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Abstract

We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately
affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated
animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal
low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here
we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1
signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during
lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice
had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls
suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased
expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed
decreased levels of many insulin signalling proteins including PI3 kinase subunits p85a (P = 0.018), p110b (P = 0.048) and
protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was
reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic
pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.
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Introduction

It is well established that nutrition can affect organismal

lifespan. Caloric restriction (CR) is one of the most extensively

studied feeding regimes shown to influence lifespan. Since the first

report by McCay et al that restricting food intake of rats markedly

extended their mean and maximal lifespan [1] CR has been

proven to be a robust feeding regime for lifespan extension in a

wide range of model organisms including yeast, invertebrate

animals and many mammalian species [2].

We have reported previously that changes in nutrition during

fetal or early postnatal life alone are sufficient to have marked

effects on lifespan in rats and mice [3,4,5]. Offspring born to

normally fed dams but suckled by protein restricted dams

(postnatal low protein: PLP animals) grew slowly during lactation

and exhibited significantly longer lifespan when fed ad libitum on

standard chow. Conversely offspring born to protein restricted

dams but suckled by normally fed dams (recuperated animals)

were smaller at birth, showed rapid catch-up growth and had a

reduced longevity when fed ad libitum on standard chow. These

findings demonstrate that nutrition during critical periods of

development has a major impact on longevity. These findings are

consistent with the developmental origins of health and disease

hypothesis which suggests that the pre- and postnatal environment

may program health/disease outcomes in adult life [6,7]. This

hypothesis is based on human and animal studies linking early

growth and nutrition to long term risk of age-related diseases such

as type 2 diabetes [8,9,10]. There is also limited data suggesting a

link between early life events and the aging process in humans

[11]. However, the molecular mechanism underlying such an

association is not understood.

Studies using model organisms ranging from worms and flies to

mammals have revealed that the insulin/insulin-like growth factor-

1 (IGF1) signalling pathway is a highly conserved mechanism that

influences lifespan [12,13,14,15,16]. It was first demonstrated in C.

elegans that mutation in age-1, a homologue of the mammalian

phosphatidylinositol-3 kinase (PI3 kinase) [17] extended lifespan

[18,19]. Subsequently it was found that a mutation in daf-2, a

homologue of the mammalian insulin and IGF1 receptors [20],

also dramatically prolonged the lifespan of C. elegans [21].

Similarly, reduced insulin signalling was demonstrated to extend

lifespan in Drosophila [14]. The involvement of insulin/IGF1

signalling in lifespan regulation in mammalian species was first

suggested in Ames and Snell dwarf mice in which insulin/IGF1

function is reduced due to a deficiency in growth hormone [22].

Recent observations in knockout mice further provided evidence

for a direct role of reduced insulin/IGF1 signalling in regulation of

mammalian lifespan. Female mice heterozygous knockout for

IGF1 receptor exhibited a long-lived phenotype [23,24]. Fat-

specific insulin receptor knockout mice had a better maintenance
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of mitochondrial activity in adipose tissue and lived longer than

their littermates [25,26]. Insulin receptor substrate 1 (IRS1) null

female mice showed increased lifespan which was accompanied by

a reduction in markers of aging [27].

The mechanisms by which caloric restriction leads to increased

longevity are not fully understood. However it has been suggested

that the lifetime maintenance of low levels of glucose and insulin may

play a major role [2]. Up-regulation of Sirt1, an NAD-dependent

deacetylase is also thought to play a pivotal role in mediating lifespan

extension by CR [28]. Transgenic mice overexpressing Sirt1 have a

phenotype that resembles that of CR [29] whereas Sirt1-null mice

fail to show the normal metabolic response to CR and their lifespan

can no longer be extended by CR [30].

We aim to understand the mechanistic basis through which

maternal diet influences lifespan in mice. In this study we

subjected mice to exactly the same maternal protein restriction

regime that is known to influence lifespan and investigated the

effects of maternal protein restriction on metabolic parameters,

organ growth and expression of insulin signalling proteins and

Sirt1 in muscle from mouse offspring at weaning. We focused on

this young age is order to identify potential early mechanisms

underlying the association between maternal diet and offspring

lifespan. Here we report the changes at the tissue and molecular

levels which may explain the impact of maternal diet on longevity.

