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Abstract

In this work, an optimal control approach for scheduling maintenance and

production in a process using decaying catalysts, originally developed in

a previous study for a single reactor, is extended to parallel lines of reac-

tors. Unlike traditional mixed-integer optimisation methods, this approach

involves formulating this problem as a multistage mixed-integer optimal con-

trol problem (MSMIOCP) and using a methodology that enables solution as

a standard nonlinear optimisation problem. The methodology’s features of a

feasible path approach and scheduling catalyst changeovers without combi-

natorial optimisation techniques can be advantageous in providing reliable,

robust and efficient solutions in comparison to mixed-integer methods. The

MSMIOCP formulation is applied to the case study of an industrial process

that operates a single feed over a set of 4 parallel reactors and produces a

single product. The solutions obtained using the proposed methodology are

of high quality and highlight the potential advantages of this approach over

mixed-integer techniques.
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1. Introduction and literature review

The phenomenon of catalyst deactivation presents significant economic

challenges to industries. Catalyst deactivation is inevitable and the decaying

performance leads to a reduction in product yield, which in turn could lead

to an inability to meet product demand and hence a loss in revenue.

To restore process performance and improve on low product yields, a

maintenance action is required which involves shutting down the reactor us-

ing the decayed catalyst and replacing the decayed catalyst with a fresh

catalyst that has full activity. Such a maintenance action is called a catalyst

replacement or a catalyst changeover operation. While this maintenance ac-

tion does improve product yield, there are negative impacts associated with

this operation such as a loss of production time because of the reactor being

shut down and the energy and labour costs to replace the catalyst.

In order to avoid stopping production completely, industries commonly

use parallel processing lines to manufacture products. A parallel set up can

improve the flexibility of the production process by allowing one reactor to

be shut down for catalyst replacement while the remaining reactors continue

to produce product to meet demand.

However, in order to ensure efficient operation in such a set up, there

is a trade-off to be addressed for each reactor: while frequently renewing

catalyst loads results in a high production rate, it also leads to large main-

tenance costs and loss in production occurring from the process shut-down

for catalyst changeovers. This trade-off can be optimally managed by the

development of a maintenance schedule that specifies the optimum number

of catalyst loads to use and the optimal time for catalyst replacement in each
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reactor of the parallel set up, over a fixed time horizon. The maintenance

schedule may also be required to fulfil a constraint that no two reactors un-

dergo catalyst replacement at the same time due to production requirements

or the maintenance labour and equipment availability.

Apart from obtaining such a maintenance schedule, it is also necessary

to identify the optimal operating conditions, such as the flow rate to and

temperature of operation of each reactor during the times the catalyst is in

operation, while also taking into account the catalyst deactivation. In addi-

tion, the maintenance schedule and operating conditions should be tailored

to produce an adequate inventory of product that enables sales to effectively

meet varying demand across the time horizon, while also avoiding exces-

sively high storage costs. An integrated execution of all of these decisions

in an optimal manner can greatly minimise the negative effects of catalyst

deactivation, and thereby maximise the profits of the process. However, such

an execution requires solving a highly challenging modelling and optimisa-

tion problem containing a very large number of variables and constraints.

A thorough literature survey did not result in finding any work that has

explicitly claimed to optimise maintenance scheduling, operating conditions,

inventory management and sales to meet time-varying demand involving par-

allel lines of reactors using decaying catalysts. While recently, there has been

work for production scheduling involving catalytic reactors using economic

model predictive control (e.g. Alanqar et al. (2016, 2017), Ellis et al. (2017)),

the aforementioned aspects have not been explored. However, there has been

considerable work investigating the integrated optimisation of maintenance

scheduling and production in different industrial applications which use par-

allel processing lines that experience varied types of decaying performances.

For example, the integrated optimisation of the maintenance scheduling
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of parallel lines and sales to meet time-varying demand has been considered

in works by Castro et al. (2014) for a gas engine plant and by Liu et al.

(2014) in the bio-pharmaceutical industry while considering the decaying

performance of a chromatography resin. But these works did not consider

the optimisation of nonlinear operating conditions, and so, less computation-

ally intensive Mixed Integer Linear Programming (MILP) models could be

used for the solution of these problems.

For a parallel network of compressors experiencing decaying performance

due to fouling and degradation by fluid particles, Kopanos et al. (2015) and

Xenos et al. (2016) have optimised the maintenance scheduling, the operat-

ing flow rate and inventory management to meet varying demand. But the

authors admit to seeking to avoid hard Mixed Integer Nonlinear Program-

ming (MINLP) formulations by linearising equations to form MILP models

and concede that such linear approximations can cause errors in the results.

Heluane et al. (2004, 2007) have developed MINLP formulations to opti-

mise the maintenance scheduling and operating flow rates of parallel evapo-

rator systems that decay in performance due to heat transfer induced fouling.

However, these works focused on obtaining cyclic schedules and did not con-

sider the problem of inventory management or sales to meet seasonal demand.

In petrochemical plants, a cracking furnace is used to break long chain

hydrocarbons into valuable products such as ethylene and these plants have

multiple such furnaces operating in parallel. Coke depositions on the walls

reduce the efficiency of the furnaces and maintenance actions for decoking

operations are necessary to restore performance. In tandem with these de-

coking operations, other considerations may need to be managed such as the

operating conditions of flow rates to and temperature of the furnace, as well

as product inventory management to meet seasonal demand. A number of
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strategies have been developed to manage some or all of these aspects.

Most of the studies undertaken have focused on developing cyclic sched-

ules based on MINLP methodologies where only decoking schedules and op-

erating conditions have to be optimised, while assuming a constant product

demand (or sales) over an infinite time horizon. These include works by Jain

and Grossmann (1998), Liu et al. (2010), Zhao et al. (2010) and Jin et al.

(2015). However, these works face shortcomings: only Liu et al. (2010) and

Zhao et al. (2010) obtain schedules without simultaneous decoking and only

Jin et al. (2015) obtains dynamic operational profiles. Another work by Lim

et al. (2006) has considered a fixed time horizon rather than a cyclic sched-

ule but the demand considered is constant and the solution methodology

involves treating integer and continuous variables separately, which can be

inadequate if those variables are highly interdependent.

As traditional gradient based methods can face difficulties in handling

MINLP models with highly nonlinear constraints, population based optimi-

sation methods have also been attempted to obtain such cyclic schedules. For

example, Yu et al. (2017) have used a Diversity Learning Teaching Learn-

ing Based Optimisation (DLTLBO) algorithm to solve such a problem. Lin

and Du (2018) have proposed a two-level nested formulation for this prob-

lem which uses a Genetic Algorithm to solve the outer MILP problem and a

Sequential Quadratic Programming algorithm to solve the inner NLP prob-

lem. Though solutions obtained were better than from MINLP techniques,

optimality could not be guaranteed as metaheuristic approaches are involved.

Only a limited set of publications consider the optimisation of all aspects

of decoking scheduling, operating conditions as well as inventory manage-

ment and sales to meet time-varying demand. These are discussed next.
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Schulz et al. (2006a,b) have developed a multistage MINLP model for

optimising all these aspects in an ethylene plant operating 8 furnaces in par-

allel. However, their work did not reveal the underlying model equations and

had restrictive assumptions such as identical cycle times for all furnaces and

a linear coking rate.

Su et al. (2016) have considered optimisation of all these aspects using a

hybrid MINLP algorithm developed in Su et al. (2015) that enabled faster

convergence in large scale problems compared to standard MINLP methods.

However, the model involved simplistic assumptions such as a linear coking

rate and constant operating flow rates. More complex models that could

cause greater intractability of the MINLPs have not been investigated.

Finally, Wang et al. (2016) have proposed a Lagrangian decomposition

method to solve such a problem. While the algorithm has produced better

solutions in comparison to standard MINLP solvers, the authors admit that

due to the complexity of the formulation, they face difficulties in converg-

ing to optimality. Further, this method can mainly be applied only in cases

where the underlying model exhibits a block angular structure.

The preceding literature review indicates that few papers address the en-

tirety of the problem of optimising the maintenance scheduling of parallel

processing lines that experience decaying performance in combination with

operational planning, inventory management and sales to meet time-varying

demand. These articles report difficulties in attaining optimality, even after

applying significant approximation and decomposition techniques, thereby

indicating the complexity of the problem. Even the other publications that

address only a subset of these decisions exhibit such shortcomings.

These difficulties can be traced to the mixed-integer formulations of these
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problems. The combinatorial nature of these solution methods causes the

problem to become intractable in terms of size and solution times. In addi-

tion, these methods attempt to circumvent differential equations and other

nonlinear terms using linear approximation techniques, which besides reduc-

ing solution accuracy, also increases the number of variables and constraints

involved. More complex models or an increase in the scale of the problem

and the number of decisions can further accentuate these difficulties.

To overcome these difficulties, a shift away from mixed-integer optimi-

sation approaches is needed. While population-based algorithms have been

suggested, as metaheuristic techniques, they cannot guarantee a theoreti-

cal convergence to optimality. A methodology is needed that can provide

a reliable, robust and efficient solution to the problem. And this should be

possible even for large scale problems, regardless of the degree of nonlinearity

of the underlying equations.

