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ABSTRACT: Ion-sensitive transistors with nano- or micro- scale dimensions are promising for 

high-resolution electrophysiological recording and sensing. Technology that can pattern polymer 

functional materials directly from solution can effectively avoid any chemical damage induced 

by conventional lithography techniques. The application of mould-guided drying technique to 
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pattern PEDOT:PSS-based transistors with high resolution directly from the water-based 

suspension is presented in this paper. Gold electrodes with short channels were firstly defined by 

creating high-resolution polymer lines with mould-guided drying, followed by pattern transfer 

through a lift-off process. Then PEDOT:PSS lines were subsequently created through identical 

mould-guided drying process on the predefined electrodes. Small-scale transistor devices with 

both shortened channel length and width exhibited a good high-frequency response because of 

the weak capacitive effect. This is particularly advantageous for electrochemical transistors since 

the use of conventional fabrication techniques is extremely challenging in this case. In addition, 

modified polymer chain alignment of the assembled PEDOT:PSS lines during the drying process 

was observed by optical and electrical measurement. The mould-guided drying technique has 

been proved to be a promising method to fabricate small-scale devices, especially for biological 

applications. 

1. Introduction 

Recent developments in solution-processable devices/systems have revived interest in 

micrometer- and nanometer- scale drying process. Considerable efforts have been made to 

generate high-resolution patterns or structures using various methods including (a) controlling 

solvent evaporation, such as inkjet printing 1,2, (b) line-wise deposition by pulling a sharp blade 3-

5, and (c) repeated pinning / depinning of the contact line between the drying solution and 

substrate 6-8. Edge deposition induced by template confinement has also been used to form high-

resolution structures including the progressive shrinkage of capillary bridge and groove pinning 

9-11. Direct patterning of materials from solution has several advantages: high resolution, 

inexpensive cost, and applicability to a range of situations where conventional lithography 
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technology may not be suitable due to the induced material degradation by UV irradiation and 

chemical reaction during the development process.  

Fine patterning of ion-sensitive materials to form small-sized devices that permit high-frequency 

detection and high-density device packing is undoubtedly attractive. For instance, a small ion-

sensitive transistor array can be used for high-resolution bio-recording where the ion 

concentration fluctuates within the subcellular domain 12, 13. Ion-based synaptic transistors with a 

proper dopant in the active layer could generate reprogrammable and multiple states with stable 

conduction which are promising for next-generation neuromorphic computing, and the 

miniaturization of such synaptic transistors is significant for large-scale integration 14. 

Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) is a well-known 

conducting polymer which is a blend of cationic polythiopene derivatives doped with a 

polyanion 15-17. The polymer conductance is extremely sensitive to ions doping from the 

environment by modifying the redox conditions of the PEDOT polymer 18-20. Various techniques 

have been used to patterning PEDOT:PSS materials which includes mask etching 11, 21, 22, soft-

lithography 23, nanoimprint 24, pulsed laser ablation 25, direct UV-patterning 26, selective 

polymerization 27,28 and electro-spin 29. Most of the approaches are mainly limited by insufficient 

spatial resolution. Although electro-spin, nanoimprint and mask etching techniques can be used 

to produce sub-micron PEDOT:PSS, they demand further pattern transfer by plasma etching or 

face challenges to form a well-defined pattern. To this end, the development of techniques that 

enable direct patterning of PEDOT:PSS with high resolution is valuable.  

In this paper, a novel patterning process based on the mould-guided drying technique 11 was used 

in this paper to pattern PEDOT:PSS directly from its water suspension and to fabricate 
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PEDOT:PSS-based organic electrochemical transistors (OECTs). In the process, gold electrodes 

with narrow channels were firstly defined by creating polymer lines with mould-guided drying 

technique and transferring the pattern through a lift-off process. Then, the mould-guided drying 

process was repeated to form PEDOT:PSS lines over the electrodes through proper solution 

formulation. The OECT with both shortened channel length and width, demonstrated good high-

frequency and multi-frequency responses. In addition, the alignment of PEDOT:PSS chains 

during formation of the assembled lines was observed and it was confirmed by electrical and 

optical measurements.  

2. Results and Discussion 

2.1. Principle of PEDOT:PSS patterning 

The formation process used for PEDOT:PSS patterning is schematically shown in Figure 1. A 

formulated PEDOT:PSS water suspension was introduced between a substrate and a 

polydimethylsiloxane (PDMS) mould. As the solvent evaporated, capillary bridges of the 

solution formed and the liquid / substrate contact lines were pinned at the mould grooves. Thin 

PEDOT:PSS lines were subsequently formed next to the groove-pinned contact lines. To be more 

specific, a controlled volume of the formulated solution (3l, for PDMS mould with 1cm2 area 

of line pattern) was drop-casted onto the surface of the structured PDMS mould. Then, a 

substrate was gently brought into contact with the solution-wetted mould and left dried at room 

temperature for 4 hours under a small applied pressure (about 5 MPa) (Figure 1a and Figure 1b). 