Results

Body weights
Pups of mothers fed the low protein diet during pregnancy were

significantly smaller than controls (1.4660.04 g vs 1.6560.07 g on

day 3, P = 0.006; Figure 1). Cross-fostering to mothers fed the control

diet resulted in rapid catch-up growth such that by day 7 recuperated

offspring had a similar body weight to controls (3.6860.18 g vs

3.7860.22 g; Figure 1), by day 14 they had overtaken the weight of

controls and at day 21 they were significantly heavier than controls

(8.9260.52 g vs. 7.8960.26 g, P = 0.047; Figure 1). In contrast,

offspring of normally fed mothers when suckled by low protein fed

dams grew slowly during lactation; by day 7 they were significantly

smaller than controls (2.9860.11 g vs. 3.7860.22, P = 0.002;

Figure 1) and this difference was further increased by day 14 and

day 21 (4.9660.23 g vs. 6.7960.15 g, P = 0.00013 and 5.9660.42 g

vs. 7.8960.26 g, P = 0.0002; Figure 1).

Organ weights
In general, except for the brain, lung and thymus, organ weights of

PLP mice were smaller than that of control mice with vastus lateralis,

pancreas, spleen, kidneys, liver and heart being significantly lighter

(Figures 2A and 2B). In contrast, organs of recuperated mice were

larger than that of control mice with spleen, heart and thymus being

significantly heavier (Figures 2A and 2B). When expressed relative to

body weight, PLP pancreas, kidneys and liver still remained

significantly smaller than controls (Figure 2C). In contrast, the

Figure 1. Growth curves of pups of control, postnatal low
protein and recuperated mice during lactation. Body weights of
pups were recorded at days 3, 7, 14 and 21 of age. To maximize the
effects of maternal diet, recuperated pups (R) were culled to 4 and
control pups (C) were culled to 8 (if litter size was greater than 8)
whereas postnatal low protein pups (PLP) were unculled. Means6SEM
are shown (* P,0.05, ** P,0.01, *** P,0.001 compared to control;
n = C: 13, PLP: 11, R: 16).
doi:10.1371/journal.pone.0004950.g001

Figure 2. Effects of maternal protein restriction on organ
weights. Organ weights were measured 21 days after birth. (A) Organ
weights were expressed as mean6SEM (* P,0.05, ** P,0.01, ***
P,0.001 compared to control; n = control (C): 10, postnatal low protein
(PLP): 8, recuperated (R): 10). (B) Percentage organ weight change of
PLP and R mice compared to the mean of control organ weights
(mean6SEM; * P,0.05, ** P,0.01, *** P,0.001; n = C: 10, PLP: 8, R: 10).
(C) Relative organ weights were expressed as percentage of body
weights (mean6SEM; * P,0.05, ** P,0.01, *** P,0.001 compared to
control; n = C: 10, PLP: 8, R: 10).
doi:10.1371/journal.pone.0004950.g002

Maternal Diet and Lifespan

PLoS ONE | www.plosone.org 2 March 2009 | Volume 4 | Issue 3 | e4950



relative weights of brain and thymus in PLP were significantly higher

than controls (Figure 2C). In recuperated animals the relative

weights of pancreas, kidneys and liver were lower than controls,

however the relative weights of spleen, heart, lung and thymus

showed no difference as compared to controls (Figure 2C).

Fasting glucose and insulin concentrations
Fasting blood glucose concentrations in control and recuperated

mice were similar; however, fasting glucose was significantly lower

in PLP animals compared to controls (P = 0.038, Figure 3A).

Similarly, fasting blood insulin concentrations in control and

recuperated mice showed no difference whereas the insulin levels

in PLP animals were significantly lower than in the control group

(P = 0.046, Figure 3B).

Protein expression of insulin signalling molecules
We systematically analyzed by Western blotting the expression

levels of proteins in the insulin signalling pathway in skeletal

muscle, one of the major target tissues of insulin action and the

major site of postprandial glucose disposal. Figure 4 shows a

representative blot for PKCf with densitometry data (arbitrary

units) of blots for all the signalling proteins analyzed being

summarized in Table 1. Maternal diet had profound effects on the

expression levels of these proteins in PLP and recuperated mice.

