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Abstract 
Paper-based sensors and assays have evolved rapidly due to the conversion of paper-based 

microfluidics, functional paper coatings, as well as new electrical and optical readout techniques. 

Nanomaterials have gained substantial traction as key components in paper-based sensors, as they 

can be coated or printed relatively easily on paper to locally control the device functionality. Here we 

report a new combination of methods to fabricate carbon nanotube based (CNT) electrodes for paper-

based electrochemical sensors using a combination of laser cutting, drop-casting and origami. We 

applied this process to a range of filter papers with different porosities, and used their differences in 

three-dimensional cellulose networks to study the influence of the cellulose scaffold on the final CNT 

network and the resulting electrochemical detection of glucose. We found that an optimal porosity 

exists which balances the benefits of surface enhancement and electrical connectivity within the 

cellulose scaffold of the paper-based device and demonstrate a cost-effective process for fabrication 

of device arrays.  

Introduction 
Paper is a promising substrate for the fabrication of point-of-care in-vitro diagnostics. It is ubiquitously 

available, affordable, chemically stable, the unused waste is biodegradable and most importantly its 

porous fibrous structure provides a high surface area for reactions and drives a natural capillary-driven 

mass transport of sample liquids 1–6. Furthermore, there are a variety of well-established technologies 

for manufacturing and processing  of paper that can be applied to device fabrication, including  folding, 

cutting 7–9, printing 10–13, masking 14,15 and laser-writing 16. These techniques have enabled the 

fabrication of paper-based microfluidic devices, where paper simultaneously acts as a channel, pump 

and filter 14. However, paper varies enormously in terms of final composition, structure and wettability 

depending on the source of materials and the manufacturing process 17. 

The internal structure of paper is known to effect the performance of diagnostic devices 18, as reported 

for the electrochemical sensing of nickel 19, detection of NADH 20 and colorimetric detection of glucose 
21. In the case of colorimetric detection, it was found that thicker paper types reduce the signal 

intensity and that papers with higher wicking speeds improve the colour development and readability 

of the device 21. However, within the literature often little attention is paid to the paper source, which 
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ranges from lab filter paper 22,23 and chromatography paper 24,25, to general purpose printer paper 26 

and paper towels 27.  

Electrochemical sensing is one of the most attractive opportunities for paper-based devices, especially 

for the detection of a variety of blood analytes, owing to its low cost, high sensitivity and high 

selectivity 18. These sensors require high surface area electrically conductive electrodes made out of 

an electrochemically stable material such as a glassy carbon electrode, HOPG or other microstructured 

surfaces. Among these carbon nanotubes (CNTs) have been used as a transduction material in a 

number of applications as they have a high surface area, are electrically conductive, chemically inert 

and have been used as a transduction material in a variety of sensor types including resistive 28,29, 

colorimetric 30 and electrochemical sensors 18,31. Furthermore, CNT powders are now regularly 

fabricated at an industrial scale 32, and protocols have been established to make large volume 

suspensions 33–35that enable integration into devices . In this paper, we firstly report the role of paper 

porosity on the performance of CNT coated paper-based electrochemical sensors. The 

electrochemical sensing electrodes are fabricated by drop-casting a CNT suspension onto paper 

substrates of different porosities. The hypothesis is that the pore structure of the paper forms a 

scaffold onto which the CNTs create an electrically conductive electrode. This provides a cost-effective 

approach to create high surface area porous nanoparticle structures, which are at the same time 

resilient and easy to handle because of the paper backbone. Further, we rely on the porosity of the 

paper to provide micro-channels that transport the liquid sample within the electrode. Secondly, we 

present a novel combination of laser cutting, CNT solution drop casting and origami to manufacture 

arrays of diagnostic devices. Laser cutting is used here to define the electrode sensing area so that the 

CNT suspension can be simply drop-cast without requiring a patterning process and origami is used to 

connect the working, reference and counter electrode with the electrolyte (see Figure 1A and process 

details further on). 

 

 



3 

 

Figure 1. A) Overall architecture of the electrochemical sensors developed in this work. B) Schematic of paper 

porosity and the influence of the paper porosity on the CNT coating. 

