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1 Inference from large sets of radiocarbon dates: software and methods
2
3 Abstract
4 The last decade has seen the development of a range of new statistical and computational techniques 
5 for analysing large collections of radiocarbon dates, often but not exclusively to make inferences about 
6 human population change in the past. Here we introduce rcarbon, an open-source software package for 
7 the R statistical computing language which implements many of these techniques and looks to foster 
8 transparent future study of their strengths and weaknesses. In this paper, we review the key assumptions, 
9 limitations and potentials behind statistical analyses of summed probability distribution of radiocarbon 

10 dates, , including Monte-Carlo simulation-based tests, permutation tests, and spatial analyses. 
11 Supplementary material provides a fully reproducible analysis with further details not covered in the 
12 main paper. 
13

14 1. Introduction

15 The last few years has seen a dramatic increase in the number of research projects constructing proxy 
16 time series of demographic change out of large lists of archaeological radiocarbon dates. Put simply, 
17 this approach assumes that, given a large enough set of radiocarbon dates taken on anthropogenic 
18 samples, then the changing frequency of dates through time will preserve a signal of highs and lows in 
19 past human activity and, by extension, in human population. Rick’s (1987) work was pioneering in this 
20 regard, being the first to propose the key assumption that more people in a given chronological period 
21 would typically lead to more anthropogenic products entering the archaeological record in that period, 
22 implying more potential samples to date and ultimately more published radiocarbon dates. He also 
23 already noted the presence of biases that were likely to distort such a signal (1987: fig.1). While early 
24 experiments with such methods sometimes considered a histogram of uncalibrated conventional 
25 radiocarbon ages, researchers have since turned to the summation of the posterior probability 
26 distributions of calibrated dates, and the result has become commonly known as a summed probability 
27 distribution (hereafter SPD, although there have also been alternative names and formulations).
28
29 The sharply increasing popularity of SPDs over the last decade or so has rightly also prompted criticism, 
30 not only with regard to the overall inferential assumptions behind the idea, but also with respect to the 
31 viability of particular SPD-based analytical methods. For example, several researchers have emphasised 
32 the fact that the sampling intensity of radiocarbon dates might not be constant over time. A good 
33 example is the difference between the popularity of radiocarbon sampling in early Mediterranean 
34 prehistory (e.g. Mesolithic-Neolithic) versus its almost complete avoidance for the Greek or Roman 
35 periods of the same region, even though the latter was manifestly a period of considerable population 
36 (Palmisano et al 2017). In addition to the impact of this differing prioritisation of absolute versus relative 
37 dating by archaeologists working on different time periods, researchers have further suggested that 
38 different kinds of societies (of otherwise roughly similar population size, for instance) might 
39 conceivably produce different radiocarbon footprints and/or that, even if a correlation between dates 
40 and population exists, that these might not scale in a linear fashion (Freeman et al. 2017). Others have 
41 noted that there might be a taphonomic bias towards the preservation of more anthropogenic material 
42 from sites of later periods (Surovell and Brantingham 2007; Surovell et al. 2009), again implying that 
43 over extended periods of thousands of years, we should probably assume a non-linear scaling to human 
44 activity. Such critiques are often valid to some degree and focus on how we should interpret summed 
45 probability distributions of radiocarbon dates in the first place (see discussions in Contreras and 
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46 Meadows 2014; Mokkonen 2014; Tallavara et al 2014; Attenbrow and Hiscock 2015; Hiscock and 
47 Attenbrow 2016; Smith 2016; Williams and Ulm 2016) Indeed, some of these very same issues also 
48 apply to other attempts to reconstruct past population (e.g. settlement counts where again it is sometimes 
49 difficult to compare evenly across periods and regions).
50
51 SPDs however also face a further challenge at a more fundamental level with regard to how best we 
52 might measure the changing frequencies of radiocarbon dates through time. Because calibrated 
53 radiocarbon dates comprise probability distributions spread across multiple calendar years and not 
54 discrete single estimates, the visual interpretation of aggregated SPDs becomes challenging and very 
55 often misleading at multiple scales. Peaks and troughs in SPDs might reflect changes in date intensity 
56 through time (and hence interpreted as population ‘booms’ or ‘busts’), but they might also be a 
57 consequence of the changing steepness of the calibration curve, the size of the dates’ associated 
58 measurement errors and/or just a statistical fluke from small sample sizes. In response to these 
59 challenges, a number of studies (Shennan and Edinborough 2007; Shennan et al. 2013; Timpson et al. 
60 2014; Crema et al. 2016; Bevan et al 2017; Bronk Ramsey 2017; Brown 2017; Crema et al. 2017; 
61 Edinborough et al. 2017; Freeman et al. 2018; McLaughlin 2018; Roberts et al. 2018) have developed 
62 new techniques to address some of these issues. Most notably, they have offered new approaches to the 
63 problem of discerning genuine fluctuations in the density of radiocarbon dates as opposed to statistical 
64 artefacts arising from sampling error, the calibration process or taphonomic histories. Even so, 
65 replication and reuse of such methods remains limited, due both to an understandable experimentation 
66 across multiple software packages for calibration and statistical analysis (e.g. OxCal, CalPal, and in 
67 various forms via the R statistical environment, see Supplementary Figure 1) and to only patchy 
68 provision, so far, of transparent and reproducible workflows.
69
70 With a view to exploring and alleviating some of these issues, as well as with an eye to an increasing 
71 emphasis across archaeology and many other subjects on reproducible research (see Marwick 2016; 
72 Marwick et al 2017), we have recently developed rcarbon as an extension package for R (R Core Team 
73 2018), one of the most popular software environments for statistical computing. The rcarbon package 
74 provides basic calibration, aggregation, and visualisation functions comparable to those that exist in 
75 other software packages, but also offers a suite of further functions for  simulation-based statistical 
76 analysis of SPDs. This paper will discuss the main features of rcarbon, will highlight technical details 
77 and their implications in the creation and analyses of SPDs, and will offer some additional thoughts on 
78 the strengths and weakness of SPD-based methods overall.1 