A previous work by Adloor et al. (2020) developed an optimal control

(dynamic optimisation) methodology for scheduling maintenance and pro-

duction in a process using decaying catalysts, for the case of a single reactor.

The methodology produced reliable, robust and efficient solutions in compar-

ison to mixed-integer techniques. In this paper, that methodology is applied

to a process containing parallel lines of reactors using decaying catalysts. The

main contributions of this paper lie in demonstrating the effectiveness of the

optimal control methodology in optimising the maintenance scheduling of

the parallel set up in combination with the operational planning, inventory

management and sales to meet seasonal demand. In fact, this methodology

is applicable to any of the previously mentioned applications involving main-

tenance scheduling of parallel processing lines experiencing decaying perfor-

mances.
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This brings to an end, Section 1, which forms the introductory and literary

review part of the paper. The rest of the paper is organised as follows. In

Section 2, the optimal control formulation of this problem is presented and

the solution methodology is detailed in Section 3. In Section 4, the optimal

control formulation is applied to the case study of an industrial process and

the results obtained are discussed. The conclusions of the paper and other

notable points are discussed in Section 5. Appendix A contains a table

providing supplementary information.

2. The optimal control problem formulation

In this section, an optimal control formulation is presented for the prob-

lem of optimising maintenance scheduling and production planning in a par-

allel set of reactors containing decaying catalysts. This formulation is char-

acterised by a set of decision (or control) and state variables. The decisions

here include those of when to schedule a maintenance action to replace the

catalyst in each reactor, which are binary in nature, as well as those that

decide the operating conditions for each reactor and the sales, which are

continuous variables. The state variables represent the ‘state’ of the process

and are determined by the values of the decision variables, a set of appropri-

ate Ordinary Differential Equations (ODEs) and constraints.

The basic formulation of an optimal control problem (OCP) is shown in

equations (1a) – (1g). The performance index consists of a point index φ and

a continuous index L. This performance index is minimised by the selection

of controls, w(t), and differential state variables, x(t), subject to differential

equations, h and constraints, c. Equations (1b) – (1c) describe an ODE

system, given fixed initial and final times, t0 and tF , respectively, and initial

condition x0. The controls w(t) can include binary controls, u(t), as well as

continuous controls, v(t), that belong to a real permissible set V .
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min
w(t)

W = φ (x(tF )) +

tF∫
t0

L (x(t), w(t), t) dt (1a)

subject to
.
x(t) = h (x(t), w(t), t)

∀t ∈ [t0, tF ]
(1b)

x (t0) = x0 (1c)

c (x(t), w(t), t) ≤ 0

∀t ∈ [t0, tF ]
(1d)

w(t) =
[
[u(t)]T , [v(t)]T

]T
(1e)

u(t) ∈ {0, 1} (1f)

v(t) ∈ V (1g)

In order to apply the OCP formulation to the problem under considera-

tion, the whole time horizon of the process is discretised into stages, which

can be of arbitrary length. A control parametrisation approach is adopted

wherein the decision variables are discretised over the whole time horizon

and are taken to be piecewise constant across the times corresponding to

each stage. That is, if the total number of stages is NP , the collective vec-

tors of the controls, u and v, take up the following form:

u =
[
u(1), u(2), . . . , u(NP )

]T
(2a)

v =
[
v(1), v(2), . . . , v(NP )

]T
(2b)

The control profiles are allowed to be discontinuous at the junctions, tp, be-

tween any two consecutive stages, p and p+ 1.

The state variables, however, are retained in their continuous form, with-
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out discretisation, and are determined in each stage from a set of ODEs.

The ODEs are solved to a high accuracy in the right sequential order using

state-of-the-art integrators and hence, this solution methodology is called

a“feasible path approach” (Vassiliadis, 1993; Vassiliadis et al., 1994a,b). The

solutions of the ODEs in each stage, across the whole time horizon, are fa-

cilitated by junction conditions between any two consecutive periods, p and

p+ 1, the general form of which is given by equation (3) (Vassiliadis, 1993):

J
(
ẋ(p+1)

(
t+p
)
, x(p+1)

(
t+p
)
, u(p+1)

(
t+p
)
, v(p+1)

(
t+p
)
,

ẋ(p)
(
t−p
)
, x(p)

(
t−p
)
, u(p)

(
t−p
)
, v(p)

(
t−p
)
, tp

)
= 0

p = 1, 2, . . . NP − 1 (3)

The discretisation of the time horizon into multiple stages and the pres-

ence of integer and continuous decision variables leads the OCP to take up

a Multistage Mixed-Integer Optimal Control Problem (MSMIOCP) form.

The basic form of the MSMIOCP over time periods, p = 1, 2, . . . NP ,

t ∈ [tp−1, tp], with tNP = tF is shown in equations (4a) – (4g).

min
u,v

W =
NP∑
p=1

{
φ(p)

(
x(p)(tp), u

(p), v(p), tp
)

+

∫ tp

tp−1

L(p)
(
x(p)(t), u(p), v(p), t

)
dt

}
(4a)

subject to

ẋ(p)(t) = h(p)(x(p)(t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP

(4b)

x(1)(t0) = g(1)
(
u(1), v(1)

)
(4c)
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x(p)(tp−1) = g(p)
(
x(p−1)(tp−1), u

(p), v(p)
)

p = 2, 3, . . . , NP
(4d)

c(p)
(
x(p)(t), u(p), v(p), t

)
≤ 0

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP

(4e)

u(p) ∈ {0, 1}
p = 1, 2, . . . , NP

(4f)

v(p) ∈ V
p = 1, 2, . . . , NP

(4g)

In the above equation, the terminology used is similar to the basic OCP

formulation, with the superscript (p) indicating that they apply to stage,

p. The additional terms here are the junction conditions, g, analogous to

equation (3), that provide the initial condition for the solution of the ODEs

in stage p. An illustration of the MSMIOCP formulation is shown in Figure 1.

In this multistage formulation, in each stage, for each reactor, a decision

has to be made on whether the catalyst should be in operation or a main-

tenance action should occur to replace it. This decision is of binary nature

and hence, corresponds to the controls, u. Henceforth in this article, this bi-

nary decision will be referred to as a ‘catalyst changeover control’. Further,

the plant operating conditions of flow rate to and temperature of operation

of each reactor and the amount of product sales should also be decided at

each stage, which are decisions of continuous form and so, correspond to the

controls, v. Due to the presence of integer and continuous controls, this is a

mixed-integer formulation.

But as mentioned in Section 1, mixed-integer optimisation techniques

suffer from drawbacks. So, in the next section, a methodology is presented
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x(1)(t0)
g(1)

g(2)

g(p)

g(p+1)
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x(2)(t1)

x(p�1)(tp�1)

x(p)(tp�1)
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x(p+1)(tp)

x(NP�1)(tNP�1)

x(NP )(tNP�1)

x(NP )(tNP )

t0

t1

tp�1

tp

tNP�1

tNP

u(1), v(1)

u(p), v(p)

u(NP ), v(NP )

ẋ(1) = h(1)

ẋ(p) = h(p)

ẋ(NP ) = h(NP )

c(1)  0

c(p)  0

c(NP )  0

Stage 1

Stage p

Stage NP

Initial horizon time

Final horizon time

Figure 1: An illustration of the MSMIOCP formulation
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that enables a solution of this problem as a standard nonlinear optimisation

problem, which obviates the use of mixed-integer optimisation methods.

3. Problem solution methodology

In work of Adloor et al. (2020), two solution methodologies were pre-

sented for solving an MSMIOCP formulation, of the problem of scheduling

maintenance and production in a single reactor using decaying catalysts, as

a standard nonlinear optimisation problem.

The first methodology, titled Implementation I, demonstrated a theoret-

ically interesting property of bang-bang behaviour for the binary catalyst

changeover controls. But it could not handle highly nonlinear models and

even in the less nonlinear models, it had a tendency of converging prematurely

or crashing due to integration problems depending on the initial guesses used.

However, the second methodology, Implementation II, while not demon-

strating the bang-bang behaviour, was very successful in providing reliable,

robust and efficient solutions, regardless of the nonlinearity of the equations

involved or the initial guesses supplied. Further, the optimality of the solu-

tions obtained from Implementation II were justified by the good correlation

with the bang-bang solutions of Implementation I, which were theoretically

proven to be optimal.

Therefore, Implementation II will be used in this paper. For the sake of

completeness, the principle behind the solution methodology of Implementa-

tion II is presented once again in this section.

In order to execute this solution methodology, the binary nature of the

controls, u(p) for stage p, in equation (4f), is relaxed and they are instead
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considered as continuous variables that vary between 0 and 1. That is:

u(p) ∈ [0, 1]

p = 1, 2, . . . , NP
(5)

Thus now, only a standard multistage optimal control problem (MSOCP),

free from binary variables, has to be solved using the feasible path approach,

which can be done using any nonlinear optimisation algorithm. The require-

ment for the controls, u(p), for stage p, to take 0 or 1 values is enforced using a

penalty term homotopy technique, similar to that suggested by Sager (2005,

2009). In this technique, a monotonically increasing penalty term is added

to the objective function in equation (4a) and a series of MSOCPs of the

following generic form are solved:

Fk : min

[
W +Mk

NP∑
p=1

u(p)
[
1− u(p)

]]
(6)

subject to equations (4b) – (4e), (5) and (4g), for

k = 1, 2, 3 . . .

