Supplementary Materials

of

Polyhydride CeH₉ with an atomic-like hydrogen clathrate structure

Xin Li¹, Xiaoli Huang¹*, Defang Duan^{1,2}, Chris J. Pickard², Di zhou¹, Hui Xie¹, Quan Zhuang¹, Yanping Huang¹, Qiang Zhou¹, Bingbing Liu¹ and Tian Cui¹*

¹State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

²Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.

*Corresponding author: huangxiaoli@jlu.edu.cn and cuitian@jlu.edu.cn

Determination of stoichiometries of Ce polyhydrides.

We have determined the stoichiometries and crystal structures of new phases in three aspects in main paper: 1) X-ray diffraction data give the possible phase transitions and symmetry and match the structures of prediction; 2) The volume changes obtained from XRD data indicate the stoichiometry of new phases; 3) Theoretical calculations help us to finally determine the crystal structure and stoichiometry through the calculated enthalpy difference, pressure-volume relation and phase stability. Particularly, the Rietveld refinement combines the calculated and experimental XRD results. We would like to expound detailed distinction of CeH₃, CeH_{3+x} and CeH₄, and CeH_{9- δ} and CeH₉.

The determination of CeH₃-Fm-3m

In Supplementary Fig. 3, we found that the patterns of fcc phase match the known structures of CeH₃ and CeH₂. Both CeH₃ and CeH₂ have the same space group *Fm*-3*m*, but CeH₃ has one more hydrogen atom than CeH₂ at interstitial sites 4*b* (0,0,1/2). They have very similar lattice parameters and compression *P*-*V* curves under pressure. Here we propose fcc phase as CeH₃ rather than CeH₂, because the H₂ is excessive in the chamber and the enthalpy calculations indicate that CeH₃ has a lower enthalpy value than CeH₂ (Supplementary Fig. 5).

The stoichiometries of CeH_{3+x}.

From 40 GPa to 72 GPa, Rietveld structural refinement and calculated enthalpy difference (Fig. 1b and Supplementary Fig. 5) prefer the structure of CeH₃-*Pm*-3*n*. Because of the low atomic scattering power of hydrogen, we couldn't determine the content of hydrogen directly through XRD data. In fact, the hydrogen content of cerium hydrides was changing with increasing pressure in the experiment. In order to avoid the confusion and guarantee the accuracy, here we defined the second cubic phase as CeH_{3+x} ($0.7 \le x \le 1.1$) and the reasons are as follows. As seen in Supplementary Fig. 6, the volume of CeH_{3+x} is close to CeH₃-*Fm*-3*m* at 40 GPa, however the volume becomes close to CeH₄-*I*4/*mmm* at 72 GPa. In this pressure range, we can also intuitively see that the compression curve of CeH_{3+x} is approaching the mixed line of Ce+2H₂ and connects the curves of CeH₃-*Fm*-3*m* and CeH₄-*I*4/*mmm* smoothly, which also indicates a process of hydrogen absorption. At 40 GPa, *V*(CeH_{3+x}) = 30.54 Å³/f.u.; *V*(Ce) = 17.98 Å³/f.u. and *V*(H) = 3.4 Å³/f.u. at this pressure. Thus the stoichiometry of cerium hydrides CeH_{3+x} is x=0.7. At 72 GPa, *V*(CeH_{3+x}) is 27.21 Å³/f.u.; *V*(Ce)

16.01 Å³/f.u. and V(H) is 2.7 Å³/f.u., which gives x=1.1.

The distinguish of CeH_{9-δ} and CeH₉.

For CeH₉: We determine the phase of CeH₉- $P6_3/mmc$ through Rietveld refinement of experimental XRD data (Fig. 1b), good agreement between experimental and calculated *P*-*V* relation (Fig. 2) and advantage of calculated enthalpy (Supplementary Fig. 5).