79 2. Calibration and Aggregation

80 2.1 Basic Treatment: Calibration and Summation

81 In its most basic form an SPD extends the idea of a plotting a simple histogram of either uncalibrated 
82 14C ages or median calibrated dates to represent changing density of radiocarbon samples over time. 
83 Hence, the construction of an SPD involves two steps: (1) radiocarbon dates are calibrated so that for 
84 each sample we obtain a distribution of probabilities that the sample in question belongs to a particular 

1 Readers interested in applying these techniques on their own data are encouraged to read the R vignette associated with the package 
(https://cran.r-project.org/web/packages/rcarbon/vignettes/rcarbon.html). The supplementary material contains additional commentary and 
scripts for reproducing the analysis in the main paper. A copy of the supplementary material can also be accessed from the following 
repository:   https://github.com/ercrema/rcarbon_paper_esm.
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85 calendar year; and (2) all of these per-year probabilities are summed.2 The resulting curve thus no longer 
86 represents probabilities, but instead is taken as a measure of date intensity. The rationale is thus not 
87 dissimilar to intensity-based techniques such as a univariate kernel density estimate (KDE), although 
88 with a crucial difference. In the case of KDE, individual kernels associated to each sample have all the 
89 same shape defined by the kernel bandwidth, itself mathematically estimated. In contrast, in the case of 
90 SPDs, the probability distributions associated with each radiocarbon date have different shapes 
91 depending on measurement error and the particularities of the relevant portion of the calibration curve. 
92 Consequently, SPDs are not explicitly and straightforwardly an estimate of the underlying distribution 
93 from which the observations are sampled from, and its absolute values cannot be directly compared 
94 across datasets. It follows that their visual interpretation within and across datasets is intrinsically biased. 
95
96 Basic calibration in rcarbon is conducted with reference either to one of the established marine or 
97 terrestrial calibration curves or to a user-specific custom curve (in what follows, IntCal13 is used 
98 throughout: Reimer et al. 2013). The arithmetic method is for all intents and purposes identical to the 
99 the one adopted by OxCal (Bronk Ramsay 2008; leaving aside for a moment the more sophisticated 

100 Bayesian routines the latter package uses for more complex phase modelling), and very similar to that 
101 used by most other calibration software (Weninger et al 2015; Parnell 2018). Some of the terminology 
102 used by rcarbon’s standard routine has also been made consistent with Bchron, a well-known R package 
103 for handling radiocarbon dates and modelling pollen core chronologies and other age-depth 
104 relationships (Haslett and Parnell 2008; Parnell 2018; see also the clam package; Blaaw 2019). In 
105 rcarbon, the raw data stored for any given calibrated date consists of probability values per calibrated 
106 calendar year BP (but convertible to other calendars such as BC/AD), and it is these per-year 
107 probabilities that get summed to produce an SPD. For example, Figure 1a shows the result of adding 
108 up 130 dates from the Neolithic flint mines of Grimes Graves, Norfolk with three individual dates shown 
109 on top (for a full set and and more recent dates from the site, see Healy et al. 2014). A final point to 
110 note is that many studies apply a final ‘smoothing function’ to the SPD (e.g. Kelly et al 2013,Timpson 
111 et al 2014, Crema et al 2016, etc.), such as a running mean of between 50 and 200 years, to limit possible 
112 artefacts resulting from sampling error (but also from the effects of the calibration process) and 
113 discourage over-interpretation of the results (in Figure 1a an example with a 50-year running mean is 
114 shown). We return to the pros and cons of such smoothing in what follows.
115
116
117 2.2 Phase or Site Over-Representation: Thinning and Binning
118 In most instances, rather than the single site example provided above, an SPD is constructed across a 
119 wider region and using more than one site. As a result, there are further potential biases arising from 
120 the fact that not all sites (or indeed site phases) may have received equivalent levels of investment in 
121 radiocarbon dating. The Neolithic flint mining site of Grimes Graves in south-eastern England, for 
122 instance, has received an unusual level of investment in dating compared to other British prehistoric 
123 sites, but such differences do not accurately reflect a site’s relative size or longevity of use. The 
124 cumulative effect of these differences in inter-site sampling intensity, and in particular the presence of 
125 abnormally high levels of sampling intensity of particular contexts, could thus generate artificial signals 
126 in the SPD. While the ideal approach to the problem is to select only samples referring to specific types 
127 of events (e.g. the construction of residential features) and control for sampling intensity via Bayesian 
128 inference (e.g. using OxCal’s R_Combine function), the use of larger datasets with heterogeneous 
129 samples makes this solution unfeasible. 