As sketched in F igure 1B, we compare electrodes made by coating CNT suspensions on filter papers 

with the same composition and thickness but with varying porosities. We hypothesise that there are 

several competing effects when coating the paper with CNTs. Firstly, coarse filter papers allow for a 

deeper penetration of CNTs during the coating process, which should improve the electrode surface 

area. Secondly, if the CNTs are spread too thinly through the paper due to deeper penetration, they 

will no longer form a percolated conductive network, which would decrease the conductivity of the 

coating. Finally, the mass of CNTs deposited must be sufficiently low to allow pores to remain open 

and allow the internal capillary flow of analyte. This suggests that a balance must be struck between 

the surface area and the electrical connectivity of the CNT network making up the electrode. This was 

verified by testing electrochemical glucose detectors as a model system representing a wider range of 

electrochemical diagnostic sensors. The sensor architecture developed in this paper is shown in Figure 

1A, it consists of a typical three electrode configuration with a CNT working electrode and counter 

electrode and a Ag/AgCl reference electrode. Arrays of these sensors were fabricated to study 

variations in performance depending on the paper porosity. 

Method 
The fabrication steps for the paper-based sensors are depicted in Figure 2. First, the outline of the 

sensor is defined using a laser cutter (Laserscript LS6040 Pro), which is used to produce an array of 

devices from a single sheet of filter paper (see Figure 2A).  Details of the CAD file are provided in the 

supplementary information (SI). For ease of standardising the subsequent fabrication steps, the 

sensors remain attached to the paper substrate by two small strips which are torn at the end of the 

process to release the sensors. Here the laser is not only used to cut the sensor out of the paper, but 

importantly is also used to precisely define the shape of the three electrodes needed for the 

electrochemical sensors. By defining this geometry, the CNT suspension  can simply be drop-cast onto 

the paper without the need for additional patterning methods (e.g. in-jet printing or screen printing) 

to define the electrode area. The second step of the fabrication process is to locally sputter coat a 

gold/palladium layer using shadow masking as shown in Figure 2B. This coating step is used to connect 

the sensing electrodes more easily to a potentiostat and is anticipated to be replaced with solution 

deposition techniques in future work.  

The CNT suspension is prepared for the working and counter electrode of the sensor.  The suspension 

is a dispersion of multi-walled CNTs (NC7000, Nanocyl, Belgium) in ethanol at a concentration of 2 

mg/mL, using Nafion, at 1 wt%, as a surfactant. The CNTs used have an average diameter of 9.5 nm 

and average length of 1.5 µm according to the specification of the manufacturer. Nafion is a surfactant 

used for this application because of its ionic conductivity and because it enables the dispersion of CNTs 

in ethanol. The latter allows for faster repeated coating steps than water based dispersions 36. The 

CNT – Nafion – ethanol suspension is sonicated for 2 hours at a 37 kHz (Branson Bath Sonicator) and 

is then centrifuged for 1 hour at 5000 RCF to remove any CNT aggregates. Continuous flow processes 

have been developed to scale up the CNT suspension production 33. 

The CNT suspension is drop-cast in multiple steps onto the laser-cut electrode area to build up a range 

of different electrically conductive networks in the paper . This iterative process is used for both the 

working electrode (WE) and counter electrode (CE). For the working electrode, 0.2 L of the CNT 

suspension is drop-cast onto the 7.5 mm2 area in each step and for the counter electrode, 1.5 L is 

drop-cast onto the 1.5 mm2 area in each step. Between each deposition, the paper is dried for 2 
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minutes at 60 ºC. In the devices reported here, this process of drop-casting and drying is repeated 

twelve times for both the working and counter electrode. This amount of coating steps was chosen by 

measuring the evolution of the resistance of a small paper strips using the same coating process. The 

reference electrode (RE) is fabricated by applying 3 L of a  Ag/AgCl paste to the laser cut electrode 

and allowed to dry at 60 ºC for 2 minutes in the same manner as each layer of the CNT suspension on 

the other two electrodes. 

The laser cutting process allows the accurate definition of CNT electrodes without further patterning, 

but because of this cutting step, there is no paper connecting the WE, CE and RE electrodes, and 

therefore, it is challenging to bring the analyte solution in contact with these electrodes 

simultaneously. This issue is solved by folding a laser cut strip of the paper back onto the three 

electrodes, as shown in Figure 2D. This “origami” step reconnects the electrodes, allowing the analyte 

to come into contact with all three electrodes during the electrochemical measurements.  Finally, this 

entire procedure is repeated on different filter papers to study the impact of the paper porosity on 

the electrode performance.   