M1 = 0

Every iteration, k, is referred to as ‘major iteration’. The first major iter-

ation (k = 1) of the series is designated a weight of M1 = 0 and is similar

to solving the problem given by equation (4), the only difference being there

are no integer restrictions on controls u. If solving problem F1 does not pro-

duce binary values for controls u, the second major iteration occurs in which

a weight M2 > 0 is chosen and problem F2 is solved using the solution of

F1 as initial guesses. This procedure is repeated in an iterative manner, by

choosing a weight Mk+1 > Mk and solving problem Fk+1 with the solution of

Fk as initial guesses, until iteration K (K ≥ 1) such that all controls in u, in
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the solution of problem FK , are forced by weight MK to take values of either

0 or 1. The solution methodology is represented as an algorithmic flowchart

in Figure 2.

The progression for the increase of weights, Mk, is chosen arbitrarily, by

trial and error, and is dependent on the parameters of the problem. It should

be remembered that if the weight is increased too slowly, the computational

time becomes large, while if it is increased too fast, the optimiser can fail to

recognise a solution and continue iterations indefinitely.

The proposed solution methodology, as a standard multistage optimal

control problem using a feasible path approach, can provide a number of

advantages over combinatorial optimisation techniques:

1. The feasible path approach employs state-of-the-art integrators which

can solve nonlinear differential and algebraic equations to a high ac-

curacy. Thus, the solutions obtained are expected to be more reliable

than in the mixed-integer formulations which solve such equations us-

ing linear approximation techniques.

2. The linear approximation techniques used by mixed-integer formula-

tions to handle the differential equations and nonlinear terms, often

cause the problem to end up containing a very large number of variables

and constraints. This leads to difficulties in convergence to optimal so-

lutions. However, in the feasible path approach, the differential equa-

tions and nonlinear terms are solved by an integrator without creating

additional variables or constraints to be considered in the optimisation

phase. The optimisation problem is of much smaller size with a few

continuous only decision variables and constraints, and obtaining solu-

tions is well within the scope of existing NLP solvers, regardless of the

initial guesses used. Hence, the methodology is expected to be more

robust in comparison to the combinatorial optimisation techniques.
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Start

With S0 as initial guess and M1 = 0,
solve problem F1 in equation (6) as a
standard MSOCP using a feasible path

approach. Label solution as S1.

For k = 2, 3, . . .:
Choose weight Mk > Mk−1

Solve problem Fk in equation (6), as a
standard MSOCP using a feasible path

approach, with Sk−1 as the initial
guesses. Label solution as Sk

k ← k + 1

No

Yes

Sk is the desired solution

End

In Sk, are all controls,
u(p) binary in nature?

That is, are:
u(p) ∈ {0, 1},

for p = 1, 2, . . . NP?

Choose a set, S0, of random values for
controls u(p) ∈ [0, 1] and v(p) ∈ V, for
p = 1, 2, . . . , NP

In S1, are all controls,
u(p) binary in nature?

That is, are:
u(p) ∈ {0, 1},

for p = 1, 2, . . . NP?

No

Yes

S1 is the desired solution

Figure 2: An algorithmic flowchart for the solution methodology
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3. By virtue of the penalty term homotopy technique, a weight term in

the objective function forces the controls, originally binary but con-

sidered continuous in this formulation, to take values of either 0 or 1.

Thus, the 0 or 1 values for these controls, which correspond to the cata-

lyst changeover actions, are decided inherently during the optimisation,

without using mixed-integer techniques. Hence, no additional computa-

tional effort is spent in deciding when to schedule catalyst changeovers,

thereby underlining the potential efficiency of this methodology over

combinatorial optimisation approaches.

A drawback of the feasible path approach is the high computational effort

spent in solving the differential equations at each iteration of the optimisa-

tion. However, with the advent of high performance computing and parallel

computing facilities, the methodology’s feature of scalability of the problem

can be exploited. That is, once decision variables are fixed at each iteration

of the optimisation, each reactor can be simulated entirely separately on a

different computer. Furthermore, any required gradient evaluations can be

further parallelised within the computer on which each reactor’s simulation

occurs.

Another limitation is that solution as an MSOCP leads to the problem

becoming non-convex, as it is does not involve any binary/integer decisions.

A local solution is inevitable due to this non-convexity, but it is now far eas-

ier to use practical approaches to (a) explore a further improvement of local

solutions, e.g. by multi-start methods, and (b) it is important to note that a

placement of a maintenance action up or down in the planning horizon by a

couple of periods (e.g. weekly planning periods) has little impact, sensitivity-

wise, to a long planning horizon problem. For industrial application, global

optimality in such cases may have little value in itself, due to factors such

as disturbances, uncertainties and inaccuracies in the overall process model,

which in this light gives a serious advantage to the methodology adopted and
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put forward in this work.

The preceding discussion indicates that this solution methodology has

great potential for providing reliable, robust and efficient solutions to the

problem under consideration, in comparison to mixed-integer techniques. In

the next section, the effectiveness of the MSOCP formulation is demonstrated

by an application to the case study of an industrial process.

4. Case Study: Problem formulation, implementation, results and

discussion

In this section, the MSMIOCP formulation is applied in a case study to

optimise maintenance scheduling, operation and sales to meet time-varying

demand in an industrial process wherein a single feed is split over a set of

parallel reactors using decaying catalysts to produce a single product. As

mentioned in Section 1, currently no publication explicitly addresses such

a problem. A work by Schulz et al. (2006a) that focused on optimising a

similar set up in an ethylene plant using MINLP approaches does not reveal

the underlying process equations. Hence, there was no process in any publi-

cation that could be used as a base to develop this formulation. Instead, the

process considered in Adloor et al. (2020), for a single reactor, is modified to

consider 4 parallel reactors.

A schematic of the process is shown in Figure 3. Here, a maintenance

schedule is required that specifies for the set of parallel reactors, how many

catalyst loads to use in each reactor as well as when the maintenance action

to replace each of the used catalyst should occur in each reactor. In addition,

for each reactor in the parallel set up, a production plan is needed that speci-

fies the flow rate to and temperature of operation of each reactor at all times,

as well as the periodic sales to meet time-varying demand. This production

plan should be managed in tandem with the maintenance schedule and while
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taking catalyst deactivation in each reactor into account.

The objective is to maximise the profits of the process by an integrated

optimisation of the maintenance scheduling and production operations in the

set of parallel reactors that use decaying catalysts. The essential elements of

the problem formulation and the implementation details are discussed before

presenting the results obtained.

4.1. Problem formulation

In the problem addressed, the following assumptions apply:

1. The industrial process operates over a fixed time horizon, in the order

of years. Each year is constituted by 12 months and there are a total

of NM months, wherein each month is constituted by 4 weeks.

2. The industrial process functions according to a certain process model

and is subject to operating constraints.

3. The process has 4 Continuous Stirred Tank Reactors (CSTRs) of equal

volumes, that operate in parallel.

4. There is a single feed to the process which is to be divided among the

4 reactors.

5. Each reactor processes the inlet feed using a catalyst to manufacture

the same type of product.

6. In all reactors, the catalyst performance decays with time and has to

be replaced before it crosses a certain maximum age.

7. The catalyst deactivation kinetics is first order with respect to the

catalyst activity and is independent of the concentration of the reacting

species. That is, the deactivation rate equation is of general form:
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Figure 3: A schematic of the process
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d (cat−act)

dt
= −Kd × cat−act (7)

where Kd is the deactivation rate constant and cat−act is the activity

of the catalyst.

8. The rate constant in the deactivation kinetics, Kd, is taken to be inde-

pendent of the temperature of operation.

9. All reactors use similar types of catalysts, that are identical in func-

tioning and performance (That is, identical values of Kd).

10. For each reactor, there is a maximum number of catalyst loads that

can be used over the given time horizon. This number is the same for

all reactors.

11. For each reactor, the time required for the maintenance action of shut-

ting down the reactor, replacing the catalyst and restarting operation,

is taken to be one month, during which time no production occurs.

12. The availability of labour and equipment in the process is such that in

any one month, only one reactor can undergo catalyst replacement.

13. The main reaction is assumed to be of the form:

R→ Q (8)

where R is the reactant and Q is the desired product. The reaction rate

is considered separable from the catalyst activity and is first order with

respect to the concentration of the reactant, R. That is, the reaction

rate equation is of general form:

KR × cat−act× cR (9)
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where KR is the reaction rate constant, cat−act is the catalyst activity

and cR is the concentration of reactant exiting the reactor.

14. The reaction rate constant, KR, is taken to exhibit an Arrhenius form

of temperature dependence.

15. The flow rate of feed to the process has an upper limit. That is, the

sum of feed flow rates to all reactors cannot exceed this limit.