2 In some software (e.g. CalPal), these two steps can be reversed (uncalibrated dates are summed and then the resulting aggregate is 
calibrated in one go), and we discuss the implications of this further below.
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130
131 There are two alternative approaches to account for heterogeneity in sampling intensity. The first one 
132 involves manually going through a list of radiocarbon dates and choosing only a maximum number of 
133 better (e.g. short-lived, low-error) dates per phase or per site. In rcarbon, this thinning approach can 
134 also be achieved (in a less attentive but more automatic manner) using the thinDates function which 
135 either selects a maximum subset of dates at random or with a mixed approach that allows for some 
136 prioritisation of dates with lower errors (Figure 1b). This approach effectively replaces a set of 
137 radiocarbon dates referring to the same “event” with a smaller subset with user-defined size and 
138 inclusion criteria. As a consequence, the potentially biased contribution to the SPD of events associated 
139 with a larger number of radiocarbon dates can be reduced. A second solution to reduce the potential 
140 effect of such bias is to aggregate samples from the same site that are close in time, sum their 
141 probabilities, and divide the resulting SPD by the number of dates. Such site or phase-level ‘binning’ 
142 was introduced by Shennan et al. (2013) and discussed in detail by Timpson et al. (2014). The rationale 
143 is effectively to generate a local SPD referring to a particular occupation phase and to normalise this 
144 curve to unity to reduce the impact of heterogeneous sampling intensity.  The rcarbon package provides 
145 a routine (binPrep), similar but not identical to the ones used in those two discussions, whereby dates 
146 from the same sites are grouped based on their (uncalibrated or median calibrated) inter-distances in 
147 time, defined by the parameter h, and then put into bins. Dates within the same bins are then aggregated 
148 to produce a local SPD that is normalised to sum to unity before being aggregated with other dates (and 
149 local SPDs) to produce the final curve. . 
150
151 Different authors have already used different values for h (or comparable parameters) ranging anywhere 
152 from 50 to200 years (e.g. Shennan et al. 2013; Timpson et al. 2014; Crema et al. 2016; Bevan et al. 
153 2017; Roberts et al. 2018). These choices can have a considerable effect on the resulting shape of the 
154 within site or within-phase local SPD, with higher values effectively leading to a more spread-out 
155 distribution of probabilities (Figures 1c-e) and we recommend exploring the implications of this 
156 empirically (e.g. via the binSense routine in rcarbon package (see also Riris 2018). It is also worth 
157 noting that there has been little or no discussion on what exactly constitutes a bin (or the “event” on 
158 which the thinning procedure is based), and how this might differ as a function of h, and ultimately 
159 affect the interpretation of SPDs. For example, bins generated from larger values of h effectively lead 
160 to an equal contribution of (potentially differently sized) sites to the SPD, effectively making this a 
161 proxy of site density rather than population size.
162
163 [ Figure 1 Here ]
164 Figure 1. Summing, thinning and binning: (a) a summed probability distribution of dates from one site only (n=130 dates), with a slightly 
165 smoothed version also shown, as well as three example dates, followed by comparison of the smoothed raw density with (b) a randomly 
166 ‘thinned’ dataset of just 10 dates from the same site, (c-e) binned datasets at clustering cut-offs of h=50, 100 and 200 respectively.