For CeH_{9-δ}: Our XRD data match the predicted CeH₈-*P*6₃*mc*. We exclude this structure because of the imaginary vibration modes in phonon dispersion curves. CeH₉-*P*6₃/*mmc* also matches XRD pattern profile, but we distinguish them by the *P*-*V* relationship (Fig. 2). We have determined the phase of CeH₉-*P*6₃/*mmc* above 103 GPa, however, in the pressure range of 84-103 GPa, we observe abnormal movement of peaks from CeH_{9-δ} (Supplementary Fig. 13) which indicates the increase of lattice parameters, i.e. the volume expansion of unit cell. Continuously significant expansion of volume is attributed to absorption of hydrogen (Fig. 2 and Supplementary Fig. 13), indicating a gradual hydrogenation process of forming CeH₉, thus we assign the phase in this pressure range noted as CeH_{9-δ}. At 88 GPa, the volumes of Ce and CeH₉ (extrapolation through BM equation) are *V*(Ce) = 15.37 Å³/f.u. and *V*(CeH₉) = 33.91 Å³/f.u., then the estimation of hydrogen expansion is *V*(H) = 2.06 Å³/atom. Therefore, *V*(CeH_{9-δ}) of 32.17 Å³/f.u. gives the value range $\delta \leq 0.85$.

Calculation

Here we have used DFT calculations with GGA+U to obtain the lattice parameters and cell volume at different pressures. As reported in previous literatures, Ce atoms with *f* electrons are an extremely delicate system for DFT calculations with the use of standard approximations. We have carefully checked the calculated data, and found that the used GGA+U reproduced the experimental data well and the volume difference between experimental and calculated data is below 3% (Supplementary Fig. 11). In this regard, the current theoretical GGA+U approximations give the correct EOS, which is in agreement with the experimental one. Besides, the GGA+U calculations have been done on band structure, DOS, ELF and phonon spectrum. It is reported that the anharmonic effects maybe affect the vibrational frequencies, thermodynamics and lattice stability of superhydrides. Errea *et al.* have found that the quantum nature of the proton fundamentally changes the superconducting phase diagram of H₃S. But among these properties, the current work is mainly involved with the calculated phase stability or phase diagram. By comparing with the theoretical and experimental phase stability (Supplementary Fig. 5 and Supplementary Fig. 14), we can find that the range of corresponding phase stability is slightly different with the transition pressure, which maybe contributed by the anharmonic effects. Compared with high symmetry *Im-3m* of H₃S, the lower symmetry *P*6₃/*mmc* CeH₉ makes the calculation with anharmonic effect difficult. The calculation with anharmonic effects is also extremely hard for the compounds with multi-atoms such as ten-atoms CeH₉. A more delicate calculation is further required for theorist in the future study.

Supplementary Fig. 1 | The microphotoes of the sample chamber at selected pressure. After loading hydrogen, the sealed pressure is 3 GPa with about 24 μ m Ce sample. With increasing pressure, the volume of black solid sample increases about 46% accompanied with the decrease of hydrogen sample. Above 34 GPa, the sample chamber remains unchanged, and the excess solid hydrogen remained transparent up to the highest pressure 159 GPa.

Supplementary Fig. 2 | **Evolution of** *d***-spacing of Ce polyhydrides with pressure.** The vertical dashed lines indicate the phase transitions in Ce polyhydrides.

Supplementary Fig. 3 | The Rietveld refinement on CeH₃-*Fm*-3*m* at 3 GPa. The *R* factors are $R_{wp} = 18.58$ % and $R_p = 12.68$ % for the refinement.

Supplementary Fig. 4 | Distortion of Ce sublattice at 19 GPa and 44 GPa. a, Comparation between ideal and distorted lattice of CeH₃-Fm-3m at 19 GPa. The diffraction peaks (200),(220),(311) have obviously anomalous broaden and shift, indicating a distortion in the fcc Ce sublattice. **b**, Comparation between ideal and distorted CeH₃-Pm-3n at 44 GPa.

Supplementary Fig. 5 | The enthalpy of Ce polyhydrides as a function of pressure. $\Delta H = H(CeH_n)+(9-n)/2H(H_2)-H(CeH_9)$. The enthalpy of CeH₉ is used as the reference energy.

Supplementary Fig. 6 | The experimental volume of CeH₃, CeH_{3+x} and CeH₄ at different pressures.

Supplementary Fig. 7 | The experimental volume of CeH₃, CeH_{3+x} and CeH₄ with error bars.

