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Defining the pro-tumour impact of the evolving stromal 

microenvironment  

Sarah Elizabeth Davidson 

 

Much like normal tissues, tumours require a supporting microenvironment for growth 

and survival, known as the tumour stroma. However, tumours represent a dynamic 

and turbulent environment, in which factors such as hypoxia, fibrosis, nutrient 

deprivation and the local cytokine milieu continually fluctuate as the tumour grows and 

develops. These factors influence stromal phenotypes and create heterogeneity, 

which can confound our understanding of their role within the microenvironment. In 

particular, cancer associated fibroblasts (CAFs) represent a diverse population of 

cells, which cannot be identified by one universal marker. CAFs promote tumour 

growth and dissemination by secreting growth factors, stimulating angiogenesis, 

aiding the development of tumour-promoting inflammation and remodelling the extra-

cellular matrix (ECM). However, recent investigations have shown these functions 

belong to defined populations that differ between tumour types.  

This project aimed to investigate stromal heterogeneity across melanoma 

development, with a specific focus on the CAF compartment. Whilst conventional 

techniques such as IF and flow cytometry showed varied expression of fibroblast 

markers, they lacked the resolution to discern functional subsets. Thus, we employed 

single cell RNA sequencing (scRNAseq) to profile CAF populations at different stages 

of tumour development. To avoid bias, CAFs were isolated from the B16-F10 

melanoma model using a ‘negative selection’ approach. Our data revealed the 

presence of 3 functionally distinct fibroblast populations, termed ‘immune’, 

‘desmoplastic’ and ‘contractile’, which expressed genes involved in immune cross talk, 

matrix remodelling and stress fibre contraction respectively. Furthermore, these 

populations are dynamic, changing in prevalence as the tumour grows. While ‘immune’ 

and ‘desmoplastic’ populations were present from early stages, ‘contractile’ CAFs 

were more abundant at later time points. Owing to their unique marker profiles, we 

were able to identify these populations within the tumour stoma and validate their 

temporal nature.  



Subsequent investigation into the contribution of these subsets to tumour growth, 

revealed that ‘immune’ CAFs promoted accumulation of suppressive macrophages by 

production of C3 and its cleavage product C3a. Significantly, inhibition of the 

C3a/C3aR axis reduced the number of macrophages and decreased tumour volume. 

This reduction in tumour growth was accompanied by increased CD8 T-cell infiltration, 

implying that ‘immune’ CAFs may inhibit adaptive anti-tumour immunity through 

controlling the myeloid compartment. The interaction between C3 producing CAFs and 

C3aR expressing macrophages was conserved in different murine tumours and 

human cancer. Thus, ‘immune’ CAFs and C3a signalling may represent therapeutic 

targets in multiple cancer types. Overall, our data highlights the complexity of stromal 

phenotypes and microenvironment interactions, which likely reflects the convoluted 

climate of the developing tumour.  
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 The tumour microenvironment 
 

Tumours are not merely an isolated collection of proliferating cells. Instead, they grow 

in the context of a host tissue, which contains a heterogeneous population of local and 

recruited cells. Known as the tumour stroma, these populations include immune, 

fibroblasts and both blood and lymphatic endothelial cells (Fig.  1.1). However, 

malignant cells manipulate this surrounding environment to create a supportive niche 

for their growth and survival. The role of different stromal components in tumour 

maintenance, growth, progression and metastasis are discussed below 1. Importantly, 

tumour and stromal populations exist in an interactive network, which together 

determine tumour fate 2–4. 

 

 

 

 

 

 

 

 

 

Fig.  1.1 The tumour microenvironment  

The tumour microenvironment encompasses a supporting niche of ‘normal’ cells. These 
include both blood and lymphatic endothelial cells, fibroblasts and an assortment of immune 

cells such as macrophages neutrophils and lymphocytes  
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 Immune cells 

 

The involvement of inflammatory cells in cancer was first proposed by Virchow in 1863, 

who identified cancer as a consequence of chronic inflammation 5. While the tumour 

supporting role of immune infiltrates is well documented, these cells also have the 

ability to detect and destroy malignant cells 6. The balance of immune activation and 

suppression can ultimately determine tumour outcome 7. 

 Cytotoxic T-cells 

 

During pathogenic infection, CD8+ T-cells identify and destroy host cells containing 

intracellular bacteria or viruses. This interaction is mediated by the presentation of 

foreign antigen, by Major Histocompatibility Complex (MHC) I, on the surface of 

infected cells. T-cells recognise these specific antigens via their T-Cell Receptor 

(TCR), bind and lyse infected cells 8. Owing to genetic mutations, induced by DNA 

damage, carcinogens or inadequate DNA repair, tumours have the capacity to 

produce unique antigens specific to malignant cells 9,10. The ability of CD8 

lymphocytes to recognise tumour antigens and destroy malignant cells, was 

demonstrated in sarcoma models 11,12. Thus, the presence of CD8 T-cells is correlated 

with better prognosis and survival in a number of solid tumours 13–17.  

However, tumour infiltrating lymphocytes are often functionally impaired or 

‘exhausted’, displaying reduced proliferation and production of Interferon γ (IFNγ) and 

Tumour Necrosis Factor α (TNFα)  18–25. T-cell exhaustion was first observed in murine 

models of chronic viral infection, where activated T-cells lost anti-viral functions 26. It 

is characterised by expression of inhibitory receptors, such as Programmed Cell Death 

Protein 1 (PD-1), Lymphocyte Activation Gene 3 protein (LAG-3), T-cell 

Immunoglobulin domain and Mucin domain protein 3 (TIM-3), and cytotoxic T 

lymphocyte antigen-4 (CTLA-4) 27–32. These markers are upregulated by tumour 

resident lymphocytes, whose dysfunction promotes tumour immune escape18–21,23.  

 

Indeed, immune mediated tumour repression largely relies on recruiting and 

maintaining durable CD8 T-cell responses 13. However, dysfunction is promoted by 

the development of an immunosuppressive tumour microenvironment. This includes 
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expression of immune checkpoint molecules, such as Programmed Cell Death Ligand-

1 (PDL1) and PDL2, by tumour and stromal cells 33–36. These ligands engage the PD1 

receptor which directly dampen lymphocyte function 37–39. Consequently, expression 

of both molecules is correlated with poor prognosis in multiple cancer types 40–44. In 

addition, the establishment of a suppressive cytokine milieu, also contributes to the 

inhibition of T-cell function. This includes high abundance of immunosuppressive 

factors Transforming Growth Factor β (TGFβ) and Prostaglandin E2 (PGE2) 45,46, as 

well as depletion of the lymphocyte metabolite tryptophan by the enzyme indoleamine 

2,3-dioxygenase (IDO) 47. These mechanisms are driven by both malignant and 

stromal cells, including other immune populations 48. Indeed, tumour infiltrating 

leukocytes have the ability to both promote and inhibit T-cell function, which in turn 

impacts tumour survival. 

 

 CD4 T cells 

 

The CD4+ T-cell lineage can be further divided into discrete effector populations based 

on their functional properties. T-helper (Th) cells primarily consist of Th1 and Th2 

subsets, which aid specific arms of the immune response via secretion of soluble 

factors. Th1 cells produce IFNγ and Interleukin-2 (IL2) and promote lysis of 

intracellular pathogens through heightened CD8 T-cell activity 49. On the other hand, 

Th2 populations produce cytokines such as IL4 and IL13, which are associated with 

allergic inflammation and anti-helminth immunity 50. In cancer, cytokine signatures 

associated with Th1 cells have been correlated with better prognosis, while the 

presence of Th2 cells was linked with reduced survival and tumour induction 51–54. 

Favourable outcomes associated with Th1 populations may be due to their role in 

promoting activity and survival of CD8+ cytotoxic T-cells 55. Furthermore, indirect 

priming of CD8 lymphocytes, through Th1 stimulation of Antigen Presenting Cells 

(APCs), has also been suggested 56. This hypothesis is supported by the reduced 

ability of Th1 cells to enhance CD8 tumour cell lysis, upon MHCII depletion in vivo. 

However a direct effect on APCs has not been shown 57. 
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T-regulatory (T-regs) represent another CD4 subset and are defined by expression of 

the transcription factor Forkhead Box P3 (FOXP3) 58. These cells play a critical role in 

self-tolerance, demonstrated by the onset of severe autoimmunity upon their 

depletion59–61. Although the mechanisms through which T-regs supress immune 

function are complex, they centre around reducing contact between APCs and T-cells, 

as well as directly supressing lymphocyte proliferation and cytokine secretion 62–65. 

Expression of the checkpoint inhibitor CTLA-4 plays a critical role in this process, aided 

by the production of regulatory cytokine IL10 and inhibitory factor adenosine 66–70. 

These cells are common in solid tumours 71–76, where they contribute to the 

development of an immunosuppressive microenvironment. This was illustrated by the 

restoration of anti-tumour immunity upon their removal 77–79. Thus, increased T-reg 

infiltration is associated with poor prognosis, particularly when combined with reduced 

numbers of cytotoxic lymphocytes 75,80–82. To promote immune escape, tumour cells 

are thought to actively recruit T-regs or induce their differentiation, through production 

of C-C motif Chemokine Ligand 22 (CCL22) and PGE2 respectively 75,83.  

 

 Macrophages 

 

Macrophages are a dominant tumour resident immune population and are generally 

associated with poor prognosis 84–86. These cells are either derived from embryonic 

tissue resident populations or recruited bone marrow monocytes, which differentiate 

upon arrival 87. However, recruitment of Ly6C+ monocytes has been the major focus 

of the field, of which Colony Stimulating Factor 1 (CSF1) and Chemokine Ligand 2 

(CCL2) are key mediators 88–92. Historically, macrophage phenotypes have been 

divided into M1 and M2 polarisation states, first described in chronic inflammation. 

Here, M1 macrophages display proinflammatory functions, such as antigen 

presentation and secretion of IL-12, Nitric Oxide (NO) and Reactive Oxygen Species 

(ROS). Alternatively, M2 cells are associated with tissue regeneration and 

angiogenesis 93. Owing to similar functional properties, tumour resident macrophages 

are often categorised as M2 polarised. However, this paradigm may be too simplistic 

to describe macrophages in the tumour microenvironment, as they often display 

features consistent with both states. Currently, these cells are considered as a 

collection of populations, defined by their specific functions in tumour development 87. 
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Irrespective of nomenclature, infiltrating macrophages potently support tumour 

development. This includes promotion of angiogenesis, invasion and metastasis, via 

CSF1/ Epithelial Growth Factor (EGF) paracrine signalling and secretion of Secreted 

Protein Acidic And Cysteine Rich (SPARC) and TGFβ 88,94–97. In addition, 

macrophages play a key role in the suppression of T-cell functions, inhibiting 

proliferation in ex-vivo assays 87,89,98,99. This may be driven by NO production and 

breakdown of arginine by the enzyme arginase (ARG1), which is required for T-cell 

function 89,100. Furthermore, macrophages express PDL1 and recruit T-reg populations 

via secretion of CCL22 101 75. 

 

 MDSCs 

 

Myeloid Derived Suppressor Cells (MDSCs) are described as immature myeloid cells 

that induce immune tolerance  102. Similar to macrophages, MDSCs supress cytotoxic 

T-cell functions by production of arginine and promote T-reg induction via Il10 and 

TGFβ secretion 103–109. These cells are divided into CD11b+ Ly6C+ Monocytic (M-

MDSCs) or CD11b+ Ly6G+ polymorphonuclear (PMN-MDSCs).  However, markers 

commonly used to identify these populations are also expressed by other myeloid cells 

102. Thus, reported MDSC functions may be attributable to other myeloid subtypes, 

leading to considerable controversy surrounding their presence and influence in the 

tumour microenvironment. Consequently, many now consider MDSCs as a phenotypic 

state, rather than a distinct cell type, which describes multiple suppressive myeloid 

populations 110. 

 

 Neutrophils 

 

Neutrophils are the most abundant cells in the blood stream and rapidly respond to 

pathogenic infection. These cells utilise four main mechanism to destroy foreign 

bodies, including phagocytosis, degranulation and release of ROS and Neutrophil 

Extracellular Traps (NETs) 111. However, in a malignant setting, neutrophils both aid 

and inhibit tumour growth. For example, neutrophils promote angiogenesis112,113, 

increase tumour cell proliferation and invasion114,115 and are implicated in T-cell 
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suppression via the PDL1/PD1 axis 116,117. Thus, these cells are associated with poor 

prognosis in renal carcinoma118, melanoma119, colorectal120, oesophageal121 and non-

small cell lung cancer (NSCLC)122. Furthermore, NET production is positively 

associated with tumour metastasis 123. Here, NETs are formed by neutrophil release 

of DNA and chromatin, which acts as a ‘sticky’ mesh, capturing circulating tumour 

cells124. In a breast cancer model, DNase digestion of NETs, reduced the number of 

metastatic lesions 125. Conversely, neutrophils have also been reported to inhibit 

tumour growth by promoting CD8 T-cell activity, colrelatingd with better prognosis in 

human colorectal cancer 126. Due to the dichotomy between pro- and anti-tumour 

neutrophil functions, similar to macrophages, ‘N1’ and ‘N2’ polaristiaion states have 

been proposed, which are dictated by the surrounding microenvironment 127.  

 

 Dendritic Cells 

 

By delivering and presenting antigen to T-cells, dendritic cells (DCs) are key 

orchestrators of the adaptive response. DCs can be separated into two classical 

populations, (CDC1 and CDC2), as well as plasmacytoid DCs (pDCs). In the context 

of malignancy, CDC1 cells have drawn particular attention, owing to their ability to 

cross-present antigen to CD8 T-cells 128. The importance of this population for the 

development of anti-tumour cytotoxic immunity was demonstrated upon their depletion 

in Baft3-/- mice 129. However, the ability of DCs to initiate lymphocyte activation is 

dampened by the immunosuppressive microenvironment. This is mediated through 

suppression of cross-presentation as well as increased expression of T-cell inhibitory 

ligands  PDL1 and TIM3 130–132. 

 

 NK Cells 

 

Natural Killer (NK) cells are part of the innate immune system that recognise and lyse 

infected host cells, through a series of activating and inhibitory receptors 133. This 

population has the ability to detect and kill malignant cells, which upregulate ligands 

for activating receptors 134–136. Thus, the presence of NK cells is correlated with 

improved survival 137,138. However, tumour cells can evade detection by upregulating 
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ligands for inhibitory receptors, such as non-classical MHCI molecule Human 

Leukocyte Antigen (HLA) G 139,140, as well as shedding ligands that bind the activating 

receptor Natural Killer Group 2 Member D (NKG2D) 141.  

 

 Immunotherapy 

 

Considering the power of a coordinated immune response against malignant growth, 

restoring anti-tumour immunity is a key focus for therapeutic intervention. As CD8 T-

cells are the cornerstone of immune mediated tumour lysis, the most successful 

treatments have concentrated on re-activating their cytotoxic properties 142. In 

particular, blocking inhibitory signals via immune checkpoint interactions have shown 

significant efficacy. Known as checkpoint inhibitors, these are largely composed of 

antibodies against PD1 and CTLA4 and improve outcome for patients with melanoma 

143,144, NSCLC 145–147, renal 148, urothelial 149 and head neck cancer 150. However, not 

all patients in these studies respond to therapy, with response rates ranging between 

15-30%. Understanding why some cancers respond to immunotherapy and others do 

not, remains a key unanswered question and is the subject of an expanding area of 

research 151.  

As current immunotherapies target T-cell activity, it is thought that failure to elicit T-

cell responses in the tumour microenvironment, underlie poor efficacy. This may 

reflect the availability of tumour specific antigens for T-cell activation. Indeed, higher 

mutational burden has been linked to production of tumour antigens, increased CD8 

T-cell infiltration and improved responses to immune checkpoint inhibitors  152–154. 

However, reduced susceptibility to therapy may also be mediated by inhibition of 

lymphocyte recruitment or exclusion from the tumour compartment 155,156. 

Furthermore, tumour resident lymphocytes express a variety of inhibitory molecules, 

which may compensate for the inhibition of a single axis 22,23. Finally, the ability of 

other immune populations, discussed above, in preventing T-cell recruitment and 

function, likely contribute to poor responses. 

While some patients do not respond to checkpoint inhibitors in the first instance, others 

acquire resistance after initial benefit 157. This may be driven by therapy-induced 

immuno-editing, in which anti-tumour immunity removes immunogenic malignant cells, 
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allowing colonisation by those that have developed mechanisms to evade or dampen 

the immune response 157. In both cases, a second generation of immunotherapies are 

currently being investigated, which aim to tackle these problems. This includes 

combinational approaches to improve T-cell infiltration and function, targeting multiple 

pathways and different populations simultaneously158. Furthermore, uncovering 

biomarkers that predict efficacy of current therapies will aid their application 159. 

 Endothelial Cells 

 

The tumour endothelium is comprised of both blood and lymphatic vessels. 

Development of a blood vasculature is essential, providing oxygen and nutrients for 

the growing malignant compartment. While tumours orchestrate angiogenesis through 

production of factors such as Vascular Endothelial Growth Factor A (VEGFA), these 

vessels are more permeable and promote intravasation and metastasis 160–163. In 

addition, as the point of entry for most leukocyte populations, endothelial cells play an 

important role in immune recruitment. Under inflammatory conditions the vasculature 

becomes activated, upregulates adhesion molecules and traps circulating immune 

cells. Blood endothelium also regulates immune phenotypes and can present antigen 

to local leukocytes 164–170. However, angiogenic factors in the TME prevent endothelial 

activation, reduce expression of adhesion molecules and promote immune exclusion 

171–173. Thus, the tumour vasculature actively contributes to tumour immune escape. 

Similar to blood endothelium, the lymphatic system is expanded in the tumour stroma 

and supports metastasis. However, lymphatics also provide a crucial link to tumour 

draining lymph nodes, in which immune responses are orchestrated 174,175. 

 

 The Extracellular Matrix 

 

The extracellular matrix (ECM) is cell extrinsic network of fibrillar proteins and 

proteoglycans. As well as providing structural support to tissue, it has a critical role in 

cell signalling and tissue homeostasis 176. ECM remodelling is a prominent 

characteristic of the tumour microenvironment, known as the ‘desmoplastic reaction’ 

177. This process involves increased deposition of collagens, fibronectin and 
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proteoglycans, as well changes in their bio-mechanical properties. Here, alignment of 

collagen fibres and cross-linking, mediated by the enzyme Lysyl Oxidase (LOX), 

increases matrix stiffness 178,179.  Stiffening is sensed by tumour cells, resulting in 

increased cytoskeletal tension and focal adhesion maturation, which in turn, promotes 

tumour invasion and metastasis 180,181. Indeed, reducing cytoskeletal tension in breast 

cancer cells suppressed their malignant behaviour 181.  

Interestingly, the synthesis of a fibrotic matrix also impacts the tumour immune 

response. To begin with, dense collagen matrices act as a physical barrier to infiltrating 

T-cells, preventing tumour cell contact. When this constraint was relieved, by collagen 

digestion, lymphocytes were able to interact with malignant cells 182,183. Furthermore, 

matrix components can regulate immune recruitment and influence their phenotype. 

For example, cleavage products of Collagen-1 and Elastin, as well as Hyaluronan 

(HA), act as chemotactic stimuli for myeloid cells 183–185, while Tenascin-C and 

Heparan Sulphate activate macrophages to produce inflammatory cytokines and 

induce DC maturation 186,187. This highlights how different components of the tumour 

microenvironment interact and cooperate to augment tumour development. Thus, 

regulation of one compartment may have a manifold of indirect consequences. 

 

 Fibroblasts 

 

Fibroblasts are spindle shaped, mesenchymal cells that reside in local connective 

tissue. In the absence of pathology, these cells are described as quiescent but become 

‘activated’ upon initiation of tissue remodelling. Activated cells, known as 

myofibroblasts, display prominent stress fibres and are defined by their expression of 

α-Smooth Muscle Actin (αSMA) 188. During wound healing, myofibroblasts induce 

extracellular matrix (ECM) remodelling by synthesising matrix proteins and producing 

remodelling enzymes. Once the wound is resolved, these cells undergo programmed 

cell death 188,189. In cancer, fibroblasts are a crucial stromal component. Known as 

Cancer Associated Fibroblasts (CAFs), they resemble activated myofibroblasts and 

express many similar markers, such as Fibroblast-Specific Protein-1 (FSP-1), 

Fibroblast Activation Protein (FAP), the Platelet Derived Growth Factor Receptors α 

(PDGFRα) and β (PDGFRβ), Podoplannin (PDPN), THY-1 and αSMA 190,191. 
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Furthermore, CAFs are distinct from normal fibroblasts, displaying enhanced 

proliferation and a discrete  proteome profile 192–194.  CAFs possess many pro-tumour 

functions and are involved in the development of numerous ‘hallmarks of cancer’. This 

includes, production of growth factors that stimulate tumour growth, development of 

angiogenesis, ECM remodelling, invasion and metastasis and regulation of immune 

infiltrates (Fig.  1.2) 195–198. As this project particularly focuses on CAFs, their role in 

TME is discussed in detail below. 

 

 

Fig.  1.2 CAFs promote tumour growth and development 

CAFs have numerous pro-tumour functions: By secreting growth factors CAFs can directly 
enhance tumour cell proliferation and survival. They also promote angiogenesis and are the 
primary source of ECM proteins within the tumour, which they remodel to facilitate tumour cell 
invasion and metastasis. Finally, CAFs regulate immune infiltrates by attracting certain 
immune populations, as well as altering their phenotypes. 
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 The role of CAFs in the TME 
 

 Regulation of the immune compartment 

 

Pioneering work by Erez et al showed CAFs possess a pro-inflammatory signature, 

implying these cells were involved in the development of tumour associated 

inflammation 199. Since this study, CAFs have been shown to recruit and regulate 

immune cells from both the innate and adaptive systems, as well as promote immune 

suppression 198.  

 

 Promotion of T-cell dysfunction is a key mechanism through which CAFs aid tumour 

immune escape 198. This is largely driven, indirectly, through recruitment and 

modulation of suppressive myeloid cells, such as monocytes, macrophages, MDSCs 

and neutrophils 200–203. CAF secreted CCL2 is the most documented mediator of this 

process, driving myeloid recruitment in models of lymphoma, breast and Hepatic 

cancer 201,202,204,205. In addition, CAFs induce tumour supporting and 

immunosuppressive properties in macrophages and MDSCs, through secretion of C-

X-C motif chemokine 12 (CXCL12) and IL6 206,207.  As DCs are essential for the 

activation of cytotoxic T-cells, their modulation by the fibroblast compartment is a key 

mechanism of immune evasion. CAFs supress DC function through downregulation of 

costimulatory molecules and increased expression of regulatory cytokines IL10 and 

TGFβ 208, via production of tryptophan metabolite kynurenine bytryptophan 2,3-

dioxygenase (TOD2). Furthermore, secretion of Thymic Stromal Lymphopoietin 

(TSLP) polarised DCs towards induction of Th2 responses, which promote tumour 

development 53,209. 

Attenuation of CAF derived factors that modulate the myeloid compartment, such as 

Chitinase 3 Like 1 (Chi3L1) and CCL2, increased T-cell infiltration and reduced tumour 

growth 200,202. However, CAFs have also been shown to directly supress T-cell activity 

through sampling and presentation of antigen to CD8 T-cells. With negative co-

stimulation via PD-L2 and Fas Ligand (FASL), this induced antigen-dependent T cell 

dysfunction 35. Moreover, CAFs reduced T-cell proliferation and production of IFNγ, in 

addition to promoting expression of dysfunction markers 210–213.  Production of PGE2, 
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NO and expression of PDL1 were implicated in this process. As well as regulating 

cytotoxic lymphocytes, tumour fibroblasts also attract and retain immunosuppressive 

T-reg populations via expression of CXCL12, OX-40 Ligand (OX-40L), PDL2 and  

Junctional Adhesion Molecule 2 (JAM2) 214,215. Furthermore, CAFs promote tumour 

immune escape via mechanisms that are independent of lymphocyte activity. These 

involve inhibition of NK cell lysis by secretion of PGE2 and IDO or degradation of 

activating ligands on the tumour cell surface 216–218.  

 

 CAFs and Angiogenesis 

 

As previously discussed, the development of a tumour vasculature is a crucial element 

for the maintenance of malignant growth. It is thought that CAFs aid this process, by 

secreting a number of pro-angiogenic factors. VEGF is a potent inducer of 

angiogenesis and is secreted by tumour cells themselves 219. However, VEGF is also 

secreted by CAFs, upon treatment with tumour conditioned media, or by a hypoxic 

environment 220,221. Furthermore, CAFs in gastric cancer enhanced production of 

VEGF in neighbouring tumour cells by stimulation with galectin-1. Other CAF secreted 

factors, thought to be involved in angiogenesis, include Fibroblast Growth Factor 

(FGF) and CXCL12 196,222. 

 

 CAFs are involved in matrix remodelling, and promote tumour 

invasion and metastasis 

 

In normal tissue, fibroblasts are responsible for maintaining homeostasis of the 

surrounding ECM and play an important role in its pathological transformation in 

cancer 197. This is facilitated by production of ECM remodelling enzymes such as 

matrix metalloproteinases (MMPs) and LOX 223–228. Furthermore, ovarian cancer cells 

induce expression of urokinase-type plasminogen activator (uPA) in resident 

fibroblasts, which  converts plasminogen to the fibrin degrading protein plasmin, as 

well as activating MMPs 229. In addition to enzymatic modifications, fibroblasts 

physically alter the ECM, contracting and stiffening matrix fibres, via their cytoskeletal 
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machinery 230.  It is now becoming clear that CAF ECM remodelling induces Epithelial 

Mesenchymal Transition (EMT) and promotes invasion and metastasis. This was 

evidenced by the development of a mesenchymal phenotype in epithelial cells seeded 

in a CAF synthesized matrix 231. In addition, their ability to align fibronectin fibres or 

sculpt ‘tracks’ within the ECM, directs tumour cell migration 232,233. CAFs also actively 

lead malignant cells through these passages, enabling metastasis 233. As well as ECM 

remodelling, CAFs have been shown to promote EMT and tumour cell invasion by 

secreting soluble factors such as IL11, TGFβ, Hepatocyte Growth Factor (HGF), 

CXCL12, osteopontin (OPN), FGF and IL6 196,234–238. Furthermore, CAF derived 

exosomes activated the planar cell polarity (PCP) pathway in breast cancer cells, 

which established a polarized morphology and enhanced motility and metastasis 

239,240.  

 

 CAFs and treatment resistance 

 

CAF remodelling of the tumour microenvironment also contributes to therapeutic 

resistance via a number of different mechanisms. To begin with, CAF derived soluble 

factors aid resistance to chemo-therapeutic agents, as well as targeted therapies. For 

example, the efficacy of chemotherapies, such as gemcitabine and cis-platin, are 

ameliorated by CAF Interleukin 1 Receptor Associated Kinase 4 (IRAK4) signalling 

and secretion of IL6 241,242. Interestingly, chemotherapy was also reported to induce 

DNA damage in tumour resident fibroblasts, leading to the release of WNT16B and 

subsequent induction of tumour EMT 243. Thus, the non-specific nature of 

chemotherapy can impact its ability to reduce tumour growth. However, CAFs also 

promote resistance to targeted therapies by re-activating inhibited signalling 

pathways. For example, secretion of HGF induced resistance to EGFR inhibitors by 

activation of downstream MET. Furthermore, ECM remodelling activated Focal 

Adhesion kinase (FAK) signalling, which conferred resistance to BRAF inhibitors  

244,245. Interestingly, CAFs also contribute to the poor efficacy of immunotherapies in a 

number of tumours types. Here, CAFs constrain T-cells to outlying stromal regions 

through production of factors such as TGFβ and CXCL12.  Targeting both secreted 

factors and the PD1/PDL1 axis enabled both T-cell infiltration and anti-tumour 
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cytotoxicity 246–248. As such, the contribution of CAFs to cancer therapy and the 

underlying mechanisms involved, is an actively growing field of research. 

 

 CAFs are derived from multiple origins 
 

Despite the numerous ways in which CAFs promote tumour growth and metastasis, 

their cellular origin is unclear and many sources have been suggested. These include 

transformation of tissue resident fibroblasts, tumour cells that undergo EMT, 

endothelial cells that undergo an EMT-like process, termed endothelial to 

mesenchymal transition (EndMT), pericytes and recruited mesenchymal cells from the 

bone marrow (Fig.  1.3).  

 

 

Fig.  1.3 CAFs are derived from multiple origins 

The source of tumour resident fibroblasts is the basis of much debate. These include 
transformation of tissue resident fibroblasts, tumour cells that undergo epithelial to 
mesenchymal transition (EMT), endothelial cells that undergo an EMT-like process termed 
endothelial to mesenchymal transition (EndMT), pericytes and recruited mesenchymal cells 
from the bone marrow. 
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 Tissue resident fibroblasts adopt a ‘CAF’ phenotype 

 

It has been proposed that tumour secreted factors may transform ‘normal’ resident 

fibroblasts into tumour promoting CAFs. This is evidenced by the adoption of CAF-like 

features by normal fibroblasts when exposed to tumour derived factors, such as 

upregulation of ECM remodelling enzymes and pro-inflammatory cytokines 249. 

Furthermore, mammary fibroblasts, that have undergone serial isolation and co-

transplantation with tumour cells, upregulated αSMA and promoted tumour growth 250. 

This suggests that tumours may engineer local fibroblasts to support their growth and 

progression.  

Interestingly, isolated CAFs retained the ability to promote tumourigenesis across 

several passages, implying that these fibroblasts may be genetically or epigenetically 

altered 196. Although this study did not detect genetic alterations, others have 

described loss of heterozygosity, as well as mutations in p53 and PTEN 251,252. Thus, 

it has been suggested that genetic changes may lie behind the transformation of 

normal fibroblasts. However, whether CAFs are genetically altered is a controversial 

topic, as opposing evidence has shown that these cells do not possess genetic 

mutations or chromosomal abnormalities 253,254. Epigenetic modifications, on the other 

hand, have been extensively reported and may contribute to the transformation of 

normal fibroblasts. CAFs display alterations in micro-RNA (mi-RNA) expression, as 

well as histone methylation profiles, compared to normal fibroblasts 255–261.  In 

particular, downregulation of miR-31 and miR-214 in CAFs, compared to normal 

fibroblasts, enables these cells to support tumour invasiveness and metastasis 255,256. 

Furthermore, by targeting signalling pathways such as TGFβ, IL6 and HGF, the CAF 

miRNA repertoire can have a profound effect on their interactions with tumour cells 

262. Similarly, histone methylation may also alter fibroblast susceptibility to soluble cues 

in the local TME and affect communication between compartments. For example, 

hypermethylation of SMAD3 may render CAFs less responsive to TGFβ signalling. 

Furthermore, hypermethylation of SHP-1 causes constitutive activation of the 

JAK/STAT pathway and enhances ability of CAFs to promote tumour invasiveness 263.  
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 Tumour cells as a source of CAFs 

 

The development of a mesenchymal phenotype during EMT, led to the proposal that 

CAFs are derived from tumour cells. Although EMT is a well characterized process in 

embryogenesis, it is less common in adult tissue and is only described in pathological 

conditions. Interestingly, in a model of kidney fibrosis, renal epithelial cells were shown 

to undergo EMT to generate fibroblast-like cells 264. Furthermore, cells from breast 

cancer biopsies displayed a fibroblast morphology and expressed αSMA and 

Vimentin, while retaining epithelial traits such as keratin expression. These cells 

possessed an unstable karyotype and displayed the same X-chromosome inactivation 

pattern, observed in tumour cells from the original biopsy 265. Although this suggests 

tumour cells gain mesenchymal properties, whether these cells transition to a true 

‘fibroblast phenotype’ is unclear. Owing to a lack of lineage tracing experiments, there 

is no direct evidence that fibroblasts in the TME are derived from malignant origins.  

 

 Endothelial cells as a source of CAFs  

 

In addition, it has been suggested that CAFs may be derived from endothelial cells 

that undergo EndMT. There are many parallels between EndMT and EMT, as in both 

processes, cells lose cell-cell junctions and gain an invasive and migratory phenotype. 

Furthermore, like EMT, EndMT is largely described as a developmental phenomenon. 

Here, endothelial cells of the developing heart acquire a mesenchymal phenotype and 

begin forming the valves and septa 266. Recently, EndMT has also been observed 

during cardiac fibrosis in adult hearts and murine cancer models 267,268. Here, 

endothelial cells were labelled with the Lac-Z enzyme, which colocalised with 

expression of CAF markers FSP-1 and αSMA. 

 

 Pericytes as a source of CAFs 

 

Pericytes are mural cells that reside on the surface of blood endothelium and regulate 

vasculature homeostasis 269. Lineage tracing in kidney and liver fibrosis suggested 
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pericytes detach from vessels, forming myofibroblast populations 270,271. However, 

these studies relied on colocalization between fibroblast markers and fluorescent 

proteins, under the control of pericyte related genes. Thus, it is possible that fibrosis 

may promote expression of these genes in fibroblast populations, inducing expression 

of fluorescent proteins. To avoid this problem, tamoxifen inducible Lac-Z expression 

was activated in pericyte populations during embryonic kidney development. This 

labelled a proportion of resident adult pericytes, which upon initiation of fibrosis,  

significantly contributed to the myofibroblast pool 272. A similar phenomenon was 

observed in response to PDGFβ signalling in various tumour models, suggesting 

pericytes contribute to the CAF compartment in malignant settings 273. 