Specifically, protein restriction during lactation resulted in

significant up-regulation of IRS1 (17% increase compared to

controls, P = 0.021) and PKCf (22% increase compared to

controls, P = 0.046) (Table 1). In addition, postnatal protein

restriction caused significant reduction in phosphorylation levels of

IRS1 on Tyr612 (37% decrease compared to controls, P = 0.036)

and Ser307 (79% decrease compared to control, P = 0.00007), and

phosphorylation of Akt on Ser473 (69% decrease compared to

controls, P = 0.00013) (Table 1). In contrast, recuperated mice

showed a significant decrease in the protein expression levels of

IGF1 receptor (30% decrease compared to controls, P = 0.007),

p85a (30% decrease, P = 0.018), p110b (19% decrease, P = 0.048)

and PKCf (35% decrease, P = 0.006) (Table 1). Recuperated mice

also showed significant decreased phosphorylation of IRS1 on

Try612 (32% decrease compared to controls, P = 0.021) and Ser307

(34% decrease, P = 0.004), and phosphorylation of Akt on Ser473

(73% decrease, P = 0.0009) (Table 1).

Sirt1 expression
Sirt1 protein levels in muscle tissue was not affected by postnatal

low protein feeding regimen; however, a significant decreased

expression was observed in recuperated mice (24% decrease,

P = 0.007, Figure 5).

Discussion

Distinct from the widely known and extensively studied CR

rodent models in which food is restricted after weaning, lifespan in

our rodent models is affected by maternal protein restriction

during pregnancy and lactation. Unlike CR rodent models in

which lifespan extension is generally observed when CR is initiated

regardless of initiation time [2], the maternal protein restriction in

Figure 3. Fasting glucose and insulin concentrations. (A) Fasting
blood glucose was measured using a blood glucose analyzer (Hemocue,
Angelholm, Sweden). Values are expressed as mean6SEM, * P,0.05
compared to control (n = control (C): 10, postnatal low protein (PLP): 8,
recuperated (R): 10). (B) Fasting blood insulin concentrations were
measured using a mouse insulin ELISA kit (Mercodia Ultra-sensitive
Mouse Insulin ELISA, Mercodia, Uppsala, Sweden). Values are expressed
as geometric mean (95% confidence intervals) and was log transformed
prior to analysis. * P,0.05 compared to control (n = C: 10, PLP: 8, R: 10).
doi:10.1371/journal.pone.0004950.g003

Figure 4. Representative Western blot for PKCf in muscle. Protein levels of insulin signalling molecules in muscle of control (C), postnatal low
protein (PLP) and recuperated (R) were analysed by Western blotting using appropriate antibodies. Shown is a representative blot for PKCf. 25 mg of
protein were used and equal loading was confirmed by Coomassie blue staining. Densitometry analysis data are summarized in Table 1.
doi:10.1371/journal.pone.0004950.g004
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our rodent models can increase or decrease lifespan depending on

whether the restriction is imposed during pregnancy or during

lactation [3,4]. As maternal protein restricted offspring were

weaned onto the same lab chow it is hypothesized that permanent

changes in organ structure and/or function occur during this early

time period and these changes can assert long term effects on the

regulation of lifespan.

Maternal protein restriction applied during suckling to pups

born to normally fed mothers significantly retarded their growth.

Conversely, pups of low birth weight due to protein restriction

during pregnancy underwent rapid catch-up growth when they

were suckled by normally fed mothers. We reported previously

that growth retardation during lactation was associated with

extended lifespan whereas in utero growth restriction followed by

catch-up growth was associated with shorter lifespan [3,4]. These

associations may be in line with the observation that small body

weight in early life is a significant predictor of lifespan with a

strong inverse correlation between growth retardation early in life

and longevity in a genetically heterogeneous mouse population

[31]. Such inverse correlation was found to be strongest for body

weights measured early in adult life [31]. In our maternally protein

restricted mice we reported previously that PLP mice remained

smaller throughout life whereas recuperated mice remained

heavier than control animals throughout most of the adult life

[32]. Furthermore, genetic mutations in mouse models that lead to

increase in lifespan are often associated with dwarfism or reduced

body weight [16].

The fact that not all tissue weights were proportionally

decreased or increased relative to body weights in PLP and

recuperated mice suggests that selective metabolic resource

allocation is triggered to maintain the growth of more important

tissues, such as brain [7]. Among the tissues examined in PLP

mice, brain, lung and thymus showed no reduction in weights as

compared to control tissues. When adjusted by body weights brain

and thymus in PLP mice were significantly heavier. This may

suggest that enhanced functional capacity of brain and thymus is

beneficial to health and longevity in mice.

