased. This is unaffected 
when using the scattering resonance to normalize for NPoM outcoupling efficiencies (see SI Fig. S7). The 
resonant absorption in PLE from the integrated emission is maximum at 642±2 nm and identical for 
different NPoMs (Fig.3b, average over 3 NPoMs), confirming it arises from the molecules in the gap. Note 
no emission is seen without Rubpy in the plasmonic gap. By contrast, the PLE of Rubpy in solution 

 
Figure 2. (a) Emission from Rubpy in NPoM gaps (orange) and in solution (solid green) with 𝜆𝑒𝑥= 640 nm 
excitation. For comparison, emission from solution with 520 nm excitation (dashed green) and darkfield 
scattering of NPoM (dashed grey) are shown. Inset gives energy levels of excitation and emission. (b) Power 
dependence of emission. (c) Time-resolved emission decay in NPoM (orange), and in solution (green), with 
instrumental response (blue). 

 



 

decreases steadily with 𝜆ex (Fig. 3c), mapping the tail of the absorption line (Fig. 1e). To further confirm 
the general nature of our observations, we show similar results for spacers of two other organo-metallic 
complexes, ferrocene and a Zn porphyrin, which also give a new excitation resonance at their 𝑆0 → 𝑇1 
transitions (Fig. 3d,e, SI 8).  

In order to understand the new absorption lineshape, we perform time-dependent density functional 
theory (TDDFT) on Au2-Rubpy-Au2 to model the NPoM environment and calculate the absorption spectra 
for different gap sizes 𝑑 (Fig. 4a, for TDDFT details see SI 10). Energy minimization of the molecular 
structure in the presence of a Au film are used to obtain an optimized molecular orientation (Fig. 4a) and 
additional orientations are also calculated. A new absorption peak appears with Au atoms close to the 
molecule that is absent in solution (Fig. 4b) and this agrees with our measurements in Fig. 3(b,c), 
confirming that NPoMs turn on a new absorption state. The induced absorption is strongest at small gap 
sizes and decreases exponentially at larger 𝑑 (Fig. 4c). This dependence results from the atomic electron 
densities that decrease exponentially with distance, and gives an exponential fall-off of overlap between 
molecular and Au orbitals. By comparing the absorption curves, we find that the oscillator strength is 
enhanced by greater than 50-fold in NPoMs compared to solution. The shift of the absorption peak to 
higher energies at small 𝑑 is due to an increased interaction of the molecule with the gold atoms, which 
results in mixed transitions at energies between that of the bright molecular transitions and gold 
transitions. The transitions responsible for this increase are mixed singlet-triplet transitions from electron 
exchange between the Au and Rubpy induced by spin-orbit coupling. For instance, at 𝑑 = 9 Å, the band 
around 580 nm is built from four singlet transitions where the electron is excited from Ru and Au 𝑑 orbitals 
and bpy 𝜋 orbitals to Au 𝑠𝑝 and bpy 𝜋* orbitals. At 𝑑 = 14 Å, mixing of molecular and gold excitations is 
still noticeable, although the weight of transitions involving the molecule are smaller than at closer 𝑑 (for 
more details, see SI 10). The sub-nm proximity of Au atoms in both facets to the emitters induces spin-
orbit coupling in the molecules, thus modifying the electronic transitions and allowing direct absorption 

 
Figure 3. (a) Photoluminescence excitation (PLE) scan on singlet 𝑆0 to triplet 𝑇1 transition. (a) Emission spectra of 
Rubpy in NPoM vs energy shift from pump for increasing 𝜆𝑒𝑥  = 590-720 nm in 10 nm steps. (b,c) Integrated emission 
(PLE) spectra for NPoM vs Rubpy in solution, black curves are Gaussian fits. In (b), the grey dashed curve 𝐴𝑁𝑅 is the 
predicted absorption spectrum from near-field enhancement in the NPoM gap and the dashed vertical line is the 
expected triplet emission energy. (d,e) Chemical structures (left panel) of ferrocene and Zn porphyrin used as NPoM 
spacers to obtain the integrated emission (PLE) from two NPoMs for each (middle, right panels). Dashed vertical lines 
mark expected triplet state energies. 