167 2.3 Normalised vs Unnormalised dates

168 It is well-known that the shapes of individual calibrated probability distributions vary depending on the 
169 steepness or flatness of the calibration curve at that point in time. Less well-known is the fact that the 
170 area-under-the-curve of a date, calibrated in the usual arithmetic way, will not immediately sum to 
171 unity, but instead is typically normalised to ensure that it does (i.e. by dividing by the total sum under 
172 the curve for that date). Figures 2a-b provide two examples of dates at flat and steep portions of the 
173 calibration curve respectively which produce dramatically different areas-under-the-curve before 
174 normalisation. Weninger et al. (2015) first noted that the presence of this normalising correction 
175 explains the ‘artificial spikes’ noted by several different studies of SPDs, in which such spikes occurred 
176 in predictable ways at steep portions of the calibration curve (and which sometimes prompted attempts 
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177 to smooth them away via fairly aggressive moving averages and/or various forms of kernel density 
178 estimate (see Williams 2012; Shennan et al. 2013; Timpson et al. 2014; Brown 2015, 2017; Ramsey 
179 2017; McLaughlin 2018). Figures 2c-e provide three globally wide-ranging examples from the 
180 literature of datasets where spikes have been observed, with those spikes being particularly pronounced 
181 in early Holocene time series. In contrast, when unnormalised dates are summed, such spikes are not 
182 present.  On first consideration, it is tempting to deem the normalised dates more theoretically justifiable, 
183 regardless of the spikes, because each date is seemingly ‘treated equally’ (i.e. each has a weight of 1 in 
184 the summation). However, because the summing a set of unnormalised calibrated dates (with varying 
185 post calibration areas under the curve) produces exactly the same result as first summing a set of  
186 uncalibrated Gaussians conventional radiocarbon age distributions (each of unity weight) and then 
187 calibrating them in one go (the process in CalPal, and also achievable in rcarbon, although not the 
188 default: see Supplementary Figure 2), this  theoretical premise of the ‘equal treatment’ of each sample 
189 (i.e. the issue of unnormalised dates yielding an area under the curve equal to unity) can in fact be 
190 argued both ways (see Weninger et al. 2015 for extensive discussion). Regardless, these issues urge a 
191 basic caution not to over-interpret SPD results without considerable attention to how individual highs 
192 and lows in the data may have arisen. 
193 [Figure 2 Here]
194 Figure 2.  Comparisons of unnormalised and normalised dates and their consequences: (a) a single date at a flat portion of the calibration 
195 curve (area under the probability histogram: 1.337), (b) a single date at a steep portion of the calibration curve (area under the probability 
196 histogram: 0.452), (c) Southern Levantine SPD (ndates= 657, nsites= 119, nbins= 413  ; data from Roberts et al 2018), (d) Sahara SPD (ndates= 
197 643, nsites= 233, nbins= 551  ; data from Manning and Timpson 2014), and (e) Brazil SPD (ndates= 173, nsites= 97, nbins= 171 ; data from Bueno 
198 et al 2013).The orange bar highlights time-intervals associated with steeper portions of the calibration curve. 

199 3. Statistical Testing

200 While it is tempting to treat the SPD itself as an unproblematic end goal with which to make 
201 interpretations about past population dynamics, this is rarely true, and it is almost always important to 
202 pay additional analytical attention to a host of uncertainties that come with it. For example, aside from 
203 the concerns often voiced about whether the density of radiocarbon dates can be regarded as a reliable 
204 proxy (see above), it is also worth noting at least two more issues. First, an ordinary SPD does not depict 
205 the uncertainty associated with the fact that certain calendar years are more likely to accrue a more 
206 narrowly defined dated sample than others (see Supplementary Figure 3 for a worked through 
207 example). Nor does it depict the further uncertainty associated with larger or smaller sample sizes of 
208 dates or their measurement errors. A large number of radiocarbon dates for a given study may well 
209 improve the chance of a good signal, but there is no magic threshold, as this depends very much on the 
210 scope and goals of the analysis (e.g. inferences about multi-millennial trends versus those about sub-
211 millennial trends, inferences about perceived growth rates through time or instead about regional 
212 differences across geographic space). 
213
214 3.1 Model Fitting and Hypothesis Testing
215 There have been various attempts so far to address these uncertainties, most of them leveraging the 
216 flexibility of Monte Carlo-type conditional simulation in some fashion, although more formally 
217 Bayesian models have also been proposed (see final section).  Perhaps the most well-known approach 
218 was introduced by Shennan et al (2013) and compares an observed SPD with a theoretical null 
219 hypothesis of population change, where the latter might for instance imply stability (e.g. a flat, uniform 
220 theoretical SPD), growth (e.g. an exponential theoretical model) or initial growth-and-plateau (e.g. a 
221 logistic model) to name just a few of the most common (e.g. Shennan et al 2013; Crema et al. 2016; 
222 Bevan et al. 2017, Fernández-López de Pablo et al 2019). The usual workflow involves (1) fitting such 
223 a theoretical model to the observed SPD, (2) drawing s dates proportional to the shape of this fitted 

Page 6 of 21

Cambridge University Press

Radiocarbon

https://www.zotero.org/google-docs/?pnj6Be
https://www.zotero.org/google-docs/?PBheRx
https://www.zotero.org/google-docs/?pnj6Be
https://www.zotero.org/google-docs/?tMR32r
https://www.zotero.org/google-docs/?tMR32r
https://www.zotero.org/google-docs/?UFNkJW
https://www.zotero.org/google-docs/?dKeOnK
https://www.zotero.org/google-docs/?km4hCt