 

 CAFs derived from recruited bone marrow cells 

 

Finally, two elegant studies, in which mice receive bone marrow transplants containing 

labelled cells, showed that between 20-40% of αSMA+ fibroblasts in pancreatic cancer, 

originated from the bone marrow 274,275. While the identity of these bone marrow 

derived mesenchymal cells remains elusive, it is possible they represent recruited 

Mesenchymal Stem Cells (MSCs). MSCs are extremely plastic, differentiating into 

adipocytes, chondrocytes, osteoblasts, smooth muscle cells, neurons and cells of the 

visceral mesoderm 276. This inherent plasticity, as well their morphological 

resemblance to fibroblasts in vitro, suggests that MSCs may act as a source of bone 

marrow derived CAFs 277. However, it is difficult to distinguish between MSCs and 

bone marrow derived fibroblasts, as they share many of the same markers and 

properties. Nevertheless, Quante et al. demonstrated that αSMA+ fibroblasts, in a 

model of gastric cancer, were generated by a pool of self-renewing bone marrow 

mesenchymal cells 278. This cycling population was able to differentiate into 

chondrocytes, osteoblasts and adipocytes in vitro, a property used to identify MSCs. 

This suggests that a pool of bone marrow MSCs exist in the tumour microenvironment, 

whose purpose is to generate fibroblasts that aid in tumour development. However, a 

large amount of uncertainty still surrounds the true identity of marrow derived 

mesenchymal cells in the tumour microenvironment 
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 Targeting CAFs for anti-tumour therapy 
 

The tumour promoting functions of CAFs render these cells attractive therapeutic 

candidates. Therapies aiming to deplete fibroblasts from the tumour 

microenvironment, have mostly targeted these cells based on their expression of FAP. 

These include anti-FAP antibodies, which are internalised to deliver a mitotic inhibitor, 

as well as a FAP targeting immunotoxin 279,280. Other strategies aimed to induce 

immune killing of FAP+ cells, by administration of DNA vaccines or adoptive transfer 

of specific Chimeric Antigen Receptor (CAR) T-cells 281–283. Interestingly, all pre-

clinical studies showed reduced tumour growth. However, FAP expression is not 

restricted to fibroblasts at the tumour site, leading to systemic toxicity upon depletion 

of FAP+ cells 284. Indeed, most CAF markers are expressed by their normal counter 

parts in a wide variety of tissues. Thus, targeting CAFs in the TME, based on marker 

expression, is likely to have numerous side-effects. 

Other approaches have focussed on targeting the tumour promoting properties of 

CAFs or inhibiting their activation. For example, anti-fibrotic agents such as 

Pirfenidone and TGFβ antagonists, were administered to reduce CAF matrix 

production. This has promising effects, improving responses to chemotherapy and 

increasing anti-tumour immunity 183,285. Furthermore, inhibition of fibroblast activation 

in Pancreatic Ductal Adenocarcinoma (PDAC), by treatment with an agonist for the 

Vitamin D Receptor, reduced ECM deposition. This, restored a functional vasculature 

and enhanced the efficacy of gemcitabine chemotherapy 286. 

 

 CAFs are a heterogeneous population of cells 
 

Despite the emergence of CAFs as key players in tumour development, their roles are 

diverse and complex. This multifaceted nature may be explained by the existence of 

numerous CAF populations within the tumour stroma. CAFs, as well as their normal 

counter parts, are extremely heterogenous and cannot be uniformly identified by a 

single marker 287. Thus, determining fibroblast sub populations and whether they have 

specific functions in the tumour microenvironment, is a growing focus. 
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 Heterogeneity of normal fibroblasts 

 

Fibroblasts are largely characterised by their ability to adhere to plastic and distinct 

spindle morphology. However, a large volume of work in the 80’s and 90’s showed 

subpopulations could be defined based on morphology, rates of proliferation, 

presence of lipid droplets, ability to produce pro-fibrotic growth factors and cell surface 

markers 288. At the turn of the century, developments in microarray analysis enabled 

a much broader investigation of the fibroblast heterogeneity. This revealed that 

fibroblasts from different anatomical locations displayed specific transcriptional 

signatures, such as genes encoding ECM components and growth factors 289. These 

distinct expression profiles persisted in vitro, suggesting they may be cell autonomous 

289,290. In addition, fibroblast heterogeneity within the same tissue is also evident. In 

particular, dermal fibroblasts from the upper papillary and lower reticular dermis, are 

both morphologically and phenotypically distinct 291. While papillary fibroblasts are 

spindle shaped and proliferative, reticular fibroblasts display a flattened morphology, 

decreased growth kinetics and increased expression of αSMA 292,293. This suggests 

that under normal physiological conditions, these distinct fibroblasts sub-sets may 

perform specific functions to maintain tissue homeostasis. 

 

 Heterogeneity of CAFs 

 

Fibroblast heterogeneity in a malignant setting, has mostly been identified based on 

differential expression of surface markers. For example, in models of pancreatic and 

breast cancer, fibroblasts could be divided into either PDGFRβ+/ Neural Glial Antigen 

2 (NG2)+/ αSMA+, or FSP-1+ cells 294. Recently, it has become clear that differences 

between populations extend beyond marker repertoire, with reports of specific 

functional characteristics. A common theme, emerging across different models of 

cancer, is the existence of distinct immune-regulating populations. Using markers 

CD29, FSP1, FAP, αSMA, PDGFRβ and Caveolin1, to sort cells, four different CAF 

populations were identified in breast tumours. Here, one subset was uniquely able to 

induce T-reg differentiation and promote immune suppression 214. Moreover, in PDAC, 

a population defined by its low expression of αSMA, was shown to upregulate the pro-
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inflammatory cytokine IL6. An in vitro culture system, used to maintain these 

population phenotypes, revealed expression of additional factors involved in immune 

cross-talk specific to this subset 295. Outside of immune regulation, another IL6 

secreting population was identified in breast and lung cancer, where it promoted 

tumour formation and reduced the efficacy of chemotherapy 296. Furthermore, 

regulation of resistance to targeted therapies, was also attributed to a specific 

fibroblast population. Here, a Melanoma Cell Adhesion Molecule (MCAM)+ subset, 

which controlled the expression of the Oestrogen Receptor (ER), mediated tamoxifen 

resistance297. 

However, these early studies predefined populations based on marker expression, 

which may mask the true extent of heterogeneity. In the last few years advancements 

in single cell RNA sequencing (scRNAseq) have enabled vast and unbiased profiling 

of cancer associated populations. This has begun to reveal fibroblast subsets with 

unique transcriptional signatures and functional properties in lung, breast, PDAC and 

head and neck cancer 298–301. Interestingly, the key features of identified populations 

varied across tumour type, likely reflecting their unique microenvironment and intrinsic 

tissue specificity. For example, as well as the previously identified ‘immune regulating’ 

CAF population in PDAC, distinct matrix producing and antigen presenting populations 

were also observed. While a similar ‘desmoplastic’ population was present in a murine 

breast model, these tumours also contained a subset involved in ‘vasculature support’. 

By examining expression of a unique set of surface markers, this study showed that 

this population expanded at later time points.  

While the development of single cell sequencing has advanced our knowledge of 

different CAF populations, there are several limitations within the current literature. As 

fibroblasts were not the focus of many such investigations, few of these studies have 

addressed the influence of identified populations on tumour development. Although 

function is implied based on their transcriptional profile, whether they promote or 

constrain malignant growth is rarely addressed experimentally. Similarly, the 

prevalence of identified populations at different stages of tumour development has 

only been explored based on surface markers. Comprehensive transcriptional profiling 

of the fibroblast compartment across tumour development, at the single cell level, is 

yet to be performed. This would enable the examination of both the dynamics of 

fibroblast populations, as well as changes in fibroblast phenotype in individual 
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populations across time. Finally, variation in population characteristics across different 

tumour types, suggests heterogeneity is tissue specific. Thus, further sequencing is 

required to identify the unique composition of the CAF compartment in other types of 

cancer. 

 

 Heterogeneity clouds our understanding of CAF function in 

tumour development. 

 

The diverse expression of CAF markers may undermine our current understating of 

their role in tumour development. Historically, many studies have relied on single 

marker approaches to distinguish and characterise CAFs from the tumour stroma.  

Given the discovery of functionally distinct populations, these results may only pertain 

to a subset of cells and bias our perceptions of CAF function. Moreover, CAFs 

recruited from different tissues may also contribute to fibroblast diversity. For example, 

in a model of breast cancer, bone marrow derived fibroblasts formed a population 

possessing unique functional properties 302. This raises the question of whether CAF 

phenotype is predetermined by their tissue of origin or is dependent on local cues.  As 

previously discussed, transcriptional profiles of normal fibroblasts were influenced by 

anatomical location. Thus, in addition to diverse CAF sources, tissue specific 

programming of resident fibroblasts may also influence the composition of the CAF 

compartment. 

Uncovering the functional properties of different populations and unique markers for 

their identification, is critical for therapeutic targeting. This is particularly pertinent for 

therapies aiming to remove CAFs from the tumour stroma. Targeting a single marker 

may only deplete a subset of cells, which could impact the outcome of treatment. This 

is illustrated by the contrasting results of two depletion studies in murine models of 

PDAC. Here, eliminating FAP+ CAFs reduced tumour growth, while removing αSMA+ 

cells led to increased tumour invasion and reduced survival 248,303. Thus, it is critical to 

unearth the role of different populations during tumour development. Furthermore, the 

discovery of markers that identify functional subsets will improve the application of 

therapies targeting specific fibroblast properties.  
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 Malignant Melanoma 
 

Malignant melanoma is one of the most common types of cancer and is associated 

with poor clinical outcome. In 2019 melanoma represented the 3rd and 5th most 

prevalent cancer in US males and females respectively, and  its incidence is increasing 

304,305. Although diagnosis at stage 1 is associated with almost 100% chance of 

survival, this rapidly declines as the cancer progresses, leaving only a 19% chance of 

survival if diagnosed at stage 4 305. Melanoma itself is caused by aberrant growth and 

dissemination of skin melanocytes. The early stages of this disease, known as the 

radial growth phase (RGP), are characterised by proliferation of melanocytes which 

form a ‘nevus’ and loss of contact with surrounding keratinocytes 306. This is followed 

by the vertical growth phase (VGP), in which malignant melanocytes invade the 

basement membrane, before metastasising to lymph nodes, lungs, liver or brain 306,307. 

While melanoma broadly follows this pattern of growth and invasion, it also represents 

a heterogenous disease, varying in anatomic location, histological appearance and 

genetic landscape 308. 

Despite its prevalence and lethality, therapeutic options for melanoma patients are 

limited. As chemotherapy has little effect and is mostly used as a palliative treatment 

309–311, the field has largely focussed on developing therapies targeting specific 

melanoma mutations. The presence of the BRAF V600E mutation in over 50% of 

cases, lead to the development of BRAF inhibitors 312. However, within 7 months, the 

disease continued to progress in almost half of the patients treated 313, likely through 

acquired resistance 314. Although clinical trials for MEK inhibitors are ongoing in RAS 

driven melanoma, at present no targeted therapies are available for patients that lack 

BRAF mutations 310. Thus, the emergence of immunotherapies represented a 

breakthrough in melanoma treatment. Checkpoint inhibitors, such as antibodies 

targeting CTLA4 (Ipilimumab) and PD1 (Nivolumab and Pembrolizumab) have shown 

significant efficacy in this disease 144,315. However, survival rates of roughly 30% are 

still low, leaving a significant clinical unmet need. Although the combination of CTLA4 

and PD1 inhibitors has improved outcome, a large proportion of patients still do not 

respond 316. The underlying mechanisms governing patient response to 

immunotherapies in melanoma are currently unclear but likely reflect those previously 



24 
 

discussed 151. Thus, the discovery of predicative biomarkers or novel mechanisms of 

resistance, could significantly improve their effects. 

 

 The Melanoma Microenvironment 

 

The melanoma microenvironment encompasses many of the common pathological 

features of cancer, described above. To begin with, malignant melanomas produce 

melanoma specific antigens, thus, are capable of orchestrating a functional anti-

cancer immune response and contain clonally expanded T-cells 317,318. However,  

these cells often display markers of T-cell dysfunction  23, which may be induced by 

expression of immunomodulating ligands such as PDL1 and PDL2 on tumour and 

stromal cells 319. This is supported by studies showing PDL1 as a prognostic marker 

for melanoma progression 320. Immunosuppressive populations such as MDSC’s 

macrophages and T-regs, are also enriched in melanoma and may contribute towards 

loss of T-cell activity 321–324. Indeed, T-reg populations isolated from melanoma 

patients were shown to recognise melanoma antigens and possess 

immunosuppressive properties 323,324. Furthermore, a subset of MDSCs (CD14+ HLA-

DRlow) that possess a high immuno-suppressive capacity, were present in patients 

with metastatic melanoma but not their healthy counterparts 325. The presence of 

tumour infiltrating lymphocytes likely explains the success of immunotherapies for 

melanoma treatment, while the multiple mechanisms of immune regulation may 

provide additional targets to improve their efficacy. Interestingly, as well as supressing 

anti-tumour immunity, innate immune cells regulate the melanoma vasculature. TAMs 

are recruited by MCP-1, whose inhibition reduced vessel formation and growth 321,326. 

Once recruited, TAMs promote angiogenesis by secreting IL8, as well as enhancing 

VEGFA production by melanoma cells 327,328. MDSCs were also identified as a source 

of IL8 and VEGFA in the melanoma microenvironment and may play a role in vessel 

maintenance 329. 

Owing to their location at the epidermal/dermal junction, malignant melanoma cells 

likely interact with resident dermal fibroblasts. Interestingly, at early stages of 

melanoma development, dermal fibroblasts have been shown to inhibit and restrain 

tumour growth 330. As the tumour grows and develops, the fibroblast compartment 
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expands and CAFs acquire pro-tumour properties, however, the underlying 

mechanisms are poorly understood 331,332. This was demonstrated by elegant 

experiments performed in 3D collagen matrices. Here, in response to melanoma 

secreted factors, fibroblasts surrounded and invaded the primary tumour, as well 

produced ECM and soluble factors 333. Indeed, desmoplasia and ECM remodelling is 

a common feature of malignant melanoma. In particular, expression of matrix proteins 

Osteopontin, SPARC and TNC increase at later stages of tumour development and 

are prognostic markers, predicting metastasis 334–338. In addition to synthesis of matrix 

components, CAFs also promote melanoma metastasis by production of remodelling 

enzymes MMP1, MMP2 and MMP13 339–341. However, one of the most pertinent roles 

of fibroblasts in the melanoma microenvironment is their ability to promote treatment 

resistance.  Here, resistance to chemotherapy was induced by production of IL6 and 

IL8, while HGF secretion reduced the efficacy of BRAF inhibitors 332,342. 

Thus, the melanoma microenvironment represents a rich source of potential 

therapeutic targets. Furthermore, owing to their role in treatment resistance and 

immunosuppression, targeting stromal populations and innate immune cells may 

overcome resistance to current therapeutic strategies. 

 

 Melanoma Mouse Models 

 

Mouse models of melanoma are important research tools, enabling investigation of 

the processes driving malignancy and metastasis. Furthermore, they provide a 

platform to test new therapies and interrogate mechanisms of treatment resistance. 

Murine models of this disease can be classified into three main categories: syngeneic, 

genetically engineered and xenograft. 

 

 Syngeneic Models 

 

Syngeneic models are generated using murine melanoma cell lines, which are 

subcutaneously injected into the strain of mice from which they were initially isolated. 

Derived from a spontaneous murine melanoma, the B16 cell lines are one of the most 
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commonly used. These lines were generated by in vivo passaging of the parent F-0 

population and possess different metastatic potential. This describes a cyclic process 

in which cancer cells are isolated from metastatic lesions, expanded in vitro and re-

injected to form tumours. Each ‘passage’ selects cells with a higher metastatic 

potential, thus, cells from the 10th ‘passage’ (B16-F10) are potently metastatic.  343,344. 

A key advantage of this model is the ease at which it can be genetically modified, 

enabling investigations into role of specific factors during malignancy, by knocking out 

or over expression genes of interest. This can also be achieved in the host tissue, 

through implantation of tumour cells in genetically modified mice. Although similar 

studies can be performed in genetic models, it is complicated by the need to interbreed 

different strains.  

Considering the potential of immunotherapies in melanoma treatment, another 

advantage of syngeneic models is that tumours are established in immune competent 

mice. Indeed, the B16 model is commonly used to investigate methods aiming to 

enhance anti-tumour immunity, including the original CTLA4 and PD1 inhibition 

studies 345,346. However, owing to their low expression of MHCI, the ability of B16 

tumours to induce an adaptive immune response has been questioned 347,348. Despite 

these concerns,  B16 expression of melanoma associated antigens TRP2 and gp100 

is sufficient  for  T-cell recognition and activation 349. Furthermore, the success of 

immune checkpoint inhibitors in this model indicates anti-tumour immunity against B16 

cells can be induced 345,346.  

While the B16 model may be suitable for the study of melanoma associated 

inflammation and immunotherapies, it does not harbour activating mutations in the 

BRAF gene, which represents the most common mutation in human melanoma. 

Similarly, PTEN expression is frequently lost in the human disease yet was expressed 

by B16 cells 350. Such differences in the genetic landscape of this model precludes it 

from studies investigating mutational driven changes in signalling cascades, therapies 

targeting these pathways and associated resistance.  In addition, changes in 

underlying mutations could alter both cell autonomous and paracrine signalling, which 

may cause extensive differences in tumour biology. Finally, the rapid growth of B16 

tumours does not re-capitulate the human disease. This is particularly pertinent when 

studying the microenvironment, which may be affected by this stark difference in 

latency. 
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 Genetic models 

 

Many of the concerns regarding the suitability of the B16 model to study melanoma 

development and treatment, can be addressed using genetically engineered mouse 

models. A range of strains are available that encompasses different mutations found 

in the human disease, accommodating the genetic heterogeneity associated with 

melanoma. Furthermore, these models typically display longer latency than their 

syngeneic counterparts.  

Genetic manipulation of BRAF 

A metastatic model incorporating the most common mutation associated with 

melanoma, , BRAFV600E , was developed by Dankort et al 351. Using the Cre-ER 

system, under control of the tyrosinase promoter, this model enables conditional 

induction of BRAFV600E and expression of functionally null PTEN upon application of 

tamoxifen, specifically in melanocytes. Interestingly, while expression of mutated 

BRAF alone was sufficient to form benign lesions, these lesions did not progress to 

malignant melanoma. However, in combination with PTEN silencing, mice developed 

skin lesions that extensively infiltrate the dermis after 25 days. These lesions show 

histological signs of malignancy, including enlarged nuclei, prominent chromatin and 

abnormal mitosis. This reflects the human setting, in which the combination of BRAF 

and PTEN mutations correlates with progression 352,353. Furthermore, pigmented cells 

were observed in draining lymph nodes and secondary lesions were present in lungs 

of BRAFV600E PTEN -/- mice, suggesting this model accurately recapitulates the 

development of human metastatic melanoma. 

Genetic manipulation of RAS 

The second most common mutation in melanoma is NRASQ61R, leading to constitutive 

activation of NRAS. Interestingly, despite accounting for almost 80% of melanomas, 

NRAS and BRAF mutations appear to be mutually exclusive 354,355. Introduction of the 

activating NRASQ61K mutation in mouse melanocytes triggered melanoma formation. 

However, deletion of P16INK4a and P14ARF, in combination with NRAS activation, 

augmented this process and enabled metastasis 356. P16INK4 and P14ARF are 

tumour suppressor genes, inhibiting cell cycle progression through the Rb and p53 
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pathways respectively 357,358. Both genes map to the CDKN2A locus, which is also 

commonly mutated in the human melanoma 359. Although knocking out CDKN2A does 

not induce murine melanoma, deletion of this gene corporates with both NRAS and 

BRAF to promote malignancy 358,360,361.  

Overall, genetically engineered models preserve interactions and corporation between 

common melanoma mutations, such as BRAF/PTEN and RAS/CDKN2A, and provide 

a platform for further interrogation. Consequently, these models are highly suitable for 

screening of inhibitors targeting dysfunctional proteins, as well as the mechanisms of 

drug resistance 362. However, how well these models recapitulate both the immune 

and non-immune microenvironment has not been reported. In addition, differences in 

the location of mouse and human melanocytes may reduce the utility of these models 

to study metastasis. Mouse melanocytes are situated within hair follicles and in the 

dermis, while human melanocytes are found at the epidermal-dermal junction. As 

human melanoma is characterised by dermal invasion, this limits the faithfulness of 

murine models to recapitulate this process. Furthermore, position of mouse 

melanocytes protects them from UV radiation. Thus, WT mice do not develop 

melanoma upon UV exposure, a major contributor to the human disease 363. However, 

expression of the hepatocyte growth factor/scatter factor (HGF/SF) transgene has 

been shown to redistribute mouse melanocytes at the dermal-epidermal junction. This 

renders melanocytes susceptible to UV radiation and better portrays invasion and 

metastasis 364,365. 

 

 Xenograft models 

 

Variability between species has prompted the use of xenograft models in which human 

melanoma cells are grafted into immunocompromised mice. However, long term in 

vitro culture of cell lines effects their biology and physiological properties 366. To 

combat these issues, patient-derived tumour xenografts (PDTX) are now commonly 

used in pre-clinical studies. Engrafting tumours from a range of patients enables the 

development of mouse colonies which accurately recapitulates melanoma genetic 

heterogeneity 366. Indeed, these models have predicted melanoma treatment 

responses in the clinic. Thus, PDTX lines which develop in parallel with the patient’s 
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disease may be used to guide their specific therapeutic strategy 367. While PDTX 

models are useful to examine drug responses, establishing these models is difficult 

and time consuming, with a limited success rate 366. Furthermore, they are not 

receptive to genetic manipulation, limiting their use for basic research 368. However, 

most importantly, these models lack a competent immune system. Not only does this 

preclude them from studies investigating tumour immunity and immunotherapies but 

will affect soluble cues and cell signalling within the local microenvironment.  

Overall, the heterogenous nature of human melanoma will never be recapitulated by 

a single mouse model. Indeed, each model has a unique set of advantages and 

disadvantages that render them suitable for investigating particular aspects of 

melanoma biology. 

 

 Project Aims 
 

Hypothesis: Functionally distinct CAF populations are present in malignant 

melanoma, change as the tumour develops and influence tumour progression. 

 

In the struggle to improve melanoma therapies, CAFs represent a wealth of potential 

targets. Furthermore, CAFs closely interact with immune populations and were shown 

to be involved in resistance to immunotherapies 248. Thus, studying CAF function 

during melanoma development may uncover novel therapeutic targets, as well as the 

mechanisms underlying response to checkpoint inhibitors. However, as previously 

discussed, fibroblasts are a heterogenous population, in which different subsets 

possess unique functions and express an array of markers. Furthermore, while some 

phenotypes are conserved, CAF populations fluctuate across different cancer types. 

Currently, the composition of subsets that make up the fibroblast compartment in 

melanoma has not been investigated. Therefore, delineation of fibroblast 

heterogeneity is vital to elucidate their contribution to malignant growth.  

In addition, there has been limited investigation into the development of CAF 

phenotypes across tumour evolution. This is particularly interesting, as discussed 

earlier, evidence shows that normal dermal fibroblasts actively inhibit tumour growth 
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189,369. Thus, it is important to understand the mechanisms leading to the acquisition 

of a pro-tumour phenotype. Stromal cells must adapt to the environmental pressures 

of the growing malignant compartment. For example, factors such as nutrient 

deprivation, hypoxia and fibrosis all arise as the tumour evolves. Differential exposure 

to these factors over the course of tumour development, in combination with changes 

in tumour cell signalling, may impact CAF phenotype and function.  As mentioned 

above, the impact of this unstable environment on individual CAF populations remains 

to be explored at the transcriptional level.  

Thus, the overall aim of this project was to identify CAF sub-sets and elucidate their 

roles in melanoma development. The caveats of conventional techniques, such as IF 

and flow cytometry, were experienced first-hand upon initial exploration of CAF 

heterogeneity in murine models. These approaches lacked the resolution to uncover 

the true extend of fibroblast diversity and introduced marker-based bias. Thus, a 

‘negative selection’ approach was combined with scRNAseq technology, to profile the 

CAF compartment of B16-F10 melanoma at high resolution. This was initially tested 

on a single time point, to ensure unique CAF populations could be identified and their 

transcriptional signatures could be validated. This method was then applied to 

sequence CAFs from different stages of tumour development. Thus, for the first time, 

this project provides fibroblast transcriptomics, at single cell resolution, across time. 

Our results revealed functionally and temporally distinct populations. Finally, the 

impact of these subsets on malignant growth, their conservation in other cancer types 

and translation to human tumours were investigated. 
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 Mouse Models 
 

Animals were housed in accordance with UK regulations and experiments were 

performed under project licence 80/2574 and P8837835. Tumour induction, culling 

and sample collection was carried out by myself or other members of the Shields lab. 

Intraperitoneal (IP) dosing of drugs, intravenous (IV) transfusions, tail vein bleeds, 

irradiation and tumour measurements were performed by animal Technicians at the 

Ares facility (Babraham, Cambridge). 

 

 B16-F10 injectable model 

 

C57BL/6 derived B16-F10 melanoma cells were purchased from American Type 

Culture Collection (ATCC) and cultured in Dulbecco’s Modified Eagle medium (DMEM, 

Life Technologies), supplemented with 4.5 g/L of glucose and glutamine, pyruvate, 1% 

Penstrep and 10% Foetal Bovine Serum (FBS). mCherry expression was induced by 

Dr. Angela Reidel and selection was maintained by adding 8μg/ml of blasticidin to the 

media. 2.5x105 B16-F10 melanoma cells in 50µl of Phosphate-Buffered Saline (PBS) 

were subcutaneously injected into the mouse shoulder. Sham controls were created 

by injecting 50µl of PBS using the same method. Animals were sacrificed at various 

time points.  

 

 BRAFV600E PTEN-/- model 

 

The inducible melanoma model C57BL/6 B6.Cg-Braftm1Mmcm Ptentm1Hwu Tg(Tyr-

cre/ERT2)13Bos/BosJ (BRAFV600E PTEN-/-) was purchased from Jackson laboratories. 

For time course experiments, 25mg/ml 4-Hydroxy Tamoxifen (4-HT) (Sigma) was 

applied to the mouse shoulder and tumours were collected at 11, 14 and 24 days post 

induction. However, carrier mice also develop spontaneous tumours, which were also 

isolated and analysed.  
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 E0771 orthotopic breast model 

 

The C57BL/6 E0771 breast cancer cell line were purchased from CH3 BioSystems 

and cultured in RPMI 1640 (Sigma), supplemented with 1% Penstrep, 10% FBS and 

10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Gibco). 2.5 x105 

cells in 50µl of PBS were injected into the 4th inguinal mammary fat pad of C57BL/6 

mice. Again, sham controls were created by injecting 50µl of PBS into fat pads. 

Tumours were collected after 8 and 16 days of tumour development and the fat pad 

was collected from non-tumour bearing mice. 

 

 Bone marrow chimeras 

 

The bone marrow of Wilde Type (WT) C57BL/6 mice was depleted by exposing mice 

to two doses of 5 Gray radiation. Bone marrow was harvested from the femurs and 

tibias of CAG-EGFP mice, in which GFP is ubiquitously expressed. Here, muscle and 

flesh were removed, and bones were flushed with PBS using a 25 gage needle to 

extract marrow. 20x105 GFP+ bone marrow cells were injected IV into WT irradiated 

mice. After 1 month, blood from chimeric mice was tested for bone marrow 

reconstitution. Once reconstituted, B16-F10 melanoma cells were injected according 

to section 2.1.1. 

 

 KPC model of PDAC  

 

PDAC tumours from the LSL-KrasG12D/+;LSL-Trp53R172H/+; Pdx-1-Cre (KPC) were 

donated by Dr. Tobias Janowitz (CRUK Cambridge institute department of Oncology). 

Tumours were cut in half and either processed for flow cytometry (section 2.2 and 2.3) 

or snap frozen for histology (Section 2.4). For flow cytometry experiments pancreatic 

tissue from non-carriers was used as a control. However, not enough tissue was 

available for histology, thus, the pancreases from WT C57BL/6 mice was isolated and 

used instead. 
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 Tissue Processing 
 

All tumours were mechanically dissociated and digested in 1mg/ml collagenase D 

(Roche), 1mg/ml collagenase A (Roche) and 0.4mg/ml DNase (Roche) in PBS, at 

37OC. B16-F10 and E0771 tumours were digested for 1.5-2hs, whereas the more 

fibrotic PDAC and BRAFV600E PTEN-/- tumours were digested for 3hs. Brachial lymph 

nodes were isolated, mechanically dissociated and digested with collagenases. Here, 

1mg/ml collagenase A (Roche) and 0.4mg/ml DNase in PBS, were added for 30 mins 

at 37OC, followed by Collagenase D (final concentration of 1mg/ml) for a further 30 

mins. Ethylenediaminetetraacetic acid (EDTA) was added to all samples to neutralise 

collagenase activity (final concentration of 5mM) and digested tissues were passed 

through 70μm filters (Flacon) ready for staining. Blood samples were incubated using 

5ml of red blood cell lysis buffer (150mM NH4Cl, 1mM KHCO3, 0.1mM EDTA in dH2O) 

at RT for 5mins. This was neutralised using 45ml of PBS and centrifuged at 300g for 

5 mins to remove debris. 

 

 Flow cytometry 
 

Samples were incubated with a Live Dead fixable fluorescent viability stain (Life 

Technologies) for 20mins, diluted 1:1000 in PBS, to label dead cells. Fluorescently 

conjugated primary antibodies were diluted in FACS Buffer (0.5% Bovine Serum 

Albumin (BSA) in PBS)) according to Table 1 and incubated with cells for 20mins at 

4oC. If analysing immune cell populations, surface antibodies were diluted in a 50/50 

mix of FACS buffer and 2.4G2 FC Blocker (hybridoma supernatant generated in-

house). Fluorescently conjugated secondary antibodies and streptavidin were diluted 

1:300 in FACS buffer and added with primary antibodies or in a further 30min 

secondary step. If required, cells were fixed and permeabilized, for 1h at RT, using the 

FOXP3 permeabilization kit (Biolegend) according to manufactures instructions. 

Antibodies against intracellular targets were diluted in 1x perm buffer (FOXP3 

permeabilization kit) for a further 30mins. Samples were run on the BD LSR III 

Fortessa system and analysed using FlowJo Version 10. 
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Target Conjugation Species Company Clone Dilution 

CAF markers 

PDPN PE, APC Syrian 
Hamster  

Biolegend 8.1.1 1:300 

PDPN Biotin Goat R&D 
Systems 

8.1.1 1:100 

FAP Purified Sheep R&D 
Systems 

polyclonal  

 
1:50 

αSMA 488, eFluor570 Mouse Thermo 
Fisher 

1A4 1:200 

PDGFRα Biotin, PE, PECy7 Rat Biolegend APA5 1:300 

PDGFRβ Biotin Rat Biolegend APB5 1:300 

Thy1 Purified Rat eBioscience G7 1:100 

Thy1  APCCy7 Rat Biolegend 30-H12 
  

1:300 

CD34 APC Armenian 
Hamster 

Biolegend MEC 
14.7 

1:200 

CD34 660 Rat Biolegend RAM34 1:300 

Immune markers 

CD45  BV785, FITC, 
APCCy7 

Rat Biolegend 30-F11 1:300 

CD31  PE-Cy7 Rat eBioscience 390 1:300 

CD31  Biotin Rat eBioscience MEC13-
.3 

1:300 

CD3e  488, PE Armenian 
Hamster 

Biolegend 145-2C1 1:300 

NK1.1  PE Mouse Biolegend PK136 1:300 

CD4  PE-Cy7 Rat eBioscience GK1.5 1:300 

CD8a  BV785, 780, PE Rat eBioscience 53-6.7 1:300 
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FOXP3  PerCp Cy5.5 Rat eBioscience FJK-16 1:300 

Lag3  Biotin Rat Biolegend C9B7W 1:300 

PDL1  PE-Cy7, APC Rat Biolegend 10F.9G2 1:300 

PD1  APC Rat Biolegend RMP1-
30 

1:300 

IL-7Ra APC Rat Biolegend A7R34 1:300 

B220  488 Rat Biolegend RA3-
6B2 

1:300 

CD11b  647, PECy7 Rat Biolegend M1/70 1:300 

CD11c  PE-Cy7 Armenian 
Hamster 

Biolegend N418 1:300 

Ly6C  FITC Rat BD 
Pharmogen 

AL-21 1:300 

Ly6G  PE-Cy7 Rat Biolegend 1A8 1:300 

F4/80  FITC, APC-
eFluor780 

Rat eBioscience BM8 1:300 

ARG1 APC Rat eBioscience A1exF5 1:300 

Other 

Ki67 PECY7 Rat Biolegend 16A8 1:100 

CXCL12  PE Mouse R&D 
Systems 

MAB350 1:100 

C3 PE Rat Novus 11H9 1:750 

 

Table 1 Antibodies used in flow cytometry 
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 Detection of intracellular cytokines by flow cytometry 

 

To detect intracellular cytokines Brefeldin-A (BFA, Biolegend) was added to the tissue 

digestion mix (1:1000). After processing to a single cell suspension, samples were 

further incubated with BFA in media (1:1000 in DMEM 10% FBS) at 37oC. Samples 

were incubated with BFA for a total time of 4hs yet the length of digestion and media 

incubation varied depending on the tissue digested. 

 

 Analysis of flow cytometry data by SPADE analysis 

 

Spanning-tree progression analysis of density-normalised events (SPADE)370,371 was 

performed using the cytobank online tool (www.cytobank.org). Trees were generated 

using flow cytometry data, in which doublets, dead, immune (CD45+) and endothelial 

(CD31+) cells were removed. Samples were down-sampled by 10% and 100 nodes 

were specified for each tree. Clustering was performed on CAF markers PDPN, FAP, 

Thy1 and PDGFRα. A more detailed description of SPADE analysis can be found in 

(section 3.2.1.3). 