 

 

 



 

to the forbidden triplet state. At the same time, the nanocavity geometry gives efficient outcoupling 
without plasmonic quenching of the emission at such sub-nm distances. 

Previous theoretical studies proposed that a high field gradient in a nanocavity can induce ac magnetic 
fields that break symmetry, allowing excitation of forbidden transitions.30,38–43 To verify if this mechanism 
plays a role in our observations, we calculate the spatial distribution of the magnetic field component in 
NPoM gaps using FDTD simulations. The magnetic field is highest at the facet edges under the 
nanoparticle, but zero around the centre of the gap, where molecules with the highest out-coupled 
emission are located (SI Fig. S5). This implies that the influence of the ac magnetic field on the bright 
molecules is minimal and thus the high field gradient effect is not responsible for the observed absorption 
peak. Moreover, enhanced near-field absorption (𝐴NR), which is calculated as the product of the 
absorption of Rubpy in solution and the near-field enhancement spectrum cannot explain the observed 
peak. The calculated 𝐴NR deviates significantly from the observed absorption curve (grey dashed curve, 
Fig. 3b). Furthermore, the charge density difference between the molecule and Au atoms reveals a dipole 
form of interaction rather than multipole interactions (Fig. S13). We thus identify the external heavy atom 
effect as the mechanism that induces the new absorption transition in the molecules.  

Because of its spectral position (Fig. 3b), the observed emission at the solvated 𝑆0 → 𝑇1 excitation is 
attributed to mixed single-triplet electronic transitions that produce photoluminescence (PL) and 

 
Figure 4. Time-dependent density functional theory simulation of the absorption of Rubpy. (a)  Au2-Rubpy-Au2  
system used for modelling the effect of the surrounding Au facets, at different gap sizes 𝑑. (b) Calculated 
absorption spectrum for solvated Rubpy and Au2-Rubpy-Au2 at different gap sizes 𝑑. (c) Maximum absorption 
intensity vs gap size 𝑑 extracted from (b), grey curve is an exponential fit.  
 

 

 



 

resonant Raman (SERRS). For the bare molecule, the selection rules make this transition forbidden which 
is why phosphorescence with a long lifetime is observed in solution (Fig. 2c), through weak spin-orbit 
coupling. What is unexpected is the transformation from weak phosphorescence to strong 
photoluminescence, while at the same time as a new strong absorption line is observed at the triplet 
state, observed at the few molecule level. For 𝑆0 → 𝑇1 transitions to occur, a mechanism is required to 
break the electronic selection rule through spin mixing. We note that both PL and resonant Raman (or 
SERRS) require this same spin-mixing mechanism44,45 to elicit the resonant lineshapes observed. Thus, the 
presence of SERRS in our observation is a further confirmation that selection rules have been broken. 

CONCLUSIONS 
In summary, we observe a strong singlet-triplet absorption and emission for molecules confined in these 
plasmonic nanocavities. The field enhancement inside the nanogaps speeds up the phosphorescence 
through the Purcell factor of several thousand when the mode volumes are so small compared to 𝜆3.33,46 
At the same time, the nanocavity induces absorption at singlet-triplet transitions by breaking the 
electronic selection rules via the sub-nm proximity of Au atoms. Typically, bulk metals so close to 
molecules quench their emission completely, but the NPoM system is different in that it enhances 
radiative emission. As a result the effect is seen for the first time with metallic facets. The resulting effect 
is to convert the phosphorescent triplet emitter into an ultrafast (< 1 ps) bright luminescent source 
(quantum yield ~35%). Since NPoMs allow spin-forbidden transitions to become optically accessible, this 
opens development of more efficient organic light emitting diodes and solar cells, optically detected 
magnetic resonance, as well as directly accessing triplet states for fundamental spin interactions in 
quantum chemistry and nanophotonics. 
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Measured Intensity vs excitation wavelength of Rubpy molecule in nanoparticle-on-mirror nanocavities 
and in solution ensemble. The nanocavity includes spin-orbit coupling that breaks selection rules, thus 
allowing a direct excitation from a singlet to triplet state, a normally forbidden transition. 