16. The feed flow rate to each reactor has to be specified on a weekly basis.

17. For each reactor, the flow of feed is stopped during the maintenance

action of catalyst replacement.

18. The concentration of reactant R in the feed to the process is known

and constant.

19. The temperature of operation of each reactor has to be specified on a

weekly basis.

20. The temperature of each reactor can be operated only within fixed

bounds during catalyst operation and is set to its lower bound during

catalyst replacement.

21. The product produced by all reactors is stored continuously as inven-

tory.

22. The weekly product demand is known for the whole time horizon.

23. The amount of product sales from the inventory present has to be

specified on a weekly basis.

24. The product sales for each week is less than or equal to the demand in

that week.

25. There is a penalty corresponding to the unmet demand in each week.
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26. The costs involved in the process are known and are subject to a known

value of annual inflation. These include the sales price of the product,

the cost of inventory, the cost of flow and raw material, the cost of

catalyst changeover and the penalty for unmet demand.

Given the above assumptions, the optimisation model must determine

the following sets of values, which constitute the controls of the MSMIOCP:

(i) The catalyst changeover decision variables, for each month i, for reac-

tors 1, 2, 3 and 4, represented by symbols y1(i), y2(i), y3(i) and y4(i),

respectively. For reactor 1, y1(i) = 1 indicates that a catalyst is in

operation and y1(i) = 0 indicates that the catalyst is being replaced,

during month i. An analogous description applies for variables y2(i),

y3(i) and y4(i) in reactors 2, 3 and 4, respectively

(ii) The feed flow rate to reactors 1, 2, 3 and 4, during each week, j, of

each month, i, represented by symbols ffr1(i, j), ffr2(i, j), ffr3(i, j)

and ffr4(i, j), respectively

(iii) The amount of product sold, at the end of each week, j, of each month,

i, represented by sales(i, j)

(iv) The temperature of operation of reactors 1, 2, 3 and 4, during each

week, j, of each month, i, represented by symbols T1(i, j), T2(i, j),

T3(i, j) and T4(i, j), respectively

In the above list, j ∈ {1, 2, 3, 4} and i ∈ {1, 2, ..., NM}. The catalyst

changeover decisions correspond to the binary controls u in equation (4f)

while the other decision variables correspond to continuous controls v in

equation (4g).

The state variables that characterise the MSMIOCP formulation of this

industrial process include the following sets of variables:
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(i) The ages of the catalysts in reactors 1, 2, 3 and 4, represented by

symbols cat−age1, cat−age2, cat−age3 and cat−age4, respectively

(ii) The activities of the catalysts in reactors 1, 2, 3 and 4, represented by

symbols cat−act1, cat−act2, cat−act3 and cat−act4, respectively

(iii) The concentration of the reactant at the exit of the reactors 1, 2, 3 and

4, represented by symbols cR1, cR2, cR3 and cR4, respectively

(iv) The product inventory level, inl

(v) The cumulative inventory costs, cum−inc

These state variables are determined by the decision variables’ values at

any time using a set of ODEs and under the influence of constraints. Next,

ODEs of the form of equation (4b), that apply for week j ∈ {1, 2, 3, 4} of

month i ∈ {1, 2, ..., NM} of the process are formulated.

1. In all reactors, the catalyst age varies linearly with time when the

catalyst is in operation (y1(i), y2(i), y3(i), y4(i) = 1) but does not

increase at times of catalyst replacement (y1(i), y2(i), y3(i), y4(i) = 0).

Hence, the differential equations describing the catalyst age in reactors

1, 2, 3 and 4, accounting for both scenarios, are given by equations,

(10a), (10b), (10c) and (10d), respectively:

d (cat−age1)

dt
= y1(i) (10a)

d (cat−age2)

dt
= y2(i) (10b)

d (cat−age3)

dt
= y3(i) (10c)

d (cat−age4)

dt
= y4(i) (10d)
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2. In all reactors, the catalyst activity decays on a first order basis during

times of catalyst operation (y1(i), y2(i), y3(i), y4(i) = 1) but expe-

riences no change during times of catalyst replacement (y1(i), y2(i),

y3(i), y4(i) = 0), as there is no production occurring. Thus, the dif-

ferential equations for the catalyst activity in reactors 1, 2, 3 and 4,

accounting for both scenarios, are given by equations, (11a), (11b),

(11c) and (11d), respectively:

d (cat−act1)

dt
= y1(i)× [−Kd × cat−act1] (11a)

d (cat−act2)

dt
= y2(i)× [−Kd × cat−act2] (11b)

d (cat−act3)

dt
= y3(i)× [−Kd × cat−act3] (11c)

d (cat−act4)

dt
= y4(i)× [−Kd × cat−act4] (11d)

where Kd is the catalyst deactivation rate constant.

3. Since all reactors are assumed to be completely stirred, the concentra-

tion of reactant exiting each reactor (cR1, cR2, cR3, cR4) is obtained

from the generic mass balance equation of a CSTR during times of cata-

lyst operation (y1(i), y2(i), y3(i), y4(i) = 1). However, during times of

catalyst replacement (y1(i), y2(i), y3(i), y4(i) = 0), no reaction occurs

and an artificial condition is imposed wherein the reactor is assumed

to be filled with fresh, unreacted reactant at the entry concentration

(CR0), to be used by the new catalyst after replacement. The differen-

tial equations that account for both scenarios, for reactors 1, 2, 3 and

4 are given by equations, (12a), (12b), (12c) and (12d), respectively:

d (V × cR1)

dt
= ffr1(i, j)× (CR0− cR1)

− y1(i)× [V ×K1R × cat−act1× cR1]

(12a)
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d (V × cR2)

dt
= ffr2(i, j)× (CR0− cR2)

− y2(i)× [V ×K2R × cat−act2× cR2]

(12b)

d (V × cR3)

dt
= ffr3(i, j)× (CR0− cR3)

− y3(i)× [V ×K3R × cat−act3× cR3]

(12c)

d (V × cR4)

dt
= ffr4(i, j)× (CR0− cR4)

− y4(i)× [V ×K4R × cat−act4× cR4]

(12d)

Here V is the volume, considered equal for all reactors. K1R, K2R,

K3R and K4R are the rate constants for the reactions occurring in

reactors 1, 2, 3 and 4, respectively, and they exhibit an Arrhenius

form of dependence on the temperature of operation of the respective

reactors, of the following form:

K1R = AR × exp
(
− Eact

Rg × T1 (i, j)

)
(13a)

K2R = AR × exp
(
− Eact

Rg × T2 (i, j)

)
(13b)

K3R = AR × exp
(
− Eact

Rg × T3 (i, j)

)
(13c)

K4R = AR × exp
(
− Eact

Rg × T4 (i, j)

)
(13d)

Here AR and Eact are the pre-exponential factor and the activation

energy, respectively, of reaction (8) and Rg is the universal gas constant.

4. It is assumed that product produced by all reactors is stored as in-

ventory before being sold at the end of the week. During times of

catalyst operation (y1(i), y2(i), y3(i), y4(i) = 1) in a reactor, the in-

ventory level increases equivalent to the production rate (volume times
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reaction rate) of that reactor. But during catalyst replacement (y1(i),

y2(i), y3(i), y4(i) = 0) in a reactor, the reactor does not contribute to

an increase in inventory level as there is no production occurring. So,

the differential equation describing the inventory level (inl), that takes

into account production from all reactors, while considering scenarios

of catalyst operation as well as replacement, is given by:

d (inl)

dt
= y1(i)× [V ×K1R × cat−act1× cR1]

+ y2(i)× [V ×K2R × cat−act2× cR2]

+ y3(i)× [V ×K3R × cat−act3× cR3]

+ y4(i)× [V ×K4R × cat−act4× cR4]

(14)

5. Finally, the increase in the cumulative inventory cost (cum−inc) at any

time depends on the inventory level at that time and the Inventory Cost

Factor (icf) (adjusted for inflation), which stipulates the cost per unit

product per unit time:

d (cum−inc)

dt
= inl × icf (15)

The icf at any time is given by the following equation:

icf = base−icf × (1 + inflation)bi/12c (16)

where base−icf is the inventory cost factor before inflation, inflation

is the annual inflation rate and b·c is the greatest integer function.

The set of ODEs are solved repeatedly over a weekly time span, which

corresponds to one stage of the MSMIOCP. In order to solve these ODEs,

for each stage, suitable initial conditions have to be provided. The initial

conditions for week 1 of month 1 are assumed to be known and are of the

form of equation (4c). The initial conditions for the other stages are obtained
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using junction conditions between two successive stages of the process, of the

form of equation (4d).