 

 Immunofluorescence 
 

Tissues were embedded in Optimal Cutting Temperature (OCT) medium (VWR), snap 

frozen on dry ice and stored at -80oC. 10µm sections were cut using the Leica cryostat 

CM1900. Sections were air dried and fixed in either acetone (Fluka)/ methanol (Fisher) 

(1:1) at -20oC for 2mins, or 4% PFA at RT for 10 mins. PFA fixation was followed by 

permeabilization using PBS 0.2% Triton-X (Fisher) for 10 mins at RT. Sections were 

blocked using 10% chicken serum 2% BSA in PBS (Blocking Buffer) for 1h at RT. 

Primary antibodies were diluted in blocking buffer according to Table 2 and added to 

sections overnight at 4oC. After washing 3x 5mins in PBS 0.1% Tween, sections were 

incubated with secondary antibodies or fluorescently labelled streptavidin, diluted 

1:300 in blocking buffer, for 1-2hs at RT. To visualise FAP staining, an extra 

amplification step was required. Here, samples were incubated with a biotin labelled 
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anti-sheep antibody (Novex, diluted 1:100), after application of primary antibodies. 

This was detected by addition of fluorescently labelled streptavidin (diluted 1:100).  

Sections were washed 3x 5 mins in PBS 0.1% tween and 1µg/ml of 4',6-diamidino-2-

phenylindole (DAPI) was added for 10mins to visualise the nucleus. Slides were 

mounted using liquid mountant ProLong Gold (Thermo) and sealed with nail varnish. 

High power 63x imaging was performed using the Zeiss 880 confocal microscope. To 

visualise larger regions or ECM components tile scans, in which consecutive images 

are stitched together, or tiled z-stacks were used respectively. Whole sections were 

imaged at 20x using either the Zeiss 880 or Zeiss Axioscan-z1 systems. All images 

were processed using Zen lite or Zen black software. 

 

Target Species Company Clone Dilution 

PDPN Syrian 

Hamster 

Biolegend 8.1.1 1:100 

αSMA Rabbit abcam Polyclonal 1:50 

FAP Sheep R&D Systems Polyclonal 1:20 

PDGFRα Goat R&D Systems Polyclonal 1:50 

Thy1 Rat/Biotin Abcam G7 1:100 

CD34 Rat eBioscience RAM34 1:50 

CD34 488 Rat eBioscience RAM34 1:20 

F4/80 Rat AbDserotech A3-1 1:100 

F4/80 488 Rat AbDserotech A3-1 1:20 

CXCR4 Rat R & D Systems 247506 1:50 
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CSFR1 Sheep R & D Systems Polyclonal 1:50 

CXCL12 PE Mouse R & D Systems MAB350 1:50 

CSF1 Rabbit ABGENT Polyclonal 1:50 

NG2 Rabbit abcam Polyclonal 1:50 

CD31 Rat Biolegend MEC13.3 1:100 

C3aR Rabbit Invitrogen Polyclonal 1:25 

Ly6C APC Rat BD Pharmogen AL-21 1:20 

CD11b biotin Rat Biolegend M1/70 1:100 

GLUT1 Rabbit Abcam EPR3915 1:100 

LDHA Rabbit Abcam Polyclonal 1:100 

HIF1α Rabbit Abcam EPR1687 1:30 

CA9 Goat R & D Systems AF2344 1:100 

Collagen-1 Rabbit AbD Serotec Polyclonal 1:100 

Periostin Rabbit Novus Polyclonal 1:100 

Tenacin-C Rat R & D Systems 578 1:100 

TRP2 Goat Santa Cruz D-18 1:100 

 

Table 2 Antibodies used in IF imaging 
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 In vivo assays 
 

 EdU Histology 

 

B16 melanomas were established in WT C57BL/6 mice, according to section 2.1.1. IP 

injections of 500g/ml of 5-ethynyl-2´-deoxyuridine (EdU, Thermo) were performed 

every 24hs for the 4 days prior to culling. Tumours were collected after 11 days and 

snap frozen in OCT medium and sectioned according to section (2.4). Sections were 

fixed at -20oC, in a mixture of acetone and methanol (50:50). After fixation, the EdU 

Click-it Alexa Fluor 647 imaging kit (Invitrogen) was used to visualise incorporated 

EdU. The Click-it reaction cocktail was made according to  

 

Table 3 and incubated with sections for 30 mins RT. After washing with PBS (3x 

5mins), sections were blocked and immuno stained as described in (section 2.4) 

 

 

 

 

 

 

Table 3 Click-iT reaction cocktail for histology 

Volumes of components added to the Click-iT reaction cocktail used for histology. All 
components were added in the order given and the cocktail was used within 15 mins.*10x 
Click-iT reaction buffer stock solution was made by diluting reaction buffer 1:10 in dH20. This 
was further diluted 1:10 in dH20 to make a 1x working solution. 

 

 EdU Flow cytometry 

 

B16-F10 melanomas were established as previously described and IP injections of 

500g/ml of EdU (Thermo) were performed every 24hs for the 2 days prior to culling. 

Reaction components Volumes added 

1X Click-iT reaction buffer * 860 µL 

CuSO4 40 µL 

Alexa Fluor azide 2.5 µL 

Reaction buffer additive 100 µL 

Total volume 1ml 
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Tumours were collected at day 5 and day 11 and skin was collected from non-tumour 

bearing mice. Tumours were processed according to section 2.2 and incubated with a 

viability dye and stained for surface markers as described in section 2.3. As PE and 

PECy7 fluorophores are quenched by the Click-iT reaction, antibodies conjugated to 

these colours were only used after this step was performed. Cells were fixed with 4% 

PFA for 15 mins at RT, followed by permeabilization with saponin buffer (EdU flow 

cytometry kit, Invitrogen) for a further 15 mins. Saponin buffer was diluted 1:10 in dH20 

from the stock solution provided. Samples were then incubated with the Click-iT 

cocktail using reagents from the EdU Click-iT Alexa Fluor 488 imaging kit (Invitrogen) 

made according to Table 4, for 30 mins at RT. After washing with Saponin buffer, 

antibodies against intracellular targets were added, diluted according to Table 1 in 

FACs buffer. 

 

 

 

 

 

Table 4 Click-iT reaction cocktail for flow cytometry 

All components were added in the order given and the cocktail was used within 15 mins.*10x 
Click-iT reaction buffer stock solution was made by diluting reaction buffer 1:10 in dH20. This 
was further diluted 1:10 in dH20 to make a 1x working solution. 

 

 C3a and C3aR inhibition 

 

B16-F10 melanomas were established in WT C57BL/6 mice as described in section 

2.1.1 and allowed to develop for 5 days before treatment. For C3a neutralisation, mice 

were treated with 10μg/ml anti-C3a (HyCult Biotech, clone: 3/11) or IgG2a control 

(BioXCell, clone 2A3) in 200µl of PBS. To inhibit C3aR signalling, mice were treated 

with 100μg of the small molecule SB290157 (Sigma) diluted in 200µl of PBS 5% 

Dimethyl Sulfoxide (DMSO) or vehicle control. Inhibitors were injected IP at day 5, day 

7 and day 9. Mice were sacrificed either 24hs after the first injection (day 6) or at day 

11 and tumours were isolated. Blood was collected at both time points by cardiac 

Reaction components Volumes added 

PBS 860 µL 

CuSO4 40 µL 

Alexa Fluor azide 2.5 µL 

Reaction buffer additive 100 µL 

Total volume 1ml 



42 
 

puncture and stored in capped EDTA tubes. A second time course was performed 

using the antagonist SB290157 in which mice were treated at either day 4 and day 6 

or day 8 and day 10. Tumours were allowed to develop until day 11, at which time 

mice were sacrificed and samples collected. Tumour volumes were taken daily and 

calculated using the formula (π/6)(shortest length*longest length)2. Data points from 

all animals were included unless tumours failed to form following technical issues with 

injection of cells. 

 

 Isolating CAF populations from B16-F10 melanoma for in vitro 
culture 

 

To isolate CAF populations B16-F10 tumours were established in B6.FVB-

Tg(Acta2-DsRed)1Rkl/J mice (aSMA-DsRed, Jackson Laboratories), according to 

section 2.1.1. Tumours were processed according to section 2.2 and stained with a 

viability dye and primary antibodies as previously described. Immune and endothelial 

cells were excluded based on CD45 and CD31 expression and CAFs were selected 

based on combined expression of Thy1, PDGFRα and PDGFRβ. CAFs were identified 

based on CD34 and αSMA expression and isolated by FACS using the BD influx flow 

cytometry system. Roughly 20,000 cells per population were collected in RPMI 1640 

media (10% FBS and 1% Penstrep) and were plated in a 24 well plate. Media was 

changed every 2 days and cells were split once 70% confluent. To assess expression 

αSMA throughout in vitro culture, images were taken using the Evos fluorescent 

microscope system at 10X. After 2 weeks, CAF composition was evaluated by flow 

cytometry. Here cells were dissociated from plastic by incubation for 10 mins with 

accutase (Biolegend) at 37oC and stained according to section 2.3. 

 

 Statistical analysis 
 

To evaluate statistical significance between two samples a T-test was performed. For 

multiple comparisons, a one way or two way ANOVA was employed with a Tukey post-

hoc test. The Sidak post-hoc test was also used when analysing two way ANOVAs,  

depending on the number of conditions in each group. All analysis was performed 
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using GraphPad Prism 7.0. P values < 0.05 were considered significant, giving a 95% 

confidence level. 

 

 Single cell RNA sequencing 
 

 Isolating stromal cells 

 

WT or mCherry+ B16-F10 melanoma cells were injected into CAG-EGFP mice. Mice 

were sacrificed 5, 8 and 11 days post injection and tumours and lymph nodes were 

collected. In addition, skin samples were collected from non-tumour bearing mice. 

Tissues were processed as described in section 2.2 and samples were incubated with 

a viability stain and primary antibodies according to section 2.3. Cells were index 

sorted using the BD influx flow cytometer system, excluding GFP- tumour cells and 

CD45+ immune cells. Stromal populations were divided into CD31+ endothelial cells or 

CD31- fibroblasts. These cells were sorted into a 96 well plate containing 2μl of Lysis 

Buffer (1:20 solution of RNase Inhibitor, Clontech in 0.2% Triton X-100, Sigma) and 

frozen at -80 degrees. 

 

 Isolating immune cells 

 

WT B16-F10 melanoma cells were injected into WT C57BL/6 mice and sacrificed after 

5, 8 and 11 days. Tumours and lymph nodes were collected, processed and stained 

as previously described. Similar to stromal cells, cells were index sorted using the BD 

influx flow cytometer directly into Lysis Buffer. Immune cells were selected using CD45 

and separated into different populations based on expression of CD3e, CD4, CD8, 

CD11b, CD11c and B220. 

 

 cDNA preparation and sequencing 

 

Reverse transcription (RT) and cDNA pre-amplification were performed according to 

the SmartSeq2 protocol 372. Oligo-dT primers, dNTPs (Thermo) and external RNA 

control consortium (ERCC) RNA Spike-Ins (final dilution 1:50,000,000, Ambion) were 
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added to lysates. Primers were then annealed to poly(A) tails, capturing mRNA 

transcripts. RT transcription and template switching PCR was performed to create 

single strand cDNA copies of the original transcript, followed by PCR amplification 

using 50U of SMARTScribe™ Reverse Transcriptase (Clontech). PCR purification 

using AMPure XP beads (Beckman Coulter) and tagmentation using Nextera XT DNA 

Sample Preparation Kit (Illumina), were performed by Sanger-EBI core facilities. cDNA 

libraries were sequenced using the Illumina HiSeq 2500 with an average depth of 1 

Million reads/cell (paired-end 100-bp reads).  

 

 Bioinformatic analysis 
 

 Alignment and quality control 

 

 Pilot study (3.2.2) 

 

Alignment and quantification was performed Dr. Gozde Kar (Teichmann Lab). For 

each cell, reads were aligned using Genomic Short-read Nucleotide Alignment 

Program (GSNAP) with default parameters. Mapped reads were counted using htseq-

count (http://www-huber.embl.de/users/anders/HTSeq/) and normalized with size 

factors using the R package DEseq2. Cells were excluded if less than 100,000 

mapped reads were detected or mitochondrial (mt) expression was >5%. Genes were 

also removed if expressed in < 3 cells. 

 

 Time course (4.2.1) 

 

For these studies alignment and quality control was performed by Dr. Mirjana 

Efermova (Teichmann Lab). Briefly, data was quantified using Salmon64 (version 

0.8.2), to generate Transcript Per Million (TPM) values. ERCC spike ins were removed 

and TPM values were scaled so that the total number summed one million. Cells with 

less than 1500 detected genes and greater than 20% mitochondrial genes were 

excluded, as well as genes that were expressed in less than 3 cells. 
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 Analysis with Seurat 

 

Downstream analysis was performed using Seurat (version 2.3.4) 361.  Data was log 

transformed and scaled using the ‘ScaleData’ function. Variable genes were 

calculated using the ‘FindVariableGenes’ function and used for principal component 

analysis (PCA). For each data set the most significant principle components (PCs) 

were selected using the a PCElbow which compares the standard deviation of all PCs. 

Clusters were assigned using the ‘FindClusters’ function, which was performed using 

significant PCs. The same PCs were used in tSNE analysis and clusters were 

projected onto tSNE plots. Differentially expressed genes (DE genes) were generated 

using the ‘FindMarkers’ function based on the Wilcoxon rank sum test. Genes 

expressed in <10% of cells in a cluster, or with a pvalue of >0.05 were excluded. 

Populations were subsetted using ‘SubsetData’, re-scaled and variable genes were 

re-calculated. Subsequent analysis was performed as described above. Cell cycle 

phase induced a large amount of variability in T cell subsets. Thus, this was regressed 

out during data scaling, based on cell cycle scores produced by cyclone (section 

2.9.4). 

 

 Gene Ontology analysis 

 

Gene Ontology (GO) terms relating to each cluster were calculated using gProfileR. 

Significantly upregulated genes (pvalue < 0.05) for each population were matched to 

the Kyoto Encyclopaedia of Genes and Genomes (KEGG) terms, using moderate 

hierarchical filtering. 

 

 Cell Cycle analysis 

 

Cell cycle phase was assigned using the R package Cyclone 373. This package uses 

a training data set, in which the cell cycle phase is known, to generate a list of marker 

pairs for each phase. Marker genes pairs for a specific phase are determined by higher 
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expression of the first gene compared to than the second. This first gene must, 

however, be lower than the second in all other phases. These marker pairs are tested 

on the new data set and the proportion of markers for which the above is true are 

calculated. This generates a score for each stage across all cells, which are used to 

assign a phase. 

 

 Pseudo-time 

 

Pseudo-time analysis was performed using the R package Destiny 374,375 and diffusion 

maps were created using significant PCs calculated in section 2.9.2. Diffusion Pseudo-

Time (DPT) probabilities were computed for all cells using the ‘DPT’ function.  DPT 

probabilities for the first or ‘tip’ cell, in the diffusion map, were ordered to create a 

trajectory and superimposed. A more detailed description of destiny and DPT can be 

found in section (0). 

 

 Publicly available data 

 

Publicly available data sets were downloaded from Gene Expression Omnibus (GEO) 

using the accession numbers listed in Table 5. Raw counts were used to analyse bulk 

RNA sequencing data and differentially expressed genes were calculated using 

DeSeq2. However, heatmaps were generated using normalised Fragment Per 

Kilobase of transcripts per Million (FPKM), provided in GEO. Single cell data was 

analysed as described above. 

 
Cancer type Data Type Species/model GEO accession no. 

Breast ScRNAseq Mouse/ MMTV-PyMT GSE81954 

PDAC Bulk RNASeq Mouse/ KPC GSE42605 

PDAC ScRNASeq Mouse/ KPC GSE129455 

Melanoma ScRNASeq Human GSE72056 

Head and Neck Cancer ScRNASeq Human GSE103322 

Colorectal cancer ScRNASeq Human GSE81861 

 
Table 5 Publicly available data analysed 

 



47 
 

 

 

 

 

 

 

 

 

 

  

Devising an approach to investigate CAF 

heterogeneity 
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 Introduction 
 

Delineating CAF heterogeneity is critical to elucidating the mechanisms by which they 

contribute to tumour development. However, as previously discussed, the extent of 

fibroblast diversity in melanoma remains unclear. Thus, this chapter aimed to develop 

an approach to uncover the composition of the fibroblast compartment in two murine 

models of melanoma. Initially, conventional methods such as confocal imaging and 

flow cytometry were utilised, revealing divergent expression of typical CAF markers. 

Furthermore, the novel clustering algorithm SPADE was employed to visualise multi-

dimensional flow cytometry data. The combination of IF, flow cytometry and SPADE 

enabled profiling of CAF populations across development of BRAFV600E PTEN-/- 

tumours.  

In addition, this chapter describes the application of scRNAseq technology to 

investigate fibroblasts isolated from B16-F10 melanoma, using a negative selection 

approach. This system uncovered distinct transcriptional differences between CAF 

populations, which were validated in vivo. Furthermore, these results highlighted the 

influence of compartmentalised environmental factors on CAF phenotype. The 

proficiency and constraints of both conventional and non-conventional approaches to 

identify and characterise CAF populations are discussed.  
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 Results 
 

 Exploring CAF heterogeneity in the BRAFV600E PTEN -/-

melanoma model 

 

To begin exploring the extent of CAF heterogeneity in melanoma, we first profiled the 

fibroblast compartment of the BRAFV600E PTEN-/- murine model using conventional 

approaches, such as imaging and flow cytometry 351.  As previously discussed, this 

model accurately recapitulates the development of human metastatic melanoma and 

is a valuable tool to explore the evolution of the CAF compartment, from early lesions 

to advanced tumours. We collected tumours after 11 and 24 days, post 4-HT induction 

(performed by Dr. Angela Riedel), as well as skin from induced non-carriers (NC). In 

addition, a proportion of these transgenic mice develop spontaneous tumours, a 

phenomenon previously described 376. These tumours were reported to harbour 

BRAFV600E mutations and PTEN loss, indicating that their development may be 

driven by ‘leaky’ Cre-activity. Thus, spontaneous tumours were also collected and 

analysed. 

 

 Extensive fibroblast compartments expand as the tumours develop 

 

To characterise the CAF compartment across tumour development, we initially 

examined expression of 4 typical markers, PDPN, FAP, THY1 and PDGFRα, by flow 

cytometry and IF staining. Histological analysis revealed BRAFV600E PTEN-/- tumours 

were fibrotic and fibroblast rich. At day 11, epidermis was significantly thickened, and 

small lesions present. Although PDPN could be detected outside of normal lymphatic 

staining in these early lesions, together with FAP and THY1, the fibroblast 

compartment became dramatically more fibrotic by day 24 (Fig.  3.1 and Fig.  3.2). 

The greatest fibroblast content was observed in spontaneous tumours, which also 

displayed a large fibrillar network of collagen. Thus, it appears that CAFs constitute a 

significant stromal population in this model, which expands in parallel with malignant 

cells. Staining with just 4 CAF markers was sufficient to reveal significant 
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heterogeneity (Fig.  3.3). Both PDPN+FAP+(Fig 3a), PDPN+ THY1+ (Fig 3b) and single 

labelled cells were observed. However, using IF limited the number of markers that 

could be examined in tandem, making it difficult to resolve specific populations. Thus, 

flow cytometry was used to examine expression of all 4 markers simultaneously at the 

single cell level.  
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Fig.  3.1 Confocal imaging of CAF markers in BRAFV600EPTEN-/- at different stages of 
tumour development 
 
20x tile scans of 4-HT treated skin from Non-Carriers, induced tumours collected at day 11 
and day 24, as well as spontaneous tumours. Sections were stained for PDPN (green), FAP 
(red), Collagen-1 (grey) and DAPI (blue). Images are representative of n=2 tumours/time 

point. 
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Fig.  3.2 Confocal imaging of CAF markers in BRAFV600EPTEN-/- at different stages of 
tumour development 
 
20x tile scans of 4-HT treated skin from Non-Carriers, induced tumours collected at day 11 
and day 24, as well as spontaneous tumours. Sections were stained for PDPN (green), THY1 
(red), and DAPI (blue). Images are representative of n=2 tumours/time point. 
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Fig.  3.3 Expression of CAF markers within BRAFV600EPTEN-/- tumours is 
heterogeneous 
 

Representative confocal tile scans of spontaneous tumours showing heterogeneous 
populations of fibroblasts in the tumour microenvironment. Single positive PDPN (green) or 
FAP (red) fibroblasts are present, as well as cells expressing both markers (A). Similarly, 
PDPN (green) and THY1 (red) single positive and double positive cells were observed (B). 
Regions of interest are shown inset and scale is indicated. 
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 Flow cytometry revealed further CAF heterogeneity 

 

To remove immune and endothelial cells from our analysis, we examined populations 

that were CD45 and CD31 negative respectively (Fig.  3.4 A). However, we lacked a 

robust tumour cell marker for this system and were unable to exclude these cells from 

this data. Nevertheless, expression of CAF markers investigated (FAP, THY1, PDPN 

and PDGFRα) are rarely seen in the malignant melanoma compartment, thus, positive 

cells likely represent fibroblasts. Consistent with IF imaging, CAF marker expression, 

determined by flow cytometry, was heterogenous. Within populations gated on each 

of the fibroblast marker tested, positive and negative subsets of other markers were 

observed (Fig.  3.4 B). However, as only two markers at a time could be compared 

using conventional plots, extrapolation of different populations remained challenging. 

Thus, we explored alternative methods to analyse this data. 
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Fig.  3.4 Flow cytometry reveals heterogeneous expression of CAF markers 

(A) Gating strategy, removing doublets, dead cells, CD45+ (immune) and CD31+ (endothelial) 
cells. Within the CD45-/CD31- fraction of the tumour CAFs were gated on individual expression 
of PDPN, FAP, THY1 or PDGFRα. (B) Shows expression of PDPN, FAP, THY1 and PDGFRα 
within populations selected to be either PDPN+, FAP+, THY1+ or PDGFRα+. Plots represent 1 
of 5 tumours. 
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 SPADE analysis of flow cytometry data 

 

One method to visualise multi-dimensional flow cytometry samples is the algorithm 

SPADE, which clusters cells into tree-like structures based on marker expression. 

Initially, SPADE organises cells into a cloud, whose dimensions are defined by 

combined expression of selected markers. Dense regions of this cloud correspond to 

large populations and are ‘down-sampled’, preventing masking of rare subsets. The 

down-sampled data is then clustered into a set number of groups or ‘nodes’. Here, 

each cell is partnered with its nearest neighbour. The process is then repeated to 

group these pairs with similar pairs, continuing until the number of nodes reaches a 

predetermined limit. 

These nodes are then arranged into a tree-like structure, where similar nodes are 

grouped together. Once the tree has been constructed, the data is ‘up-sampled’, which 

involves allocating each cell from the original data to a specific node. The size of the 

node is changed, relative to the number of cells that it represents. Trees can then be 

coloured based on the expression of a specific marker of interest, making it easy to 

visualise nodes that strongly express a particular protein 370,371. This enabled us to 

look at the expression and abundance of all CAF markers tested simultaneously, 

something that could not be achieved by conventional analysis. 

 

 SPADE analysis shows two distinct populations of CAFs are present 

within the BRAF tumours 

 

To test the SPADE algorithm, we applied it to flow cytometry data collected from 

spontaneous BRAFV600E PTEN-/- tumours from two different mice. SPADE analysis 

was performed on CD31- CD45- cells and samples were clustered based on 

expression of PDPN, FAP, THY1 and PDGFRα. The size of each node is proportional 

to the number of cells it represents, i.e. the bigger the node, the bigger the population. 

Trees were coloured based on the percentage of cells each node contains, as well as 

the expression of each individual CAF marker. To compare the distribution of markers, 

nodes positive for each protein have been highlighted and overlaid on trees that are 

coloured by percent total (Fig.  3.5).  
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A large proportion of the trees did not express any of CAF markers tested (denoted by 

blue nodes), most likely representing the tumour cells themselves. Similar to our 

previous findings, expression of CAF markers overlapped, yet also displayed unique 

expression patterns.  Two distinct populations were observed; the first expressed all 

four markers, while the second only expressed PDPN and FAP. Furthermore, smaller 

populations, that express a single marker, or a combination of two or three markers 

e.g. THY1 and PDGFRα, were also present. However, these were not consistent, with 

the size and marker combination of sub-populations differing between the two animals.  
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Fig.  3.5 Visualising CAF populations using SPADE in mouse 1 

SPADE analysis performed on FACS data from 3 BRAFV600EPTEN-/- spontaneous tumours 
from a single mouse. Cells were gated to exclude doublets, dead and CD45+/CD31+ cells. 
SPADE clustering was performed on remaining cells, based on expression of PDPN, FAP, 
THY1 and PDGFRα. A single spade tree was produced, where each node represents a cluster 
of cells which share similar expression profiles for the four CAF markers. The size of the node 
is proportional to the number of cells it represents. (A) The SPADE tree has been coloured 
based on the percentage of the total number of cells each node represents. Thus, large red 
nodes indicate dominant populations, while small blue nodes indicate rarer subsets. (B) The 
same tree was also coloured according to expression of markers PDPN, FAP, THY1 and 
PDGFRα. Here, red indicates high expression and blue represents low expression, while node 
size still represents the prevalence of the population. To show the expression pattern of each 
marker in tandem, coloured lines were added to (A), indicating nodes that highly express 

PDPN (red), FAP (dark blue), THY1 (light blue) and PDGFRα (Grey). 
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Fig.  3.6 Visualising CAF populations using SPADE in mouse 2 

SPADE analysis was also performed on FACS data from 2 BRAFV600EPTEN-/- spontaneous 
tumours form a different mouse. Cells were gated to exclude doublets, dead and 
CD45+/CD31+ cells. SPADE clustering was performed on remaining cells, based on 
expression of PDPN, FAP, THY1 and PDGFRα. A single spade tree was produced, where 
each node represents a cluster of cells which share similar expression profiles for the four 
CAF markers. The size of the node is proportional to the number of cells it represents. (A) The 
SPADE tree has been coloured based on the percentage of the total number of cells each 
node represents. Thus, large red nodes indicate dominant populations, while small blue nodes 
indicate rarer subsets. (B) The same tree was also coloured according to expression of 
markers PDPN, FAP, THY1 and PDGFRα. Here, red indicates high expression and blue 
represents low expression, while node size still represents the prevalence of the population. 
To show the expression pattern of each marker in tandem, coloured lines were added to (A), 
indicating nodes that highly express PDPN (red), FAP (dark blue), THY1 (light blue) and 
PDGFRα (Grey). 
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 SPADE analysis showed distinct CAF populations are present in 

normal skin through to advanced tumours 

 

To investigate whether these populations are present in normal skin, or change as the 

tumour develops, we applied the SPADE algorithm to data collected from different 

stages of tumour development, as well as spontaneous tumours which tended to 

present as late established lesions. Tumours from the same time point were grouped 

together and a representative SPADE plot for each stage produced. For simplicity, a 

single tree coloured according to the percentage of the total population is shown, in 

which expression of each CAF marker is indicated by coloured lines (Fig.  3.7). 

Interestingly, with the marker combination tested, two distinct fibroblast populations 

(PDPN+FAP+THY1+PDGFRα+ and PDPN+ FAP+) dominated at all stages of tumour 

evolution, as well as normal skin (Fig.  3.7). This suggests that tissue resident 

fibroblasts may shape the identity of CAF populations within the tumour. Furthermore, 

in the more advanced spontaneous tumours, these populations formed two separate 

tree branches, indicating that existing populations further diverge as the tumour 

progresses (Fig.  3.7 D). 

In addition, the clustering algorithm was performed on individual samples to provide a 

unique SPADE tree for each mouse. This highlighted the heterogeneity existing 

between tumours at the same stage and normal skin. Despite this considerable 

diversity between mice, the two main fibroblast populations previously described could 

still be discerned. However, significant differences in marker overlap and smaller sub-

populations were evident (data not shown). 
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Fig.  3.7 SPADE analysis of CAF populations at different points in tumour 
development 

Cells were gated to exclude doublets, dead cells and CD45+/CD31+ cells. Tumours from each 
time point were grouped together and SPADE analysis was performed on each group to 
producing a single tree. Cells were clustered based on their expression of PDPN, FAP, THY1 
and PDGFRα. The size and colour of the node is proportional to the number of cells it 
represents. Coloured lines indicate the nodes that highly express PDPN (red), FAP (dark 
blue), THY1 (light blue) and PDGFRα (Grey). Trees represent skin from non-carriers (NC), 
n=5 mice (A), induced day11 tumours, n=2 mice (B), induced day24 tumours, n=6 mice (C) 
and spontaneous tumours, n=3 mice (D). 
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Thus, using just 4 CAF markers the presence of different fibroblast populations was 

confirmed within the stroma of BRAFV600E PTEN-/- melanomas. Interestingly, these 

populations were observed in normal skin through to more advanced, collagen rich 

tumours. This begins to highlight the limitations associated with use of a single 

markers to study fibroblasts within the tumour. However, the use of 4 markers is likely 

insufficient to identify the complete extent of CAF heterogeneity. Furthermore, marker 

expression may be unrelated to function and could introduce significant bias, 

preventing the identification of true phenotypically distinct populations. Thus, we 

decided to move away from marker-based approaches to identify CAF subsets, 

instead focussing on defining these cells by function. 

 

 Employing single cell RNA sequencing to explore CAF 

heterogeneity 

 

ScRNAseq offers the opportunity investigate fibroblast phenotypes and functional 

differences at high resolution. To avoid relying on expression of fibroblast markers to 

identify CAFs, we designed a negative selection approach in which tumour and other 

stromal populations were removed. However, as we could not reliably identify tumour 

cells in the BRAFV600E PTEN-/- model, based on surface marker expression, the B16-

F10 orthotopic melanoma model was adopted. Using this model, mCherry+ B16 

melanoma cells were injected into the shoulder of CAG-EGFP mice, which 

constitutively express GFP. This enabled exclusion of tumour cells (GFP- mCherry+), 

as well as immune and endothelial cells (CD45+ CD31+) by FACS (Fig.  3.8). 

Theoretically, this approach enables a completely unbiased analysis of heterogeneity 

within the non-immune, non-endothelial compartment i.e. predominantly fibroblasts, at 

the single cell level.  

To test the feasibility of this approach, mCherry-GFP+CD45-CD31- cells were index 

sorted from two established (day11) tumours into a 96 well plate, in which each well 

contained a single cell. In collaboration with Dr Sarah Teichmann’s group (EBI-Sanger 

Institute), these cells were processed and sequenced. Tumour induction, processing 

and sorting was performed by Dr Angela Riedel (Shields Lab), as well as plate 

processing and pre-amplification steps, with the aid of members of the Teichmann 
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Lab. PCR purification and sequencing was performed by EBI-Sanger core facilities. In 

this pilot study, alignment and quality control was performed by Dr. Gozde Kar. I 

performed subsequent analysis, including clustering, tSNE, calculating DE genes and 

GO term analysis. 

 

 

Fig.  3.8 A negative selection approach was used to isolate fibroblasts from B16-F10 
melanoma for scRNAseq. 

(A) Schematic of negative selection approach to isolate fibroblasts from B16-F10 melanomas. 
mCherry+ B16 melanoma cells were injected into CAG-EGFP mice, in which GFP is 
ubiquitously expressed by all host cells. After 11 days CAFs were isolated from tumours by 
FACS sorting. Here, tumour, immune and endothelial cells were excluded based on mCherry, 
CD45 and CD31 expression, respectively.  
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 Removing keratinocyte contamination 

 

Quality control excluded cells in which number of exon mapped reads was < 100,000 

or that contained >5% mt genes (Fig.  3.9 A). Similar to principle component analysis 

(PCA), tSNE plots are a form of dimensional reduction, where cells with similar 

transcriptional profiles are grouped together. This showed a clear separation between 

two populations (Fig.  3.9 B). While cluster 1 was enriched for fibroblast markers, 

cluster 2 expressed the epithelial marker EpCam and keratins Krt5, Krt17, Krt14 (Fig.  

3.9 C and D). This indicated that cluster 1 likely represents keratinocyte contamination. 

Although unexpected, these keratinocytes acted as a useful internal control, ensuring 

fibroblast populations could be separated from contaminating cell types. 

 

 CAFs formed 3 transcriptionally distinct clusters 

 

Once keratinocytes were removed, cells were re-clustered revealing 3 distinct CAF 

populations (Fig.  3.10 A). Recapitulating our earlier findings, from the BRAFV600E 

PTEN-/- model, CAF marker expression was heterogenous across these clusters. This 

emphasises the drawbacks of using single marker-based approaches to isolate 

fibroblasts (Fig.  3.10 B). Most importantly, however, these 3 clusters appeared 

transcriptionally distinct, implying that they may have unique characteristics (Fig.  3.10 

C). 
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Fig.  3.9 Using scRNAseq to isolate fibroblasts from B16-F10 melanomas 

(A) Plot produced by Dr. Gozde Kar, displaying the proportion of mitochondrial genes against 
the number of mapped exon reads, after quality control. (B) tSNE plot displays 74 successfully 
sequenced cells, where each dot represents a single cell. Cells formed two distinct clusters. 
(C) Heatmap displaying top 20 upregulated genes within each cluster. Z-score is displayed. 
Cluster 1 expressed epithelial markers and keratins indicating they may represent 
contaminating keratinocytes, while cluster 0 expressed typical fibroblast markers. (D) tSNE 
plots coloured according to the expression of typical fibroblast markers (top) and keratinocytes 
(bottom). Red indicates high expression and grey indicates low expression. 
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Fig.  3.10 scRNAseq revealed 3 transcriptionally distinct CAF populations  

(A) tSNE plot displaying 53 successfully sequenced CAFs, in which each dot represents a 
single cell. CAFs clustered into 3 distinct groups. (B) Typical CAF markers were 
heterogeneously expressed across sub-populations. tSNE plots show expression of individual 
CAF markers, red indicates high expression and grey indicates low expression. (C) Each 
cluster is transcriptionally distinct. Heatmap displaying the top 30 upregulated, differentially 
expressed genes across the three clusters. Z-scores are displayed, red indicates high 
expression and blue indicates low expression.  
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 Each cluster contained unique functional signatures. 