Decreased fasting glucose and insulin concentrations in PLP

mice suggest that these animals had a better insulin sensitivity.

Improved insulin sensitivity is a frequently observed feature in

mouse models with increased lifespan such as those of caloric

restriction and genetic mutations. It was observed that calorie

restricted rats maintained decreased plasma glucose and insulin

concentrations throughout life [33]. Long lived dwarf mice that

are deficient in or resistant to growth hormone are hypoinsulin-

emic and exhibit enhanced whole-animal insulin sensitivity

[34,35,36]. Moreover, the association between insulin sensitivity

and longevity has also been observed in humans as healthy

centenarians were found to have a preserved glucose tolerance and

insulin action [37,38]. Our long lived PLP mice therefore bear a

common phenotypic characteristic to the long lived dwarf mice

and CR rodents and human centenarians. Similarly, we recently

observed that PLP rats exhibited significant reduced fasting insulin

concentrations at 21 days of age [39].

The better whole body insulin sensitivity in PLP mice was

reflected by the protein expression profiles of insulin signalling

molecules. Skeletal muscle of PLP mice had significantly higher

expression of IRS1 and PKCf compared to controls. IRS1 belongs

to the IRS family of adaptor molecules and is tyrosine

phosphorylated in response to the activation of insulin receptor

by insulin binding. Tyrosine phosphorylated IRS1 then recruits

downstream effector molecules which in turn activate further

downstream signalling pathways. IRS1 thus is the initial step and

plays a critical role in insulin signalling [40]. The importance of

IRS1 in insulin signalling is supported by the fact that decreased

levels of IRS proteins, coupled with decreased levels of the IR

itself, contribute to the insulin resistance in diabetic states in both

rodents and humans [41]. Decreased phosphorylation of IRS1 on

Tyr612 and Akt on Ser473 in the muscle tissue of PLP mice may

reflect the fact that the circulating insulin level was significantly

lower in these animals. Interestingly phosphorylation of IRS1 on

Ser307 was also decreased in the muscle tissue of PLP mice as

compared to the controls. The phosphorylation on serine residues

generally has a negative effect on IRS1 signalling and thus

representing a negative feedback mechanism. Indeed serine

phosphorylation of IRS1 is generally increased in the insulin-

resistant state [40,42]. PKCf is another downstream effector in the

Table 1. Expression levels of insulin signalling proteins in
muscle.

Protein Muscle

C (n = 8) PLP (n = 8) R (n = 8)

IGF1R 10064 104610 7068 **

IRb 10068 10965 8968

IRS1 10065 11762 * 8766

IRS1 (Tyr612) 100610 63614 * 68611 *

IRS1 (Ser307) 100610 2165 *** 6665 **

p85 10068 110616 7068 *

p110b 10066 81611 8169 *

PKCf 10069 122611 * 6569 **

Akt1 10065 10866 9566

Akt2 10067 91611 8466

Akt (Ser473) 100621 3169 *** 2767 ***

Expression levels of insulin signalling proteins were analysed by Western
blotting (see Figure 4) followed by densitometry determination and are
expressed as mean6SEM. The number of mice used for each group is shown in
parenthesis.
*P,0.05.
**P,0.01.
***P,0.001 compared to control.
doi:10.1371/journal.pone.0004950.t001

Figure 5. Sirt1 protein levels in muscle. Expression of Sirt1 protein
was analysed by Western blotting. Protein levels were expressed as
arbitrary units following densitometry analysis (** P,0.01 compared to
control; n = control (C): 8, postnatal low protein (PLP): 8, recuperated (R):
8).
doi:10.1371/journal.pone.0004950.g005
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insulin signalling pathway and plays an important role in

activating the glucose transport response [43]. Up-regulation of

PKCf in muscle tissue of PLP mice and IRS1 and reduced serine

phoshporylated IRS1 are thus consistent with the enhanced insulin

sensitivity at the whole animal level.