Supplementary Fig. 8 | The convex hull diagram of Ce polyhydrides at selected pressure. The structures of CeH₂-*Fm*-3*m*, CeH₃-*Pm*-3*n*, CeH₄-*I*4/*mmm*, CeH₈-*P*6₃*mc*, CeH₉-*P*6₃/*mmc* and H₂-*P*6₃/*m* and H₂-*C*2/*c* are considered respectively.

Supplementary Fig. 9 | (a-d) Phonon dispersion curves for CeH₃-Pm-3n, CeH₄-I4/mmm, CeH₈-P6₃mc and CeH₉-P6₃/mmc at 50, 50, 80 and 100 GPa, respectively. Imaginary phonons observed in CeH₈-P6₃mc.

Supplementary Fig. 10 | Lattice parameters of Ce polyhydrides as a function of pressure. The evolution of lattice parameters of CeH₃-*Fm*-3*m*, CeH_{3+x}, CeH₄-*I*4/*mmm*, CeH_{9- δ}, and CeH₉-*P*6₃/*mmc*.

Supplementary Fig. 11 | **Experimental and calculated lattice parameters and volume of CeH₉ at different pressures.** a, The comparison between experimental and theoretical lattice parameters of CeH₉ at pressures, and b, The comparison between experimental and theoretical volume of CeH₉ at pressures. Inset is the volume difference under different pressures.

Supplementary Fig. 12 | The crystal structures of Ce polyhydrides. a, The crystal structure of CeH_3 -*Fm*-3*m*. b, The crystal structure of CeH_3 -*Pm*-3*n*.

Supplementary Fig. 13 | The XRD patterns and evolution *d*-spacing of CeH_{9-δ}. a, The XRD patterns in the pressure range 80-103 GPa. At the bottom, the patterns are contributed from CeH_{9-δ} and CeH₄-*I*4/*mmm*. With increasing pressure, the pattern shows the abnormal shift to lower angles, indicating the expansion of the volume and new phase with higher stoichiometry. b, Evolution of *d*-spacing of CeH_{9-δ} with pressure.

Supplementary Fig. 14 | **Experimental phase diagram of Ce polyhydrides.** The stable regions were confirmed via our experimental XRD patterns. The stoichiometry of Ce hydrides would increase with pressure.

Supplementary Fig. 15 | The Rietveld refinements on new Ce polyhydrides at 101 GPa after laser-heating. The *R* factors are $R_{wp} = 19.28$ % and $R_p = 13.04$ % for the refinement.

Supplementary Fig. 16 | The volume expansion per H atom.

Supplementary Fig. 17 | The partial density of electronic states of CeH₉ at 100 GPa. The substantial contribution of Ce f electrons and H s electrons to the DOS at the Fermi level of CeH₉ with 31.38% by H and 57.61% by Ce 4f states.

Supplementary Fig. 18 | The contribution of Hydrogen to the density of states at Fermi level in each phase.

	Pressure	Space	Lattice Parameters	Atoms -	Atomic coordinates		
		group			Х	У	Z
CeH ₃	3 GPa	Fm-3m		Ce(4a)	0	0	0
			<i>a</i> =5.509 Å	H(4b)	1/2	0	0
				H(8 <i>c</i>)	1/4	1/4	1/4
CeH ₃	57 GPa	Pm-3n	<i>a</i> =3.811 Å	Ce(2a)	0	0	0
				H(6d)	0	1/4	1/2
CeH ₄	76 GPa	I4/mmm	<i>a</i> =2.970 Å <i>b</i> =5.865 Å	Ce(2 <i>a</i>)	0	0	0
				H(4 <i>d</i>)	0	1/2	1/4
				H(4 <i>e</i>)	0	0	0.365
CeH ₉	159 GPa	P6 ₃ /mmc		Ce(2 <i>d</i>)	2/3	1/3	1/4
			<i>a</i> =3.565 Å	H(2b)	0	0	1/4
			<i>b</i> =5.510 Å	H(4 <i>f</i>)	1/3	2/3	0.149
				H(12 <i>k</i>)	0.156	0.312	0.062

Supplementary Table 1. Refined lattice parameters of Ce polyhydrides