The initial conditions corresponding to week 1 of month 1, represented

as init−var(1, 1) for variable var, are as follows:

1. In all reactors, a new catalyst is used at the beginning of the process

and so the initial catalyst age in all reactors is set to zero:

init−cat−age1 (1, 1) = 0 (17a)

init−cat−age2 (1, 1) = 0 (17b)

init−cat−age3 (1, 1) = 0 (17c)

init−cat−age4 (1, 1) = 0 (17d)

2. Since, in all reactors, a new catalyst is used at the beginning of the

process, the initial catalyst activity for the catalysts in all reactors is

set to that of a fresh catalyst (start−cat−act):

init−cat−act1 (1, 1) = start−cat−act (18a)

init−cat−act2 (1, 1) = start−cat−act (18b)

init−cat−act3 (1, 1) = start−cat−act (18c)

init−cat−act4 (1, 1) = start−cat−act (18d)

3. At the start of the process, all reactors are filled with the reactant R

at its entry concentration CR0. Hence, the initial exit concentration

in all reactors is given by:

init−cR1 (1, 1) = CR0 (19a)
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init−cR2 (1, 1) = CR0 (19b)

init−cR3 (1, 1) = CR0 (19c)

init−cR4 (1, 1) = CR0 (19d)

4. There is no inventory at the beginning of the process, and so:

init−inl (1, 1) = 0 (20)

5. There is no inventory at the start of the process and so the initial

cumulative inventory cost is nil at that time:

init−cum−inc (1, 1) = 0 (21)

The junction conditions are described next. For all reactors, the junction

conditions differ depending on whether the catalyst is in operation (y1(i),

y2(i), y3(i), y4(i) = 1) or is being replaced (y1(i), y2(i), y3(i), y4(i) = 0)

during that month. In the following text, the expressions init−var (i, j) and

end−var (i, j) indicate the initial and end conditions, respectively for the

variable var, for week j of month i:

1. During months of catalyst operation (y1(i), y2(i), y3(i), y4(i) = 1),

in all reactors, the initial catalyst age for a week corresponds to the

catalyst age at the end of the previous week. But during months of

catalyst replacement (y1(i), y2(i), y3(i), y4(i) = 0), the catalyst age

has to be set to zero, the age of a new catalyst. The junction conditions

that describe both scenarios for all reactors, are as follows.

init−cat−age1 (i, j + 1) = end−cat−age1(i, j) (22a)

init−cat−age2 (i, j + 1) = end−cat−age2(i, j) (22b)

init−cat−age3 (i, j + 1) = end−cat−age3(i, j) (22c)
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init−cat−age4 (i, j + 1) = end−cat−age4(i, j) (22d)

j = 1, 2, 3 i = 1, 2, . . . , NM

init−cat−age1 (i, 1) = y1(i)× end−cat−age1(i− 1, 4) (22e)

init−cat−age2 (i, 1) = y2(i)× end−cat−age2(i− 1, 4) (22f)

init−cat−age3 (i, 1) = y3(i)× end−cat−age3(i− 1, 4) (22g)

init−cat−age4 (i, 1) = y4(i)× end−cat−age4(i− 1, 4) (22h)

i = 2, 3, . . . , NM

2. During months of catalyst operation (y1(i), y2(i), y3(i), y4(i) = 1),

in all reactors, the initial catalyst activity for the week corresponds to

the catalyst activity at the end of the previous week. However, dur-

ing months of catalyst replacement (y1(i), y2(i), y3(i), y4(i) = 0), in

all reactors, the catalyst activity has to be reset to the activity corre-

sponding to that of a fresh catalyst, which remains the same throughout

the duration of month i. The junction conditions that describe both

scenarios for all reactors is given as follows.

init−cat−act1 (i, j + 1) = end−cat−act1(i, j) (23a)

init−cat−act2 (i, j + 1) = end−cat−act2(i, j) (23b)

init−cat−act3 (i, j + 1) = end−cat−act3(i, j) (23c)

init−cat−act4 (i, j + 1) = end−cat−act4(i, j) (23d)

j = 1, 2, 3 i = 1, 2, . . . , NM

init−cat−act1 (i, 1) = [y1(i)× end−cat−act1(i− 1, 4)]

+ [(1− y1(i))× start−cat−act]
(23e)

30



init−cat−act2 (i, 1) = [y2(i)× end−cat−act2(i− 1, 4)]

+ [(1− y2(i))× start−cat−act]
(23f)

init−cat−act3 (i, 1) = [y3(i)× end−cat−act3(i− 1, 4)]

+ [(1− y3(i))× start−cat−act]
(23g)

init−cat−act4 (i, 1) = [y4(i)× end−cat−act4(i− 1, 4)]

+ [(1− y4(i))× start−cat−act]
(23h)

i = 2, 3, . . . , NM

3. During months of catalyst operation (y1(i), y2(i), y3(i), y4(i) = 1), in

all reactors, the exit concentration for the beginning of a week corre-

sponds to the exit concentration at the end of the previous week. And

when the catalyst is being replaced (y1(i), y2(i), y3(i), y4(i) = 0) in a

reactor, an artificial condition is imposed wherein the reactor is filled

with reactant at entry concentration CR0, ready to be used by the fresh

catalyst at the beginning of the next month. The junction conditions

that describe both scenarios for all reactors is given as follows.

init−cR1 (i, j + 1) = end−cR1(i, j) (24a)

init−cR2 (i, j + 1) = end−cR2(i, j) (24b)

init−cR3 (i, j + 1) = end−cR3(i, j) (24c)

init−cR4 (i, j + 1) = end−cR4(i, j) (24d)

j = 1, 2, 3 i = 1, 2, . . . , NM

init−cR1(i, 1) = [y1(i)× end−cR1(i− 1, 4)] + [(1− y1(i))× CR0]

(24e)

init−cR2(i, 1) = [y2(i)× end−cR2(i− 1, 4)] + [(1− y2(i))× CR0]

(24f)
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init−cR3(i, 1) = [y3(i)× end−cR3(i− 1, 4)] + [(1− y3(i))× CR0]

(24g)

init−cR4(i, 1) = [y4(i)× end−cR4(i− 1, 4)] + [(1− y4(i))× CR0]

(24h)

i = 2, 3, . . . , NM

4. At the end of a week, an amount, sales(i, j) of the stored product is

sold. Thus, the initial inventory level for the week corresponds to the

inventory present after the sales at the end of the previous week. The

following junction conditions apply during months of catalyst operation

as well as catalyst replacement, as the sales do not cease at any time:

init−inl (i, j + 1) = end−inl(i, j)− sales(i, j)
j = 1, 2, 3 i = 1, 2, . . . , NM

(25a)

init−inl (i, 1) = end−inl(i− 1, 4)− sales (i− 1, 4)

i = 2, 3, . . . , NM
(25b)

5. The inventory cost accumulated until the beginning of a week is equal

to the value of the inventory cost accumulated until the end of the

previous week. So the following junction conditions apply regardless of

whether the catalyst is being used or replaced:

init−cum−inc (i, j + 1) = end−cum−inc(i, j)

j = 1, 2, 3 i = 1, 2, . . . , NM
(26a)

init−cum−inc (i, 1) = end−cum−inc(i− 1, 4)

i = 2, 3, . . . , NM
(26b)

The initial conditions (17) – (21) and junction conditions (22) – (26) en-

able a solution for the ODEs for all stages and thereby obtain the values of

the state variables. However, in order to ensure the feasibility of the obtained
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state variables values, these ODEs have to be solved in tandem with fulfilling

the constraints of the process.

The constraints, of the form of equation (4e), that apply to this industrial

process for week j ∈ {1, 2, 3, 4} of month i ∈ {1, 2, ..., NM} are as follows:

1. In the context of solving the MSMIOCP as a standard MSOCP using

a feasible path approach, the catalyst changeover decision variables for

all reactors (y1(i), y2(i), y3(i), y4(i)), for a month i, are considered

continuous variables that vary between 0 and 1, and so the following

bounds are imposed:

0 ≤ y1(i) ≤ 1 (27a)

0 ≤ y2(i) ≤ 1 (27b)

0 ≤ y3(i) ≤ 1 (27c)

0 ≤ y4(i) ≤ 1 (27d)

2. The net flow rate of feed to the process has an upper limit (FUp). That

is, the sum of the flow rates of feeds to all reactors has to remain within

this limit and so, the following bounds are imposed, for each week:

0 ≤ ffr1(i, j) + ffr2(i, j) + ffr3(i, j) + ffr4(i, j) ≤ FUp

(28)

3. The sales in each week are assumed to be less than or equal to the de-

mand for the product in that week (demand(i, j)). Hence, the following

bounds on the sales at the end of each week are imposed:

0 ≤ sales(i, j) ≤ demand(i, j) (29)

4. The temperature of each reactor operates between known, fixed lower
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and upper bounds, TLo and TUp, respectively. Hence, the following

bounds are set on the weekly temperature of operation of each reactor:

TLo ≤ T1(i, j) ≤ TUp (30a)

TLo ≤ T2(i, j) ≤ TUp (30b)

TLo ≤ T3(i, j) ≤ TUp (30c)

TLo ≤ T4(i, j) ≤ TUp (30d)