The electrochemical sensors shown in Figure 2 are then characterised using a potentiostat (Biologic, 

VMP3) with a standard three-electrode configuration. All experiments are carried out in a saturated 

humid environment and at room temperature. The cyclic voltammograms (CV) are recorded using a 

scan rate 20.00 mVs-1. Chronoamperometry (CA) measurements are conducted using an applied 

voltage of 0.05 V and a time interval of 0.1 s. 5 µL of 0.1 M potassium phosphate buffer solution (pH 

6) was applied to the centre point of the paper device immediately before the CA measurements were 

run.  

 

Figure 2. Images of device fabrication. The lefthand image illustrates the process occurring at each stage of 

fabrication. Arrays of four identical sensors are fabricated to test the repeatability of the process. A) Laser-
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cutting of sensor outline. B) Local sputtering of gold/palladium contacts using shadow masking. C) Drop-

casting of suspensions on the sensor electrodes. D) Folding of paper strip onto the three electrodes.  

Results and Discussion 
We first compared the pore structure of the different filter papers using nitrogen physisorption 

(Micromeritics, 3 Flex) and analysing using Brunauer-Emmett-Teller (BET) theory to measure the 

surface area and Barrett-Joyner-Halenda (BJH) analysis to give a measure of the pore size distribution. 

The BJH pore distribution assumes that the pores are cylindrical in nature and that the radius of these 

cylinders is proportional to the sum of the Kelvin radius and the thickness of the film adsorbed 37. The 

nitrogen physisorption isotherms used as the basis for the BET and BJH analysis are shown in Figures 

3A-C for each of the filter papers with increasing porosity from P1 to 3 (P1 Whatman filter paper 2; P2 

Whatman filter paper 1; and P3 Whatman filter paper 4).  

 

Figure 3. Analysis of the paper substrates. A) Physisorption isotherm for P1 paper. B) Physisorption 

isotherm for P2. C) Physisorption isotherm for P3. D) SEM of CNT coated P1 paper.  E) SEM of CNT 

coated P2 paper. F) SEM of CNT coated P3 paper. 

 

We then calculated the theoretical porosity using equation (1): 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 −
𝜌𝑏𝑢𝑙𝑘

𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 

 

(1) 

Where 𝜌𝑏𝑢𝑙𝑘 is the density of the paper and 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is the nominal density of cellulose fibres (app. 

1.5x106gm-3, 38). As shown in Table 1, our calculated porosity and the manufacturer’s reported nominal 

particle size retained suggest that P1 has the smallest pore structure, followed by P2, and P3 has the 

largest pore structure. This is in agreement with SEM images shown in Figures 3 D-F.  Analyses from 

BET and BJH is give information on the increase in surface area of the electrodes as a result of CNT 

coating. Here a two to three-fold increase in surface area is observed after coating the cellulose with 

CNTs  and the pore volume estimated by the BJH method shows a similar increase, as detailed in Table 
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1. Close-up SEM images show the origin of this increased area with drop-casting of CNT-ethanol 

suspensions resulting in an even coating of the cellulose fibres with CNTs (see Figure 3D-F). We have 

verified that chemical composition of the three papers is similar using FT-IR (see Figure 4A) to rule out 

effects of surface chemistry on the coating process or device operation. The three filter papers 

discussed above have a similar thickness of 200 m, we have however also tested a 390 m thick 

paper which can be found in Figure S-2 of the supporting information for comparison.  

Table 1. Pore structure analysis of the filter papers used (P1, P2 and P3). 

Paper 
Type 

Porosity 
(%) 

Nominal 
Particle Size 

Retained 
(µm) 

BET Surface 
Area Plain 

Paper 
(m2/g) 

BET Surface 
Area CNT   
& Paper 
(m2/g) 

BET Surface 
Area CNTs 
only (m2/g) 

BJH Pore 
Volume 

Plain Paper 
(mm3/g) 

BJH Pore 
Volume CNT  

& Paper 
(mm3/g) 

P1 66.0 8 2.09 5.60 87.32 3.92 9.30 

P2 67.8 11 1.56 5.31 84.44 2.99 9.54 

P3 70.8 25 1.76 3.86 53.56 3.75 8.60 

 

To test the influence of porosity on electrical conductivity with CNT coating, paper strips are laser cut 

out of P2, and they are iteratively coated up to 20 times with 10 µl of the CNT suspension described 

above.  Figure 4B shows increasing numbers of layers of CNTs (indicated by the change in colour) and 

the increase in electrical conductivity of a laser cut paper strip as a function of the number of CNT 

coating steps (see methods). Based on these results, we fabricated an electrochemical glucose sensor 

with the WE and CE coated with 12 layers, to balance coating time and conductivity. 
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Figure 4. A) FTIR spectra of P1, P2 and P3 papers. B) Resistance of CNT coated P2 paper as a function of the 

number of suspension layers applied C). Images of electrodes with increasing CNT coatings.  