 

To ascertain whether the 3 clusters possessed distinct phenotypes, GO analysis was 

performed on differentially expressed genes within each group. The top upregulated 

GO terms (Fig.  3.11 to Fig.  3.13) were unique to each cluster, demonstrating potential 

functional distinctions. While Cluster 1 highly expressed genes involved in ECM 

remodelling and immune regulation, Cluster 2 upregulated genes related to the cell 

cycle. Cluster 3, on the other hand, expressed metabolic enzymes involved in 

glycolysis/gluconeogenesis.  

 

 Hypoxia may induce increased expression of glycolytic enzymes in 

Cluster 3 

 

The metabolic signature associated with Cluster 3 included high expression of 

glycolytic enzymes, as well as the Ldha. This gene encodes part of the Lactate 

Dehydrogenase (LDH) complex, which converts pyruvate to lactate (Fig.  3.14 A). 

Under physiological conditions, the glycolysis product Pyruvate enters mitochondria 

and the tricarboxylic acid (TCA) cycle, fuelling the electron transport chain and ATP 

production. Pyruvate can be precluded from entering the TCA cycle, by upregulation 

of the enzyme Pyruvate Dehydrogenase Kinase (PDK1).  This causes pyruvate to 

build up in the cytosol, where it is metabolised to lactate, by LDH, and secreted from 

the cell (Fig.  3.14 B). Upregulation of glycolytic enzymes, Ldha, and Pdk1 (Fig.  3.14 

C) imply cluster 3 may be metabolically distinct, relying more heavily on glycolysis than 

oxidative phosphorylation.  

By increasing expression of glycolytic genes, HIF1 may function as a key driver of this 

metabolic switch 377. Interestingly, other known targets of HIF1 were upregulated in 

cluster 3, including the mitophagy inducer Bnip3 and the angiogenesis factor Vegfa 

(Fig.  3.14 C). In tumour cells, perturbed cellular signalling can inhibit HIF1 regulators, 

enabling its transcriptional activity under normoxic conditions 378,379.  However, unlike 

tumour cells, the genomic stability of CAFs largely remains intact, meaning that 

mutational driven changes in protein function are unlikely to activate HIF1 in these 

cells 251,380,381. As HIF1 is primarily activated in non-malignant cells by low oxygen 
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concentrations, this glycolytic population may reside in a hypoxic microenvironment. 

Thus, to investigate whether our model contained hypoxic regions, we stained for the 

associated marker Carbonic Anhydrase 9 (CA9). Interestingly, extensive areas of CA9 

staining were detected throughout B16 tumours and were located in regions devoid of 

blood vessels, indicating our melanoma model is poorly perfused (Fig.  3.14 D). 

The discovery of extensive hypoxia in this model prompted the examination of hypoxia 

as a driving force for HIF1 induced metabolic changes, in the fibroblast compartment. 

IF staining revealed nuclear localised HIF1 in CAFs, identified by PDPN expression, 

residing in or adjacent to hypoxic regions (Fig.  3.15. A). To see if these ‘hypoxic’ CAFs 

were also more glycolytic, tumour sections were stained for GLUT1 and LDHA (Fig.  

3.15 B and C), as both are direct targets of HIF1 and their expression is associated 

with increased glycolysis. Remarkably, GLUT1 and LDHA expression was higher in 

CAFs located next to hypoxic areas, in comparison with those situated further away. 

This suggests that proximity to hypoxic regions may regulate HIF1 activation and 

glucose metabolism in tumour resident fibroblasts. 
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Fig.  3.11 GO analysis reveals functional phenotypes of Cluster 1 

(A) GO analysis was performed on the significantly upregulated (p < 0.05) genes for each 
cluster. Plots show the top 20 pathways and the -log(p values) associated with Cluster 1. (B) 
Heatmaps show the z score expression of genes in selected pathways of interest. Red 
indicates high expression, blue indicates low expression. 
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Fig.  3.12 GO analysis reveals functional phenotypes of Cluster 2 

(A) GO analysis was performed on the significantly upregulated (p < 0.05) genes for each 
cluster. Plots show the top 20 pathways and the -log(p values) associated with Cluster 2. (B) 
Heatmaps show the z score expression of genes in selected pathways of interest. Red 
indicates high expression, blue indicates low expression. 
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Fig.  3.13 GO analysis reveals functional phenotypes of Cluster 3 

(A) GO analysis was performed on the significantly upregulated (p < 0.05) genes for each 
cluster. Plots show the top 20 pathways and the -log(p values) associated with Cluster 3. (B) 
Heatmaps show the z score expression of genes in selected pathways of interest. Red 
indicates high expression, blue indicates low expression. 
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Fig.  3.14 Hypoxia and HIF1 may drive increased glycolysis in Cluster 3 

(A) The glycolysis pathway. * denotes enzymes upregulated in cluster 3. (B) Schematic 
showing the metabolic switch induced by increased expression of PDK1. (C) Violin plots 
showing expression of glycolytic enzymes Hk1 and Gapdh and HIF1 targets Pdk1, Bnip3 and 
Vegfa. Plots show log(counts+1). (D) Representative confocal images of day 11 B16 tumours. 
20x tile scan (left) and 63x region of interest (right). Sections were stained for the Hypoxia 
marker CA9 (green), CD31 (red), COLLAGEN-1 (grey) and DAPI (blue). 
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Fig.  3.15 HIF1α, GLUT1 and LDHA are upregulated in fibroblasts close to regions of 

hypoxia 

 
Day 11 B16 melanomas were stained for (A) CA9 (green), HIF1α (red), PDPN (grey) and DAPI 
(blue), (B) CA9 (green), GLUT1 (red), PDPN (grey) and DAPI (blue) and  (C) CA9 (green), 
LDHA (red), PDPN (grey) and DAPI (blue). Regions of interest are highlighted inset and a 
dotted line indicates the divide between the tumour and stromal compartments. Images 
represent (A) n=1  (B) n=3 and (C) n=3 melanomas from independent mice. 
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 Cluster 2 represents a proliferating sub-population 

 

While upregulation of cell-cycle genes in cluster 2 could indicate a proliferative sub 

population, it is also possible that the tSNE algorithm has clustered the cells according 

to their cell cycle stage. The cell cycle is known to confound single cell sequencing 

analysis, as cell cycle genes are highly expressed 382. In addition, the expression of 

other genes that are not involved in this process can also be affected by cell cycle 

stage. Thus, the cell cycle can account for much of the variance within sequencing 

data, meaning dimensional reduction algorithms often group cells according to their 

cycle position.  

To assess whether this was the case here, cell cycle stage was allocated to each cell 

using the cyclone R package (Fig.  3.16 A). This assigned clusters 1 and 3, as well as 

half of the cells in cluster 2, to the G1 phase, whereas the other half of cluster 2 was 

assigned to the G2/M stage. This may indicate that cluster 2 contains cells that are 

undergoing mitosis, whereas the other cells remain in G1. However, the cyclone 

algorithm cannot detect quiescent cells, therefore, it is likely that cells residing in G0 

have been miss labelled G1. This was supported by expression of Ki67 in cluster 2, 

which marked all proliferating cells irrespective of stage (Fig.  3.16 B).  

To confirm that our sequencing data has correctly identified a proliferating population 

of CAFs, we treated B16-F10 tumour bearing mice with the thymidine analogue EdU. 

EdU incorporates into the DNA of proliferating cells and can be detected by 

conjugating a fluorophore to the compound. To ensure all proliferating cells were 

labelled, 4 days prior to culling, mice were injected with EdU every 24hs (Fig.  3.16 C). 

Tumours were stained for melanoma marker TRP2 and the fibroblast marker PDPN 

to determine if a proliferating CAF population exists. While EdU strongly labelled 

tumours cells, as would be expected, EdU incorporation could also be identified in a 

small fraction of CAFs (Fig.  3.16  D), indicating that our sequencing data accurately 

detected a small pool of cycling fibroblasts, while the majority are quiescent. 
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Fig.  3.16 Cluster 2 represents a proliferating sub population of fibroblast 

(A) The cell cycle stage of each cell was calculated using the R package. (B) tSNE plot 
showing expression of the proliferation marker Ki67, red indicates high expression grey 
indicates low expression. (C) Schematic showing experimental design, EdU was injected 
every day for 4 days prior to culling. (D) IF imaging of EdU incorporation, including 20x tile 
scans of tumours (top) and (E) 63x images within the stromal compartment (bottom). Tumours 
were stained for the melanoma marker TRP2 (green), fibroblast marker PDPN (red) and 
Alexa647 was conjugated to incorporated EdU (grey). Tumour/stromal borders are defined 
(dashed white line) and scale bars represent 200µm (D) and 50µm (E). 
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 Keratinocyte contamination enabled identification of possible Pan-CAF 

markers 

 

As well as investigating transcriptional differences between CAF populations, the 

presence of contaminating keratinocytes also provided an opportunity to investigate 

similarities. Genes upregulated within the fibroblasts cluster were identified and further 

filtered to ensure they were expressed in 99% of these cells. The 10 most significant 

genes are displayed in Fig.  3.17, however, no genes were expressed by all CAFs in 

this dataset. Many of these genes are involved in functions associated with the 

fibroblast phenotype. For example, Emilin1, Nid1, Lama4 and Serpinh1 are all ECM 

components or their regulators, while Dpysl2 and Lgals1 are involved in adhesion and 

migration. While these genes may represent possible pan-CAF markers, in many 

cases, it is important to note that the expression is gradated across the fibroblast pool. 

Variable levels, as well as expression by other cell types, may placate the usefulness 

of such candidates to identify fibroblasts in the TME.  

 

Fig.  3.17 Identification of possible Pan-CAF markers 

Violin plots depicting expression of to 10 most significant genes, upregulated in 

CAFs compared to keratinocytes, that were expressed in 99% of fibroblasts. Plots 

organised according to identified clusters.  
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 Summary 
 

A combination of Flow cytometry and imaging was used to characterise the fibroblast 

compartment of the murine BRAFV600E model of melanoma using four common CAF 

markers. These tumours are heavily fibrotic, as staining indicated that 20-30% of these 

tumours were positive for PDPN, FAP, THY1 and PDGFRα. In addition, fluorescent 

staining of skin and tumours from early and later stages, showed considerable 

expansion of the fibroblast compartment. Closer inspection revealed these markers 

were not uniformly expressed, with varying patterns of co-expression, indicating that 

tumours contain heterogeneous fibroblast populations. Such variability emphasized 

the drawbacks of using single markers to isolate and profile CAFs. 

With the inherent limitations of imaging and conventional FACS hierarchies, a slightly 

different approach was adopted. SPADE analysis enabled the clustering and 

visualisation of the different fibroblast populations at a greater resolution, incorporating 

all markers tested. This revealed that CAFS, labelled by four different surface 

antigens, split into two predominant groups; one that expressed all four markers and 

a double positive PDPN+ FAP+ population. These populations were also present in 

normal skin and persisted through to large desmoplastic tumours, suggesting that 

tissue resident fibroblasts may shape the identity of CAF populations in the tumour 

stroma.  

Although these methods were sufficient to confirm the presence of fibroblast 

heterogeneity in murine melanomas, the use of only four markers likely masked the 

true scale of CAF diversity. Furthermore, these results do not provide information 

regarding population function. Thus, whether identified sub-sets perform the same, or 

distinct roles, in the tumour microenvironment, remains unanswered. However, 

functional characterisation requires profiling expression of many proteins 

simultaneously, exceeding the capabilities of flow cytometry-based methods. 

Furthermore, by pre-selecting marker combinations to investigate, true differences 

between CAF populations may not be detected, biasing interpretation. Therefore, to 

perform an unbiased investigation of fibroblast heterogeneity, a combination of 

negative selection and scRNAseq was employed. A feasibility pilot was performed and 

optimised by Dr. Angela Riedal (Shields Lab) in collaboration with the Teichmann 

Group. Although, a small degree of keratinocyte contamination was observed, this 
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served as a useful internal control, confirming the identity of fibroblasts and some 

potential Pan-CAF markers. Importantly, this approach enabled the identification of 3 

CAF subsets which exhibit specific and distinct functional signatures. Validation of 

glycolytic and proliferating subpopulations, using IF staining and EdU incorporation, 

demonstrated the reliability of this method to identify transcriptional variation within the 

fibroblast compartment. The ability to detect such signatures highlights the sensitivity 

and resolution of single cell sequencing approaches. Furthermore, our data was not 

confounded by cell-cycle stage and implies that external factors, such as hypoxia, may 

underlie a proportion of CAF heterogeneity.  

While expression of HIF1 and its target CA9 implies B16-F10 tumours are hypoxic, 

HIF1 activity in tumour cells can be activated by aberrant cell signalling 378,379. Indeed, 

activation of this transcription factor under normoxic conditions is one of the proposed 

mechanisms driving the ‘Warburg effect’. However, the restriction of positive cells to 

regions devoid of vasculature, suggests that low oxygen tension is responsible for 

HIF1 activation in this setting. Nevertheless, this could be verified by incorporating 

oxygen sensitive dyes. Other mechanisms have also been shown to induce glycolytic 

metabolism in CAFs, such as the ‘Revere Warburg’ effect. Here, H2O2 produced by 

tumour cells, induces oxidative stress and ROS production in neighbouring fibroblasts  

383. Potentiated by autophagic degradation of CAV1, ROS activates HIF1 and NFĸB, 

inducing transcription of glycolytic enzymes, glucose transporters and LDHA 384–387. In 

this model, Lactate secreted by fibroblasts as a biproduct of increased glycolysis, is 

taken up by tumour cells and used to support their mitochondrial metabolism 387. 

However, the use of oxidative phosphorylation by malignant cells is not consistent with 

expression of glycolytic enzymes and HIF1 in B16-F10 tumours. Other studies have 

also reported induction of HIF1 in fibroblasts as a result of tumour secreted ROS 388. 

As ROS is produced under hypoxic conditions, its production by tumour cells may 

indirectly drive HIF1 activity in fibroblasts, that are not themselves hypoxic. 

Irrespective of the underlying mechanism, whether the resulting metabolic switch or 

transcription of HIF1 downstream targets, impacts CAF function remains to be 

investigated in this model. 

In addition to hypoxia, the tumour microenvironment is exposed to many external 

factors, such as nutrient deprivation and fibrosis 389–393. These factors are in constant 

flux and likely change as the tumour grows and develops. Furthermore, the stromal 
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compartment is composed of numerous cell types, which each possess their own 

secretome and add to the local cytokine milieu 1–3. These interacting populations are 

simultaneously influenced by changes in external factors as the tumour evolves. Thus, 

the developing tumour microenvironment comprises a complicated and dynamic 

system. Owing to the success of single cell sequencing in revealing fibroblast sub 

populations, in a single snapshot of time, this technique was next employed to 

investigate stromal interactions and dynamics across time. This project was 

undertaken in collaboration with Sarah Teichmann’s group, in which I have largely 

focussed on the fibroblast compartment.  
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 Introduction 
 

Our previous results demonstrated the limitations of conventional approaches to 

investigate fibroblast subsets. However, by combining scRNAseq with a negative 

selection protocol, we were able to visualise CAF heterogeneity at high resolution 

within the B16-F10 murine model of melanoma. This data revealed distinct metabolic 

and proliferative populations, which may have been masked by bulk analysis. 

Furthermore, diverse expression of CAF markers was evident, highlighting the 

importance of negative selection when characterising fibroblasts.  

Owing to this success, the study was expanded to investigate changes in both immune 

and non-immune stromal populations, across melanoma development. This chapter 

concentrates on the fibroblast compartment, using bio-informatic approaches to 

identify functionally distinct populations. Importantly, isolating fibroblasts from different 

stages of tumour development enabled investigation of how the fibroblast 

compartment and associated heterogeneity changes throughout tumour growth. 

Although populations displaying unique functional signatures have been reported in 

other cancer types, this data represents a snapshot of the subsets present in 

developed tumours 298–301. Indeed, Fibroblast adaptation across tumour development 

remains under-studied. In particular, whether the phenotypes or prevalence of 

individual populations is altered by malignant growth has not been investigated. Thus, 

the composition of the CAF compartment was investigated across this time course. 

Further analysis was performed to identify key changes between early and late time 

points within CAFs as a whole, as well as within each subset.  
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 Results 
 

 Applying single cell technologies to profile stromal cells 
across tumour development 

 

Immune and non-immune stromal cells were isolated from both the primary tumour 

and draining lymph nodes. Similar to tumours, lymph nodes comprise an interacting 

network of immune and non-immune stromal cells, which together orchestrate an 

immune response. However, tumours have been shown to corrupt draining lymph 

nodes and influence stromal populations 394. By sequencing both the tumour and the 

lymph node in tandem, we were able to profile development of the tumour associated 

immune responses and examine their manipulation in the presence of malignancy. 

To enrich for rare immune populations, cells were FACS sorted from B16-F10 

melanomas based on markers such as CD45R, CD4, CD8, CD11b and CD11c. 

However, a negative selection approach, similar to methods previously described 

(Section 3.2.2), was employed to isolate non-immune cells. Here, tumour cells were 

injected into CAG-EGFP mice, allowing stromal populations to be selected based on 

GFP expression. CD45+ immune cells were then excluded, and endothelial cells and 

fibroblasts separated based on CD31 expression  

Importantly, to investigate how stromal populations change as the tumour develops, 

cells were isolated at different points in tumour growth (day 5, 8 and 11) and normal 

skin. Tumour induction was performed by Dr. Angela Reidel (Shields lab), who with 

the aid of Dr. Bidesh Mahata (Teichmann Lab), isolated immune and non-immune 

stromal populations. Together, Dr. Angela Reidel and I produced cDNA from non-

immune populations, while immune cells were processed by Dr. Bidesh Mahata. 

Library preparation and sequencing was conducted Sanger core facilities. Finally, 

alignment and quality control was performed by Dr. Mirjana Efremova, to produce 

TPMs. Together, we performed downstream data analysis, once TPMs were 

generated. In particular, I analysed sequenced fibroblast populations. 

After quality control 4627 cells were successfully sequenced, including endothelial, 

fibroblast, T-cell, B-cell and myeloid populations, identified based on displayed 

markers (Fig.  4.2). Importantly, this data enabled comparison between tumour and 
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lymph node sites, as well as adaptations across time, in multiple cell types. 

Interestingly, some populations showed unique site-specific signatures, while others 

were unaffected by location. However, in this project we have particularly focussed on 

tumour fibroblasts, which were clustered and re-analysed. 

 

 

Fig.  4.1 Immune and non-immune stromal populations were isolated from the primary 

tumour and draining lymph nodes for single cell RNA sequencing. 

Schematic depicting the isolation of immune and non-immune stromal populations for 
scRNAseq. To enrich for immune populations, cells were sorted based on marker 
combinations. Stromal populations were isolated based on a negative selection approach, in 
which tumour and immune cells were removed (GFP-, CD45+). Endothelial cells and 
fibroblasts were separated based on CD31 expression. 
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Fig.  4.2 Numerous stromal populations were identified within the tumour and lymph 

node, across different stages of tumour development. 

(A) tSNE plots generated by Dr. Mirjana Efremova, display all populations isolated (4627 
cells), coloured according to their cell type (left), location (middle) and the time point from 
which they were isolated (right) (B) Markers used to identify each stromal population. 
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 CAFs cluster into 3 phenotypically distinct populations  

 

 CAF populations could be identified by distinct marker repertoires 

 

CD45-CD31- fibroblasts from all time points were subsetted and re-clustered, forming 

3 transcriptionally distinct populations (termed CAF1, 2 and 3; (Fig.  4.3 A). These 

populations were un-affected by batch or sequencing depth as clusters do not 

separate by the number of detected genes or by the mouse from which cells were 

isolated (Fig.  4.3 B and C). Similar to our previous results, commonly used CAF 

markers were heterogeneously expressed (Fig.  4.3 D), yet expression of certain 

markers correlated with specific clusters. For example, high levels of Pdpn and Pdgfra 

were observed within CAF 1 and 2 clusters, whereas Acta2 (αSMA) was upregulated 

by CAF 3 and showed intermediate expression within CAF2.  Similarly, Cd34 was 

highly expressed by CAF 1 and displayed intermediate expression in a subset of CAF2 

cells. By combining these markers, we can identify each population as CAF1: CD34high 

PDPNhigh PDGFRahigh, CAF2: PDPNhigh PDGFRahigh, CAF3: aSMAhigh. 
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Fig.  4.3 CAFs clustered into three transcriptionally distinct populations 

(A) Tumour fibroblasts were subsetted, re-clustered and displayed using tSNE (321 Cells)). 
Pdpn, Pdgfra, Cd34 and Acta2 expression correlated with specific populations (A and D). (B) 
tSNE plots coloured according to the mouse from which cells were isolated. (C) tSNE plot 
coloured according to the number of genes identified within each cell (nGene). This shows 
that clusters are un-effected by batch or sequencing depth. (D) tSNE plots are coloured 
according to the individual expression of each gene, where red indicates high expression and 
grey indicates low expression. 
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 Each CAF population displays unique functional signatures 

 

To examine the functional properties of each population, gene ontology analysis was 

performed on genes upregulated in each cluster and the top 20 terms displayed (Fig.  

4.4 A, Fig.  4.5 A). Unique GO terms were produced for each population, indicating the 

presence of distinct phenotypes. The CAF1 subset upregulated secreted cytokines 

and cytokine receptors, such as Cxcl12, Csf1, Cxcl13, Il11ra1 and Il6st, which are 

involved in immune cell recruitment and regulation. Furthermore, this population 

upregulated components of the complement cascade including C3, C4b and 

complement regulator Cd55 (Fig.  4.4 B).  

The complement system is activated during inflammation and involves the formation 

of convertases which cleave central proteins C3 and C5 to their respective a and b 

products. C3b and C5b form complexes with other complement factors, contributing 

to the creation of the membrane attack complex (MAC), which forms on the surface of 

targeted cells, causing calcium influx and cell death 395. On the other hand, 

anaphylatoxins C3a and C5a trigger inflammation and recruit immune cells to the site 

of activation. Thus, expression of central component C3 and upstream activators of 

the classical and alternative pathways C4b, C1rb C1ra and Cfb (factor B), imply that 

CAF1 may be instrumental in complement activation in the tumour. However, this 

population also upregulates the complement regulator Cd55, which prevents formation 

of MAC on host cells 396. Therefore, CAF1 fibroblasts may aid activation of this 

cascade, yet remain protected from its harmful effects. In addition, this CAF subset 

may be more widely involved in immune recruitment by production of C3 cleavage 

product C3a and cytokines Cxcl12, Csf1, Cxcl13. 

Interestingly, the GO term “ECM-receptor interactions” was highlighted in both CAF1 

and CAF2 populations. However, CAF1 fibroblasts expressed matrix components 

associated with the basement membrane, such as, laminin fibres Lama2 and Lamc2, 

which underlie normal epithelial tissues (Fig.  4.4 B) 397. In contrast, the CAF2 

population upregulated genes associated with pathological matrix deposition and 

remodelling, including Col1a1, Col1a2 and Tnc (Fig.  4.5 A and C) 197,398,399. This 

indicates that the CAF2 subset may be primarily involved in the desmoplastic response 

associated with tumour development. Lastly, fibroblasts within CAF3 also expressed 

genes involved in matrix remodelling, however, the stronger functional signature 
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related to genes involved in contraction and rearrangement of the actin cytoskeleton 

(Fig.  4.5 B and C). In particular, these cells upregulated Myl9 (myosin light chain 2) 

and Mylk (myosin light chain kinase), which participate in stress fibre contraction. 

Furthermore, expression of Itgb1 (β1 integrin) and Vcl (vinculin) is increased, which 

are important members of focal adhesion complexes and transduce mechanical force 

400–402. Indeed, Itgb1 expression is upregulated by heightened cytoskeletal tension 403, 

suggesting CAF3 fibroblasts may represent a contractile population under high tensile 

stress. Owing to these unique functional signatures, CAF1, CAF2 and CAF3 

populations were designated ‘immune’, ‘desmoplastic’ and ‘contractile’ respectively. 
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Fig.  4.4 GO pathway analysis of the CAF1 population revealed it may be involved in 
immune-crosstalk 

(A) Top 20 GO terms generated from genes upregulated within the CAF1 population. 
(B) Heatmaps depicting selected pathways of interest, where rows correspond to 
genes and columns represent individual cells. z scores are displayed.    



91 
 

 

 

Fig.  4.5 GO pathway analysis of the CAF2 and 3 reveal ‘desmoplastic’ and 
‘contractile’ phenotypes 

Top 20 GO terms generated by upregulated genes within the CAF2 (A) and CAF3 
(B) population. (C) Heatmaps depicting selected pathways of interest where rows 
correspond to genes and columns represent individual cells. z scores are displayed.    
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 Within CAF2 and CAF3 populations, subsets of glycolytic and 

proliferative fibroblasts are present 

 

Reiterating our previous results, GO analysis highlighted glycolysis and the cell cycle 

signatures in clusters 2 and 3 respectively (Fig.  4.5 A and B). However, high 

expression of glycolytic enzymes and cell cycle factors, was neither uniform across all 

cells in each population, nor exclusive to CAF2 or 3. Instead, a subset of cells in both 

groups highly expressed these gene signatures, suggesting that while glycolytic and 

proliferating fibroblasts exist, clusters are not defined by these factors (Fig.  4.6 A). 

The existence of proliferating subpopulations within CAF2 and CAF3 was supported 

by cyclone analysis and Ki67 expression (Fig.  4.6 B). Similar to our preliminary data, 

the cyclone algorithm assigned most cells to G1, yet allocated a subset of fibroblasts 

to S phase and G2/M. This subset also expressed proliferation marker Ki67, thus, 

likely represent actively proliferating cells. tSNE plots displaying cyclone labels and 

Ki67 expression, show that proliferating cells cluster together within their respective 

CAF subsets. This suggests that the cell-cycle remains a source of variance within our 

data, however, other factors have a larger effect on the transcriptional profiles of these 

cells.  
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Fig.  4.6 Glycolytic and Proliferating subsets are present within CAF 2 and 3 

(A) Heatmaps depicting genes associated with glycolysis / gluconeogenesis and cell-cycle GO 
terms. Rows represent genes, columns represent individual cells and z scores are displayed. 
(B) Cyclone analysis was performed and displayed as a tSNE plot in which cells are coloured 
according to their assigned stage (left). tSNE plot displaying Ki67 expression in which red 
indicates high expression and grey indicates low expression (right). tSNE plots display CAFs 
from all time points (321 cells). 



94 
 

 Similar transcriptional signatures are present in the pilot data set 

 

As glycolytic and proliferative signatures were identified in both our pilot run and time 

course experiment, we investigated whether the ‘immune’, ‘desmoplastic’ and 

‘contractile’ signatures were also present within our preliminary data. Interestingly, GO 

analysis highlighted upregulation of the complement cascade in cluster 1 (section 

3.2.2.3). This included factors such as C4b, C2, C1ra and C1rb, suggesting that 

complement components are consistently upregulated within a subset of fibroblasts. 

To explore other phenotypic signatures associated with our time course data, we 

selected key genes and investigated their expression across the pilot data set. 

Clustering both cells and selected genes revealed a subset of fibroblasts that 

displayed high expression of immune recruitment factors C3, Csf1 and Cxcl12 (Fig.  

4.7 A). Furthermore, this subset also highly expressed CAF markers Cd34, Pdgfra and 

Pdpn but not Acta2 (αSMA), reflecting our time course data. In particular, the 

complement component C3 was associated with high Cd34 expression (Fig.  4.7 B). 

On the other hand, while matrix components such as Postn, Col1a1 and Col1a2 

clustered together, a clear ‘desmoplastic’ subset was not observed. Thus, while there 

is clear overlap between our two data sets, gene signatures differ in their prominence.  
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Fig.  4.7 Investigation of ‘immune’, ‘desmoplastic’ and ‘contractile’ signatures in pilot 
data 

(A) Heatmap depicting expression of selected genes related to ‘immune’ ‘desmoplastic’ and 
‘contractile’ phenotypic signatures within pilot data. Columns represent individual cells while 
rows represent selected genes, z scores are displayed. Both columns and rows were clustered 
to investigate related signatures. A subset of fibroblasts expressing immune recruitment 
factors are highlighted (black box). (B) tSNE plot coloured according to C3 and Cd34 
expression, red indicates high expression, grey indicates low expression. 
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 The CAF compartment is a dynamic niche, changing and 
adapting as the tumour progresses 

 

 CAF populations dominate at different stages of tumour development 

 

Sequencing fibroblasts from different stages of tumour development offered the 

opportunity to investigate the prevalence of these populations at different time points. 

Unfortunately, cells isolated from skin contained a large amount of keratinocyte 

contamination, leaving only 15 fibroblasts. Nevertheless, all of these cells were 

observed within the CAF1 subset, suggesting that this population may reside in normal 

tissue. However, owing to the limited number of skin fibroblasts recovered, this 

requires further corroboration.  

Investigation of the remaining time points revealed a dynamic compartment, in which 

the composition of populations changes as the tumour develops.  While CAF1 and 

CAF2 populations dominate at day 5, the CAF1 subset receded at day 8 and 11 and 

CAF3 became more prevalent. This suggests that CAF1 and CAF2 are present from 

early stages of tumour development, whereas CAF3 is associated with later time 

points. 
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Fig.  4.8 The abundance of each CAF population changes as the tumour develops. 

(A) tSNE plot in which each cell is coloured according to the time point from which it was 
isolated. (B) Sequencing data represented as a bar graph, in which the size of each bar is 
proportional to the percentage of each CAF populations at day 5, 8 and 11. * < 0.05 (two way 
anova with Tukey post-hoc test), yellow indicates significance between CAF1 populations at 
different time points, red indicates significance between CAF3 populations. Data presented as 
SEM ±, n = 2 mice. (C) Schematic showing CAF populations, their defining markers, 
phenotypes and the time points from which they are present.  
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 Individual populations retain a similar phenotype throughout tumour 

growth, yet develop increased hypoxic signatures  

 

As well as investigating changes in the abundance of fibroblast populations at different 

time points, the transcriptional profiles of fibroblasts isolated at day 5 were also 

compared to day 11. This revealed that the complement pathway was upregulated at 

early stages, whereas Hif1 signalling and contractile signatures were upregulated at 

later time points (Fig.  4.9 A and B).  

However, by including all CAFs in this analysis, the results may be biased by 

population dynamics. For example, upregulation of the complement pathway at day 5 

may reflect the abundance of CAF1 fibroblasts at this time point. This raised the 

question of whether individual populations change over time and how universal these 

changes are across subsets. Thus, whether the signatures highlighted in Fig.  4.9 A, 

as well as the ‘immune’, ‘desmoplastic’ and ‘contractile’ phenotypes, temporally 

change within individual populations was investigated. This showed that generally, 

phenotypic signatures associated with each population where not influenced by 

tumour development. For example, from early time points CAF2 cells produced 

pathological matrix components and the CAF1 population secreted inflammatory 

factors. Furthermore, expression of these genes was generally consistent throughout 

tumour growth (Fig.  4.9 C). This suggests that key differences between CAFs at early 

and late time points, such as production in complement factors, likely results from 

shifts in population abundance, rather than transitions in phenotype. However, most 

fibroblasts in CAF1 and CAF3 subsets were isolated from either day 5 or day 11 

respectively. Thus, the number of cells isolated from other time points may be too few 

for a fair comparison.  

On the other hand, glycolytic signatures observed within the whole CAF compartment 

(Fig.  4.9 A), were upregulated at late time points, in both CAF2 and CAF3 populations 

( Fig.  4.10). As previously discussed (Section 3.2.2.4), this glycolytic signature is likely 

induced by tumour hypoxia, indicating that hypoxia may be associated with more 

developed tumours. This indicated that while defined fibroblast subsets exist in the 

tumour, external factors that arise during tumour development can further influence 

their transcriptional profiles and increase diversity.  
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Fig.  4.9 Comparison of CAFs from different time points. 

(A) GO analysis of genes deregulated between CAFs from day 5 and day 11 across all 
populations. Terms upregulated at day 5 (left) and day 11 (right) are shown. (B) Violin plots 
showing expression of selected genes mapped to GO terms, across all fibroblasts, at different 
time points. Skin = 15 cells, day 5 = 124 cells, day 8 = 89 cells, day 11 = 94 cells   

  



100 
 

 

Fig.  4.10 Individual phenotypes of each CAF population remain similar over time, CAF 
2 and CAF3 develop glycolytic signatures at later time points. 

(Heatmap displaying the average expression of selected genes at different time points within 
all CAFs, CAF1, CAF2 and CAF3, z scores are displayed. All CAFs day 5 = 124 cells, All CAFs 
day 8 = 89 cells, All CAFs day 11 = 94 cells, CAF1 day 5 = 74 cells, CAF1 day 8 = 26 cells, 
CAF1 day 11 = 21 cells, CAF2  day 5  = 41, CAF2 day 8 = 24 cells, CAF2 day 11 = 34 cells, 
CAF3 day5 = 9 cells, CAF3 day 8 = 38 cells, CAF3 day 11 = 39 cells. 
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 Pseudo-time analysis implies CAFs may transition between 

populations 

 

Examination of the CAF compartment across tumour development suggested 

populations are autonomous, retaining their functional phenotypes and merely 

shrinking or expanding in response to malignant growth. However, it is also possible 

that these populations are not mutually exclusive and represent phenotypic states, 

through which fibroblasts transition. To examine this possibility, we created diffusion 

maps and employed pseudo-time analysis. Typical methods of visualising single cell 

data, such as PCA and tSNE, organise cells with similar transcriptomes into clusters. 