5. When a catalyst is being replaced in a reactor (y1(i), y2(i), y3(i),

y4(i) = 0), the flow of raw material to that reactor stops. The following

constraints ensure that the weekly feed flow rate to each reactor remains

below the upper bound during times of catalyst operation (y1(i), y2(i),

y3(i), y4(i) = 1) and drops to zero when there is catalyst replacement

(y1(i), y2(i), y3(i), y4(i) = 0):

ffr1(i, j)− [FUp× y1(i)] ≤ 0 (31a)

ffr2(i, j)− [FUp× y2(i)] ≤ 0 (31b)

ffr3(i, j)− [FUp× y3(i)] ≤ 0 (31c)

ffr4(i, j)− [FUp× y4(i)] ≤ 0 (31d)

6. When a catalyst is being replaced in a reactor (y1(i), y2(i), y3(i),

y4(i) = 0), the temperature of the reactor is required to drop to its

lower bound. This condition is imposed using the following constraints

which ensure that the temperature of each reactor, for each week, re-

mains between its bounds during times of catalyst operation (y1(i),

y2(i), y3(i), y4(i) = 1) but drops to the lower bound when there is
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catalyst replacement (y1(i), y2(i), y3(i), y4(i) = 0):

TLo ≤ T1(i, j) ≤ [(TUp− TLo)× y1(i)] + TLo (32a)

TLo ≤ T2(i, j) ≤ [(TUp− TLo)× y2(i)] + TLo (32b)

TLo ≤ T3(i, j) ≤ [(TUp− TLo)× y3(i)] + TLo (32c)

TLo ≤ T4(i, j) ≤ [(TUp− TLo)× y4(i)] + TLo (32d)

7. For each reactor, there is a maximum number of catalyst replacements

that can occur. In this case study, it is assumed that this maximum

number is the same for all reactors (designated as n). The limit on the

maximum number of catalyst changeovers allowed for each reactor is

imposed using the following set of constraints:

NM∑
i=1

y1(i) ≥ NM − n (33a)

NM∑
i=1

y2(i) ≥ NM − n (33b)

NM∑
i=1

y3(i) ≥ NM − n (33c)

NM∑
i=1

y4(i) ≥ NM − n (33d)

8. The availability of equipment and labour in the process is such that

only one reactor can undergo catalyst replacement (y1(i), y2(i), y3(i),

y4(i) = 0) during any month. Mathematically, this means that among

the catalyst changeover controls for all reactors (y1(i), y2(i), y3(i),

y4(i)), at most one control can take a value of 0 (or at least 3 con-

trols should have values of 1) during any month, i. This condition of
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non-simultaneous catalyst replacement is enforced using the following

constraint:

y1(i) + y2(i) + y3(i) + y4(i) ≥ 3 (34)

9. The catalysts in all reactors undergo deactivation over time and have

to be replaced before crossing a certain maximum age. Since all reac-

tors use catalysts that are identical in functioning and performance, a

common for all maximum catalyst age, designated as max−cat−age, is

used. As the decision on whether to replace a catalyst or not is made

on a monthly basis, it is sufficient to ensure that the catalyst age in

each reactor does not cross this limit at the end of each month, i:

end−cat−age1 (i, 4) ≤ max−cat−age (35a)

end−cat−age2 (i, 4) ≤ max−cat−age (35b)

end−cat−age3 (i, 4) ≤ max−cat−age (35c)

end−cat−age4 (i, 4) ≤ max−cat−age (35d)

10. In order to ensure that more product than available is not sold, the

inventory level at the end of each week should be greater than the sales

for the week. This is imposed using the following constraint:

end−inl(i, j)− sales(i, j) ≥ 0 (36)

The aim is to maximise the profits or minimise the costs of the process

under the influence of these ODEs, initial conditions, junction conditions and

constraints. The net costs of the process are represented by the objective

function of this MSMIOCP, of the form of equation (4a), and comprises of

the following elements:

1. The Gross Revenue from Sales (GRS)
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This term represents the revenue for the process from the net sales of

the product chemical over the whole time horizon:

GRS =
NM∑
i=1

4∑
j=1

psp(i, j)× sales(i, j) (37)

where psp(i, j) is the sales price per unit product for week j of month

i, adjusted for inflation at that time:

psp(i, j) = base−psp× (1 + inflation)bi/12c (38)

where base−psp is the unit product sales price before inflation.

2. The Total Inventory Costs (TIC)

This term represents the net storage costs for the product over the

whole time horizon and is obtained from the solution of the ODEs for

the state variable cum−inc at the end of the final week of the process:

TIC = end−cum−inc(NM, 4) (39)

3. The Total Costs of Catalyst Changeovers (TCCC)

The total expenditure for the catalyst changeover operations is given by

the sum of the catalyst changeover costs for all 4 reactors. Since these

costs are incurred only during months of catalyst replacement(y1(i),

y2(i), y3(i), y4(i) = 0), TCCC is obtained in the following manner:

TCCC =
NM∑
i=1

crc(i)× [1− y1(i)] +
NM∑
i=1

crc(i)× [1− y2(i)]

+
NM∑
i=1

crc(i)× [1− y3(i)] +
NM∑
i=1

crc(i)× [1− y4(i)]

(40)

It is highlighted that the terms within the summations remain non-
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zero only during the times of catalyst replacement (y1(i), y2(i), y3(i),

y4(i) = 0) and only these terms contribute to the total costs. Here

crc(i) is the cost of the catalyst replacement operation, considered the

same for all reactors, for month i, adjusted for inflation at that time:

crc(i) = base−crc× (1 + inflation)bi/12c (41)

where base−crc is the cost of a catalyst changeover operation before

inflation.

4. The Net Penalty for Unmet Demand (NPUD)

The unmet demand in each week (unmet−demand (i, j)) is the quantity

of product by which the sales falls short of the demand in that week:

unmet−demand (i, j) = demand (i, j)− sales (i, j)

j = 1, 2, 3, 4 i = 1, 2, . . . , NM
(42)

There is a penalty associated with this unmet demand and the net

penalty costs over the entire time horizon is given by:

NPUD =
NM∑
i=1

4∑
j=1

pen(i, j)× unmet−demand(i, j) (43)

where pen(i, j) is the penalty per unit product for week j of month i,

adjusted for inflation at that time:

pen(i, j) = base−pen× (1 + inflation)bi/12c (44)

where base−pen is the penalty per unit product before inflation.

5. The Total Flow Costs (TFC)

This term represents the net expenditure on the feed of raw material
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to all reactors in the process and is given by:

TFC =
NM∑
i=1

4∑
j=1

cof(i, j)×[ffr1(i, j) + ffr2(i, j) + ffr3(i, j) + ffr4(i, j)]

(45)

where cof(i, j) is the cost of raw material per unit volume per week for

week j of month i, adjusted for inflation at that time:

cof(i, j) = base−cof × (1 + inflation)bi/12c (46)

where base−cof is the cost of raw material per unit volume per week

before inflation.

If the Net Costs are represented by NC, the objective function for this opti-

misation problem takes the form:

min NC = −GRS + TIC + TCCC + NPUD + TFC (47)

The essential elements of the problem formulation have now been de-

scribed in detail. The aim is to make the appropriate decisions in order to

minimise the net costs (or maximise the profit) of the industrial process, when

subject to the ODEs, initial and junction conditions and the constraints.

Next, the solution implementation details are presented after which the

results obtained are discussed. The set of parameters used for this problem

are given in Table 1, which are mostly similar to those used in Adloor et al.

(2020), except here the volumes of the 4 reactors used add up to that of the

single reactor in the latter work. A 3-year time horizon is considered here

as well and the details of the problem size under this formulation for this

horizon length is given in Table 2.
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4.2. Implementation details

The implementation as a standard MSOCP using the feasible path ap-

proach was performed in PythonTM 3.7.1 under PyCharm 2019.3.3 (Commu-

nity Edition). The code was written using CasADi, an open source software

that enables a symbolic framework for numerical optimisation (Andersson,

2013). The elements of the problem, as given in Section 4.1, were defined as

symbolic expressions using CasADi v3.4.5. The Automatic Differentiation

(AD) feature of CasADi enabled constructions of symbolic expressions of the

derivatives of all predefined functions, thereby maintaining differentiability

to an arbitrary order. This allowed for an efficient calculation of gradients,

that did not suffer from round-off and truncation errors, unlike gradient cal-

culation using finite differences.

For the choice of parameters used in this article, the weight term in the

objective function as per the penalty term homotopy technique presented in

equation (6) in Section 3 is increased as per the arithmetic progression in

equation (48):

Table 1: List of parameters

Parameter Symbol Value

AR 885 (1/day)

base−cof $ 210 /week

base−crc $ 25×105

base−icf $ 0.01 /(kmol day)

base−pen $ 1250 /kmol

base−psp $ 1000 /kmol

CR0 1 kmol/m3

40



Table 1: List of parameters

Parameter Symbol Value

demand

1st quarter of year: 8000 kmol/week

2nd quarter of year: 7200 kmol/week

3rd quarter of year: 3300 kmol/week

4th quarter of year: 4500 kmol/week

Eact 30,000 J/gmol

FUp 9600 m3/day

inflation 5%

Kd 0.0024 (1/day)

max−cat−age 504 days (= 1.5 years)

n 5

NM 36 months (= 3 years)

Rg 8.314 J/(gmol.K)

start−cat−act 1

TLo 400 K

TUp 1000 K

V 12.5 m3

Mk+1 = (2×Mk) +
(
5× 107

)
M1 = 0

k = 1, 2, 3 . . .