In contrast to PLP mice, protein expression levels of insulin

signaling molecules in the muscle tissue of recuperated mice were

generally decreased. Significant decreases in protein levels of

PKCf and PI3 kinase subunits p85 and p110b suggests a reduced

insulin signaling capacity. Indeed phosphorylation of IRS1 on

Tyr612 was significantly reduced compared to the controls

although fasting insulin levels in recuperated mice were similar

to that of controls. In addition, Ser473 phosphorylated Akt was also

significantly reduced compared to the controls. These observations

indicate that low birth weight followed by rapid catch-up growth is

associated with reduced levels of key insulin signaling proteins. It is

well documented that individuals with low birth weight coupled

with rapid catch-up growth are at increased risk of developing

insulin resistance and type 2 diabetes [44]. We previously

demonstrated that maternal protein restriction in rats leads to

fetal growth restriction, insulin resistance and type 2 diabetes [45].

This is associated with specific changes in expression of

components of the insulin-signaling pathway including reduced

expression of PKCf and the p110b catalytic subunit of PI3 kinase

[46]. We also showed that young men who had a low birth weight

have strikingly similar alterations in insulin signaling molecules in

muscle and fat [47,48]. These findings provide strong evidence for

the importance of maternal diet in mediating the relationship

between poor early growth and subsequent risk of diabetes. Our

current findings in mice and recent observations in rats [39]

suggest that reduced expression of these key signaling molecules

can be detected at an early age and could provide a molecular

fingerprint for later adult diseases such as type 2 diabetes.

Sirt1 is one of sirtuin family proteins which are conserved

NAD+-dependent histone deacetylases with broad biological

functions [49,50]. Sirt1 affects many metabolic and stress

resistance pathways including those involved in DNA repair,

apoptosis, glucose and fat metabolism [51]. In particular, Sirt1

plays a pivotal role in mediating effects of CR on lifespan

extension [52]. The levels of Sirt1 have been reported to increase

in rodent and human tissues in response to CR and this increase

can trigger favourable changes in metabolism and enhanced stress

tolerance [53,54]. This was supported by findings that transgenic

mice overexpressing Sirt1 demonstrated a phenotype resembling

caloric restriction [29] although whether these mice have an

extended lifespan remains to be established. Sirt1-null mice were

also shown to have lost the normal metabolic response to CR and

failed to show lifespan extension by CR [30]. It is thus surprising

that Sirt1 level showed no increase in muscle tissue of PLP mice

that live longer. This may be due to tissue specific regulation of

Sirt1 expression in response to maternal protein restriction as an

up-regulation of Sirt1 expression can be detected in the kidneys of

PLP mice (unpublished data). Indeed tissue-specific regulation of

Sirt1 was observed in CR mice in which both the protein level and

activity of Sirt1 in the liver were down-regulated compared to the

ad libitum fed controls [55]. However, the decrease in Sirt1 protein

in muscle tissue of recuperated animals which have a 26%

decrease in mean lifespan [4] is in line with its role in regulation of

lifespan and may thus have a negative impact on longevity in these

animals.

In summary, we have shown that maternal protein restriction

during early life can influence growth rate of mouse offspring in the

first three weeks of their life. The change in the whole body growth is

not proportionately reflected by individual organ weights suggesting

selective organ growth occurred to spare growth of vital organs such

as the brain. At the molecular level, alteration in protein expression

of insulin signalling molecules was detected at 21 days of age. Up-

regulation of IRS1 and PKCf in the muscle tissue of PLP mice might

underlie the improved insulin sensitivity which in turn might

contribute to the lifespan extension in these animals. Conversely, low

birth weight followed by rapid catch up growth was associated with

down-regulation of insulin signalling proteins which may predispose

these animals to insulin resistance later in life. Decreased expression

of Sirt1 in the muscle of recuperated animals further provided a

molecular fingerprint that is indicative of a shortened lifespan. Taken

together, this study suggests that in response to maternal protein

restriction remodelling in organ growth and molecular expression

occur at an early age that will have lasting long term effects and

ultimately influences lifespan.

Materials and Methods

Animals
Mice (C57/b16) were bred locally at a designated animal unit of

the University of Cambridge (Cambridge, UK). Adult female mice

were housed individually and were maintained at 22uC on a

12:12 hours light:dark cycle. They were mated when they were 6

weeks old (,22 g in body weight) and assumed to be pregnant

when a vaginal plug was expelled. Dams were fed ad libitum either

a control diet (containing 20% protein) or an isocaloric low protein

diet (containing 8% protein) during gestation and lactation. Both

the control and low protein diet were purchased from Arie Blok

(Woerden, the Netherlands) and detailed diet composition is

provided in Table 2. Cross-fostering techniques were used at 3

days of age to establish three groups: control (offspring born to and

suckled by control diet fed dams); postnatal low protein (PLP)

(offspring of control dams nursed by low protein diet fed dams);

and recuperated (offspring of low protein diet fed dams nursed by

control dams). A low protein diet during pregnancy had no

statistically significant effect on litter size (P = 0.11): pups per litter:

low protein, 6.760.4; control, 7.460.4. As described previously

[4], to maximize the effects of maternal diet differences on

offspring growth, recuperated pups were culled to 4 (to maximize

growth during suckling) and control pups were culled to 8 (if the

number of pups was greater than 8) whereas PLP pups were

unculled. Litter size standardization was carried out randomly.