However, this does not reflect the transitional nature of biological processes, such as 

differentiation. Diffusion maps are another form of dimensional reduction that order 

cells into continuous trajectories, rather than clustering them into discreate groups.  

The r package ‘destiny’ creates both diffusion maps and performs pseudo-time 

analysis, known as diffusion pseudo-time (DPT) 374,375. DPT orders cells according to 

their transcriptional similarity and is performed independently from the generation of 

diffusion maps. Starting with one cell, DPT calculates the probability of transition to all 

other cells, repeating this process until such probability networks are calculated for 

every cell. By ordering these probabilities, a trajectory for any cell in the dataset is 

produced. These trajectories are projected onto diffusion maps, displaying the 

transition order of a specific cell. 

Interestingly, plotting the first two diffusion components showed a transition from CAF1 

towards CAF 2 and then from CAF2 to CAF3. The DPT trajectory for the first, or “tip”, 

cell in the diffusion map was overlaid, showing a clear progression through the 

populations. This implies that fibroblasts transition between populations, rather than 

existing in a single state (Fig.  4.11 A). Furthermore, expression of CAF markers and 

signature genes was graduated along this trajectory, reflecting this transitional nature 

(Fig.  4.11 B). As CAF 1 is more dominant at early time points and CAF 3 arises at later 

stages, it is tempting to suggest CAFs evolve along this path. However, while the 

displayed DPT maps a trajectory from CAF1 to CAF3, this merely reports how cells 

are related to one another and does not dictate the direction of transition. Indeed, this 

trajectory could begin with any population. Nonetheless, this data highlights CAF 2 as 

an intermediate population, sharing features with both CAF 1 and CAF3. 
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Fig.  4.11 Diffusion maps and pseudo-time analysis suggest transition between CAF 
populations 

(A) Diffusion maps are coloured to show CAF 1, CAF 2 and CAF 3 populations (left) and the 
time points from which each cell was isolated (centre). The DPT trajectory orders cells from 
most similar to most different and can be produced for any cell in the dataset. Here, the map 
has been coloured according to the DPT order produced for the first (tip) cell in the diffusion 
map. Blue indicates CAFs that are closely related to the tip cell, whereas as yellow indicates 
CAFs that are more distant.  (B) Diffusion maps coloured according to the expression of CAF 
markers and selected genes. Blue indicates low expression, while yellow indicates high 
expression.  
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 Identifying CAF populations in the tumour microenvironment 
and validating their functional signatures 

 

Having identified these CAF populations using single cell sequencing, conventional 

techniques were employed to validate their existence in the tumour microenvironment. 

Using IF and flow cytometry, we attempted to identify each population in B16-F10 

melanomas, based on their unique marker repertoires. 

 

 CAF subsets were identified in the tumour stroma using IF and flow 

cytometry 

 

As previously described (section 4.2.2.1), markers Pdpn and Pdgfra where highly 

expressed by CAF1 and CAF2 subsets, whereas Cd34 and Acta2 (αSMA) expression 

was more prominent within CAF1 and CAF3 respectively. Thus, to identify CAF 

populations within B16-F10 tumours, sections from day 5 and day 11 were stained for 

these 4 markers. Extensive colocalization between PDPN and PDGFRα was observed 

at both time points, while CD34 also colocalised with a subset of PDGFRα+ and PDPN+ 

cells. αSMA staining was more distinct, although colocalization was also observed. 

This colocalization likely represents the intermediate CAF2 population, which express 

lower levels of both αSMA and CD34. Furthermore, as highlighted by our pseudo-time 

analysis, fibroblasts are extremely plastic and sit on a spectrum of marker expression.  
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Fig.  4.12 Confocal imaging shows CD34 colocalization with PDGFRα and PDPN yet 
more distinct αSMA staining  

Representative confocal images showing the combination of CD34, αSMA and PDGFRα (top) 
and CD34, αSMA and PDPN (bottom) in day 5 and 11 B16-F10 tumours. A merged image of 
all 3 markers is displayed, as well as images showing two channels at a time. Pseudo-coloured 
green or red, these images emphasise colocalization. Dashed line indicates the tumour border 
and scale bars are displayed. Images represent at least n=3 independent mice.  
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Fig.  4.13 Confocal imaging shows CD34 PDGFRα and PDPN colocalise  

Representative confocal images showing the combination of CD34, PDGFRα and PDPN in 
day 5 and 11 B16-F10 tumours. Images taken form day 11 tumours were taken further away 
from the tumour edge, blue structures represent hair follicles. A merged image of all 3 markers 
is displayed, as well as images showing two channels at a time. Pseudo-coloured green or 
red, these images emphasise colocalization. Dashed line indicates the tumour border. Scale 
bars are displayed, and images represent at least n=3 independent mice.  
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While the expression pattern of CAF markers observed within our sequencing data 

was reflected by IF imaging, it remained difficult to identify individual populations. 

Thus, flow cytometry was employed to further investigate CAF subsets. After removal 

of doublets and dead cells, immune and endothelial cells were excluded based on 

CD45 and CD31 expression. As previously discussed, flow cytometric analysis is 

restricted to comparison of two markers in tandem. Thus, staining for CAF markers 

individually would complicate identification of CAF populations. Instead, we separated 

fibroblasts from tumour cells using the combination of Thy1, PDGFRα and PDGFRβ, 

which our sequencing data indicated would collectively identify all fibroblast 

populations. Within this compartment, fibroblasts could then be separated into 

populations resembling CAF1, CAF2 and CAF3, based on CD34 and αSMA 

expression. Here CD34high αSMAlow, CD34low αSMAlow and CD34low αSMAhigh, were 

termed CAF1 CAF2 and CAF3 respectively.  

 

Fig.  4.14 Identifying CAF populations using flow cytometry 

Representative gating strategy for the identification of CAF populations in B16-F10 
melanomas. Debry, doublets, dead cells, immune cells (CD45+) and endothelial cells (CD31+) 
were excluded and CAFs were selected by combined expression of PDGFRα, PDGFRβ and 
Thy1. CAF populations were divided based on CD34 and αSMA expression into CAF1: 

CD34high αSMAlow, CAF2: CD34low αSMAlow and CAF3: CD34low αSMAhigh.  
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 Investigation of CAF populations over time confirmed CAF 3 was more 

prominent at later time points 

 

Having developed a method to detect CAF populations, we next sort to validate their 

temporal dynamics across tumour development. While we observed expansion of the 

CD34low αSMAhigh CAF3 population at day11, we did not detect a decrease in the 

number of CAF1 CD34high αSMAlow cells (Fig.  4.15). Furthermore, both CAF 1 and 

CAF2 populations were present in normal skin, contradicting our sequencing data 

which suggested CAF1 cells represented resident fibroblasts. It was also noted that 

the CAF3 populations only represented 5% of the CAF compartment by flow 

cytometry, yet both the sequencing data and IF images suggest higher numbers are 

present. While trends are maintained, this discrepancy in prevalence may be due to 

the intracellular location of αSMA, as poor permeabilization can prevent antibody entry 

and reduce signal. 

 

 

Fig.  4.15 Examining CAF populations at different time points confirmed CAF3 is more 
prevalent at later stages. 

Quantification of the CAF populations at day 5 and day 11 tumours using flow cytometry. 
Populations are displayed as a percentage of total CAFs. Each point represents a tumour and 
data presented as mean ± SEM. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 (one way 
anova with Tukey post-hoc test). Skin n = 8 mice, day 5 n = 25 mice, day 11 n = 30 mice. 
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 Immune recruitment factors are produced by CAF 1 

 

The ability to separate these populations using flow cytometry enabled us to examine 

production of immune recruitment factors associated with CAF 1 that were identified 

by the sequencing data, including CSF1, CXCL12 and C3. To enable cytokine 

detection and ensure their secretion was not affected by processing steps, tumours 

were incubated with BFA during digestion (1.5hs) and for a further (2.5hs) in media. 

BFA disrupts ER/Golgi transport, inhibiting secretion and causing proteins to build up 

in the cytoplasm. Average expression (geometric mean of fluorescence intensity) was 

calculated from each CAF population using the gating strategy previously described 

(Fig.  4.14). Our data showed that CXCL12 and C3 expression was greater in CAF1 

and CAF2, compared to CAF3. In agreement with our sequencing data, the highest 

expression of C3 was detected in the CAF1 population. However, the highest 

expression of CXCL12 was observed in the CAF2 subset, conflicting our previous 

findings (Fig.  4.16 A and B).  

This abnormality led us to investigate whether antibodies against CXCL12 and C3 

were binding to cytokines coating the cell surface. Indeed, surface staining revealed 

CXCL12 specifically bound to CAF 2 fibroblasts. Furthermore, expression of surface 

CXCL12 was greater than combined surface and intracellular staining, detected after 

fixation and permeabilization. This may be due to disruption of the membrane upon 

permeabilization, as well as changes in epitope structure caused by fixation. These 

technical caveats make it difficult to determine the proportion of total expression 

originating from surface or intracellular staining. Thus, while we have shown that CAF1 

acts a source of CXCL12, we were unable to confirm increased expression in 

comparison to CAF2.  

On the other hand, little to no C3 was detected on the surface of fibroblast subsets, 

verifying production of this factor specifically within CAF1 cells. Thus, we also 

investigated changes in C3 expression at different stages of tumour development ( 

Fig.  4.16 B). Compared to other populations, C3 expression was highest within the 

CAF1 subset across all time points, including normal skin. However, upon tumour 

initiation C3 production significantly increased, yet remained consistent from day 5 

onwards. This implies that C3 expression is upregulated at early stages and is 

sustained at a similar level throughout tumour development, reflecting our sequencing 
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data. Finally, CSF1 could not be detected by flow cytometry, yet IF imaging showed 

colocalization with CD34high fibroblasts (Fig.  4.16 C). This implies the CAF1 population 

may represent a significant source, yet it was difficult to determine corresponding 

levels in other populations as IF quantification is challenging. 

 
Fig.  4.16 Immune recruitment factors are produced by CAF 1 

Flow cytometric quantification of total and surface CXCL12 (A) and C3 (B, left) expression in 
each population at day 11, presented as fold change in mean fluorescence and normalised to 
the CD34high αSMAlow population. C3 expression was also examined in skin, day 5 and day 11 
tumours (B, right) (C) Representative confocal images of CSF1 expression in CD34+ CAF 
populations in day 5 and day 11 tumours, indicated by arrow heads. Scale bars 20um,images 
represent  n=3 (day 5) and n=2 (day 11) independent mice. Data presented as mean ± SEM. 
* P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 (A and B (left, C3 total vs surface) two way 
anova with Sidak post-hoc test, B (right, C3 across time) two way anova with Tukey post-hoc 
test). CXCL12: n = minimum of 12 mice, C3: day 11 n = minimum of 6 mice, day 5 n = 4 mice, 
skin n = 6 mice. 
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 Increased matrix deposition was observed at later time points 

 

To validate the desmoplastic phenotype, we performed confocal imaging of matrix 

proteins Collagen, Periostin and Tenascin-C, upregulated in CAF2 at the RNA level. 

Staining of normal skin, day5 and day11 tumours, showed increased matrix deposition 

at later stages of tumour development (Fig.  4.17). However, staining was mostly 

extracellular, making it difficult to determine their source.  In an attempt to confirm 

matrix production by CAF2 cells, BFA incubation was performed prior to intracellular 

staining, yet matrix proteins could not be detected by flow cytometry. 

 

Fig.  4.17 Increased matrix deposition was observed at later time points 

IF images of matrix components COLLAGEN (top) TENASCIN-C (centre) and 
PERIOSTIN (bottom) in skin, day 5 and day 11 samples. In normal skin, bright red 
(PDPN+) structures represent lymphatic vessels (arrow heads) while fibroblasts (*) 
were mostly restricted to the reticular dermis.  COLLAGEN staining is displayed as a 
3D reconstruction of z-stack images, while TENASCIN-C and PEROSTIN are shown 
as compressed z-stack images, in combination with PDPN. n= minimum of 2 tumours 
per time point.   
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 Validation of CAF phenotypes using in vitro functional assays was 

technically challenging 

 

As well as validating expression of specific proteins, we attempted to isolate each 

population from the tumour microenvironment for in vitro functional assays. However, 

as αSMA is an intracellular protein, it not possible to isolate live cells by antibody 

staining for FACS sorting. Thus, B16-F10 tumours were implanted into αSMA-DsRed 

mice, in which the fluorophore DsRed is expressed under the Acta2 (αSMA) locus. 

Within the fibroblast compartment, each population was isolated based on CD34 and 

αSMA expression and seeded for culture (Fig.  4.18 A). However, within 48hs of 

isolation, live cell imaging showed that all populations developed expression of αSMA, 

likely due to culture on a stiff plastic surface (Fig.  4.18 B). Furthermore, after 2 weeks 

tumour cell contamination was significant, leaving only a small population of cells that 

still expressed CAF markers (Fig.  4.18 C). As B16-F10 tumour cells grow rapidly in 

culture, even small amounts of contamination can quickly outgrow stromal 

populations. Thus, to perform further functional phenotyping of this nature, additional 

optimization will be required. 

  



112 
 

 

Fig.  4.18 Isolation and culture of CAF populations 

(A) Gating strategy describing selection of CAF populations isolated from aSMA-
DsRed mice by FACS. Debry, doublets, dead cells, immune cells (CD45+) and endothelial 
cells (CD31+) were excluded and CAFs were selected by combined expression of PDGFRα, 
PDGFRβ and Thy1. CAF populations were divided based on CD34 and αSMA (DsRed) 
expression into CAF1: CD34high αSMAlow, CAF2: CD34low αSMAlow and CAF3: CD34low 
αSMAhigh. DsRed positive cells were identified by comparison with tumours from WT mice 

(black box). (B) Merged images showing brightfield and DsRed (aSMA) expression of sorted 
populations after 48hs in culture. Scale bars 400 µm. (C) Histograms show expression of CAF 
markers, determined by flow cytometry, in cultured populations after 2 weeks compared to an 
unstained control. 
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 EdU incorporation reveals different proliferative dynamics between 

CAF populations 

 

Sequencing data implied that proliferating populations resided within CAF 2 and CAF 

3 subsets, yet not within CAF1. Thus, EdU incorporation was utilised to determine 

which CAF populations contained actively cycling cells. To investigate which stage of 

tumour development proliferating CAFs emerge, EdU was injected 24 and 48hs prior 

to tissue collection and samples were collected from normal skin, day 5 and day 11 

tumours (Fig.  4.19 A and B). Interestingly, proliferating cells were observed in all three 

CAF subsets, yet CAF3 contained the greatest proportion (15-30%), whereas CAF1 

and 2 contained 2-10% (Fig.  4.19 C). Furthermore, very few cells within CAF1 and 

CAF2 actively cycle in normal skin, yet a significant proportion of the CAF 3 population 

proliferates. However, only a limited number of CAF3 fibroblasts were detected at this 

time point, possibly skewing this result. Upon tumour initiation the proportion of EdU+ 

fibroblasts within CAF1 and CAF2 increases, remaining a similar percentage 

throughout tumour growth. This indicates that the dynamics of fibroblast proliferation, 

across tumour development, vary between CAF subsets. Interestingly, within the CAF 

compartment as a whole, the percentage of proliferating cells remains similar between 

day 5 and 11. Although the total number of cycling cells increases, this is in proportion 

to the expansion of the CAF compartment (Fig.  4.19 D).  
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Fig.  4.19 EdU incorporation reveals cycling subsets within all CAF populations 

(A) Schematic showing experimental design; EdU was injected 48 and 24hs before samples 
were collected. Both day 5 and day 11 tumours were isolated from different mice, as well as 
normal skin. (B) Gating strategy for CAF populations, EdU positive cells were identified by 
comparing tumours from mice that were not injected with EdU (black box). (C) EdU positive 
cells as a percentage of individual populations at different time points. (D) Graphs displaying 
the % EdU positive across all CAFs, as well as raw counts for CAFs and EdU+ CAFs. Data 
presented as mean ± SEM. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 (C two way anova 
with Tukey post-hoc test, D one way anova with Tukey post-hoc test), n = 5 mice. 
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 Increased expression of glycolytic enzymes at later time points may 

reflect the development of tumour hypoxia 

 

Glycolytic CAF populations were observed in both our pilot study and time course data 

(Sections 3.2.2.4 and 4.2.2.3). Interestingly, within the latter data set, this metabolic 

signature was more prominent at later stages of tumour development. We previously 

showed glycolytic fibroblasts in close proximity to hypoxic regions, suggesting poor 

perfusion may increase expression of enzymes in this pathway. Therefore, to 

investigate at what stage of tumour growth hypoxia develops, we stained day 5, and 

day 11 tumours, as well as normal skin, for the hypoxic marker CA9 and the glycolytic 

enzymes GLUT1 and LDHA. CA9 staining showed that hypoxia develops at day 5 yet 

progresses as the tumour grows, forming an extensive hypoxic network by day 11 (Fig.  

4.20).  

 

Fig.  4.20 The development of hypoxia across tumour development 

Tile scans of Skin from control (non-tumour bearing mice), as well as day 5 and day 11 
tumours. Sections were stained for CA9 (green), Glut1 (red), PDPN (grey) and DAPI (blue). 
Images represent n=2 mice. 
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 CAF 3 express pericyte markers yet were identified dissociated from 

blood vessels 

 

On further examination of the CAF 3 subset, we observed expression of several 

markers associated with pericytes including Des, Cspg4 (Ng2), Mcam and Rgs5  (Fig.  

4.21 A). Pericytes are another member of the mesenchymal family and are associated 

with blood vessels, regulating their functional properties and providing structural 

support. However, pericytes share a number of markers with fibroblasts, making these 

populations hard to distinguish 269. It is possible that increased vascularisation of the 

tumour as it grows, is accompanied by an expansion of pericyte populations. If CAF3 

comprises pericytes, this may explain the increased prevalence of this population at 

later time points. However, while pericyte markers were observed within this 

population, they also express Aspn (Asporin), and matrix components Fn1 

(fibronectin1), Col1a1, Col1a2 and Sparc, which are more commonly associated with 

fibroblasts (Fig.  4.21 A). Furthermore, expression of pericyte markers NG2 and 

MCAM, have also been observed in fibroblast populations in other studies 273,294,297,299. 

The promiscuity of these markers was reflected within our data, as Des and Rgs5 were 

also expressed by Pdpn+ fibroblasts of the lymph node (Fig.  4.21 B). Furthermore, 

examination of our pilot data also revealed expression of pericyte markers dispersed 

throughout fibroblast populations (Fig.  4.21 C). 

For these reasons, discerning the identity of this population based on known markers 

is difficult. Thus, we investigated expression of CAF3 markers NG2 and αSMA in 

relation to CD31+ endothelial cells. Confocal Imaging revealed NG2+ and αSMA+ cells 

in association with blood vessels, indicating there are pericytes present within the 

tumour microenvironment (Fig.  4.22). However, these cells were mainly located at the 

periphery, which formally comprised normal skin. While endothelial cells developed in 

the tumour bulk, these were largely immature and un-supported by pericyte 

populations. Furthermore, in accordance with sequencing data, both NG2+ and αSMA+ 

spindle shaped cells were observed, distinct from the vasculature. Thus, it is possible 

that the CAF3 subset may contain contaminating pericytes, yet also comprise 

fibroblast populations that share pericyte markers. 
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Fig.  4.21 CAF3 express some pericyte markers 

Heatmap showing expression of canonical fibroblasts and pericytes markers in the CAF 

populations. Log(TPM+1) expression is displayed. (B) tSNE plots of all sequenced cells. 

Expression of typical pericyte markers was also detected in PDPN+ lymph node fibroblasts. 

(C) tSNE plots showing expression of pericyte markers in original pilot data set.  
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Fig.  4.22 ⍺SMA and NG2 expressing cells were observed dissociated from blood 
vessels 

(A) and (B) IF imaging showing ⍺SMA+ and NG2+ cells both distinct from (arrow heads) and 

associated with CD31+ blood vessels (*) in peripheral stromal regions of day 5 and day 11 

tumours. Vessels in the tumour mass are also shown, which lack pericyte coverage. White 

dotted lines inidcate boundries between tumour and stromal regions. Images are 

representative of n=3 tumours, scale bars are displayed.   
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 Summary 
 

To date, only a handful of studies have investigated the differences between 

fibroblasts from normal tissues and their tumour resident counterparts192–194, as well 

as changes in CAF phenotype as the tumour progresses404. The discovery of multiple 

fibroblast populations adds another layer of complexity, as the development of 

heterogeneity has not been documented. Thus, how these populations arise or 

whether their composition or phenotype change as the tumour grows, remains unclear. 

The success of combining negative selection with single cell sequencing (Chapter 3), 

prompted the application of these techniques to isolate and profile fibroblasts from 

different stages of tumour growth. This data offered the opportunity to examine the 

evolution of fibroblast heterogeneity at single cell resolution. 

Three distinct CAF populations were uncovered (CAF1-3), displaying different 

functional signatures and a unique combination of CAF markers. CAF1 fibroblasts 

expressed cytokines, cytokine receptors and components of the complement cascade, 

implying a role in immune-crosstalk. On the other hand, the CAF2 population 

upregulated pathological matrix components such as collagens Col1a1 and Col1a2, 

Tnc and Postn. Lastly, the CAF3 subset highly expressed cytoskeletal regulators Myl9 

and Mylk, that drive contraction of actin stress fibres. Using flow cytometry and IF 

imaging we were able to verify presence of these populations within the tumour 

microenvironment at the protein level, based on expression of CAF markers CD34, 

PDGFRα, PDPN and αSMA. Furthermore, production of immune regulatory factors 

CXCL12, CSF1 and C3 by the CAF1 subset was confirmed at the protein level. 

However, due to technical caveats, only expression of C3 was accurately quantified 

and shown to be specifically upregulated by this population. In addition, C3 was only 

investigated at the intracellular level. Thus, whether this factor is actively secreted at 

by our CAF1 subset remains to be determined. This could be clarified by performing 

an enzyme-linked immunosorbent assay (ELISA) on isolated populations. However, 

considering the difficulties associated with in vitro culture of CAF subsets, such as the 

development of αSMA expression and tumour cell contamination, this may be 

technically challenging. Further technical limitations also prevented validation of CAF 

2 and CAF 3 functional signatures. While the development of a fibrotic ECM was 
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observed as the tumour progressed, it was not possible to identify the source of these 

matrix components.  

Substrate rigidity is known to regulate fibroblast phenotype and increased stiffness 

can induce activation and expression of αSMA  404–407. Thus, the stiffness of plastic 

culture likely induced αSMA expression in isolated CAFs, which may be prevented by 

culture on collagen gels or in matrigel. While these changes in marker expression may 

not equate to altered functions, fibroblasts are extremely plastic and likely change their 

phenotype if removed from their local environment. This was demonstrated by Salzer 

et al, who showed considerable changes in gene  expression of fibroblasts isolated 

from the dermis after one passage 408. In combination with tumour cell contamination, 

performing functional assays in vitro, will be extremely difficult. Thus, to further validate 

the functional properties of these populations a different approach must be taken. 

Interestingly, proliferating subsets identified in our pilot dataset, were also observed 

within CAF2 and CAF3 populations but not CAF1. However, EdU incorporation 

revealed proliferating cells within all CAF subsets, although CAF3 contained the 

greatest proportion. Mice were exposed to EdU for 48hs prior to sample collection, 

enabling all cycling cells to incorporate this label and suggesting only a subset in each 

population actively divide. In the absence of pathology, fibroblasts are described as 

quiescent and their expansion in disease has been attributed to increased proliferation 

409. Our results support this model in part, as the number of cycling cells in CAF 1 and 

2 increased upon initiation of malignant growth. Furthermore, this pool of cycling cells 

expanded in tandem with the CAF compartment, potentially driving its growth. While 

proliferating cells within the CAF 3 subset were present in normal skin, very few cells 

were detected at this time point, possibly biasing these results. It remains unclear 

whether proliferating cells represent an isolated population undergoing continuous 

self-renewal, or if cells inter-change between quiescent and cycling phenotypes. This 

could be investigated by BrdU and EdU double labelling, in which cells are initially 

labelled with BrdU, followed by EdU at a later stage. The presence of single positive 

BrdU cells would suggests fibroblasts proliferate for a limited period of time.  

Sequencing fibroblasts from different stages of tumour progression revealed a 

dynamic fibroblast niche, in which the composition of populations changed as the 

tumour progressed. However, it is unclear whether these subsets represent discreate 
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populations that emerge and regress at different stages, or phenotypic states in which 

fibroblasts transition. Our sequencing data suggests that CAF1 may represent resident 

fibroblasts, that dominate at early stages of tumour development yet recede at later 

time points. A decrease in this population was also concomitant with the emergence 

of the CAF 3 subset. As pseudo-time analysis ordered CAFs in a trajectory from CAF1 

to CAF2, and CAF2 to CAF3, it is tempting to suggest this reflects differentiation from 

resident CAF1 fibroblasts, towards an activated ‘CAF3’ state.  

However, this hypothesis was not supported by experimental validation which showed 

both CD34highαSMAlow CAF1 and CD34lowαSMAlow CAF 2 fibroblasts were present in 

skin samples. Furthermore, while the expansion of the CAF3 population at later time 

points was confirmed, the proportion of CAF1 fibroblasts remained consistent. In 

addition, the presence of a proliferating pool within each CAF subset suggests 

populations are maintained separately. Growth of the CAF 3 population at later time 

points may be explained by increased proportions of cycling cells within this group. 

Moreover, the presence of multiple populations in normal skin has been previously 

documented291,293,410 and raises the possibility that CAF populations pre-exist in the 

absence of pathology. Whether certain populations are specifically expanded upon 

tumour onset is unknown. Although differential marker expression suggested 

heterogeneity, our data also showed a significant increase in both C3 and ECM 

production upon tumour formation. Thus, while these populations may be present in 

normal skin, their functional properties are still manipulated in the presence of 

malignant cells. Indeed, whether fibroblast populations are pre-disposed to specific 

functions, or are entirely regulated by their local environment, is an interesting 

question.  

Overall, it is unclear whether CAF populations expand independently or represent 

different stages in a differentiation trajectory. It is also possible that discrete subsets 

exist yet, due to their innate plasticity, CAFs may freely transition between populations. 

However, this is difficult to determine in the absence of lineage tracing experiments. 

Regardless of whether populations are related, increased heterogeneity was observed 

in more advanced tumours. The emergence of the CAF3 subset was likely induced by 

changes in soluble factors, such as cytokines and growth factors, as well as 

mechanical cues. Furthermore, the development a hypoxic network may drive the 

appearance of ‘glycolytic’ subpopulations at later time points.  This highlights how 
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environmental pressures, that arise as a consequence of tumour growth, can induce 

further heterogeneity. The local microenvironment is a critical regulator of fibroblast 

phenotype, thus the turbulent and evolving atmosphere of a developing tumour 

inevitably induces diversity. 

Owing to the expression of markers such as Rgs5, Cspg4 (Ng2) Mcam and Des, it is 

possible that the CAF3 population may contain pericyte contamination. However, all 

of these markers have been reported in fibroblast populations 214,298,299,411 and both 

Rgs5 and Des were observed in lymph node FRCs, a phenomenon previously 

reported 412. Furthermore, CAF3 also produced matrix components such as Col1a1, 

Col1a2, Fn1 and Sparc which indicate a fibroblast phenotype. Thus, it is difficult to 

distinguish CAFs from pericytes based on marker expression, emphasizing the poor 

characterisation of the mesenchymal compartment.  

Consequently, to differentiate pericytes from fibroblasts, association with the 

vasculature was examined. While aSMA and NG2 expressing cells were observed 

surrounding vessels, the majority of new vessels formed in the centre of the tumour 

and were not accompanied by pericytes. Furthermore, cells expressing these markers 

were also present dissociated from the vasculature in peripheral regions. Therefore, 

CAF3 may represent a mixed population of mesenchymal cells that share similar 

surface marker expression and functional properties. Other studies have attempted to 

remove pericytes, based on NG2 expression, yet populations expressing pericyte 

markers were still isolated. The close relationship between these populations has led 

the suggestion that pericytes may act as source of CAFs in the tumour 

microenvironment. This has been reported during liver and kidney fibrosis, as well as 

tumour development 270,271,273,298,411. Thus, it is possible that the CAF3 population may 

be pericyte derived.  

Having identified distinct CAF populations within the melanoma microenvironment, we 

next wished to investigate how each subset influences tumour growth. In particular we 

have focussed on the CAF 1 population, which has been implicated in immune cross-

talk. Yet, it is unclear with which immune populations these CAFs are interacting and 

whether the promote anti-tumour immunity or induce tolerance. To explore this in more 

detail, we have examined the immune-stromal compartment which was also 

sequenced as part of this study. Other key questions include how these populations 
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arise and whether similar populations exist in other tumour types, as well as human 

cancer. These themes were explored in the following chapter, providing more function 

and global relevance. 
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 Introduction 
 

scRNA sequencing of B16-F10 melanomas revealed a diverse CAF compartment, 

whose composition changed in as the tumour develops. 3 phenotypically distinct 

populations were identified and validated, including ‘immune’ CAF1, ‘desmoplastic’ 

CAF2 and ‘contractile’ CAF 3 subsets. However, whether these fibroblast subsets 

promote or inhibit tumour development remains elusive. Thus, in this chapter the 

functional significance of these populations in the tumour microenvironment was 

investigated. In particular, we focussed on CAF1 fibroblasts, which were implicated in 

immune-cross talk. Here, scRNAseq data from immune cells, isolated in parallel to 

fibroblasts, was used to assess immune phenotypes and identify potential interactions. 

This data, in combination with in vivo functional studies, was used to examine the role 

of CAF1 populations in the development of tumour associated inflammation. 

What drives the formation of different CAF populations is another pertinent question. 

One potential source of heterogeneity is the different origins from which CAFs are 

derived. We have previously discussed that pericytes may contribute to CAF3 

populations in B16-F10 melanoma. However, assessing this in vivo would require 

lineage tracing models. Bone marrow mesenchymal cells have also been reported to 

migrate and form populations in the primary tumour 274,275,278. Thus, bone marrow 

chimeric mice were used to investigate the contribution of this compartment to CAF 

subsets in melanoma.  

Lastly, whether the three CAF populations identified are specific to melanoma or are 

present in other cancer models is unclear. Therefore, using additional murine models 

and publicly available sequencing data, conservation of these CAF subsets was 

explored in different cancer types. Publicly available data was also used to investigate 

whether these populations were present in human tumours. This revealed the 

translational relevance of our findings and potential for therapeutic intervention. 
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 Results 
 

 Characterising the Immune Compartment 
 

To uncover the role of the ‘immune’ CAF1 population in shaping the tumour immune 

landscape, it was first necessary to characterise infiltrating leukocyte populations. 

Thus, scRNAseq data from immune populations, isolated in tandem with CAFs, was 

used to evaluate their respective phenotypes in both the primary tumour and draining 

lymph node. Initial clustering of immune cells was performed by Dr. Mirjana Efremova. 

Together we identified specific immune-subsets and investigated their phenotypes. 

 

 T-cells 

 

As previously discussed (section 1.1.1.1), the presence and functional status of T-cells 

is a key determinant of disease outcome 13–17,40–44 . Thus, to determine if immune 

populations support or inhibit in the melanoma development in this model, initial 

investigations focussed on T-cell phenotypes. Clustering revealed the presence of 

classical CD8 and CD4 T-cells, as well as γδ, MAIT and iNK T-cells (Fig.  5.1 A). The 

latter were identified by expression of Trdc1 (T-cell receptor δ constant region 1) 

Trdgj1 (T-cell receptor γ joining region 1), Trdgj2, Klrb1a and Klrb1b (NK1.1) (Fig.  5.1 

B). Interestingly, Foxp3 expressing T-regs were only detected in the primary tumour, 

suggesting they are enriched at this site compared to the lymph node.  

Furthermore, CD8 and CD4 T-cells clustered according to their location in either the 

tumour and lymph node, indicating site specific programmes. Crucially LN T-cells 

expressed naïve markers (Sell, Tcf7 and Lef1), whereas activation markers (CD44, 

granzyme enzymes and Ki67) were highly expressed by T-cells at the tumour. 

However, tumour resident T-cells also expressed dysfunction markers (Lag3, Pdcd1 

(Pd1), Clta4 and Tigit), suggesting T cells may be more activated in the primary tumour 

yet become exhausted (Fig.  5.1 C).  
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Fig.  5.1 Multiple T-cell populations were identified 

1298 T-cells were selected based on CD3e expression and re-clustered. (A) tSNE plot 

showing T-cell subsets, produced my Dr. Mirjana Efremova and coloured according to 

location (T tumour (black), LN lymph node (grey)). (B) tSNE plots showing expression 

of genes associated with T-cell subsets, red indicates high expression grey indicates 

low expression. (E) Heatmap showing expression of naïve, activation and exhaustion 

markers in lymph node and the tumour T-cell populations. Expression was averaged 

across each population and z scores are displayed. 
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 Pseudo-time analysis showed CD8 T-cells become activated and 

display dysfunctional markers in the primary tumour 

 

In particular, CD8 T-cells have the ability detect and kill tumour cells 11,12. Thus, their 

activation and function are critical for tumour growth and progression. Having shown 

a difference in the maturation state of these cells, between the LN and tumour sites, 

pseudo-time analysis was employed to further investigate differentiation in a malignant 

context. Strikingly, this trajectory ordered CD8 T-cells from the lymph node towards 

the tumour (Fig.  5.2 A and B). As we also possessed “real time” data, this could be 

mapped onto the trajectory, confirming that within the tumour compartment, cells were 

organised from early to late time points (Fig.  1.5 B). Furthermore, expression of naïve 

markers decreased from the LN towards the tumour, while activation and exhaustion 

markers increased (Fig.  5.2 A and C). The smart seq2 protocol also enables 

sequencing of the TCR and identification of clonal cells. This analysis was performed 

by Dr. Mirjana Efremova and showed that T-cells clonally expanded specifically within 

the tumour compartment (Fig.  5.2 B). Thus, in contrast to the current dogma, our 

results indicate that CD8 T-cells leave the lymph node naïve and are activated in situ 

at the primary tumour. Here, they clonally expand and ultimately become 

dysfunctional. This was supported by experimental validation which showed an 

increase in the number of PD1+ and Ki67+ CD8 T-cells in the tumour compared to the 

lymph node, particularly at day 11 (Fig.  5.2 D). While proliferating cells were identified 

in the lymph node, their proportion was consistent between tumour draining nodes and 

those isolated from control mice. 
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Fig.  5.2 Diffusion maps and pseudo-time analysis suggests T-cell activation occurs in 
the tumour and the development of dysfunctional markers at later time points. 