For Peer Review

6

224 model (where s matches the number of observed dates or the number of bins if the dates have been 
225 binned), (3) back-calibrating individual dates from calendar time to 14C age, and assigning an error to 
226 each by randomly sampling (with replacement) the observed 14C age errors in the input data, (4) 
227 generating a theoretical SPD from the simulated data obtained in steps 2 and 3(5) repeating steps 2-4 n 
228 times and generating a critical (e.g. 95%) envelope for the theoretical SPD given the sample size, and 
229 (6) computing the amount that the observed SPD falls outside the simulation envelope compared to the 
230 randomised runs to produce a global p-value (as extensively described by Timpson et al 2014). These 
231 general steps have separately implemented by several authors (Zahid et al. 2016; Crema et al. 2016; 
232 Porčić and Nikolić 2016; Silva and Vander Linden 2017) with some minor differences (e.g. the formula 
233 for calculating the p-value, screening  for false positives, etc.), and effectively treats the observed SPD 
234 as something comparable to a test statistic. 
235
236 This approach has had the great virtue of grappling with the uncertainties associated with SPDs directly, 
237 but it is worth noting nevertheless that the choice, fitting and simulation of a null model of this kind is 
238 not straightforward. First, there are non-trivial technical niceties to do with how such a model is fitted 
239 in terms of the error model (e.g. log-linear or non-linear), or the time interval over which the model is 
240 fitted versus the interval over which it is simulated (given that all SPDs suffer from edge effects at their 
241 start and end dates). Second and more importantly, a particular model of theoretical population change 
242 or stability has to be selected and justified on contextual grounds, with perhaps the idea of exponential 
243 growth carrying the most straightforward demographic assumptions (all other things being equal and in 
244 light of the very long-term trend towards higher global population densities that seems to support this), 
245 but with other models often providing better fit to data or allowing certain kinds of extrapolation (e.g. 
246 Silva and Vander Linden 2017).  A final point to stress regards the general limitations associated with 
247 the whole null hypothesis-testing approach: with a large enough sample, it will always be possible to 
248 produce a ‘significant’ result, but this may not warrant the kind of interpretation archaeologists and 
249 others are often looking for (e.g. about population “booms” and “busts”). It is also worth noting that 
250 intervals identified as positive or negative deviations from the null model are based on the density of 
251 dates and not on the trajectory of growth or decline even though the latter may be more interpretatively 
252 relevant in many situations. This means that, for example, intervals with positive deviations might well 
253 include instances of a decline in the density of radiocarbon dates. The Monte-Carlo simulation 
254 framework can be easily adapted to take this into account, allowing for testing against growth rates (see 
255 supplementary figure 4). Finally, the 95% critical envelopes produced for assessments of localised 
256 departure of the observed SPD from a theoretical pattern or a second SPD (see below, figures 3-4 for 
257 examples) are indicators only and should not be read as a set of formal significance tests for all years 
258 as this runs the well-known risk of multiple testing (see Loosmore and Ford 2006: 1926, for similar 
259 issues associated with the Monte Carlo envelopes produced for spatial point pattern analysis).
260
261 Many existing implementations of this technique both fit and sample from their theoretical models in 
262 calendar time. A set of individual calendar years are first drawn proportional to the fitted model, then 
263 these are back-calibrated individually to become a set of conventional (uncalibrated) 14C ages with small 
264 errors deriving from those associated with the calibration curve itself. Then, larger plausible error terms 
265 are added to mimic the instrumental measurement errors of the observed dates and each age (typically 
266 now a Gaussian probability distribution) is then calibrated back into calendar time before all of the 
267 simulated dates are then finally aggregated into an SPD. This procedure can be formally described by 
268 a marginal probability with the assumption of a discretized calendar timeline: 
269
270
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271 [1]𝑝(𝑟) = ∑𝑇
𝑡 Pr(𝑡) × 𝑝(𝑟|𝜇𝑡,𝜎2

𝑡 )
272
273
274 where p(r) is the probability of selecting a random sample with a 14C age r, Pr(t) is the probability 
275 obtained from the fitted theoretical model at the calendar year t within T points in time across the 
276 temporal window of analysis, 𝜇t and  𝜎t  are their corresponding date in 14C age and the associated error 
277 on the calibration curve, and p(r|𝜇t ,𝜎t) refers to the Gaussian probability density function. Thus ,if we 
278 ignore binning, given an observed dataset with k radiocarbon dates and a theoretical model Pr(t), one 
279 could apply equation 1 to obtain k 14C ages, to which we can assign random instrumental measurement 
280 errors by resampling from the observed data. 
281
282 The term Pr(t) is generally obtained by: 1) fitting a curve (via regression) to an observed SPD over a 
283 defined temporal window; and 2) transforming the fitted values (e.g. for each discrete calendar year) so 
284 they sum to unity. Shennan et al (2003) initially fitted an exponential curve (as a null expectation for 
285 population with a constant growth rate), but other models have also been applied subsequently (cf. 
286 Crema et al 2016, Bevan et al 2017). It is also worth noting that Pr(t) does not have to be based on 
287 observed SPDs, and could potentially be derived from theoretical expectations or other demographic 
288 proxies (see Crema and Kobayashi 2020 for an example).
289
290 The assumption behind this sampling and back-calibration procedure (referred to in rcarbon as the 
291 calsample method, due to its sampling in calendar time) is that it will directly emulate both the kinds 
292 of uncertainty associated with a given observed sample size, and the impact on an SPD of the non-
293 linearities in the calibration curve itself. However, the relationship between calendar years and 
294 radiocarbon ages is not commutative in the way such an approach implies (in agreement with Weninger 
295 et al 2015), and major problems are encountered in certain narrow parts of the calendar timescale, 
296 coincident with the same zones of artificial spiking first described above. Figures 3a-b depict the 
297 problem for the later Pleistocene and earlier Holocene time-frame using the same dated as in figure 2c. 
298 As before, we can note the difference in terms of spiking observed at predictable portions of the 
299 calibration curve where such spikes are present if we normalise individual dates but absent if we do not. 
300 However, the simulated envelopes created by the calsample approach exhibit quite different statistical 
301 artefacts at these locations (slight, offset dips if dates are normalised and dramatic dips if they are not). 
302 In neither case, do they seem to emulate the observed patterns.
303
304 In contrast, one alternative for generating theoretical SPDs is to back-calibrate the entire fitted model 
305 in one go and then to weight the result p(r) by the expected probability of sampling r under a uniform 
306 model:
307