Body weights of animals were recorded at days 3, 7, 14 and 21 of

age. At day 21 pups were removed from dams and starved

overnight before glucose and insulin measurements and organ/

tissue collections. One male was selected at random from each

litter in the current study. Fasting blood was collected following

Table 2. Detailed nutrient components of the control (20)
and low protein (8%) diets.

Dietary component 20% 8%

Minerals and vitamins 5.35 5.45

Casein, %(88 g protein/100 g) 22.00 9.00

DL-Methionine, % 0.20 0.08

Corn starch, % 8.00 8.00

Cellulose 5.00 5.00

Soybean oil, % 4.30 4.30

Cerelose/dextrose, % 55.15 68.17

doi:10.1371/journal.pone.0004950.t002
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decapitation, allowed to clot for 30 min, and then centrifuged at

7,200 g for 3 min to obtain serum. Organs/tissues were weighed,

snap frozen in liquid nitrogen and stored at 280uC until use. All

animal procedures were carried out in compliance with the British

Home Office Animals Act (1986).

Glucose and insulin measurements
Fasting blood glucose was measured using a blood glucose

analyzer (Hemocue, Angelholm, Sweden). Serum insulin concen-

trations were measured using a mouse insulin ELISA kit

(Mercodia Ultra-sensitive Mouse Insulin ELISA, Mercodia,

Uppsala, Sweden). All samples were assayed in duplicate, and an

intra-assay coefficient of variation of up to 5% was accepted.

Western blotting
Total protein was extracted from mouse muscle (vastus lateralis)

by homogenization in ice-cold lysis buffer [50 mM HEPES

(pH 8), 150 mM NaCl, 1% Triton 6100, 1 mM sodium

orthovanadate, 30 mM NaF, 10 mM sodium pyrophosphate,

10 mM EDTA, and a protease inhibitor cocktail set III

(Calbiochem Novabiochem Biosciences, Nottingham, UK)]. The

total protein concentration in the lysates was determined using a

Sigma copper sulfate/bicinchoninic acid assay. Samples were

diluted to a concentration of 2 mg/ml in Laemmli’s buffer.

Twenty five micrograms of total protein were subjected to SDS-

PAGE and transferred onto PVDF immobilon-P membrane

(Millipore, Billerica, MA, USA). Membranes were blocked in

Tris-buffered saline with 0.1% Tween-20 and 5% dry milk, and

incubated with the primary antibodies against: insulin receptor-b
(IR-b), IGF1 receptor (IGF1R), protein kinase C zeta (PKCf and

PI3-kinase p110b from Santa Cruz Biotechnology (Santa Cruz,

CA, USA), Akt1, Akt2 and phospho-Akt (Ser473) from Cell

Signaling (Beverly, MA, USA); PI3-kinase p85a, IRS1, phosphor-

IRS1 (Tyr612), phosphor-IRS1 (Ser307) and Sir2 from Upstate

Biotechnology (Millipore, Billerica, MA, USA). The bound

primary antibodies were detected by horseradish peroxidase-

conjugated secondary antibodies (Amersham Biosciences, Piscat-

away, NJ, USA and Dako, Glostrup, Denmark), followed by

enhanced chemiluminesence (Amersham Biosciences). The densi-

ties of the bands were quantified using an Alpha Imager (Alpha

Innotech Corporation, San Leandro, CA).

Statistical analysis
Nonparametric data were log transformed prior to testing and

are shown as the geometric mean (95% confidence intervals).

Parametric data are expressed as mean6SEM. Data were

analyzed using a one-way ANOVA with maternal diet as the

independent variable factor. When the effect of maternal diet was

significant, Duncan’s post hoc testing was used to analyze

significance differences between groups. A P,0.05 was considered

statistically significant.
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