(48)

CasADi plug-ins to the open source SUNDIALS suite (Hindmarsh et al.,
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Table 2: Problem size specifications

Property Size

Ordinary Differential Equations 2016

Decision variables

Catalyst changeover actions 144

Feed flow rate 576

Sales 144

Temperature 576

Total 1440

Constraints

Constraints (27) 288

Constraints (28) 288

Constraints (29) 288

Constraints (30) 1152

Constraints (31) 576

Constraints (32) 1152

Constraint (33) 4

Constraint (34) 36

Constraints (35) 144

Constraints (36) 144

Total 4072

2005) and IPOPT by COIN-OR (Wächter and Biegler, 2006) were used for

the integration of ODEs and optimisation, respectively. The IDAS solver

of SUNDIALS was used for the integration of the ODEs with the following

termination criteria: an absolute tolerance of 10−6 and a relative tolerance of

10−6. The optimisation by IPOPT had, respectively, the following termina-

tion and ‘acceptable’ termination criteria: 10−4 and 10−4 for the optimality

error, 1 and 106 for the dual infeasibility, 10−4 and 10−2 for the constraint

violation, and 10−4 and 10−2 for the complementarity. The ‘acceptable’ num-
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ber of iterations was set at 15.

The implementation was performed on a 3.2 GHz Intel Core i5, 16 GB

RAM, Windows machine running on Microsoft Windows 10 Enterprise. Since

the problem is non-convex, multiple runs were performed with different ran-

dom initial guesses for the decision variables. The random initial guesses were

generated using Latin Hypercube Sampling (McKay et al., 1979), obtained

in Python using the lhs method of the pyDOE module (version 0.3.8). Test

runs using the multiprocessing module in Python, to parallelise a loop of

multiple start points, executed slower than when the runs were done serially.

So 50 runs were executed in a serial manner.

In the next section, the results obtained using the proposed solution

methodology and implementation procedure are discussed. Statistics de-

scribing the essential solution features for the 50 runs are provided in the

form of tables and figures of the trends of the decision and state variables

over the time horizon for the most profitable run are examined.

4.3. Results and discussions

As in Adloor et al. (2020), this methodology produced high quality so-

lutions. Regardless of the initial guesses used, each of the 50 runs success-

fully converged to a local optimum within the specified optimality tolerance,

thereby indicating the robustness of the procedure. The nonlinear differential

equations were solved to a high accuracy using state-of-the-art integrators,

without any linear approximation techniques, thus underscoring the relia-

bility of the obtained solutions. The penalty term homotopy technique was

successful, not only in obtaining binary values for the catalyst changeover

controls in all reactors but also in enforcing the condition of non-simultaneous

catalyst replacement, without the use of mixed-integer programming meth-

ods, and this underlines the efficiency of the methodology.
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Table 3: Solution statistics over the 50 multi-start runs

Property Maximum Minimum Mean/Mode

Profit (Million $) 435.595 378.817 411.855

CPU time (seconds) 330269 174663 238882

Number of Major Iterations 4 2 3

Statistics regarding the solutions of the set of 50 runs are given in Tables

3 – 5. Table 3 provides details of the ranges of the profits, computation times

and number of major iterations involved. As can be seen, a minimum of 2

and a maximum of 4 major iterations are needed to obtain binary values for

the catalyst changeover controls, with the mode being 3. The ranges of the

number of IPOPT iterations needed within each major iteration are given

in Table 4. Table 5 presents statistics regarding the catalyst ages and the

number of catalyst replacements, which are largely similar for all reactors. It

is interesting to note that the mean catalyst age for all reactors is about half

the maximum age of 504 days and in no run, for any reactor, is a catalyst

recommended to be used up to that maximum age. It is also the case that

among all runs, for all reactors, only a maximum of 4 catalyst replacements

and not all of the available 5 are used, with the mode being 3.

The trends of the decision and state variables over the time horizon for

the most profitable solution among the set of 50 runs are given in Figures 4

– 12. The trends for each reactor are very similar to a related case study in

Adloor et al. (2020) for a single reactor.

Figure 4 illustrates the variation of the monthly catalyst changeover con-

trols over the whole time horizon for all 4 reactors. In this case, two major

iterations are needed to force the catalyst changeover controls for all reactors
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Table 4: Statistics for each major iteration. The column titled ’Runs’
indicates the number of runs out of 50 that progressed until that major
iteration. The columns titled ’Max’, ’Min’ and ’Mean’ indicate the maximum,
minimum and mean number of IPOPT iterations within that major iteration,
respectively.

Major Iteration Runs Max Min Mean

Major Iteration 1 50 400 206 331

Major Iteration 2 50 200 79 121

Major Iteration 3 44 200 52 76

Major Iteration 4 2 63 58 60.5

Table 5: Statistics regarding the catalyst replacements in each reactor

Reactor
Catalyst age (Days) Number of catalyst replacements

Max Min Mean Max Min Mode

Reactor 1 476 112 243.2 4 2 3

Reactor 2 476 112 252 4 2 3

Reactor 3 476 112 246 4 2 3

Reactor 4 476 112 234.9 4 2 3

to take integer values. The numerical values of all these controls across both

major iterations can be found in Table A.7. From the graph and table, it

is seen that the catalyst changeover control for Reactors 1, 2 and 3 (that is,

y1, y2 and y3) take values of 0 on three occasions while that for Reactor 4

(y4) takes a value of 0 on four occasions. By this, the model indicates that

it is optimal for the process to replace the catalyst three times in Reactors 1,

2 and 3 and four times in Reactor 4, during those months corresponding to

when their respective catalyst changeover controls become 0. It is highlighted
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that the months when catalyst replacements occur for the four reactors do

not overlap, thereby fulfilling constraint (34) for non-simultaneous catalyst

replacement. The other graphs presented are those obtained as solutions of

the second major iteration.

The profiles of the feed flow rates to each reactor (ffr1, ffr2, ffr3,

ffr4) and the total feed flow rate to the process (ffr1+ffr2+ffr3+ffr4)

over the whole time horizon, are shown in Figures 5 and 6, respectively. The

trends of the feed flow rates to all reactors in Figure 5 are related to the

corresponding profiles of the temperature of operation (T1, T2, T3, T4),

shown in Figure 8, and the reactant exit concentrations from the reactors

(cR1, cR2, cR3, cR4), shown in Figure 11. An explanation of the trends of

all these variables is provided as follows:

• In all reactors, during times of catalyst operation, the feed flow rate is

decreased at a rate matching that of the reactor’s catalyst deactivation

and the temperature of the reactor is maintained at its upper bound.

Such an operation causes the reactant exit concentration to maintain a

constant value. This operational policy is consistent with the work of

Szépe and Levenspiel (1968) for continuous reactors on the lab scale.

That paper predicted similar operational strategies when the main re-

action is more sensitive to temperature than the catalyst deactivation

and the latter is independent of the species’ concentration, as is the

consideration in this case study.

• During times of catalyst replacement in all reactors, the feed flow rate is

set to zero, the temperature of operation is set to its lower bound (TLo)

and the reactant exit concentration is set to its entry value (CR0), as

per constraints (31) and (32) and junction conditions (24), respectively.

• In all reactors, during the operation of the last catalyst, a sharp drop

in the flow rate occurs that causes a corresponding effect in the exit

46



Figure 4: The variation of the catalyst changeover controls over the time horizon in (a)
Reactor 1 (b) Reactor 2 (c) Reactor 3 (d) Reactor 4.
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concentration. This occurs to bring the production rate to a value that

exactly fulfils the demand for the remainder of the time horizon and

thereby lower the costs of flow and raw material to a minimum.

In Figure 6, the profile of the net feed flow rate to the process over the

time horizon, does not follow a regular trend, due to the variations in the

feed flow rates to each reactor, that operate independently of each other. It

is noted from the graph that the net flow rate does not reach its upper bound

(FUp) at any point throughout the time horizon, indicating that the optimal

policy does not require the maximum feed to the process.

Figure 7 shows a comparison of the optimal quantity of product sales

with the corresponding product demand and unmet demand over the whole

time horizon. It is seen that a considerable amount of unmet demand ex-

ists during the first year of the process, but is nil for the remainder years.

This is because the model takes into account the increase in sales price due

to annual inflation and prefers to sell less during the first year and more in

the later years in order to accumulate greater profit. It is highlighted that

the use of parallel reactor lines and the condition that only one reactor can

undergo catalyst replacement at any time, enables the sales to occur con-

tinuously throughout the time horizon. Taking inflation into account, the

model operates the sales in an efficient manner such that the inventory level

(Figure 12) is adjusted to balance the trade-offs between storing a sufficient

quantity of product to meet seasonal demand and high storage costs.