(A) Diffusion maps showing the DPT trajectory (left), blue indicates cells that are closely 
related to the starting or (tip) cell, whereas as yellow indicates cells that are more distant. (B) 
Diffusion maps coloured according to the location (left) and time points (centre) from which 
each cell was isolated. Clonally expanded cells were determined by matching TCRs and 
shown on the diffusion map (right). Clonally expanded cells were identified by Dr. Mirjana 
Efremova, while I produced diffusion maps and DPT analysis (C) Diffusion maps coloured 
according to the expression of selected genes. Blue indicates low expression, while yellow 
indicates high expression. (D) Percentage of Ki67 and PD1 expressing CD8 T-cells (% CD8) 
and the number of CD8 T-cells (% CD3e) in the tumour and draining lymph node at different 
time points. Data presented as mean ± SEM. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 
(two way Anova with Sidak post-hoc test), n=4 mice per condition. 
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 Innate Immune Populations 

 

The innate arm of the immune system is able to detect the presence of tumour cells 

and coordinate an adaptive response.  However, these cells are often corrupted by 

the tumour, supporting its growth and promoting immune tolerance 7. Owing to their 

ability to both stimulate and supress T-cell functions, innate populations may regulate 

the sequential development of lymphocyte activation and dysfunction in the primary 

tumour. Thus, to investigate which populations were present, as well as their 

phenotypes, T and B cells were removed from analysis (based on Cd3e and CD19 

expression) and the remaining populations re-clustered (Fig.  5.3 A). Cells formed 10 

distinct subsets which were identified as NK cells, Phagocytes and multiple DC 

populations, based on common markers: NK: Ncr1, Prf1 (Perforin), phagocytes: Itgam 

(Cd11b), DCs: Itgax (Cd11c). Cluster 8 was composed of cells in which a low number 

of detected genes and was excluded from the analysis (Fig.  5.3 B and C). Further 

investigations into marker expression enabled more detailed phenotyping of innate 

populations. The majority of Phagocytes expressed Adgre1 (F4/80), indicating 

significant macrophage infiltration. However, some Ly6g and Ly6c positive cells were 

also observed, which likely represent neutrophils and monocytes respectively (Fig.  

5.3 D).  It is possible this cluster also contains MDSCs, however it is difficult to identify 

these cells based on marker expression. On the other hand, classical DC populations 

cDC1 and cDC2, as well as plasmacytoid DCs (pDCs), clustered separately. These 

were identified based on expression of cDC1: Clec9a, Tlr3, Tlr11, Ly75, and Xcr1, 

cDC2: Cd11b, Fcγr1 and Sirpa, pDC: Bst2 and Siglech. Cluster 3 represented a lymph 

node resident Cd11b Cd11c double positive population, witch expressed both cDC2 

markers as well as Monocyte/macrophage markers such as Cx3cr1 (Fig.  5.3 D and 

E). 

Interestingly, DC clusters also separated according to their location in the tumour or 

lymph node. Similar to T-cells, this suggests these cells possess site-specific 

transcriptional signatures. cDC1 cells in the tumour expressed the dermal marker Itgae 

(CD103), a marker that defines populations known to migrate to the LN and cross 

present antigen to CD8 T-cells. However, their lymph node counterparts expressed 

CD8a, suggesting these cells represent LN resident populations and have not 
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migrated from the tumour. Nevertheless, expression of Ccr7 by Cd103+ DCs implies 

these cells are capable of trafficking to secondary lymphoid organs (Fig.  5.3 

E). Clusters 5 and 7 also represented closely related populations separated by 

location, yet their identity was difficult to define. Low expression of myeloid markers 

Cd11b and Cd11c and high expression of the Il7r, initially indicated an innate lymphoid 

phenotype. However, expression of other innate lymphoid markers, as well as mast 

cell and eosinophil markers Siglecf, cd200r3 and Enpp3 and Fcέr1 were very low or 

undetected. On the other hand, DC transcription factors such as Flt3, Baft3, Zbtb46 

and Id2 were highly expressed. Interestingly, in addition to classical CD103+ DCs, the 

tumour resident half of this population (cluster 5), also expressed Ccr7 (Fig.  5.3 E). 

This suggested these cells also traffic to the lymph node, thus were termed migratory 

DCs (migDC). However, these cells may represent DC progenitors, although low 

expression of Kit and Cd34 implies they are restricted to a pre-DC phenotype. 
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Fig.  5.3 NK cells, Phagocytes and numerous DC populations were identified in the 
innate compartment 

T and B cells were excluded based on Cd3e and Cd19 expression and the remaining 1444 
immune cells were re-clustered. (A) tSNE plots coloured according to location, the assigned 
cell identity based on (D and E) are shown. tSNE plots showing the original clusters identified 
(B) and the number of genes detected (C) and expression of selected genes (D). (E) Heatmap 
showing expression of innate cell markers across all populations, Log(tpm+1) is displayed. 
Ph: Phagocytes, NK: NK cells, MP LN: Mononuclear Phagocytes Lymph Node, cDC1: 
Classical DC 1, cDC2: Classical DC 2, pDC: plasmacytoid DC, migDC: migratory DC. T and 
LN denote tumour and lymph node respectively. (A) and (B) were produced by Dr. Mirjana 
Efremova, I produced all other plots.  
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 Innate cells were more activated yet suppressive in the tumour 

compared to the lymph node 

 

To assess interactions that may dictate T-cell function, expression of known 

costimulatory molecules, inflammatory cytokines and suppressive factors were 

investigated (Fig.  5.4 A). Interestingly, costimulatory molecules and inflammatory 

factors such as Pvr, Il1b and 4-1bbl were upregulated in tumour resident DC 

populations, compared to those in the lymph node. While expression of suppressive 

molecules Pdl1 and Gal9, as well as Pdl2 were increased in tumour cDC1 and migDC 

subsets respectively. The observation that the innate compartment within the tumour 

may be more inflammatory, yet also suppressive, was counterintuitive, hence this 

phenotype was investigated further by examining expression of these molecules at 

different time points. This revealed that expression of Arg1 in Phagocytes and Pdl1 in 

both Phagocytes and cDC1 cells, increased at later time points. Furthermore, 

increased expression of these factors in CD11b+ cells was confirmed at the protein 

level, implying populations may become more suppressive as the tumour develops 

(Fig.  5.4 B). Functional differences between tumour and lymph node populations, as 

well as changes over time are summarised in Fig.  5.5.  

Another feature of tumour associated inflammation is the polarisation of macrophages 

from an M1 to an M2 phenotype. However, macrophages in this data set expressed a 

collection of typical M1 and M2 markers, making it difficult to determine their 

polarisation state (Fig.  5.4 C). However, as discussed above, expression of 

suppressive markers Pdl1 and Arg1 suggest they promote immune tolerance. This is 

consistent with current thinking, in which polarisation states are insufficient to describe 

tumour macrophage populations. Instead, it is better to categorise these cells 

according to specific functional properties. 

Overall, the innate compartment mirrors the adaptive, showing heightened 

inflammatory phenotypes within the tumour, compared to the lymph node, as well 

increased expression of suppressive molecules at later time points. Thus, it is possible 

that upregulation of costimulatory molecules and inflammatory cytokines, by tumour 

resident innate populations, is responsible for T-cell activation at this site. 

Furthermore, increased expression of PDL1 and ARG1 may contribute to the 
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development of T-cell dysfunction at later stages. This suggests melanomas cultivate 

an immunosuppressive environment to prevent detection and enable their growth.  
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Fig.  5.4 Myeloid cells are more activated yet suppressive in the tumour compared to 

the lymph node 

(A) Heatmap displaying expression of suppressive and costimulatory molecules across 
location and time points. Z score is displayed. (B) Flow cytometry data showing mean 
fluorescence intensity of PDL1 and percentage ARG1+ cells in CD11b+ myeloid populations, 
normalised to day 6. (C) tSNE plots showing expression M1 and M2 markers, red indicates 
high expression and grey indicates low expression. **** P<0.0001 (T-test), B: n=12 mice per 
condition. Ph: phagocytes, MP LN: mononuclear phagocytes lymph node, cDC1: classical DC 
1, cDC2: classical DC 2, migDC: migratory DC.   
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Fig.  5.5 Phenotypes of myeloid cells in the tumour and the lymph node.  

Schematic depicting the expression of costimulatory and suppressive molecules on myeloid 
cells in the lymph node and at early and late time points in the tumour. Blue indicates 
costimulatory molecules and red indicates suppressive molecules. All molecules are 
significantly de-regulated between conditions. Ph: phagocytes, MP LN: mononuclear 

phagocytes lymph node, cDC1: classical DC 1, cDC2: classical DC 2, migDC: migratory DC. 
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 Examining the role of ‘immune’ CAF1 fibroblasts in the 
development of an immunosuppressive microenvironment 

 

 The CAF1 population may be involved in cross-talk with tumour 

macrophages 

 

Having discovered the development of an immunosuppressive microenvironment, we 

next sought to identify the role of the CAF1 population in this process. In particular, 

this subset secreted immune recruitment factors CXCL12, CSF1 and C3, of which the 

latter is cleaved to produce the anaphylatoxin C3a. Thus, to infer potential immune 

interactions, expression of their cognate receptors Cxcr4, Csf1r and the C3ar was 

investigated (Fig.  5.6 A). While Cxcr4 and the Csf1r were expressed on T-cell 

populations and cDC2 cells respectively, all three receptors were expressed by 

Phagocytic cells. As macrophages were the most dominant population within this 

cluster, this suggests CAF1 fibroblasts may be involved in their recruitment or 

regulation. Furthermore, confocal imaging of tumour sections using macrophage 

marker F4/80 showed macrophages expressing all three receptors adjacent to 

CD34high CAFs (Fig.  5.6 B). The close proximity of these populations affords potential 

for these cells to interact. 
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Fig.  5.6 Cognate receptors for key CAF1 inflammatory factors are expressed on 

macrophage populations 

(A) Violin plots showing expression of inflammatory factors Cxcl12, Csf1 and C3 and their 
cognate receptors Cxcr4, Csf1 and C3ar in stromal populations in the tumour. (B) IF images 
of day 5 B16-F10 tumours showing the close proximity of CD34high CAFs and macrophages 

expressing CXCR4, CSF1R or C3aR. IF images represent n=3 tumours, scale is indicated. 
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 C3 was specifically produced by CD34+ Fibroblasts in the tumour 

microenvironment 

 

Next, we wished to investigate the nature of the interactions between the CAF1 

population and macrophages. For example, whether CAF1 cells are involved in their 

recruitment or induction of suppressive properties is unclear. However, devising a 

method to investigate interactions was difficult. As previously discussed, isolation of 

these cells for in vitro assays was technically challenging and would likely lead to loss 

of phenotype. Thus, in vivo blocking of CAF produced factors was employed to assess 

their influence on the myeloid compartment. However, in addition to sticking to the cell 

surface (4.2.4.3), CXCL12 was also produced by other microenvironment components 

including both tumour and endothelial cells. Thus, whether the effects of blocking this 

interaction are specific to the CAF compartment is difficult to evaluate (Fig.  5.7). 

Similarly, our sequencing data implied exclusive production of CSF1 by fibroblasts 

within the stroma. However, expression of this cytokine by other populations, including 

tumour cells, was not validated at the protein level. On the other hand, C3 was 

specifically produced by CD34high CAF1 fibroblasts, thus, the C3a/C3aR axis was 

selected for these studies. 
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Fig.  5.7 Expression of CXCL12 and C3 in the tumour microenvironment 

Flow cytometric quantification of total and surface CXCL12 and C3 expression in CAFs, 
tumour, immune and endothelial cells at day 11. Graphs are presented as fold change in mean 
fluorescence and normalised to the CD34high αSMAlow population. Data presented as mean ± 
SEM. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 (two way anova with Sidak post-hoc 
test). CXCL12: n = minimum of 12 mice, C3: n = minimum 6 mice 
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 Inhibition of C3a/C3aR signalling axis in the TME 

 

In vivo perturbation of C3a signalling enabled a broad evaluation of the role of CAF 1 

populations in the tumour microenvironment. To begin with, the effects of C3a on both 

myeloid recruitment and the development of suppressive phenotypes was evaluated. 

Furthermore, our data implicates the involvement of myeloid cells in T-cell suppression 

Thus, changes in the numbers or phenotypes of myeloid cells could influence the 

adaptive compartment. C3aR expression did not colocalise with Cd3e, indicating that 

alterations in T-cells, upon inhibition of C3a signalling, are a consequence of changes 

in myeloid populations (Fig.  5.8). Thus, the wider effects of CAF1-myeloid interactions 

on the development of T-cell dysfunction and tumour growth were investigated. 

 

Fig.  5.8 C3aR does not colocalise with CD3e. 

IF images of day 5 and day 11 tumours showing expression of Cd3e (green), C3aR (red) 
and CD45 (grey). C3aR was observed on CD45+ immune cells but did not colocalise with 

CD3e. Images represent n=3 tumours, scale is indicated.  

 

Mice with established tumours were treated with C3a neutralising antibody, according 

to (Fig.  5.10 A and B). To assess the immediate and long-term effects of C3a inhibition 

on myeloid populations, mice were sacrificed 24hs after the first treatment (day 6) and 

at day 11. Although macrophages represented the principal population within the 

C3aR+ phagocytic cluster, Ly6C+ monocytes and Ly6G+ neutrophils were also 

present.  Expression of C3aR on CD11b+ Ly6C+ myeloid cells was confirmed by 
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confocal imaging (Fig.  5.9), thus, changes in Ly6C, Ly6G and F4/80 populations were 

assessed in treated mice. A small yet significant decrease in F4/80+ macrophages 

was observed in in treated samples at day6, suggesting C3a is important for their 

recruitment (Fig.  5.10 D). However, F4/80+ cells were rare in blood samples and most 

likely recruited to the tumour as Ly6C+ monocytes, which then differentiate to a 

macrophage phenotype. As, monocyte recruitment was not reduced at day6, this 

signifies that C3a may be involved in monocyte differentiation to macrophages. 

Interestingly, neutralisation of C3a did not affect expression of suppressive molecules 

Arg-1 or PDL1 on macrophages, although a slight decrease was observed at early 

time points in Ly6C+ monocytes.  

Fig.  5.9 C3aR was expressed by Ly6C+ monocytes 

IF images of day 5 and day 11 tumours showing expression of Cd34 (green), C3aR (red) and 
Ly6C (grey) and CD11b (blue). C3aR was observed on CD11b+, Ly6C+ monocytes in close 

proximity to CD34high CAFs. Images represent n=3 tumours, scale is indicated. 
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Fig.  5.10 The effects of neutralising C3a on tumour growth and myeloid composition 

(A) Schematic showing treatment regime, mice received injections of IgG or anti-C3a at day 
5, 7 and 9 and were sacrificed at either day 6 or 11. (B) Graph showing tumour volume (mm3) 
of treated mice. (C) Gating strategy for identification of myeloid populations. Dead cells and 
doublets were removed and CD45+ immune cells selected. Within immune cells CD3e+ T-
cells and NK1.1 NK cells were excluded and CD11b+ cells were divided into populations 
based on Ly6C and Ly6G or F4/80 expression. (D) Tumour infiltrating and blood myeloid 
populations are displayed as a percentage of CD11b. Mean fluorescence intensity of 
suppressive markers ARG1 and PDL1 in different populations are displayed, normalised to 
IgG day6. Data presented as mean ± SEM, *P<0.05, ** P<0.01 (B: T-test performed on day 
11 treated and non-treated volumes D: two way anova with Sidak post-hoc test), n = minimum 
of 13 tumours. Statistical significance was tested for all data in this figure. If no star is 
displayed, comparisons were not significant 



145 
 

Crucially, this decrease in macrophage populations was accompanied by an increase 

in CD8 T-cells at later time points and a reduction in the rate of tumour growth (Fig.  

5.11 B).  Although a small increase in CD8-T cells was observed as a percentage of 

CD3e, this was obscured by a large amount of variation between samples. Thus, CD8 

T-cell counts were normalised to tumour volume, showing a significant difference in 

their number upon treatment. However, T-cell dysfunction molecules PD1 and LAG3 

were slightly increased, although expression was extremely variable.  This is 

consistent with unaltered expression of myeloid ARG1 and PDL1 and indicates that 

inhibiting C3a does not prevent T cell suppression. However, it appears that by 

reducing myeloid numbers, CD8 T-cell recruitment is increased or their survival is 

promoted. While this is sufficient to decelerate tumour growth, this modest effect may 

be boosted by restoration of cytotoxic functions. Importantly, the anti-C3a antibody 

was well tolerated by mice in this study and no significant changes in immune 

populations were observed in blood samples. This indicates treatment does not cause 

damaging systemic effects. 
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Fig.  5.11 The effects of neutralising C3a on T-cell composition 

(A) Gating strategy for identification of T-cell populations. Dead cells and doublets were 
removed and CD45+ immune cells selected. Within immune cells CD3e+ T-cells were divided 
into CD8+ and CD4+populaitons. Tregs were identified within CD4 cells based on FOXP3 
expression. (B) Tumour Infiltrating and blood T-cell populations are displayed as a percentage 
of CD3e of CD4 cells. CD8 T-cells counts were also normalised to tumour volume (mm3). 
Mean fluorescence intensity of T-cell exhaustion markers PD1 and Lag3 in CD8 T cells, is 
shown, normalized to IgG day 6. Data presented as mean ± SEM, *P<0.05,: two way anova 
with Sidak post-hoc test), n = minimum of 13 tumours. Statistical significance was tested for 

all data in this figure. If no star is displayed, comparisons were not significant 
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To corroborate these findings, the effects of C3aR antagonist SB290157 on immune 

cell infiltration were also investigated. Two time-courses were performed, of which one 

was identical to the C3a neutralisation study, while the other assessed the effect of 

treatment at different time points. The results of the first study, in which mice were 

treated every two days and culled at either day 6 or day 11, were extremely variable. 

A decrease in macrophage populations and an increase in Ly6C+ cells was initially 

observed, yet this trend was not present when the experiment was repeated 

(combined results displayed in (Fig.  5.12 C). In the second time course, C3aR was 

perturbed at either early stages (day4 and day 6) or later stages (day 8 and day 10) 

and all tumours were allowed to develop for 11 days. Interestingly, in this experiment, 

a decrease in F4/80 macrophages and an increase in Ly6C+ cells was observed after 

inhibition of the C3aR at either early or late time points (Fig.  5.12 F). These dynamics 

suggest that treatment at early time points is long lasting, which differs from the C3a 

neutralisation study where this trend was not observed at day 11. Thus, while trends 

in myeloid populations are retained upon C3aR antagonism, there are subtle 

differences in timing of these events. However, in both time courses, inhibition of C3aR 

did not increase in the number of CD8 T-cells, nor slow tumour growth (Fig.  5.12  B 

and E). Indeed, treatment with SB290157 at day 4 and 6 actually increased tumour 

volume.  

Overall, these results are preliminary and require optimisation. However, common 

trends suggest that CAF1 production of C3 regulates macrophage accumulation in the 

tumour and may be important for monocyte to macrophage differentiation. 

Furthermore, reduction in macrophage numbers increased CD8 T-cells and slowed 

tumour growth. Thus, via regulation of suppressive myeloid cells, the CAF1 population 

may be an important player in the development of the immunosuppressive melanoma 

microenvironment. 

  



148 
 

 
Fig.  5.12 The effects of C3aR antagonism on tumour growth and immune composition 
(A and D) Schematics showing treatment regimes. (A) Mice received injections of vehicle or 
C3aR inhibitor (C3aRi) at day 5, 7 and 9 and were sacrificed at either day 6 or 11. (D) Mice 
were treated at either day 4 and 6 or day 8 and 10, and all mice were sacrificed at day 11. (B, 
E) Graphs showing tumour volume (mm3) of treated mice. (C and F) Tumour infiltrating 
myeloid, CD8 T-cell populations and blood neutrophils are displayed. Myeloid cells are shown 
as a percentage of CD11b, while CD8 T-cells are shown as a percentage of CD3e. Data 
presented as mean ± SEM, *P<0.05, (two way anova with Sidak post-hoc test), n = minimum 
of 13 tumours. Statistical significance was tested for all data in this figure. If no star is 
displayed, comparisons were not significant 
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 Investigating whether fibroblasts derived from different 
origins form functionally distinct populations 

 

As well as environmental cues, one potential source of fibroblast heterogeneity is their 

cellular origin. In addition to resident fibroblasts, stromal cells recruited from the bone 

marrow represent another potential source. Thus, to investigate whether the bone 

marrow contributes to the milieu of fibroblast populations in the tumour stroma, a 

chimeric model was developed.  

 

 Establishment of a chimeric mouse model enabled the identification of 

bone marrow derived CAFs 

 

Chimeric mice were created by transplanting bone marrow extracted from CAG-

EGFP+ mice into irradiated WT strains. This enabled the detection of fibroblasts 

recruited from the bone marrow, based on GFP expression (Fig.  5.13 A). To ensure 

bone marrow engraftment was successful blood samples were analysed to assess the 

proportion of GFP+ cells. After 3 weeks, over 90% of cells were GFP+ indicating 

successful engraftment (Fig.  5.13 B and C). Analysis of day 11 B16-F10 tumours 

showed that only 1-2% of CAFs were bone marrow derived (GFP+). Furthermore, the 

level of GFP expression appeared significantly lower than immune populations in 

tumours, raising the possibility that either CAFs do not express as much GFP or they 

have phagocytosed immune cells or immune cell debris. Consequently, it is unlikely 

that bone marrow stromal cells are responsible for fibroblast heterogeneity in this 

model. 
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Fig.  5.13 The bone marrow does not represent a significant source of fibroblasts 

(A) Schematic depicting the formation of the bone marrow chimeric mice. The bone marrow 
of CAG.EGFP mice were extracted and implanted into irradiated WT mice. B16-F10 tumours 
were established in chimeric mice, enabling the identification of bone marrow derived cells 
based on GFP expression. (B) To check engraftment was successful the percentage of GFP+ 
cells in blood samples from chimeric and WT mice was quantified. WT n=3 mice, Chimeras 
n=6 mice. (C) Gating strategy for (B). (D) Representative FACs plots (n=6) showing GFP 
expression in CAFs and immune cells from chimeric models. CAFs were selected by excluding 
doublets, dead cells, CD45+

 
immune and CD31+ endothelial cells and cells were removed. 

Fibroblasts were then identified by expression of Thy1 and PDGFRα. And GFP measured 
within this gate 
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 Investigation of ‘immune’, ‘desmoplastic’ and ‘contractile’ 
CAF populations in other murine cancer models and human 
cancers 

 

The critical role of CAF1 fibroblasts in the regulation of immune populations and the 

potential of anti-C3a therapies, lead us to investigate whether these populations were 

limited to the B16-F10 model or were relevant to other cancer types. Thus, the 

presence of these CAF populations was examined in breast and pancreatic murine 

models, as well as the BRAFV600EPTEN-/- model (described in section1.6.2), which 

better resembles the slow development of human melanoma.  

 

 BRAFV600EPTEN-/- murine model of melanoma 

 

Staining of spontaneously arising BRAFV600EPTEN-/- tumours for CAF markers CD34, 

PDGFRα, PDPN and αSMA, showed a different distribution. CAFs predominantly 

expressed αSMA and PDPN, for which double positive populations were abundant 

and mutually exclusive populations were rare. Interestingly, while CD34+ cells were 

present throughout the tumour, a large proportion of these cells did not display a 

fibroblast morphology nor express CAF markers. These cells may represent immune 

populations or progenitors (Fig.  5.14 A and B). Furthermore, in support of our initial 

characterisation of these tumours (section 3.2.1), only a small subset of CAFs 

expressed PDGFRα. These fibroblasts were restricted to peripheral regions and did 

not penetrate the tumour core.  

Despite the small number of CD34high CAFs in this model, C3 levels were higher in 

this population comparison to the CD34low fibroblasts (Fig.  5.15 B). Although C3 was 

also detected in immune and endothelial cells, this may be due to cell surface sticking. 

Thus, despite the different distribution of CAF markers, CD34+ CAFs are still the 

primary source of C3 in this melanoma model. 
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Fig.  5.14 Confocal images of CAF markers in BRAFV600EPTEN-/- tumours 

IF images of spontaneous BRAFV600EPTEN-/- tumours. (A) Sections stained for CD34, αSMA 
and PDGFRα. Arrow heads indicate PDGFRα+ cells, * indicate αSMA+ cells. (B) Sections 
stained for CD34 αSMA and PDPN. Arrow heads indicate CD34+ fibroblasts * indicate CD34+ 
cells that do have a fibroblast morphology nor express fibroblast markers. Scale is indicated. 



153 
 

 

Fig.  5.15 CD34+ CAFs were the primary source of C3 in BRAFV600EPTEN-/- tumours 

Flow cytometric analysis of C3 in the microenvironment of spontaneous BRAFV600EPTEN-/- 

tumours. (A) Gating strategy showing identification of populations. Doublets and dead cells 
were excluded, and endothelial and immune cells were selected based on CD31 and CD45 
expression respectively. CAFs were identified based on combined expression of THY1, 
PDGFRα and PDGFRβ once immune and endothelial cells were excluded. Expression of 
CD34 was determined based tumour cells, which should act as a negative control. (B) Mean 
fluorescence intensity of total and surface C3 was quantified and normalised to CD34 high 
CAFs for each population. Data presented as mean ± SEM. Statistical significance was tested 
for all data in this figure. However, comparisons were not significant, thus, no star is displayed. 
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 Murine models of breast cancer 

 

The E0771 orthotopic model was used in which tumour cells were injected into the 

mammary fat pad, to investigate CAF populations in breast cancer. These tumours 

grew at a slightly slower rate than their B16-F10 counterparts and mice were culled 

after 8 or 16 days. Confocal imaging revealed a similar marker distribution, in which 

PDGFRα colocalised with CD34, while αSMA exhibited more distinct staining (Fig.  

5.16). Furthermore, flow cytometry confirmed that C3 was expressed by CD34high 

CAFs (Fig.  5.17 B) and that these CAFs are the dominant source of this factor in 

theTME (Fig.  5.17C). Interestingly, consistent with the B16-F10 model, C3 expression 

was low in fibroblasts from normal tissue yet increased as the tumour developed (Fig.  

5.17 B). However, the prevalence of these populations did not change as breast 

tumours developed (Fig.  5.17 D). This indicates differences in the temporal dynamics 

of CAF populations between models.  

 

 

Fig.  5.16 IF of CAF markers in the tumour microenvironment of E0771 breast tumours 

Representative confocal images showing the combination of CD34 (green), αSMA (red) and 
PDGFRα (grey) in day 8 and day16 E0771 tumours. A merged image of all 3 markers is 
displayed, as well as images showing two channels at a time. Pseudo-coloured green or red, 
these images emphasise colocalization. White dotted lines represent the divide between 
tumour and stromal regions, scale is indicated. Images represent at least n=3 independent 
mice.  
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Fig.  5.17 CAF populations in the tumour microenvironment of E0771 breast tumours 

(A) Gating strategy showing identification of populations in the microenvironment of E0771 
breast tumours. Doublets and dead cells were excluded, and endothelial and immune cells 
were selected based on CD31 and CD45 expression respectively. CAFs were identified based 
on combined expression of THY1, PDGFRα and PDGFRβ, once immune and endothelial cells 
were excluded, and further separated based on CD34 and αSMA expression. Flow cytometric 
quantification of C3 expression in CAF populations at different time points (B) and all 
populations at day 16 (C). Displayed as mean fluorescence intensity and normalised to the 
CD34high αSMAlow population. (D) CAF populations at different time points as a percentage of 
the CAF compartment. Data presented as mean ± SEM. * P<0.05, ** P<0.01, *** P<0.001, **** 
P<0.0001 (B: two way anova with Tukey post-hoc test, C: one way, anova with Tukey post-
hoc test), n = 8 mice. 
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To investigate these CAF populations in an additional breast cancer model, we 

examined gene signatures related to each population in publicly available data. 

Bartoschek et al isolated CAFs form the MMTV-PyMT mode,l by excluding Epcam+, 

CD45+, CD31+ and NG2+ cells299. Here, they discovered 4 populations termed 

vascular (vCAFs), matrix (mCAFs), developmental (dCAFs) and cycling CAFs 

(cCAFs), which are a proliferating subset of vCAFs, based on their unique functional 

signatures. These results were recapitulated in our hands, as 4 similar populations 

were identified that expressed the reported markers (Fig.  5.18 A and B). Interestingly, 

examination of genes associated with our ‘immune’, ‘desmoplastic’ and ‘contractile’ 

subsets showed some similarities with these populations (Fig.  5.18 C and D). 

Although neither C3 nor Cd34 were high highly expressed by fibroblasts in this data 

set, other immune recruitment factors Cxcl12 and Csf1 were specifically associated 

with mCAFs. This population also expressed matrix components Col1a2 and Tnc, as 

well as CAF markers Pdpn and Pdgfra, suggesting it resembles features of our 

‘immune’ and ‘desmoplastic’ populations. Furthermore, vCAFs displayed high 

expression of contractile genes Myl9 (Mlc2) and Mylk (Mlck), as well as pericyte 

markers Cspg4 (Ng2), Mcam, Rgs5 and Des resembling ‘contractile’ CAF3 cells (Fig.  

5.19). This population was observed both surrounding blood vessels, as well as the 

leading edge, suggesting pericyte origins and reflecting our findings.  
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Fig.  5.18 CAF populations in the MMTV-PyMT model of breast cancer share some 
phenotypes with subsets identified in B16-F10 melanoma. 

Publicly available sequencing data from Bartoschek et al 299 of EpCAM- CD45- CD31- NG2- 
CAFs isolated from the MMTV-PyMT murine model of breast cancer. (A) Sequencing data 
was processed and re-clustered, displayed here as a tSNE plot. Labels indicate the 
populations that correspond to those identified by Bartoschek et al (vCAF, mCAF, cCAF and 
dCAF), as well as those that share features with our CAF subsets. These were assigned based 
on expression of genes depicted in B-D. (B) Violin plots displaying expression of population 
markers identified by Bartoschek et al, confirming similar clusters were found. (C) tSNE plots 
coloured according to expression of typical CAF markers, red indicates high expression and 
grey indicates low expression. (D) Violin plot showing expression of genes associated with 
CAF1 ‘immune’, CAF 2 ‘desmoplastic’ and CAF3 ‘contractile’ phenotypes.   
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Fig.  5.19 Pericyte markers were strongly expressed by CAF populations displaying a 

CAF3 ‘contractile’ phenotype in the MMTV-PyMT model of breast cancer.  

Publicly available sequencing data from Bartoschek et al 299 of the MMTV-PyMT murine model 
of breast cancer. Violin plots displaying expression of pericyte markers across identified 
populations. 

 

 KPC murine model of PDAC 

 

CAFs constitute a large proportion of pancreatic tumours413, thus, uncovering the 

different populations present is particularly pertinent. Feig et al previously reported 

distinct expression of CD34 and αSMA in the KPC model of PDAC248. However, in the 

present study, staining of PDAC samples from KPC mice (donated by Dr. Tobias 

Janowitz, CRUK Cambridge institute department of Oncology) showed CD34 

expression was restricted to CD31+ vessels. However, when examining normal 

pancreatic tissue, the majority of pancreatic stellate cells (PSCs) expressed CD34 

(Fig.  5.20 B). In contrast, aSMA expression was limited to perivascular cells in normal 

tissue, yet was abundant in PDAC samples (Fig.  5.20 A and C). This suggests 

CD34high fibroblasts represent resident populations in normal pancreatic tissue. 

