

JHEP

Published for SISSA by 🖄 Springer

RECEIVED: July 30, 2019 ACCEPTED: August 1, 2019 PUBLISHED: August 12, 2019

Erratum: An anomaly-free atlas: charting the space of flavour-dependent gauged ${\rm U}(1)$ extensions of the Standard Model

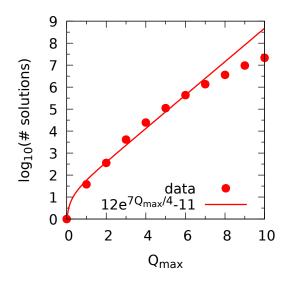
B.C. Allanach,^{*a*} Joe Davighi^{*a*,1} and Scott Melville^{*a*,*b*}

^aDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, U.K.
^bEmmanuel College, University of Cambridge, St Andrew's Street, Cambridge, CB2 3AP, U.K.
E-mail: B.C.Allanach@damtp.cam.ac.uk, jed60@cam.ac.uk, scott.melville@damtp.cam.ac.uk

ERRATUM TO: JHEP02(2019)082

ABSTRACT: We correct a statement in our original paper and add anomaly-free charge assignments for $SM\nu_R$ with $7 \le Q_{max} \le 10$.

ARXIV EPRINT: 1812.04602


We correct a statement in the Examples paragraph of section 3.1, page 8, of ref. [1]. We wrote: "Alternatively, if we set $F_{\nu} = -1$, the solution in eq. (3.2) reduces to gauging B - L, baryon number minus lepton number within that family, as has appeared in refs. [36, 61]". The correct condition is actually $F_{\nu} = -3F_Q$.

We also take this opportunity to augment the results of the SM ν_R scan to include $7 \leq Q_{\max} \leq 10$. These new solutions, which (together with the previous ones) can be obtained from http://doi.org/10.5281/zenodo.3345889 [2], are summarised in table 1. Figure 1 shows the number of anomaly-free solutions including $7 \leq Q_{\max} \leq 10$. We see that the previously proposed [1] "fit-by-eye" function of $12e^{7Q_{\max}/4} - 11$, while providing a good rough fit for $Q_{\max} \leq 6$, significantly overestimates the number of solutions for higher Q_{\max} . We provide updated versions of both plots that were in figure 1 of ref. [1] in figure 2 of this erratum, where we also propose a new fit to the true curve for the number of solutions in the SM ν_R .

 $^{^{1}\}mathrm{Corresponding}$ author.

Q_{\max}	Solutions	Symmetry	Quadratics	Cubics	Time/sec
7	1358388	2332	24616693253	241368652	312
8	3612734	3514	127878976089	978792750	1559
9	9587085	5648	558403872034	3432486128	6584
10	21546920	7540	2117256832910	10687426240	24748

Table 1. Number of inequivalent solutions to the anomaly equations for $\mathrm{SM}\nu_R$ fermion content and different maximum $\mathrm{U}(1)_F$ charges $7 \leq Q_{\max} \leq 10$. Each row contains the all-zero charge solution, as well as the solutions indicated in the rows above. The column marked "Symmetry" shows how many of the solutions are charge inversion symmetric. We also list the number of quadratic and cubic anomaly equations checked by the program, as well as the real time taken for computation in seconds on a modern DELLTM XPS 13–9350 laptop.

Figure 1. Number of anomaly-free solutions as a function of $Q_{\text{max}} \leq 10$ for the SM ν_R . For comparison, we show the "fit-by-eye" $12e^{7x/4} - 11$ originally suggested [1] to fit the growth of the number of solutions.

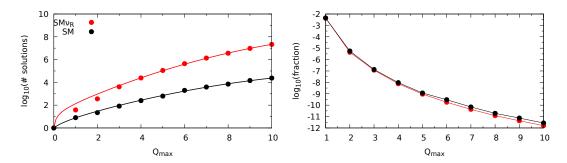


Figure 2. Left: the total number of inequivalent anomaly-free solutions with a given Q_{max} , together with the functions $1 + a \exp(bQ_{\text{max}} + cQ_{\text{max}}^2) - a$ which are fit the growth of the number of solutions: a = 22.5, b = 2.0, c = -0.062 for the SM ν_R and a = 2.50, b = 1.34, c = -0.043 for the SM. Right: the fraction of all inequivalent charge assignments which is anomaly free for a given Q_{max} , showing that imposing anomaly-freedom can lead to a drastic reduction in the available parameter space.

Acknowledgments

We thank other members of the Cambridge SUSY Working Group, as well as D. Gvirtz, N. Dorey, and D. Tong for their helpful advice and comments. SM is supported by an Emmanuel College Research Fellowship, and JD is supported by The Cambridge Trust. This work has been partially supported by STFC consolidated grant ST/P000681/1.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- B.C. Allanach, J. Davighi and S. Melville, An anomaly-free atlas: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082
 [arXiv:1812.04602] [INSPIRE].
- [2] B. Allanach, J. Davighi and S. Melville, Anomaly-free, flavour-dependent U(1) charge assignments for Standard Model/Standard Model plus three right-handed neutrino fermionic content, http://doi.org/10.5281/zenodo.3345889.