308 [2]𝑣(𝑟) =
∑𝑇

𝑡 𝑃𝑟(𝑡|𝑛𝑢𝑙𝑙) × 𝑝(𝑟|𝜇𝑡,𝜎2
𝑡 )

∑𝑇
𝑡 𝑃𝑟(𝑡|𝑢𝑛𝑖𝑓𝑜𝑟𝑚) × 𝑝(𝑟|𝜇𝑡,𝜎2

𝑡 )

309
310 Here Pr(t|null) is the fitted model under the null hypothesis, and Pr(t|uniform) is the probabilities 
311 associated with a uniform distribution covering for the same temporal range T. v(r) is then normalised 
312 to unity:
313
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314 [3]𝑤(𝑟) =
𝑣(𝑟)

∑𝑅
𝑟 𝑣(𝑟)

315
316 with R being all the 14C ages examined, most typically the range covered by the calibration curve. 
317
318 Simulations following this approach then draw samples of uncalibrated ages from the back-calibrated 
319 model and calibrate these, before summing (this is therefore referred to in rcarbon as the uncalsample 
320 method, see also Roberts et al 2018; Bevan et al 2017 for applications). The adjustment of the 
321 probability of sampling specific 14C ages according to a baseline uniform model allows for much better 
322 simulation of the presence and amplitude of artificial peaks in the SPD at steeper portions of the 
323 calibration curve when dates are normalised, and their absence when dates are left unnormalised 
324 (Figures 3c-d). However, we note that neither approach is likely to be ideal, and discuss some 
325 promising alternatives in the sections below. 
326
327    [Figure 3 Here]
328 Figure 3: The relationship between observed data and simulations envelopes for four different methods (using the same data as in figure 
329 2c): calsample realisations of (a) normalised and (b) unnormalised dates, and uncalsample realisations of (c) normalised and (d) 
330 unnormalised dates. Temporal ranges highlighted in red and blue represent intervals where the observed SPD show a significant positive or 
331 negative deviation from the simulated envelope (they do not necessarily imply the onset point of significant growth or decline).
332

333 3.2  Comparison and Testing of Multiple SPDs 

334 A key advantage of SPDs over more traditional proxies of prehistoric population change, such as 
335 settlement counts, is the greater ease with which trajectories across different geographical regions can 
336 be compared, without the analytically-awkward frameworks imposed by different relative artefact-
337 based chronologies. With this in mind, Crema et al. (2016) developed a permutation-based test to 
338 statistically compare two or more SPDs. While the null hypothesis for the one-sample models discussed 
339 above is a user-supplied theoretical growth model (e.g. we should expect exponential population growth 
340 all other things being equal), the null hypothesis of the multi-sample approach is that the SPDs are 
341 samples derived from the same statistical population (e.g. there is no meaningful difference between 
342 the shape of the SPD for region A and the one for region B). As for the one-sample approach p-values 
343 are obtained via simulation, but in this case rather than generating samples from a theoretical fitted 
344 model, the label defining the membership of each date (or bin if binning is being used) is permuted (e.g. 
345 we shuffle which dates belong to group A and which ones belong to group B, then produce a new SPD 
346 for each group, and repeat many times). This approach can be used to compare SPDs from different 
347 regions (as in Crema et al. 2016; Bevan et al. 2017; Riris 2018; Roberts et al. 2018) in order to infer 
348 where local population dynamics differ significantly through time, but it can also be used to consider 
349 other groupings of dates, such as those taken on different kinds of physical radiocarbon sample (Bevan 
350 et al. 2017). Such a mark permutation test will generate simulation envelopes for each SPD whose width 
351 proportional to the sample size (i.e. the overall number of dates per region, or the overall number of 
352 bins if binning has been applied; figure 4). Similar to the case of the one-sample approach, both one 
353 global and a set of local p-values can be obtained, the former assessing whether there are significant 
354 overall differences between sets and the latter identifying particular portions of the SPD with important 
355 differences in the summed probabilities. 
356
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357 While there are certainly still ways to mis- or over-interpret the results of this kind of mark permutation 
358 test, one major strength is that they do not face quite the same problems associated with model selection, 
359 fitting and simulation that the one sample approach does. 
360
361 [Figure 4 Here]
362 Figure 4: Example of mark permutation test (Crema et al 2016), comparing the SPDs from Southern (ndates= 657, nsites= 119, nbins= 413) and  
363 Northern Levant ( ndates= 589, nsites= 41, nbins= 296). Temporal ranges highlighted in red and blue represents intervals where the observed 
364 SPD show a significant positive or negative deviation from the pan-regional null model. Data from Roberts et al 2018.