However, similar to B16-F10 melanomas, upon tumour initiation these cells either 

transform into αSMA expressing CAFs or are replaced by a second population. This 

was supported by flow cytometry, which showed large numbers of CD34high cells in 

WT tissue yet fewer were detected in advanced tumours. The infrequency of this 

population in PDAC may make them difficult to detect by confocal imaging (Fig.  5.20 

D). Interestingly, PDGFRα colocalised strongly with both CD34 and αSMA in 

pancreatic samples, although some discrepancy was observed between this marker 

and the latter. This suggests, while similar CAF populations are present in PDAC, 

although marker expression is not identical. 
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Fig.  5.20 Fibroblast populations in WT pancreas and KPC PDAC  

IF images of normal (WT) pancreatic tissue and PDAC from KPC models. (A) PDAC Sections 
stained for CD34 (Green) αSMA (red) and PDGFRα (grey). (B) WT and PDAC sections 
stained for CD34 (Green) PDGFRα (red) and CD31 (grey). (C) WT sections stained for CD34 
(green), αSMA (red) and CD31 (grey). Arrow heads indicate blood vessels, * indicates 
pericytes, scale is indicated, n = minimum of 3 mice. 
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Due to the limited number of samples available we were not able to explore the 

functional phenotypes of these populations experimentally. However, CD34 positive 

and negative CAFs were sorted and sequenced by Feig et al, who made this data 

publicly available 248. GO term analysis, performed on DE genes, showed CD34+ 

CAFs upregulated cytokines and cytokine receptors, as well as complement 

components such as C3 (Fig.  5.21 A). Furthermore, Acta2 (αSMA) was upregulated 

by CD34- CAFs, which also expressed matrix components and contractile machinery 

(Fig.  5.21 A and B). This suggests CD34+ CAFs in pancreatic tissue also possess an 

‘immune’ phenotype, while αSMA+ populations are both ‘desmoplastic’ and 

‘contractile’.  
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Fig.  5.21 Phenotype and prevalence of CD34+ CAFs in pancreatic tissue 

Publicly available RNA seq data form Feig et al 248 of CD34+ and CD34- CAFs isolated from 
the KPC model of PDAC, as well as normal pancreatic stellate cells (PSCs). (A) Heat maps 
show selected pathways from GO analysis performed on differentially expressed genes 
between CD34+ and CD34- populations, z scores are displayed. (B) Log Fold Change in C3 
and Acta2 (αSMA) RNA expression from PSCs, CD34+ CAFs and CD34- CAFs. (C) Gating 
strategy showing identification of CD34+ fibroblasts in pancreatic tissue. CAFs were selected 
by excluding doublets, dead, CD45+ immune and CD31+ endothelial cells. Graph displays 
FACs quantification of CD34+ fibroblasts as a percentage of CD45-CD31- cells in normal 
pancreatic tissue and KPC tumours. normal pancreas: n = 2 mice, KPC tumours: n = 3 mice. 
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This was further supported by data recently published by Elyada et al, acquired from 

the same model 301. Here ‘immune’ iCAFs, ‘myofibroblastic’ myCAFs and ‘antigen 

presenting’ apCAFs were detected. Based on markers reported for these populations, 

including Clec3b, Il6 and Has1 (iCAF), Thy1, Thbs2, and Col12a1 (myCAF) and H2-

Ab1, Cd74 and Saa3 (apCAFs), fibroblasts were sub-setted and re-clustered (Fig.  

5.22 A and B). Cd34 was highly expressed in iCAF populations, as well as apCAFs at 

a lower level. Acta2 (αSMA) expression was restricted to the myCAF population and, 

consistent with our experimental data, did not overlap with Cd34 (Fig.  5.22 C). 

Interestingly, iCAF and myCAF populations expressed similar features to the CAF 

subsets identified in B16-F10 melanoma. For example, iCAFs upregulated 

inflammatory mediators Cxcl12 and C3 while myCAFs upregulated matrix components 

Col1a2 and Tnc and contractile factor Myl9 (Mlc2) (Fig.  5.22 D). Critically, in addition 

to C3, other complement components such as, C4b, C1s1 and C1ra were upregulated 

by iCAFs, as well as the regulatory factor Cd55 (Fig.  5.22 E). This suggests that, 

similar to ‘immune’ CAFs in melanoma, iCAFs also activate the complement pathway 

yet protect themselves from complement mediated lysis. 
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Fig.  5.22 CAF populations in the KPC model of PDAC share similar phenotypes with 
subsets identified in B16-F10 melanoma. 

Publicly available sequencing data from Elyada et al  301 of CAFs isolated from the KPC murine 

model of PDAC . (A) Sequencing data was processed and re-clustered, displayed here as a 

tSNE plot. Labels indicate the populations that correspond to those identified by Elyada et al 

(iCAF, myCAF, apCAF), as well as those that share features with our CAF subsets. These 

were assigned based on expression of genes depicted in B-E. (B) Violin plots displaying 

expression of population markers identified by Elyada et al, confirming similar clusters were 

found. (C) tSNE plots coloured according to expression of typical CAF markers, red indicates 

high expression and grey indicates low expression. (D) Violin plot showing expression of 

genes associated with CAF1 ‘immune’, CAF 2 ‘desmoplastic’ and CAF3 ‘contractile’ 

phenotypes. (E) Heatmap displaying the average expression across each population of factors 

belonging to the complement pathway identified by GO analysis, z score displayed.  
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 Human cancers 

 

The conservation of ‘immune’, ‘desmoplastic’ and ‘contractile’ phenotypes in other 

murine models was exiting, but to determine clinical relevance, investigation into their 

presence in human cancers was needed. Again, to examine fibroblast populations in 

different types of human cancer, publicly available single cell data was used. Firstly, 

whether these CAF populations were present in human melanoma was examined. 

Tirosh et al sequenced the tumour and stromal compartments of 19 human 

melanomas at different stages of progression, which contained various activating 

mutations 414. Re-clustering CAFs revealed two distinct populations of which one 

displayed both ‘immune’ and ‘desmoplastic’ phenotypes, while the other resembled 

the ‘contractile’ CAF3 population (Fig.  5.23 A). Furthermore, CD34 and ACTA2 

(αSMA) expression was associated with the CAF1/2 and CAF3 populations 

respectively, reflecting our murine model (Fig.  5.23 B). In addition, pericyte markers 

CPSG4 (Ng2), MCAM, RGS5 and NOTCH3 were also present within these CAF 

clusters, although expression was divided across the two populations (Fig.  5.24 A).  

Although a clear separation between ACTA2 and CD34 expressing CAFs was present, 

the small number of CAFs isolated in this study likely masks further sub populations. 

For example, this may obscure the distinction between ‘desmoplastic’ and ‘immune’ 

fibroblasts. However, consistent with the mouse models and relevant to the clinic, 

CD34 expressing CAFs exhibited the highest levels of C3 within the fibroblast 

compartment, as well as the tumour as a whole (Fig.  5.23 C and 1.24 B). In addition, 

expression of C3aR was restricted to macrophage populations, suggesting the 

interaction between these populations is conserved in human melanoma (Fig.  5.24 

B). 
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Fig.  5.23 Similar CAF populations were identified in human melanoma 

Publicly available sequencing data from Tirosh et al 414 of CAFs isolated from the human 

melanoma. (A) tSNE plot (left) showing all sequenced populations, labels indicate cell 

identities assigned by Tirosh et al. CAFs were subsetted and re-clustered (tSNE right) 

populations that that share features with our CAF subsets are indicated. These were assigned 

based on expression of genes depicted in B-C. (B) tSNE plots coloured according to 

expression of typical CAF markers, red indicates high expression and grey indicates low 

expression. (C) Violin plot showing expression of genes associated with CAF1 ‘immune’, CAF 

2 ‘desmoplastic’ and CAF3 ‘contractile’ phenotypes. 
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Fig.  5.24 Expression of Pericyte markers, C3 and C3aR in CAFs and other populations 
in Human melanoma 

Publicly available sequencing data from Tirosh et al 414 of human melanoma. Violin plots 
displaying expression of pericyte markers across fibroblast populations (A) and C3 and C3aR 

expression across all populations identified (B). 
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To investigate whether these populations translate to other human cancers, single cell 

data sets from head and neck and colorectal cancer were examined 300,415. Fibroblast 

sub-sets in these data sets also resembled ‘immune’, ‘desmoplastic’ and ‘contractile’ 

populations, although there were some differences in associated surface markers (Fig.  

5.25 and Fig.  5.26). Again, in both data sets, pericyte markers were associated with 

‘contractile’ populations (Fig.  5.27 A). Importantly, Cd34high populations from both 

tumour types expressed complement component C3, and the specificity of interactions 

between C3 producing CAFs and C3aR+ macrophages was retained (Fig.  5.27 B). 

Furthermore, fibroblasts were the key sources of C3 in both tissues, although it was 

also expressed by macrophages in head and neck cancer. This suggests that CD34high 

fibroblasts could act as a biomarker for the application of anti-C3a therapies. 
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Fig.  5.25 Similar CAF populations were identified in human head and neck cancer 

Publicly available sequencing data from Puram et al 300 of CAFs isolated from human head 
and neck squamous carcinoma. (A) tSNE plot (left) showing all sequenced populations, labels 
indicate cell identities assigned by Puram et al. CAFs were subsetted and re-clustered (tSNE 
right) populations that that share features with our CAF subsets are indicated. These were 
assigned based on expression of genes depicted in B-C. (B) tSNE plots coloured according 
to expression of typical CAF markers, red indicates high expression and grey indicates low 
expression. (C) Violin plot showing expression of genes associated with CAF1 ‘immune’, CAF 

2 ‘desmoplastic’ and CAF3 ‘contractile’ phenotypes. 
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Fig.  5.26 Similar CAF populations were identified in human colorectal cancer 

Publicly available sequencing data from Li et al 415of CAFs isolated from human head and 
neck squamous carcinoma. (A) tSNE plot (left) showing all sequenced populations, labels 
indicate cell identities assigned by Li et al. CAFs were subsetted and re-clustered. tSNE plots 
show identified populations (centre) and whether these populations were isolated from 
malignant (CAF) or normal (NMF: Normal Mucosal Fibroblasts) tissue (right). Fibroblasts that 
that share features with our CAF subsets are indicated. These were assigned based on 
expression of genes depicted in B-C. (B) tSNE plots coloured according to expression of 
typical CAF markers, red indicates high expression and grey indicates low expression. (C) 
Violin plot showing expression of genes associated with CAF1 ‘immune’, CAF 2 ‘desmoplastic’ 

and CAF3 ‘contractile’ phenotypes. 
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Fig.  5.27 Expression of Pericyte markers, C3 and C3aR in CAFs and other populations 

in Human head and neck cancer and colorectal cancer. 

Publicly available sequencing data from Puram et al 300and Li et al 415 of human head and neck 
cancer and colorectal cancer respectively. Violin plots displaying expression of pericyte 
markers across fibroblast populations (A) and C3 and C3aR expression across all populations 

identified (B). 
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 Summary 
 

Having identified three functionally distinct CAF subsets, this chapter explored their 

impact on melanoma development, as well as their conservation in other types of 

cancer. Here we have focussed on the ‘immune’ CAF1 subset and their interactions 

with tumour leukocytes. Although immune populations have the ability to detect and 

kill malignant cells, anti-tumour immunity depends on the particular populations 

present and their functional state7. Thus, to determine the potential impact of CAF1-

Leukocyte cross-talk on tumour growth, characterisation of the melanoma immune 

compartment was performed using sequencing data obtained from immune cells, 

isolated in tandem with fibroblasts. This revealed recruitment of inflammatory cells, as 

well as the development of an immunosuppressive microenvironment at later time 

points. Investigation of the innate compartment showed increased expression of 

costimulatory and inflammatory factors, in tumour resident cells, compared to those in 

the lymph node. However, at later stages, these cells increased expression of 

suppressive molecules such as PDL1 and Arg1. Furthermore, these dynamics were 

mirrored by the adaptive compartment. Here, CD8 T-cells predominantly displayed a 

naïve phenotype in the lymph node, becoming activated in the tumour and undergoing 

clonal expansion. However, at later time points, T-cells also developed expression of 

dysfunction markers Ctla4, Pd1 and Lag3. This suggests that, rather than undergoing 

activation in the lymph node, these cells are recruited to the tumour in a naïve state 

and are activated in situ, a phenomenon reported in other murine models. 403. 

The simultaneous development of activating and suppressive phenotypes in tumour 

resident innate and adaptive populations, suggested myeloid cells contribute to 

activation and dysfunction of T-cells. While increased expression of PDL1 and ARG1 

in myeloid cells, and PD1 in T-cells, was confirmed in day 11 tumours, functional 

validation is still required to verify a suppressive phenotype. This is particularly 

pertinent in regard to CD8 T-cells, as exhaustion markers are also upregulated during 

the activation process 416. Furthermore, T-cells in our model retained expression of 

granzyme enzymes, suggesting their cytotoxic functions may still be intact. However, 

T-cell exhaustion involves the progressive downregulation of effector molecules, in 

which these enzymes are only lost at advanced stages 37. Nevertheless, to 

conclusively determine their functional state, ex vivo assays could be performed on 
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cells from different time points. Furthermore, it is possible that activated T-cells are 

present in draining lymph nodes yet were masked by the overwhelming numbers of 

naïve cells. Thus, to confirm activation of adaptive cells in the tumour, further 

characterisation of activation and naïve markers in both compartments is required. 

Following the identification of suppressive and tolerogenic immune phenotypes, the 

involvement of CAF1 fibroblasts in this process was assessed. The cognate receptors 

to CAF1 cytokines were expressed predominantly by macrophages, monocytes and 

neutrophils, suggesting cross-talk between these populations. As C3 was specifically 

expressed by CAF1 cells in the tumour microenvironment, the effects of blocking C3a 

signalling were investigated. Neutralisation of C3a reduced the number of 

macrophages at early time points, increased CD8 T-cell infiltration, and decreased the 

rate of tumour growth. In agreement with the literature, C3aR was not detected in T-

cell populations, suggesting that changes in lymphocyte abundance were induced 

indirectly 417–421. Thus, we propose that a reduction in suppressive myeloid populations 

increases T-cell recruitment or survival. Indeed, C3ar was uniquely expressed by 

phagocytic myeloid cells, at the transcript level, indicating this population alone should 

be impacted by treatment directly. However, the presence of the receptor in other 

stromal populations, or malignant cells, was not confirmed at the protein level. As 

macrophages are likely monocyte derived, if C3a impacted their recruitment, a parallel 

decrease in Ly6C+ cells would be expected. Thus, the slight increase in their number 

indicates that C3a is potentially involved in monocyte to macrophage differentiation, 

rather than acting as a chemotactic stimulus. Similar trends in myeloid populations 

upon C3aR antagonism support these findings, although, all experiments were highly 

variable and require repeating. Furthermore, it is crucial to stress that changes in 

macrophage abundance, in both treatment regimes, are small (~10-20%), suggesting 

other mechanisms are likely involved.  

Despite the small scale of these alterations, a >2fold reduction in CD8 T-cells was 

observed upon C3a neutralisation. This suggests that even such small and variable 

changes in macrophage numbers, are sufficient to increase CD8 T-cell survival or 

recruitment. However, these results were not corroborated by C3aR antagonism, in 

which CD8-Tcells appeared unaffected by treatment. While this could suggest C3a 

neutralising antibodies have off-target effects, other possible causes are discussed in 

Chapter 6. While treatment with anti-C3a also reduced the rate of tumour growth, 
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again, these changes were moderate. This may reflect the retention of dysfunction 

markers PD1 and LAG3 on CD8 T-cells, which suggests their cytotoxic functions 

remain impaired. To restore T-cell functionality, a greater decrease in macrophage 

numbers, or a reduction in suppressive molecule expression, may be required. 

Although these experiments are decidedly preliminary, the initial results suggest that 

CAF derived C3/C3a is involved in the maintenance of tumour macrophages. While 

the small scale of changes, upon blockade of C3a signalling, may suggests functional 

redundancy, both treatment regimens require optimisation.  Thus, the importance of 

the C3/C3a pathway in the development of an immunosuppressive microenvironment, 

as well as the utility of this axis as a therapeutic target, requires further investigation. 

This is discussed in more detail in Chapter 6, along with possible optimisation 

strategies. 

 

Fig.  5.28 C3 production by CAFs in important for the development of an 
immunosuppressive environment 

Schematic showing the proposed role of C3/C3a production in the tumour microenvironment. 
Monocytes are recruited to the tumour at early stages where the undergo differentiation to 
macrophages, promoted by C3a At later time points macrophages increase expression of 
suppressive molecules PDL1 and ARG1. These molecules further induce suppression of CD8 
T-cell populations, which increase expression of dysfunction markers.  
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Despite uncertainty surrounding the role of C3/C3a in the TME, our data indicate 

blocking this pathway my provide some therapeutic benefit. Consequently, 

conservation of C3 expressing CD34+ CAFs, in other models of murine and human 

cancer, was assessed both experimentally and using online sequencing data. To 

begin with, we utilised the BRAFV600EPTEN-/- melanoma model, which recapitulates 

the genetic landscape of human melanoma and contains a fibrotic stromal 

compartment. CD34high fibroblasts were present in this model, although represented a 

much rarer population. Nevertheless, these CAFs also expressed the highest levels 

of C3, compared to tumour and other stromal cells. The small number of CD34high 

CAFs detected, may be due to the use of advanced spontaneous tumours for these 

investigations, that contain a dense fibrotic core. Therefore, it is possible that this 

population is more prevalent in BRAF melanomas at earlier time points. Indeed, we 

previously showed that CD34+ CAFs were abundant in normal skin (4.2.4.3) and 

displayed increased expression of C3. This suggests that discrepancies between the 

B16 and BRAF melanoma models are caused by differences in local cues. However, 

it is remains unclear which model more accurately resembles the CAF compartment 

of human melanoma. Although human tumours and the BRAF model share similar 

genetic mutations and growth kinetics, few comparisons of stromal components have 

been made. In particular, it is unclear whether reported increases in matrix 

components, in human melanoma, are as extensive as the fibrosis observed in 

spontaneous BRAF tumours. However, the presence of CD34+ C3+ CAFs in publicly 

available sequencing data from human melanoma 414, suggests this population is 

conserved.  

In addition to melanoma, the composition of CAF populations was also investigated in 

pancreatic and breast murine models, as well as human colon and head and neck 

cancer. Similar to the BRAF model, CD34+ CAFs were rare in the KPC model of PDAC 

yet represented the dominant population in the normal pancreas. This is consistent 

with Feig et al’s findings, in which CD34high fibroblasts were found surrounding early 

PanIn lesions 248. However, despite their infrequency, this population also highly 

expressed C3, suggesting this function is conserved. Interestingly, like melanoma, 

investigation of CAF populations in murine breast cancer also revealed discrepancies 

between models. While CD34+ C3+ CAFs were abundant in the E0771 injectable 
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model, sequencing data from MMTV-PyMT tumours revealed little expression of C3 

and Cd34 299. Again, this may reflect inherent differences between the two systems, 

such as the rate of tumour growth and oncogenic mutations 422–424. It is also possible 

that, similar to the BRAF model, as only advanced MMTV-Pymt tumours were 

examined, CD34+ CAFs may be more abundant at earlier stages. In addition, while 

both models are classified as ‘Triple Negative’ (owing to low expression of the 

Oestrogen, Progesterone and HER2 receptors), E0771 tumours display a basal 

phenotype whereas as MMTV-PyMT tumours are described as luminal 425,426. Such 

differences in latency, genetic landscape and subtype, likely effect production of 

secreted factors, which could alter the local cytokine milieu and significantly influence 

the development of CAF heterogeneity. Interestingly, regardless of disparity between 

models, C3 expression was increased in CD34+ CAFs compared to normal fibroblasts 

in the same tissue, across all three types of cancer examined. This suggests C3 is 

upregulated upon tumour initiation.  

Importantly, C3 expression was associated with CD34high fibroblasts in other human 

malignancies, including colorectal and head and neck cancer. Moreover, consistent 

with murine models, this CAF population was the dominant source of C3 expression 

in the tumour microenvironment. This data implies multiple cancers may benefit from 

anti-C3a therapies and highlights the potential of CD34 expressing CAFs may as a 

biomarker for its application. In addition to the conservation of CAF1-like populations, 

populations that resemble our ‘contractile’ CAF3 subset were also identified in both 

murine and human datasets. Interestingly, these CAF 3-like fibroblasts also expressed 

pericyte markers Cspg4 (Ng2), Mcam, Rgs5 and Notch3. Similar to our findings, this 

population was observed both surrounding blood vessels and at the leading edge of 

MMTV-PyMT breast tumours. This suggests pericytes dissociate from the 

endothelium and form a subset of fibroblast populations in the periphery. However, it 

remains unclear whether our CAF3 population represents pericytes or fibroblasts and 

highlights the poor characterisation of mesenchymal cells. 

Finally, we explored the contribution of different fibroblast origins to the development 

of CAF heterogeneity. As previously discussed, pericytes could represent the source 

of CAF3 fibroblasts in this model. However, investigating this hypothesis would require 

complicated lineage tracing models. Thus, we focused on recruitment of mesenchymal 

cells from the bone marrow, which has been reported to contribute to the fibroblast 
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compartment in pancreatic and gastric cancer 274,275,278. However, chimeric models 

showed only 1-2% of CAFs were recruited from the bone marrow. Thus, it is unlikely 

that the bone marrow represents a source of fibroblasts in the B16-F10 model. 

However, the rapid growth of B16 tumours may not provide enough time for 

recruitment of bone marrow cells, or do not produce the required recruitment factors. 

Thus, while the bone marrow does not contribute to CAF heterogeneity in this model, 

it could serve as a significant source in other cancer types. 

In conclusion, this chapter highlighted a potential role for CAF1 cells in the 

development of an immunosuppressive environment. Furthermore, similar CAF 

populations were observed in additional murine models and different types of human 

cancer. Subtle differences in marker expression and temporal dynamics likely reflect 

physical and soluble factors unique to each cancer type. Variations in driver mutations, 

immune infiltration and tissue type all influence the local cytokine milieu, sculpting CAF 

phenotypes. However, despite this diversity, C3 expression was consistently 

upregulated in CD34high fibroblasts. In addition, the interaction between these cells and 

myeloid populations was conserved across cancer type and species. The factors 

contributing to diversity among CAF populations across cancer, as well as the utility 

of anti-C3a therapies, is discussed in more detail in the following Chapter. 
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Despite the development of targeted therapies and immune checkpoint inhibitors, 

melanoma still suffers from a severe clinical unmet need. The numerous mechanisms 

through which CAFs support tumour growth and development, highlights their potential 

as therapeutic targets for this disease 409. This is emphasised by their involvement in 

therapy resistance and raises the possibility of targeting fibroblast in combination with 

existing therapeutics. However, as previously discussed, the innate heterogeneity and 

plasticity of these cells represents a significant barrier to drug development. While 

recent studies have revealed the existence of functionally distinct CAF populations, 

whether similar subsets are present in melanoma is unclear 298–301. Furthermore, how 

CAF populations arise and adapt to the developing tumour microenvironment remains 

poorly examined. Thus, this project aimed to profile the composition of the CAF 

compartment, in murine models of melanoma, at different stages of tumour 

development. This included the identification of distinct populations and investigating 

their functional properties.  

 

 Functionally distinct CAF populations were identified in 
melanoma 

 

Initial studies were conducted in the BRAFV600E PTEN-/- murine melanoma model, as 

it recapitulates the genetic landscape of a large proportion of human disease. Profiling 

fibroblast markers and matrix proteins, across different stages of tumour growth, 

revealed the development of an extensive fibrotic core at later time points. However, 

fibrosis was most prominent in spontaneously arising melanomas. SPADE analysis of 

the 4 markers FAP, PDPN, Thy1 and PDGFRα, revealed significant heterogeneity in 

their expression. While there was considerable variability between time points and 

individual animals, the existence of a population expressing all 4 markers and a subset 

only expressing PDPN and FAP, was a common theme. These two populations were 

present at all time points, including induced skin from non-carriers.  

Interestingly, both Thy1 and PDGFRα are not merely CAF markers but possess 

functional properties. While PDGFRα and PDGF signalling has long been associated 

with activation of fibroblasts, the role of Thy1 in this process is more controversial. 

Thy1 does not follow normal ligand-receptor relationships but engages with an 
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abundance of surface molecules 427. These include both paracrine and autocrine 

interactions with surface proteins on neighbouring cells, as well as in the adjacent 

membrane space 428. In fibroblasts, it is involved in TGFβR signalling429 and is a key 

regulator of mechanotransduction. By altering integrin avidity to ECM substrates and 

recruiting signalling molecules to focal adhesions, Thy1 influences the ability of cells 

to sense their physical surroundings. Indeed, its loss rendered these cells incapable 

of responding to changes in matrix stiffness 430. Although both TGFβ signalling and 

increased substrate rigidity are important contributors to fibroblast activation 

(discussed in detail below), the impact of Thy1 on their differentiation is varied and 

may be context dependent. For example, in lung fibrosis, Thy1 is epigenetically 

downregulated and loss of expression is correlated with disease pathology 431,432. On 

the other hand, expression of this glycoprotein is positively associated with dermal and 

liver fibrosis, as well as expansion of the fibroblast compartment in hepatocellular 

carcinoma 433–435. Considering the involvement of both Thy1 and PDGFRα in fibroblast 

activation, it is possible that the two populations observed in BRAF melanomas, reside 

in different differentiation states. 

However, it is doubtful that 4 CAF markers alone, capture the true scale of fibroblast 

heterogeneity. Furthermore, functional diversity may not be related to expression of 

surface proteins. Thus, restricting investigations to these markers, may introduce bias 

and mask more important differences. This is supported by homogeneous expression 

of Thy1 across previously identified functional dermal subsets 436,437. Therefore, to 

obtain a broader picture of CAF diversity, scRNAseq technology was combined with a 

‘negative selection’ approach to isolate and sequence melanoma fibroblasts. This 

technology offers the unique opportunity to visualise the transcriptomes of multiple 

cells in tandem, giving unprecedented insight into the populations and phenotypes that 

reside in complex systems.  Unfortunately, a marker of tumour cells was not available 

for the BRAFV600E PTEN-/- system, thus, the B16-F10 syngeneic model of melanoma, 

was used instead.  

A pilot study showed CAFs, isolated from a single time point, displayed unique 

transcriptional profiles which were validated in vivo. This data highlighted that 

environmental cues, such as hypoxia, play an important role in fibroblast 

heterogeneity. While it is unclear whether low oxygen tension directly activated HIF1 

in CAFs, or whether this was indirectly induced by hypoxic tumour cells (discussed in 
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section 3.2.2.6), fibroblasts situated close to hypoxic regions upregulated glycolytic 

enzymes.  Although we have focussed on the metabolic implications of HIF1 activity, 

this transcription factor has a diverse range of targets and may directly regulate CAF 

function. For example, by inducing expression of CXCL13, VEGFA and MCP-1, HIF1 

enhances the ability of fibroblasts to recruit leukocytes 438–440. In addition, hypoxic 

CAFs can modify the immune compartment by secreting lactic acid, a biproduct of 

glycolysis. This metabolite is known to induce macrophage polarisation towards an M2 

phenotype110  and promotes T-reg induction 246. Thus, fibroblasts under low oxygen 

conditions may contribute to immune suppression in the melanoma environment. 

While the impact of hypoxia on CAF function in the TME is interesting, the identification 

and validation of this glycolytic subset demonstrates the advantage of scRNAseq to 

discern distinct transcriptional programs. Such differences may have been lost if 

populations were pre-defined by marker expression. Indeed, these subsets were not 

defined by the pattern of markers previously identified in the BRAFV600E PTEN-/- model. 

However, expression of these markers was variable, indicating these populations may 

still exist, but are not transcriptionally distinct.  

To investigate how fibroblast phenotypes and their composition adapt within the 

evolving microenvironment, scRNAseq was applied to CAFs isolated at different 

stages of melanoma development. This revealed three transcriptionally distinct 

populations, each possessing a unique marker repertoire. The first population, CAF1, 

displayed high expression of PDPN, PDGFRα and CD34. This group upregulated 

cytokines and cytokine receptors, consistent with a role in immune cross-talk. In 

particular, ‘immune’ CAFs highly expressed factors involved in activation of the 

complement cascade, including the central component C3. Furthermore, expression 

of cognate receptors to CAF1 derived inflammatory factors, on tumour macrophages, 

suggested this population may be involved in recruitment and regulation of myeloid 

cells.  

Other populations included a PDPNhigh PDGFRαhigh CD34low ‘desmoplastic’ subset, 

which may be responsible for pathological matrix remodelling, as well as an αSMAhigh 

‘contractile’ group. Interestingly, these populations were dynamic, changing in 

prevalence as the tumour developed. Here, the fibroblast compartment was dominated 

by ‘immune’ and ‘desmoplastic’ populations at early stages, while the ‘contractile’ 

subset became more abundant at later time points. The discovery of a diverse and 
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evolving fibroblast niche has significant implications for therapeutics targeting these 

cells. We have previously discussed the contrasting effects of depleting fibroblasts 

from the tumour stroma, based on expression of αSMA and FAP 248,303. As our data 

indicates these markers delineate two distinct populations, targeting cells based on 

their expression could remove specific functional subsets. Furthermore, CAFs 

expressing αSMA appear to be more prominent in advanced tumours, highlighting that 

the presence of certain populations governs both therapeutic strategy, as well as the 

timing of application. 

Interestingly, when examined at different time points, the identifying phenotypes of 

individual populations were unchanged. This suggests that the functional roles of each 

CAF subset are not altered by increased malignant growth, but merely expand or 

contract as the tumour develops. However, the limited number of cells belonging to 

CAF1 at day 11 or CAF3 at day 5, reduce the validity of these results. Thus, more cells 

are required to truly identify changes in fibroblast phenotype across time, at the 

population level. Nevertheless, a subset of both CAF2 and CAF3 populations 

developed additional glycolytic signatures, at later time points. This coincided with 

increased staining of hypoxic marker CA9, suggesting that hypoxia induces metabolic 

heterogeneity in more advanced tumours. These results highlight that factors arising 

from increased strain on the local environment, imparted by the expanding tumour, 

can induce further diversity in the CAF compartment.  

Validation of these populations revealed all 3 are present in normal skin and 

throughout tumour development, however, the CAF3 subset expands at later time 

points. Thus, different CAF populations may resemble pre-existing functional subsets 

in the dermis, whose abundance adapts during tumour growth. This theory is further 

supported by our initial studies of the BRAFV600E PTEN-/- model. Although only defined 

by expression of 4 CAF markers, all populations were present in skin samples, through 

to advanced spontaneous tumours. However, population defining markers identified 

in the B16 model, do not show the same expression pattern in advanced spontaneous 

BRAFV600E PTEN-/- tumours. To begin with, PDGFRα expression was restricted to a 

subpopulation of fibroblasts in the upper layer of the dermis. This reflects our earlier 

findings that show PDGFRα and Thy1 may mark a subpopulation of cells.  In addition, 

αSMA expression was less distinct from the other markers and CD34+ CAFs 

represented a much smaller population. However, despite their reduced abundance, 
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this population also upregulated C3. The reasons underlying such vast differences in 

these models have been previously discussed (section 5.3) but may represent 

variation in the local environmental factors. Again, it is important to emphasize that, 

despite recapitulating the genetic landscape of human melanoma, stromal and 

immune populations in the BRAF model are not well characterised. Thus, it is unclear 

whether features of human disease, such as immune dysfunction, are recapitulated.  

Furthermore, the extensive collagen deposition, observed in spontaneous tumours, is 

not commonly reported in melanoma. Indeed, owing to this fibrosis, B16 tumours may 

be more comparable to earlier stages of BRAF tumour development. Moreover, the 

malignant compartment in both models resides in the dermis, whereas human 

melanomas develop at the dermal/epidermal junction. As discussed in section 6.4, 

fibroblast populations located in hair follicles or the papillary and reticular dermis have 

distinct phenotypes. Thus, owing to the identity and abundance of surrounding local 

fibroblasts, the anatomical position of the tumour may impact CAF composition. 

Although, it is unclear which model, if any, accurately captures the melanoma 

fibroblast compartment, similar populations were conserved in sequencing data 

obtained from patients. 

While this data represents a significant delineation of fibroblast heterogeneity in 

melanoma, the functions of each population are implied based on transcriptional 

expression. Furthermore, the broader role of these subsets during tumour 

development, or whether they promote or constrain malignant growth, remained 

unclear. Concomitant to changes in the CAF compartment, immune infiltrates develop 

tolerogenic phenotypes at later time points. This includes expression of suppressive 

molecules on macrophage populations, as well as the upregulation of lymphocyte 

dysfunction markers. Considering potential cross-talk between tumour leukocytes and 

‘immune’ CAFs, the involvement of these fibroblasts in the generation of this 

immunosuppressive environment was investigated.  

Expression of population defining markers by other stromal components, precluded 

depletion studies as a method to investigate their role in the TME. Consequently, 

functional studies focussed on inhibiting C3a, the pro-inflammatory cleavage product 

of C3, which is uniquely expressed by this subset. Both antibody neutralisation of C3a 

and antagonism of the C3aR receptor, induced a small reduction in macrophage 

numbers, validating predicted interactions between CAF1 fibroblasts and myeloid 
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populations. This is consistent with reported effects of this anaphylatoxin on myeloid 

cells, during an number of biological processes 441–444.  Interestingly, no reduction in 

monocyte recruitment was observed upon treatment, conversely, the number of 

Ly6C+ cells marginally increased. Thus, C3a may be important for monocyte-

macrophage differentiation, rather than recruitment.  

However, as previously discussed (section 5.3), observed changes in population size 

are limited. This may be due to functional redundancy (discussed in section 5.3), 

however, both treatment regimens require further optimisation. To begin with, the 

concentration of intertumoral C3a was not measured, making it difficult to determine 

the amount of the neutralising antibody required. Furthermore, only one publication 

has performed in vivo studies using the same antibody clone 445. Owing to concerns 

regarding adverse reactions, the same concentration (2µg per injection) was 

administered. However, compared to other antibody regimes, this concentration is 

relatively low. As treatment is well tolerated, increased amounts of antibody could be 

injected, at more frequent intervals. Increased sequestration of C3a, may heighten 

observed changes in macrophage abundance. Similarly, the dose and treatment 

regime for the C3aR antagonist, was determined using published studies 444,446. Thus, 

the extent to which either treatment inhibits C3a signalling is unknown.   

Despite these caveats, blocking C3a also increased T-cell infiltration and modestly 

reduced the rate of tumour growth. As tumour resident T-cells do not express C3aR, 

it was hypothesised that changes in their abundance was driven by concomitant 

decreases in macrophage numbers. As myeloid cells highly expressed suppressive 

markers, it is possible that a reduction in population size may promote T-cell survival 

and anti-tumour cytotoxicity. However, neutralising C3a did not impact expression of 

lymphocyte dysfunction markers, suggesting increased cell numbers was not 

accompanied by restoration of function. This is consistent with the limited effects of 

treatment on macrophage expression of T-cell modulating factors, PDL1 and Arg1. 