The variation of the catalyst age over the time horizon for the 4 reactors

are shown in Figure 9. The trends of a linear increase with time during cat-

alyst operation and a constant value of 0 during catalyst replacement follow

directly from differential equations (10) and junction conditions (22). An

analogous graph for catalyst activities in the 4 reactors are shown in Fig-

ure 10. In this figure, the trends of an exponential decrease during catalyst
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Figure 5: The variation of the feed flow rate over the time horizon in (a) Reactor 1 (b)
Reactor 2 (c) Reactor 3 (d) Reactor 4.
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Figure 6: The variation of the net feed flow rate to the process over the time horizon.

(a)

Sales Demand

(b)

Unmet demand Demand

Figure 7: The variation of (a) sales and (b) unmet demand, in comparison to the demand
over the whole time horizon.
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operation and a constant value at the starting catalyst activity during cata-

lyst replacement follow directly from differential equations (11) and junction

conditions (23).

The variation of the inventory level and cumulative inventory costs over

the time horizon are shown in Figure 12. The oscillating behaviour of the in-

ventory level follows from the interplay between the increase in inventory due

to production from all reactors (differential equation (14)) and the decrease

in inventory due to the sales (junction condition (25)). It is highlighted that

towards the end of the first year, the inventory level shows a significant in-

crease, despite there being a considerable amount of unmet demand at that

time. This happens in order to enable greater amount of sales during later

times when the product sales price has increased due to inflation, thereby

enlarging the profit obtained. The trend for the cumulative inventory costs

follows directly from differential equation (15) and junction condition (26).

The magnitudes of the various economic aspects that form the elements

of the objective function are given in Table 6. The table indicates that the

cost of flow and raw material and the net penalty for unmet demand form the

biggest proportions of the costs. The cost of catalyst changeovers contributes

relatively less while the inventory costs form a very low percentage of the

total expenditure. It is also seen that the costs of operation take away about

43.77% of the revenue generated by the product sales.
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Figure 8: The variation of the temperature of operation over the time horizon in (a)
Reactor 1 (b) Reactor 2 (c) Reactor 3 (d) Reactor 4.
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Figure 9: The variation of the catalyst age over the time horizon in (a) Reactor 1 (b)
Reactor 2 (c) Reactor 3 (d) Reactor 4.

53



Figure 10: The variation of the catalyst activity over the time horizon in (a) Reactor 1
(b) Reactor 2 (c) Reactor 3 (d) Reactor 4.
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Figure 11: The variation of the reactant exit concentration over the time horizon in (a)
Reactor 1 (b) Reactor 2 (c) Reactor 3 (d) Reactor 4.
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Figure 12: The variation of the product inventory level and cumulative inventory costs
over the time horizon.

Table 6: Economic aspects of the best solution

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 774.672

Costs

Total Inventory Costs TIC 0.305

Total Costs of Catalyst Changeovers TCCC 33.762

Net Penalty for Unmet Demand NPUD 119.273

Total Flow Costs TFC 185.737

Profit −NC 435.595
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5. Conclusions and further discussions

In this paper, an optimal control approach for scheduling maintenance

and production for processes using decaying catalysts, originally developed

in a previous work by Adloor et al. (2020) for a single reactor, has been

extended to parallel lines of reactors. This problem has been formulated as

a multistage mixed-integer optimal control problem and the formulation has

been applied to a case study of an industrial process that operates a single

feed over a set of 4 parallel reactors to produce a single product.

The solution methodology used involves relaxing the binary restrictions

on the catalyst changeover controls and solving a series of standard multi-

stage optimal control problems using a feasible path approach, with a penalty

term homotopy technique to enforce binary values for those controls. The

highlights of this methodology are that the penalty term homotopy tech-

nique obviates the need for combinatorial optimisation methods to schedule

catalyst changeovers and the feasible path approach guarantees accuracy, in

addition to a smaller problem size that enables easier convergence to solu-

tions.

Due to the non-convex nature of the problem, the optimisation was per-

formed using 50 different initial guesses and each of these runs successfully

converged to a local optimum without any difficulties. For the best solution

among these runs, the profiles of the decision and state variables over the

time horizon and the economics of the industrial process were presented. A

notable result was that the operating policies for reactant exit concentration

and temperature of each reactor correlated well with that of published liter-

ature (Szépe and Levenspiel, 1968) on the lab scale.

Ideally, a comparison of the solutions obtained with similar studies using

mixed-integer formulations should have been drawn. However, no previous
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publication exists that has explicitly considered the problem of optimising

maintenance scheduling and production in parallel lines of reactors using

decaying catalysts and so can be used for comparison. Even, a work by

Schulz et al. (2006a), that formulated an MINLP model for an ethylene plant,

while having similarities to the case study in this article, does not reveal the

underlying equations and so the construction of a comparative study was not

possible. It was because of these reasons that the case study considered here

was created as a modification of a case study in Adloor et al. (2020) that

considered a single reactor. It is important to stress the following points of

comparison with mixed-integer techniques:

1. If used, the combinatorial nature of the mixed-integer methods can

cause the computational effort involved in scheduling catalyst changeov-

ers and ensuring conditions such as non-simultaneous catalyst replace-

ment to become enormous, especially if the number of catalyst loads

or the number of reactors increase. The problem size becomes so big

that even obtaining a solution can become difficult. However, in the

proposed methodology, catalyst replacement scheduling occurs with-

out mixed-integer methods and conditions such as non-simultaneous

replacement can be enforced using simple constraints. The nature of

the methodology is such that an explosion in problem size is prevented

and solutions can be obtained even if each reactor had an infinite num-

ber of catalyst loads available.

2. The use of state-of-the-art integrators in the feasible path approach

enables solving even highly nonlinear differential equations to a high

accuracy. But the mixed-integer methods can only handle such differ-

ential equations by discretising them under a steady state assumption.

Thus, they cannot obtain an accurate description of the dynamics of

the process.

3. The use of the feasible path approach implies the differential equations
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are solved without being considered as constraints in the optimisation

phase. This enables a smaller problem size which facilitates conver-

gence to optimal solutions. However, in mixed-integer methods, these

differential equations would be discretised under a steady state assump-

tion and imposed as equality constraints. The number of constraints

in the problem thus become very large and this can cause difficulties

in converging to optimal solutions.

4. The solution time using this methodology is quite large, in the order of

days and is considerably higher than if mixed-integer techniques were

to be used. This is because of the large computational effort spent in

solving the differential equations to a high accuracy in each iteration

of the optimisation. However, this is outweighed by the high quality

of solutions obtained. Though not done here, solution times for this

case and even larger problems can be greatly reduced, by exploiting the

feature of scalability and making use of parallel computing and high

performance computing facilities.

To conclude, the contributions of this paper are highlighted by the follow-

ing advantages the optimal control approach has the potential to offer over

mixed-integer methodologies for this problem:

1. It is robust because solutions can be obtained from any random initial

guess, aided by the smaller number of constraints present.

2. It is reliable because solutions can be obtained to a high degree of

accuracy using state-of-the-art integrators.

3. It is efficient because the catalyst replacements are scheduled inher-

ently during the optimisation without using combinatorial optimisation

methods.

The final points are with regard to the further applications of this method-

ology. The work here has considered a process with only a single feed pro-
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ducing a single product. However, in many real world applications, such

as ethylene plants, parallel production lines process multiple feeds to pro-

duce multiple products and many publications have attempted to optimise

maintenance scheduling and production in such set ups using mixed-integer

programming methods. It would be important to apply the optimal control

methodology to such problems, in order to overcome the drawbacks of the

mixed-integer methods.

It is also sought to apply this methodology in plant wide optimisation

involving upstream and downstream operations, interconnected by a complex

network of reactors. In addition, robust decision making in industry requires

considering the effect of parametric uncertainties in this problem and so, this

is another area to be investigated in forthcoming work.
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Table A.7: A table of the values of the catalyst changeover controls for all
reactors, across all major iterations, for the best solution among the set of
50 runs. In this table, ’MI’ is an abbreviation for Major Iteration.

Month
y1 y2 y3 y4

MI 1 MI 2 MI 1 MI 2 MI 1 MI 2 MI 1 MI 2

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 0.79 1 1 1
5 1 1 0.76 1 1 1 1 1
6 0.52 0 1 1 1 1 1 1
7 1 1 1 1 1 1 0.48 0
8 1 1 1 1 1 0 1 1
9 1 1 0.53 0 0.47 1 1 1
10 1 1 1 1 1 1 1 1
11 0.59 1 1 1 1 1 1 1
12 1 1 1 1 1 1 0.46 0
13 1 1 0.88 1 1 1 1 1
14 1 1 1 1 1 1 1 1
15 1 1 1 1 0.50 0 1 1
16 0.50 0 1 1 1 1 1 1
17 1 1 0.42 0 1 1 1 1
18 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 0.43 0
20 1 1 1 1 0.59 1 1 1
21 1 1 0.90 1 1 1 1 1
22 0.40 0 1 1 1 1 1 1
23 1 1 1 1 1 1 0.82 1
24 1 1 1 0 1 1 1 1
25 1 1 0.47 1 0.53 0 1 1
26 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 0.67 0
28 0.81 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1
31 1 1 0.82 1 0.81 1 1 1
32 0.87 1 1 1 1 1 0.90 1
33 1 1 1 1 1 1 1 1
34 1 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1
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