365 4. Spatial Analysis

366 A regional mark permutation test such as described above already offers one way to compare different 
367 geographic regions, but its application requires a crisp definition of these regions from the outset and it 
368 is thus not a particularly flexible way to explore variation across continuously varying geographic 
369 spaces. Early extensions of the SPD approach already had further spatial inferences in mind when they 
370 made use of weighted kernel density estimates (KDE) to infer regions of high or low concentrations of 
371 dates across multiple temporal slices, occasionally using animations (e.g. Collard et al 2010; Manning 
372 and Timpson 2014). Such visual inspection can be the basis for developing specific hypotheses, but 
373 suffers from the same limitations as a non-spatial SPDs: it is hard to know what to interpret as interesting 
374 variation in date intensity, through time and space, versus variation introduced by the calibration process, 
375 by sampling error or by investigative bias. Recent spatio-temporal analyses of radiocarbon dates have 
376 tackled this issue in two distinct ways, and we consider each one in turn below.
377
378 4.2 Flexible Timeslice Mapping
379 In rcarbon, for instance, it is possible to map the spatio-temporal intensity of observed radiocarbon 
380 dates as relevant for a particular `focal’ year (using the stkde function). This is achieved by first 
381 computing weights associated with each sampling point x given the `focal’ year f and temporal 
382 bandwidth b using the following equation:
383

384 [4]𝑤(𝑥,𝑓,𝑏) = ∑𝑇
𝑖 𝑝𝑖(𝑥)𝑒

― (𝑖 ― 𝑓)2

2𝑏2

385
386 where pi(x) is the probability mass associated with the year i obtained from the calibration process. In 
387 other words, a temporal Gaussian kernel is placed around a chosen year and then the degree of overlap 
388 between this kernel and the probability distribution of each date is evaluated. Each georeferenced date 
389 also has a Gaussian distance-weighted influence on spatial intensity estimate at a given location on the 
390 map (with the help of the R package spatstat: Baddeley et al 2015): in other words, a spatio-temporal 
391 kernel is applied, with both the spatial and the temporal Gaussian bandwidths defined by the user. The 
392 choice of appropriate spatial and the temporal bandwidth can arise from data exploration which suggests 
393 combinations that are both empirically-useful (e.g. for the particular problem or question of interest) 
394 and practically-aware (e.g. of the positional and temporal uncertainties in the underlying data), or it can 
395 be made via one of several automatic bandwidth selectors (see Davies et al 2018 for a specific review 
396 tailored to spatio-temporal analysis). While the latter option has the advantage of avoiding somewhat 
397 arbitrary values for the kernel bandwidth, it is worth noting that the choice of different bandwidth 
398 selectors can lead to very different result, particularly in the context of spatio-temporal analysis where 
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399 there is no single agreed algorithm3.  Figure 5a shows an example of the resulting surface for the focal 
400 year 6000 calBP, while figure 5b shows an unchanging overall surface where all samples are treated 
401 equally regardless of their actual date (i.e. an ordinary kernel density map). 
402
403 Figure 5c shows the result of dividing one by the other which offers an indication of the proportion of 
404 local dates belonging to the focal, target time period, thereby to some extent detrending for any recovery 
405 biases present in the overall sample.  This is analogous and consistent with the idea of relative risk 
406 mapping (Kelsall and Diggle 1995; Bevan 2012) and such an approach has been used by Chaput et al 
407 (2015) and Bevan et al (2017) to investigate spatial variation in the radiocarbon density North America 
408 and in the British Isles respectively. Figure 5d shows a further and final useful measure is of ‘change’ 
409 between the focal year and some earlier reference or backsight year (e.g. 200 years before, with various 
410 options for how ‘change’ or growth/decline is expressed). Colour ramps can be standardised to allow 
411 comparison across time-slices and thus also animation through multiple timeslices. 
412
413 [Figure 5 Here]
414 Figure 5. Example output of one focal year of a kernel density map of English and Welsh dates from the Euroevol Neolithic dataset (ndates= 
415 2,327, nsites= 653, nbins= 1,461, data from Manning et al 2016): (a) the spatio-temporal intensity for the focal year 6000 calBP, (b) the 
416 overall spatial intensity for Neolithic dates (8000-4000 calBP), (c) the proportion of a) out of b), and (d) a measure of the spatial pattern of 
417 change, mostly growth, from 6200 calBP to 6000 calBP.