In Figure 5A, we report the average chronoamperometric current change as a function of the glucose 

concentration applied, each measurement point plotted is the mean response of three devices.  As 

shown in Figure 5A, the current change increases with the concentration of glucose. The time response 

of the sensor from application of the analyte to observable response was 5 – 10 seconds, and some 

oscillatory behaviour was observed at low glucose concentration (see Figure S-1).  

Figure 5B, shows the current change with increasing glucose concentration. Interestingly, this 

measurement shows that simply changing the paper substrate can lead to a two-fold improvement in 

the current difference (P2 versus P1).  We postulate that from findings shown in Table 1, this 

difference in sensitivity may be due to the CNTs forming a high surface area, with a good conducting 

network in P2. In P1 substrates, the CNTs are not expected to spread as well through the thickness of 

the paper resulting in a lower electrode area. Devices using P3 on the other hand show a very large 

variation in sensitivity, which is likely due to the CNTs spreading through the paper without always 

forming a continuous conductive network. If as a result of this not all parts of the electrode are 

electrically connected, this could explain the much greater variability in device performance observed 

experimentally when using P3 paper.  

 

Figure 5. A) Photos showing the folding process of the devices B) The change in current as a function 

of glucose concentration. C) Bar chart of current change increasing with glucose concentration 

grouped by paper type. 
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The limit of detection (LOD) was calculated as 𝐿𝑂𝐷 = 3.3 ∗ 𝑠/𝑚, where s is the standard deviation of 

the current response of devices made from the same paper type to a known change in glucose 

concentration,  and m the gradient of the linear fit to that data 39. Taking the standard deviation over 

four devices, we found that P2 paper shows the best LOD of 2.93 mM. The normal level of glucose in 

whole blood is 3.5 – 5.3 mM and 2.5 – 5.3 mM in serum 18 and so the devices fabricated from the 

optimal paper type would be suitable for use in the monitoring of glucose in biological samples. For 

the other two paper types, the LOD is found to be larger; P1 has a LOD of 3.17 mM; P3 a LOD of 8.44 

mM; showing the effect of substrate choice on the detection capabilities of the devices. Overall, these 

experiments demonstrate the importance of paper choice and our ability to fabricate arrays of paper-

based electrochemical sensors using a new combination of laser cutting, CNT drop-casting and 

origami. Combined with an optimised paper porosity, this process allows for the fabrication of 

electrochemical sensors with comparable sensitivity and reproducibility to those reported in literature 
40,41 . 

Summary 
Paper is an interesting substrate for the fabrication of point-of-care in-vitro diagnostic sensors because 

it is affordable and has a porous fibrous structure that can be used for capillary transport of liquids, 

for filtration and as a scaffold for coating with functional nanomaterials. In this work, we presented a 

new elegant fabrication process for paper-based electrochemical glucose sensors where laser cutting 

is used to define the area of the sensing electrodes, and origami is used to bring the analyte in contact 

with the electrodes. To create high surface area sensing electrodes, a CNT-Nafion suspension in 

ethanol is simply drop-cast on the pre-cut sensing areas. Three different types of paper substrates 

with increasing porosity were studied to investigate the influence of the paper porosity on the 

sensitivity and reproducibility of the sensor. We found that there is a trade-off between increasing 

paper porosity and hence surface area of the electrode and the ability of the CNTs to form a 

continuous electrically connected network and thus the device repeatability. Our measurements show 

that simply changing the porosity of the paper can lead to an almost two-fold increase in current 

change as well as an improvement in device-to-device reproducibility. With the growing interest in 

low-cost paper-based sensor development, this model sensor is useful to demonstrate the importance 

of paper choice and an understanding of the behaviour of functional coatings within the cellulose fibre 

matrix, to ensure reliable and repeatable device fabrication. 
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