Thus, the combination of C3a neutralisation with immune checkpoint inhibition may 

synergise to constrain tumour growth, by both promoting T-cell infiltration and 

enhancing their cytotoxic properties. This concept is discussed in more detail in 

section 6.5.  
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However, it is important to stress that these trends in T-cell infiltration and tumour 

growth, were not recapitulated by inhibition of C3aR. As targeting both C3a and its 

receptor reduced the number of macrophages in the TME, this may not mediate 

parallel changes in the T-cell compartment. However, the C3aR antagonist, 

SB290157, has been reported to have additional agnostic effects, which may impact 

macrophage function and their interactions 447. In addition, such discrepancies may 

also be a product of the pharmacokinetic properties of the drugs used in these studies. 

As highlighted above, the extent to which C3a signalling is inhibited, by use of either 

treatment, remains unknown. It is possible that C3a modulation of macrophage biology 

is concentration dependent. Thus, the level of C3a/C3aR inhibition may affect their 

concurrent interactions with T-cells. A similar phenomenon has been described for the 

related anaphylatoxin C5a. Here, different concentrations C5a promoted 

macrophages to induce either Th1 or T-reg differentiation 448. 

Overall, several additional experiments are required to corroborate these results and 

confirm the underlying mechanisms. Firstly, whether treatment efficacy underlies the 

limited scale of changes in population size, can be addressed by conditional deletion 

of C3aR in vivo. Establishing B16 tumours in C3aR floxed models, would also enable 

a comparison of C3aR deletion, at different stages of melanoma development. In 

addition, macrophage depletion in these models would confirm their involvement in 

promoting CD8 T-cell infiltration, upon C3a blockade. Bulk sequencing of 

macrophages from C3aR knockout mice, or those treated with an inhibitor, may 

provide further mechanistic insights into this process. Moreover, comparing the 

transcriptome of macrophages, isolated from tumours treated with either the C3aR 

antagonist or the C3a neutralising antibody, may reveal if these inhibitors differentially 

impact macrophage function. Finally, the impact of C3a signalling on macrophage 

biology could be validated in vitro. This could include testing the involvement of C3a 

in monocyte to macrophage differentiation, by addition of recombinant anaphylatoxin 

to cultures in which C3aR has been deleted or knocked down. The effect of C3a 

signalling on macrophage interactions with T-cells, could also be assessed by 

incorporating lymphocytes in these cultures. Possible outputs include, regulation of T-

cell proliferation, survival, migration and cytotoxicity.  
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 CAF populations across different types of Cancer 
 

As previously discussed, functionally distinct fibroblast populations have been 

reported in cancers other than melanoma. Similar to our findings, Feig et al observed 

that CD34 and αSMA delineated two different populations in the KPC model of PDAC 

248. Despite the availability of bulk sequencing data from these two populations, we 

are the first to compare their transcriptomes. This showed that, analogous to 

melanoma, CD34 also marks a subpopulation of CAFs that upregulate cytokines and 

cytokine receptors in pancreatic tumours, indicative of a role in immune cross-talk. 

While the cytokine profile of these cells differed between the two types of cancer, 

expression of complement component C3 is conserved. In addition, CD34- CAFs 

display both ‘desmoplastic’ and ‘contractile’ features, suggesting this population may 

represent an amalgamation of these two phenotypic subsets.  Interestingly, the 

pancreatic CAF compartment also mirrors the temporal changes in composition, 

observed in melanoma.  Here, CD34+ cells were observed surrounding early lesions, 

while αSMA+ cells were located in the tumour core 248, consistent with the expansion 

of the CAF3 population in the dermis. Furthermore, IF staining of PDAC and WT tissue 

revealed pancreatic stellate cells were predominantly CD34+ and αSMA-. This 

suggests that this CD34+ fibroblasts represent resident stellate cells, while αSMA 

demarcates a subset, or phenotypic state, only present in disease. 

The functional signatures uncovered by bulk sequencing, are consistent with 

‘myCAFs’ and ‘iCAF’ phenotypes described by Ohland et al 295, which occupy discrete 

locations in the pancreatic TME. Here, myCAFs encapsulated malignant cells, while 

iCAFs were restricted to peripheral regions 449 295. However, no differences in the 

spatial distribution of CAF populations was observed in melanoma. This disparity may 

be due to the reduced size of the CAF compartment in this model. Though fibroblasts 

are abundant in pancreatic tumours and infiltrate the tumour core, in B16 melanomas, 

they are mostly confined to the outer stromal layer surrounding malignant cells. These 

iCAF and myCAF populations were phenotyped further, in both KPC and human 

pancreatic tumours, by single cell RNA sequencing. This also revealed a novel 

MHCII+, antigen presenting subset, which was not observed in melanoma.  

In addition to pancreatic cancer, other single cell sequencing studies have also 

identified fibroblast groups displaying similar functional signatures. Thus, to directly 
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compare gene expression profiles, this data was downloaded from public repositories. 

Strikingly, data sets obtained from pancreatic, colon and head and neck cancer all 

contain a CD34+ fibroblast subpopulation, which upregulates the complement 

component C3. However, expression of other factors associated with the ‘immune’ 

CAF profile varied from tumour to tumour.  Despite conservation across many types 

of cancer, the presence of CD34+ C3+ CAFs in breast cancer was more controversial. 

While this population was detected in E0771 orthotopic breast tumours, by IF and flow 

cytometry, it was not observed in sequencing data taken from the MMTV-PyMT model. 

Interestingly, ‘immune’ CAFs have been described in human breast cancer 214. This 

subset aided the development of a tolerogenic microenvironment, by attracting, 

retaining and activating T-regs. This was mediated by production of recruitment factor 

CXCL12, adhesion molecules OX40L, PDL2 and JAM2, as well as expression of 

B7H3, DPP4 and CD73, which activate T-reg suppressive properties 214. The 

recruitment factor Cxcl12, is also upregulated at the transcriptional level within our 

‘immune’ CAF population. This thesis has concentrated on cross-talk between this 

subset and macrophages, owing to their expression of receptors for CAF1 derived 

factors. However, T-cells also express CXCR4, the cognate receptor for CXCL12, 

suggesting melanoma ‘immune’ CAFs may regulate tumour lymphocytes. Despite this 

similarity, these two fibroblast populations express vastly different immune modulators 

and are defined by different marker repertoires. This includes expression of αSMA, 

which is upregulated by ‘immune’ breast CAFs yet is distinctly absent from their 

melanoma counterparts. Importantly, production of complement components by any 

breast fibroblast subset, was not described in this study. However, similar to our early 

investigations in the BRAFV600EPTEN-/- model, a selection of markers were used to 

pre-define populations. Thus, this paper suffers from the same limitations and may 

represent a biased perspective. Hence, the presence and role of ‘immune’ CAFs in 

breast cancer is unclear and may depend on the tumour system investigated.  

In addition to the ambiguity surrounding ‘immune’ fibroblasts in breast cancer, it is also 

unclear whether ‘contractile’ and ‘desmoplastic’ populations are a consistent feature. 

In the MMTV-PyMT model the subset termed ‘mCAFs’ produced pathological matrix 

proteins, while ‘vCAFs’ strongly resembled ‘contractile’ fibroblasts in melanoma. 

Furthermore, this population was more prominent at later time points, mirroring the 

temporal dynamics associated with the contractile CAF3 subset. However, the 
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phenotype of CAF populations, other than ‘immune’ subsets, was not examined in 

either the murine E0771 model or by Costa et al. in human breast tumours 214. While 

CD34, PDGFRα and αSMA showed a similar pattern of expression in E0771 tumours, 

suggesting equivalent populations may be present, the functional signatures 

associated with CAF2 and CAF3 populations were not investigated. Moreover, 

αSMAhigh CAFs did not change in abundance across the tumour development. This 

suggests that, even in the same tissue, the functional properties and temporal 

composition of fibroblasts vary in malignancy. Possible reasons for such 

discrepancies, have been previously discussed (Section 5.3) and likely reflect inherent 

differences in intratumoural signalling. The relationship between tumours, their tissue 

of origin, and the resulting impact on CAF composition, is explored in more detail 

below. 

Distinct ‘contractile’ and ‘matrix producing’ populations, were detected in several other 

datasets, including colon and head and neck cancer. However, of the three ECM 

components associated with ‘desmoplastic’ CAFs in melanoma, not all were 

expressed by equivalent populations. This may reflect the specific matrix requirements 

of the tissue in which they reside. Thus, while fibroblast subsets in other types of 

cancer display similar functions, the particular genes expressed, as well as their 

relative marker repertories, are tissue dependent. However, only key genes 

associated with each of the 3 melanoma CAF phenotypes were investigated. Owing 

to the increasing number of single cell data sets becoming available, new 

computational algorithms have been developed to enable their integration. For 

example, Seurat version 3 permits datasets to be analysed simultaneously, even if 

sequenced on different platforms 450.  This may permit a more comprehensive 

comparison of populations across tissues. 

 Local environmental factors may impact the composition of the 
CAF compartment and population dynamics as the tumour 
develops 

 

The incongruity between CAF populations, across different types of cancer, is likely 

the result of their unique surroundings. The TME encompasses diverse soluble, 

physical and environmental factors, that are irregularly distributed throughout the 

tumour. This creates varied local environments, that may contribute to the 
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development of fibroblast heterogeneity. Indeed, phenotypic regulation of fibroblasts 

is a complex process, in which the underlying mechanisms remain unclear. To begin 

with, CAFs are exposed to an array of different soluble cues, that can differentially 

impact their behaviour. For example, factors such as TGFβ, PDGF and sonic 

hedgehog promote desmoplasia, contractility and upregulate αSMA expression427,451–

458, while IFNγ inhibits fibroblast activation and reduces proliferation 459. Furthermore, 

interplay between different soluble cues also regulates cell signalling, adding another 

layer of complexity. This is illustrated by interactions between WNT7a and the TGFβR, 

which potentiate TGFβ induced activation of resident fibroblasts 460. Thus, fibroblast 

function is likely a product of integrated signals from multiple pathways.  

Interestingly, the transcription factor NFκB, orchestrates fibroblast production of 

inflammatory cytokines, upon exposure to TNFα and IL1β 199,461.  Our sequencing data 

indicates that these cytokines are produced by innate immune infiltrates, that are 

present from early stages of tumour development.  Thus, such factors may induce the 

‘immune’ CAF1 phenotype in melanoma. Although C3 is not a known target of NFĸB, 

monocyte derived TNFα and IFNγ were shown to increase C3 production in 

keratinocytes 462. Thus, similar inflammatory factors may also induce C3 expression 

in ‘immune’ CAFs by a different mechanism. This suggests reciprocal signalling 

between ‘immune’ CAFs and leukocytes, may be crucial for the maintenance of both 

populations.  

NFĸB signalling is also central for the maintenance of the iCAF phenotype in PDAC 

449. Here, iCAFs and myCAFs,  represent interchangeable phenotypic states, 

governed by exposure to specific chemical cues 295. Principally, the iCAF phenotype 

is induced by IL1β induction of NFκB, which is sustained in a positive feedback loop 

449. Here, production of Leukaemia Inhibitory Factor (LIF), a downstream target of 

NFκB, upregulates expression of IL1R via JAK/STAT3 signalling. This augments the 

CAF response to IL1β and maintains the iCAF phenotype. However, the presence of 

TGFβ reduces expression of IL1R, disrupting this feed forward mechanism and 

inducing the myCAF phenotype. This illustrates how complicated networks of soluble 

factors regulate the functional properties of fibroblasts in the TME.  However, in breast 

cancer, TGFβ cooperates with LIF to induce JAK/STAT3 signalling, driving the 

acquisition of contractile and pro-invasive properties in fibroblasts 463. These 

contradicting results may be explained by the wider chemical environment, specific to 
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these systems. For example, while JAK/STAT3 signalling maintains iCAF phenotypes 

in PDAC, this population is primarily regulated by IL1 induction of NFκB. As the 

JAK/STAT signalling is also implicated in cytoskeletal regulation, in the absence of 

IL1, activation of this pathway may enhance contractility and invasiveness 464. This 

highlights the importance of chemical context, and the multifaceted nature of signalling 

pathways that control CAF phenotypes. Thus, the specific soluble milliue of different 

cancer types may account for discrepancies in CAF populations.  

In addition to soluble cues, CAFs sense the deposition of matrix components and 

increased stiffness of malignant tissue, through a network of integrins, focal adhesion 

complexes and cytoskeletal apparatus 465. Indeed,   Calvo et al. demonstrated matrix 

stiffness is critical for the maintenance of CAF functions 404. Here, they show that 

induction of the transcription factor YAP, enhances the ability of CAFs to induce 

angiogenesis and remodel the ECM. However, matrix remodelling and increased 

cytoskeletal tension propagated YAP activity, generating a positive feedback loop. 

Considering the impact of ECM composition on CAF phenotype and function, it is likely 

matrix interactions are involved in the development of CAF heterogeneity. This was 

demonstrated by differential enrichment of two populations, FAPhigh αSMAlow and 

FAPlow αSMAhigh, upon alteration of ECM substrate or stiffness. Here, culture on 

malleable fibronectin increased the proportion of FAPhigh αSMAlow populations, while 

increased stiffness or culture on collagen promoted the expansion FAPlow αSMAhigh 

populations 466. Furthermore, similar to our results, the FAPlow aSMAhigh subsets 

displayed enhanced contractility. In combination, these studies suggest that matrix 

stiffness and cytoskeletal tension may be critical for the upregulation of αSMA and 

induction of a contractile phenotype in CAF3 fibroblasts. Furthermore, owing to their 

role in the production of a stiff and fibrotic matrix, ‘desmoplastic’ CAF2 cells may be 

vital for this process. This highlights potential interplay between fibroblast subsets 

during the development of the CAF compartment. In addition, contraction and 

stiffening of the matrix by CAF3 cells may augment cytoskeletal tension and 

contractility, suggesting this phenotype could be self-perpetuating.  

Importantly, soluble and physical factors likely act in concert to dictate CAF function. 

Indeed, interacting stromal compartments reside in a dynamic equilibrium, in which 

changes to one compartment are reciprocated by another. For example, cytokines 

secreted by malignant cells, such as TNFα, induce autocrine expression of VEGFA, 
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CXCL12, IL6 and CCL2. These soluble factors then have paracrine effects on the 

tumour microenvironment, promoting angiogenesis and leukocyte recruitment 2,3. This 

is known as a ‘cytokine network’ and highlights the interactive and cooperative nature 

of the tumour microenvironment. Consequently, changes in stromal features or 

intratumoral signalling, as the tumour develops, are augmented by these dynamic 

interactions. Such transformation of the local environment likely effects fibroblast 

phenotype and behaviour. We have described several changes in the B16-F10 

microenvironment, across tumour development, which may contribute to the temporal 

dynamics of CAF populations in melanoma (Error! Reference source not found.). 

To begin with, the development of an immunosuppressive microenvironment may 

significantly alter local soluble cues, orchestrating changes in CAF composition. In 

addition, the importance of matrix rigidity for the development of ‘contractile’ fibroblast 

populations has been discussed. Thus, increased ECM deposition in more advanced 

tumours may contribute to the emergence of CAF3 ‘contractile’ subset, at later time 

points. Although we have also considered the possibility that this population may be 

derived from pericytes, it is conceivable that increased matrix stiffness mediates this 

process. Finally, the emergence of hypoxic pockets in more advanced tumours, may 

induce further functional, as well as metabolic heterogeneity. This is supported by the 

coinciding development of ‘glycolytic’ signatures, in both ‘desmoplastic’ and 

‘contractile’ subsets, with enhanced staining of the HIF1 target CA9.  

Fluctuations in the abundance of melanoma CAF populations, raises the question of 

whether these cells transition between phenotypes, in response to changes in local 

cues. In addition, increased expression of the active myofibroblast marker αSMA, 

suggests populations may represent different states in fibroblast activation. This 

process is not well understood, although, cytoskeletal changes such as formation of 

stress fibres and focal adhesions have been described. Interestingly, incorporation of 

αSMA into stress fibres occurs at later stages of the differentiation process 452,467, in 

keeping with a this hypothesis. This was further supported by pseudo-time analysis, 

which ordered CAFs in a trajectory from ‘immune’ to ‘desmoplastic’ to ‘contractile’, 

implying that these populations are inter-related. However, it is unclear whether CAFs 

transition through these phenotypes in a single direction, or whether cells switch 

between three independent populations. As all populations were detected in normal 

skin, we suggest, that CAF subsets in melanoma mirror the interchangeable 



191 
 

iCAF/myCAF system, in which populations are polarised from one phenotypic state to 

another, by combined soluble and mechanical stimuli. However, this is difficult to 

determine in the absence of lineage tracing experiments. Ex vivo assays or an in vitro 

system, similar to Ohland et al 2017, may enable investigation of phenotypic changes 

in response to different factors. Though, the difficulties associated with isolation and 

culture of CAF from these tumours, may make this challenging. 

 

 

 

Fig. 6.1 Tumour and stromal interactions influence fibroblast heterogeneity in the 
developing microenvironment of B16-F10 melanoma. 

Fibroblast phenotypes are influenced by local soluble and physical cues derived from 
resident stromal and malignant populations. Importantly, these populations interact 
(red arrows), forming a complicated signalling network. In the B16-F10 melanoma 
model, additional factors such as hypoxia and fibrosis arise at later stages of tumour 
development. This disrupts the signalling network, which may lead to changes in 
tumour and stromal secreted factors. Furthermore, the gain of suppressive 
phenotypes, by leukocyte populations, alters the local chemical environment. These 
factors may induce the increase in prevalence of the ‘contractile’ CAF subset, at later 
time points. In addition, factors such as hypoxia induce further, compartmentalised, 
fibroblast heterogeneity by induction of Hif1 signalling. 
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 The interplay between tumour biology the surrounding tissue 
in shaping CAF heterogeneity 

 

Considering the complicated nature of cross-talk between fibroblasts and their local 

environment, it is unsurprising that their precise functions and marker expression 

varied between different types of cancer. Furthermore, even cancers of the same 

tissue, contained different fibroblast populations, suggesting that intrinsic properties of 

the tumour itself, alter local fibroblast phenotypes. This was evident in BRAF and B16 

melanomas, as well as the E0771 and MMTV-PyMT breast models. Thus, the interplay 

between the tissue of origin and tumour intrinsic properties, on sculpting the CAF 

landscape, is extremely interesting. 

Fibroblasts isolated from different parts of the body have been shown to possess 

unique transcriptional signatures. Largely, these signatures differentiated cells along 

proximal-distal and anterior-posterior axes, as well as dermal and non-dermal location 

290. Retention of these transcriptional programs in vitro, in the absence of local cues, 

suggests fibroblasts possess an intrinsic memory of their anatomical location.  

Positional identify during embryogenesis is dictated by expression of specific HOX 

transcription factors, which are differentially expressed along the anterior-posterior 

and proximal-distal axes 468. This pattern of HOX gene expression was emulated in 

cultured fibroblasts, that were isolated along these trajectories. Thus, fibroblasts 

present in adult tissues, may preserve embryonic programs that provide a ‘positional 

memory’ 290.  In addition, this ‘positional memory’ has been shown to supersede local 

environmental stimuli, dictating fibroblast function during wound healing. Here, 

fibroblasts from the dorsal dermis and oral dermis produce distinctive ECM structures 

upon injury. When transplanted to opposing regions, upon wound initiation, these cells 

continued to produce matrix resembling their original site 437. Thus, resident fibroblasts 

from different tissues may have distinct intrinsic programs, that determine their 

function in a malignant setting. This could have further implications in the context of 

metastasis, where stromal populations are vital for the establishment of secondary 

lesions 469. For example, the phenotypes of local fibroblasts at certain locations, may 

either promote or inhibit metastatic seeding. Moreover, the competing effects of 

tumour manipulation, compared to intrinsic fibroblast programs, can be investigated 

by examining CAFs at the primary and secondary site. 
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However, the mutational landscape of tumours in the same tissue, can influence 

fibroblast behaviour. In pancreatic cancer, a gain of function mutation in p53 increased 

the ability of CAFs to promote invasion and chemotherapy resistance, compared to 

p53 null tumours 470. This was mediated by increased NFκB signalling in tumour cells, 

which induced paracrine activity of the same pathway in adjacent fibroblasts. Indeed, 

by impacting tumour cell signalling, genetic mutations can directly alter the local 

soluble environment. For example, Protein Kinase C Iota (PRKCI) amplification leads 

to increased TNFα production by tumour cells, while PTEN loss can activate NFκB 

inflammatory signalling, and RAS mutations induce expression of IL6 and IL8 471–474. 

However, through paracrine interactions with the stromal components, the mutational 

signature of malignant cells can also indirectly manipulate local chemical cues. This 

particularly pertains to the immune compartment, owing to its potent release of 

inflammatory factors.  For example, Stat-3 activation in melanoma cells prevented 

immune infiltration by supressing the release of pro-inflammatory cytokines 475. 

Considering the possible role of leukocytes in the induction of CAF1 properties, 

immune exclusion may supress the emergence of this population.  

In addition to identifying CAF populations in breast cancer, Costa et al compared CAF 

subsets in different types of breast cancer 214.  This provides a unique opportunity to 

investigate the influence of tumour intrinsic factors on the tissue specific programs of 

resident fibroblasts. Indeed, distinct CAF populations were differentially enriched in 

luminal A, HER2 and triple negative cancers 214. Two of these populations were 

isolated and sequenced from both luminal and triple negative tumours. When plotted 

together using PCA, CAFs clustered according to their population identity, rather than 

tumour subtype. This suggests that fibroblast populations and their associated 

phenotypes may be predetermined by their tissue of origin. However, the presence of 

specific soluble and physical cues, unique to each tumour, governs their prevalence 

and activates their specific functions.  

These concepts are particularly relevant to melanoma, as fibroblast heterogeneity in 

the adult human dermis is well documented. Interestingly, key differences between 

papillary and reticular fibroblasts, the two dominant populations, include upregulation 

of complement and extracellular matrix components respectively 293. Thus, these cells 

may represent dormant pre-cursors of our CAF1 and CAF2 populations. Increased 

production of matrix proteins in combination with a positive association between 
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dermal depth and scaring, suggest that fibroblasts of the lower reticular dermis are 

responsible ECM remodelling during wound healing 476–478. This has been attributed 

to increased expression of TGFβR II on the surface of this population, which potentially 

renders these cells more responsive to TGFβ 477. Thus, it is possible that expression 

of surface receptors, may pre-prime specific dermal populations to respond to 

particular cues. Our data indicates that, even under homeostatic conditions, C3 

expression is higher in CD34high fibroblasts compared to other populations. However, 

this complement component is upregulated upon the onset of malignancy. As 

previously mentioned, exposure to immune secreted factors may increase expression 

of C3 in the CAF1 subset. Thus, the repertoire of surface receptors, specific to this 

population, may sensitize these cells to inflammatory factors produced by early 

immune infiltrates. 

Furthermore, a study investigating the effects of aging on local fibroblast populations, 

identified two similar subsets in the dermis of young (2 months) mice, that differentially 

expressed complement and ECM components 408. While these two populations were 

also present in older mice (18 months), their transcriptional separation was reduced. 

Moreover, bulk sequencing revealed an overall increase in expression of complement 

components in fibroblasts of older mice, concomitant with a downregulation in ECM 

genes. However, changes in these transcriptional signatures could be reduced by 

calorie restriction. If the functions of CAFs in melanoma are predetermined by existing 

dermal populations, this data suggests that age and diet may contribute to their 

prevalence and phenotype. This is intriguing as mice used in our experiments were 

typically 2-3 months old, similar to mice categorised as ‘young’. Thus, it would be 

interesting to investigate whether fibroblasts in older mice have an increased 

propensity for C3 secretion in the tumour stroma, or whether expression of this 

component is already at full capacity. 

It is also important to note that additional sources of heterogeneity, present in human 

melanoma, are not captured by our murine model. To begin with, as an injectable 

model, the tumour compartment of B16-F10 melanomas are relatively uniform and 

does not contain significant clonal heterogeneity. Furthermore, experiments were 

performed in genetically identical mice, of similar ages, housed under matching 

conditions. Human tumours develop in hosts with distinct genetic backgrounds, that 

are exposed to a number of different environmental factors. We have already 
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discussed the effects of age and diet on dermal fibroblasts, which could impact 

population prevalence and function upon tumour initiation. However, the effect of 

cancer therapies on CAFs and the wider stromal compartment, are not well 

understood. Nonspecific therapies such as radio and chemotherapies may directly 

induce changes in fibroblast populations. We have previously described how DNA 

damage in CAFs, induced by chemotherapy, caused NFκB activation and therapy 

resistance 243.  However, targeted drugs such as oncogene inhibitors and 

immunotherapies, may indirectly impact tumour fibroblasts. By depleting specific 

tumour clones, or restoring immune cell cytotoxicity, these drugs may disrupt the 

delicate balance of signalling networks in this dynamic microenvironment. Indeed, as 

human samples are rarely treatment naïve, many published scRNAseq datasets are 

obtained from patients who have received different combinations of therapies 414. 

Thus, to truly understand the development of diverse fibroblast populations, these 

additional factors must be considered. 

 

 The complement pathway as a therapeutic target 
 

Despite differences in the functional properties and marker expression of CAF 

populations, across different types of cancer, a CD34high C3 producing subset was a 

common feature. Furthermore, the interaction between this CAF population and C3aR 

expressing macrophages was also conserved. Considering the unique composition of 

each tumour microenvironment, the preservation of this interaction is significant. 

Although still preliminary, our data demonstrated that blockade of the C3 cleavage 

product C3a, reduced tumour macrophage populations, which may boost the number 

of CD8 T-cells and decrease malignant growth. This suggests C3a may represent a 

therapeutic target in a range of cancers. 

Activation of the complement system has been linked to cancer development. In 

several solid cancers C3 and C3a are elevated at both the primary tumour site and in 

patient serum 479–482. Furthermore, C3 and C5aR were associated with poor prognosis 

in ovarian cancer 483. Thus, in recent years, investigations into the role of complement 

activation in the tumour microenvironment has gained traction. However, the cellular 

source of complement components remains unclear, and may vary depending on the 
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type of cancer. The results of C3 deficiency models, in which cancer cells are injected 

in C3-/- mice, indicate that C3 is produced by the host in melanoma, breast and 

cervical cancer models, yet produced by the tumour itself in ovarian cancer 446,483,484. 

While, fibroblasts in vitro and in malignant settings are reported to produce 

complement factors 301,414,485,486, this pathway is not the focus of these studies and the 

role of fibroblasts in cascade activation is not appreciated.  

Our data highlights the potential therapeutic benefit of inhibiting C3a/C3aR interactions 

between fibroblasts and monocytes/macrophages in multiple different cancers. Owing 

to immune-suppressive properties of these macrophage populations, potential 

synergy between C3a neutralisation and immune checkpoint inhibitors was previously 

suggested (section 5.3). Targeting macrophage recruitment in conjunction with 

immunotherapies represents a current strategy to improve therapeutic responses, with 

several combinations undergoing clinical trials 87. Similar to C3a, C5a also acts on 

immune populations, increasing MDSC accumulation in the tumour and promoting 

their suppressive activity 484,487. Blocking C5a in combination with PD1 inhibitors was 

more effective than either monotherapies 484,487,488, suggesting a combined approach 

may improve clinical efficacy. 

Beyond the cancer setting, complement activation also underpins pathogenesis in 

diseases such as rheumatoid arthritis, lupus and kidney disorders 489,490. Thus, 

inhibitors of different components of the cascade are being developed, yet few are 

approved for clinical use. The C5 inhibitor Eculizumab is currently used to treat 

uncontrolled complement activation in Paroxysmal nocturnal haemoglobinuria (PNH) 

491 yet it is also being tested for treatment of other diseases 489. While, clinical trials 

are ongoing for several inhibitors of C5a and C5aR, few drugs have been developed 

that target the C3a/C3aR axis. Instead, blocking C3 cleavage has been the key focus, 

leading to the development of Compstatin and its derivatives AMY-101 and APL2 489. 

C3 is a central component of the complement cascade, acting as a convergent and 

amplification point for the classical, lectin and alternative activation pathways (Error! 

Reference source not found.). Thus, inhibition of its cleavage will prevent further 

activation of the complement cascade, including formation of the MAC and 

anaphylatoxins C3a and C5a. As these components have varied effects on 

tumorigenesis 396, it will be interesting to examine whether blocking the cascade at 

specific stages impacts clinical efficacy. For example, inhibiting C3a or C5a signalling 
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prevents anaphylatoxin activity while permitting formation of MAC, which may have 

tumoricidal activity. Importantly, as the primary source of C3 in our melanoma model, 

CD34high CAFs regulate the activation of all axes of the complement pathway. 

 

 

Fig. 6.2 The complement cascade 

Classical, Mannose Binding Lectin (MBL) and Alternative pathways generate a C3 convertase 
consisting of C4b,C2b (Classical and MBL) and C3bBb (Alternative), which cleaves central 
component C3 to C3b and C3a. C3a acts as an anaphylatoxin, inducing inflammation, while 
C3b binds to the C3 convertase to form the C5 convertase. Similar to C3, C5 is cleaved to 
form the anaphylatoxin C5a and C5b which binds to other complement components and forms 
the membrane attack complex (MAC). This permeabilises the membrane and induces cell 
death. 

 

 Conclusions and future directions 
 

This project highlights the complexity of the CAF compartment in melanoma 

development. We identify functionally distinct populations with a diverse marker 

repertoire, stressing the futility of bulk analysis and single marker approaches to 

characterise CAFs. This also emphasises the importance of fibroblast composition in 

cancer therapy. The presence of certain populations may dictate the efficacy of drugs 

targeting specific markers or functions, while their temporal dynamics control the 

timing of therapeutic application. Our work identified C3a as a possible target for 
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treatment of melanoma and other cancer types, as well as CD34 as biomarker for its 

application. However, further optimisation of C3a neutralisation is required, including 

increasing antibody concentration and possible combination with immune checkpoint 

therapies. Furthermore, a better understanding of the effects of C3a neutralisation on 

immune phenotypes is needed. For example, mechanistic insight into myeloid 

regulation of the T-cell compartment upon treatment, may identify additional targets. 

This involves a more comprehensive profile of macrophage/monocyte signalling 

molecules and the spatial location of immune populations in treated samples. 

Ultimately fibroblast heterogeneity is determined by the tissue or origin, tumour 

intrinsic signalling and exposure to extrinsic factors, such as cancer therapy, age and 

diet. Identification of soluble or mechanical cues that regulate individual populations 

could be used to establish in vitro models, similar to the pancreatic iCAF / myCAF 

system. The inability to isolate and culture fibroblasts from B16-F10 melanoma as part 

of this study, limited their functional characterisation in vitro. However, if normal skin 

fibroblasts can be induced to resemble certain populations, by cytokine exposure or 

culture on specific substrates, functional assays can be performed. 

Improvement in throughput, availability and cost of single cell technologies, such as 

scRNAseq and CyTOF, is creating an increasing pool of publicly available data 

spanning tissues and pathologies. This enables investigations into fibroblast 

populations present in cancers of different tissues and other disease states, such as 

chronic inflammatory disorders. Interestingly, functionally distinct fibroblast 

populations have been reported in colitis and rheumatoid arthritis 492,493, including a 

C3 producing subset in the latter 493. In addition, sequencing of human cancers 

includes information regarding therapeutic treatment. This may be used to compare 

the effect of anti-cancer drugs on fibroblast composition. However, such studies are 

currently impeded by a lack of single cell data from patients exposed to similar 

therapies, in which a sufficient number of fibroblasts have been sequenced. 

Furthermore, due to obvious ethical reasons, the number of treatment naive samples 

are limited. Performing scRNAseq on mice treated with specific anti-cancer drugs, 

compared to non-treated controls, would reveal their effects on CAF composition and 

may uncover novel mechanisms of resistance.  
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Moreover, a shortage of sequencing data from homeostatic conditions limits our 

understanding of the contribution of location in shaping the fibroblast compartment in 

both inflammatory and malignant disease. ScRNAseq data from different tissues, 

under resting conditions, would uncover if fibroblasts are heterogenous in the absence 

of pathology. Site specific transcriptional signatures have already been identified, 

however, single cell resolution would highlight differences at the population level. 

Moreover, this would indicate whether certain subsets are conserved across tissues. 

Profiling the development of the fibroblast compartment at different stages of 

malignant disease may indicate whether phenotypes and functions in the resting state, 

impact CAF composition. 

In combination with other published studies, our data indicates that two CAF 

populations present in the melanoma model may be derived from existing dermal 

subsets, while the third may originate from resident pericytes. The contribution of 

‘normal’ populations to the CAF compartment could be tracked using lineage tracing 

models. For example, tamoxifen inducible cre could be expressed under the control of 

genes associated with a specific tissue resident population. If crossed to a mouse in 

which cre recombination induces expression of a fluorescent protein, downstream of 

the ubiquitous Rosa26 promoter, exposure to tamoxifen prior to tumour initiation would 

label this population throughout malignancy. Interestingly, lineage tracing is currently 

being combined with single cell sequencing, using barcoding technology. This involves 

labelling cells in vivo with specific sequences or inducing mutational bar codes with 

recombinase or CRISPR systems. If these sequences are transcribed, they can be 

detected using scRNAseq and used to identify clonal lineages. However, this 

technology is still being optimised and is largely restricted to embryonic studies 494.   

However, mRNA encoding fluorescent proteins can be detected by RNA sequencing. 

Thus, the lineage tracing model proposed above could be combined with scRNAseq. 

This would enable the identification of cells derived from a specific resident subset, 

within tumour fibroblast populations. Furthermore, if performed as a time course, the 

transcriptional processes that govern phenotypic transition of a specific dermal 

population, during tumour development, could be investigated. 

In summary, while we are beginning to understand the diverse contributions of 

fibroblast populations to the tumour microenvironment, there remains much to be 
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uncovered. The development of single cell technologies is enabling a growing 

appreciation of the complexity of interactions across compartments. 
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