418
419
420 4.2 Spatial Testing
421 The above spatial mapping emphasises flexible visualisation, but a complementary second approach to 
422 spatial analysis or georeferenced radiocarbon lists instead prioritises the testing of any observed spatial 
423 trends, via an extension of the permutation method described above. It compares local SPDs (i.e. SPDs 
424 created at each observation point by weighting the radiocarbon contribution of neighbouring sites as a 
425 function of their distance to the focal point) to the expected local SPD under stationarity (i.e. all local 
426 SPD showing the same pattern), obtained via a random permutation of the spatial coordinates of each 
427 site. The result (Figure 6) provides a significance test for each site location, highlighting regions with 
428 higher or lower growth rates compared to the pan-regional trend (see also Crema et al 2017).
429
430
431 [Figure 6 Here]
432 Figure 6. Spatial permutation test for the same data as figure 5 showing: (a) the local mean geometric growth rates mean geometric growth 
433 rate between 6300-6100 to 6100-5900 calBP; and (b) results of the spatial permutation test for the same interval showing local significant 
434 positive and negative significant departures from the null hypothesis.

435
436
437 5. Conclusion
438 As the above should make clear, we continue to see great promise in the aggregate treatment of 
439 radiocarbon dates as proxies for activity intensity, and it is interesting to note that similar conclusions 
440 have been made in other fields that do not focus on human population, but instead use such lists to 
441 explore, amongst other things, alluvial accumulation, volcanic activity or peat deposition (Michczyńska 
442 and Pazdur 2004; Surovell et al. 2009; Macklin et al 2014). The basic notion behind an SPD remains 
443 relatively easy to understand and in part this is probably the reason for its widespread appeal, even if 
444 some of the ensuing testing methods become more complicated. The rcarbon package is an attempt to 

3 Users interested in applying these different bandwidth selectors are advised to consult the R packages spatstat (Baddeley et al 2015) and 
sparr (Davies et al 2018). For an archaeological review of univariate and bivariate bandwidth selectors see Baxter et al 1997.  See also 
Bronk-Ramsay 2017 for an alternative approach to univariate KDE for radiocarbon dates. 
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445 provide a working environment within which to explore both the strengths and weaknesses of such an 
446 approach. There is also a useful transferability of SPD approaches to proxy time series constructed from 
447 other kinds of evidence, such as dendrochronological dates (Ljungqvist et al. 2018) or even 
448 traditionally-dated artefact datasets. Even so, there continues to be a real need to consider how 
449 alternatives, for example Gaussian mixtures (Parnell 2018), might offer superior and theoretically more 
450 coherent frameworks, and to grapple further with quantisation and calibration curve effects (Weninger 
451 and Clare 2018). 
452
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Figure 1. Summing, thinning and binning: (a) a summed probability distribution of dates from one site only 
(n=130 dates), with a slightly smoothed version also shown, as well as three example dates, followed by 
comparison of the smoothed raw density with (b) a randomly ‘thinned’ dataset of just 10 dates from the 

same site, (c-e) binned datasets at clustering cut-offs of h=50, 100 and 200 respectively. 
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Figure 2.  Comparisons of unnormalised and normalised dates and their consequences: (a) a single date at a 
flat portion of the calibration curve (area under the probability histogram: 1.337), (b) a single date at a 

steep portion of the calibration curve (area under the probability histogram: 0.452), (c) Southern Levantine 
SPD (ndates= 657, nsites= 119, nbins= 413  ; data from Roberts et al 2018), (d) Sahara SPD (ndates= 

643, nsites= 233, nbins= 551  ; data from Manning and Timpson 2014), and (e) Brazil SPD (ndates= 173, 
nsites= 97, nbins= 171 ; data from Bueno et al 2013).The orange bar highlights time-intervals associated 

with steeper portions of the calibration curve. 
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Figure 3: The relationship between observed data and simulations envelopes for four different methods 
(using the same data as in figure 2c): calsample realisations of (a) normalised and (b) unnormalised dates, 
and uncalsample realisations of (c) normalised and (d) unnormalised dates. Temporal ranges highlighted in 
red and blue represent intervals where the observed SPD show a significant positive or negative deviation 

from the simulated envelope (they do not necessarily imply the onset point of significant growth or decline). 
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Figure 4: Example of mark permutation test (Crema et al 2016), comparing the SPDs from Southern 
(ndates= 657, nsites= 119, nbins= 413) and  Northern Levant ( ndates= 589, nsites= 41, nbins= 296). 

Temporal ranges highlighted in red and blue represents intervals where the observed SPD show a significant 
positive or negative deviation from the pan-regional null model. Data from Roberts et al 2018. 
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Figure 5. Example output of one focal year of a kernel density map of English and Welsh dates from the 
Euroevol Neolithic dataset (ndates= 2,327, nsites= 653, nbins= 1,461, data from Manning et al 2016): (a) 

the spatio-temporal intensity for the focal year 6000 calBP, (b) the overall spatial intensity for Neolithic 
dates (8000-4000 calBP), (c) the proportion of a) out of b), and (d) a measure of the spatial pattern of 

change, mostly growth, from 6200 calBP to 6000 calBP. 
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Figure 6. Spatial permutation test for the same data as figure 5 showing: (a) the local mean geometric 
growth rates mean geometric growth rate between 6300-6100 to 6100-5900 calBP; and (b) results of the 

spatial permutation test for the same interval showing local significant positive and negative significant 
departures from the null hypothesis. 
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