Finally, the PDMS mould was removed, leaving the patterned PEDOT:PSS on the substrate 

(Figure 1c). The groove depth of the PDMS mould was 1.5μm and the line width / separations 

varied from 40m to 120m.  
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Figure 1 Schematic illustration of PEDOT:PSS patterning process. The solution was patterned 

and subsequently pinned at the groove corners during drying (a, b). The PEDOT:PSS lines were  

formed next to the liquid / substrate contact lines (b, c). The PEDOT:PSS line deposition induced 

by capillary flow causes a preferred PEDOT chain orientation (d).    

The PEDOT:PSS lines were formed by a single patterning process (Figure 2a) and a sequential 

double patterning process can be used to generate grid structures (Figure 2b). The existing 

structure on the substrate does not affect the subsequent patterning because the capillary bridges 

are pinned at the mould grooves. We also observed that the PEDOT:PSS solution formulation 

was critical for the successful patterning, which was discussed in section 4. Apart from the 

modification of the surface property of the substrate and surface tension of the solution, both 

ethylene glycol and triton can affect polymer chain alignment and interaction between the 

PEDOT and PSS molecules which might contribute to the patterning process and the resulted 

structures 30. The typical line width was measured to be 700nm and the width of PEDOT:PSS 

wires can be controlled by adjusting the solution concentration. It was also found that the profile 

of the patterned PEDOT:PSS wire was approximately triangle.  
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Figure 2. Optical and SEM images of the patterned PEDOT:PSS lines (a) and grids (b). The 

typical line width was 700nm. 

2.2. PEDOT:PSS wire transistors 

The PEDOT:PSS-based OECT was fabricated by firstly preparing electrodes with small gaps 

using a similar process. Silicon with a 300 nm-thick SiO2 layer or glass was used as the substrate. 

A 250 nm-thick polydimethylglutarimide (PMGI) layer was spin-coated on the substrate and 

baked for 30 min at 200°C. A 10 nm-thick Ge layer was then thermally evaporated on top as an 

etching mask (in CF4) for subsequent PMGI etching (in oxygen). . Poly-4-vinylphenol (PVP) 

lines were formed on the Ge layer using the method described in Figure 3a. CF4 plasma was used 

to etch through the Ge layer with PVP line as the etching mask and this was followed by oxygen 

plasma to etch through the PMGI using Ge layer as the etching mask (Figure 3b). Then, Au / Cr 

(30 nm / 10 nm) films were deposited by thermal evaporation and the lift-off process in a 

Microposit Remover (1165) was applied to complete the electrode fabrication (Figure 3c) 31,32. 
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Finally, PEDOT:PSS lines were created on top of the fabricated Au electrodes (Figure 3d) and 

annealed at 140°C for 1 hour in air.  

 

Figure 3. Process used for the fabrication of PEDOT:PSS-based OECT (a~d) and molecular 

structure of PEDOT:PSS polymers and Triton X-100 (e, f, g) 

Figure 4a and 4b show the device image and testing circuit used for device characterization. 

Silver conducting wire and 0.1 M NaCl aqueous solution were used as the gate electrode and 

electrolyte respectively. A plastic ring (6 mm in diameter) was placed over the sample to contain 

the electrolyte. The transistors were evaluated under small gate and drain voltages (<1V). The 

drain current decreased as the gate voltage increased, i.e., the device worked with a depletion 

model because of the partial balance of the negatively charged PSS– by Na+ which de-dopes the 

PEDOT (Fig 4c, 4d). The OECT with a small size is crucial for high-resolution sensing, like bio-

recording, where the ion concentration varies within the subcellular domain. Due to the short 



 8 

device channel, the current density was one order of magnitude higher than that with the 

PEDOT:PSS-wires defined by mask etching 11.  

 

Figure 4. Fabricated device image and test results. (a) SEM image of a fabricated device; (b) 

Schematic illustration of the testing circuit; (c) and (d) Output and transfer curves of the OECT; 
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(e) Schematic illustration of signal transformation between neurons where two pre-synapse 

neurons and one post-synapse neuron were drawn. This is analogous to the two-input and one-

output structure of OECT device.   

PEDOT:PSS-based OECT with small size is also promising in applications like synaptic device 

which is an essential component in artificial neuromorphic network (ANN). Figure 4e shows the 

schematic illustration of signal transformation between neurons through synapses. The OECT 

can realize a similar function when the gate voltage and the drain current are analogically treated 

as pre-synaptic and post-synaptic signals 14. 

2.3. Frequency response of the PEDOT:PSS wire transistor 

PEDOT:PSS wire transistor with a narrow channel length and channel width has been 

successfully fabricated and its switching properties have been demonstrated.  The contact area 

between the PEDOT:PSS wire and the electrolyte is considerably reduced compared to the spin-

coated PEDOT:PSS (Figure 5). As a result, the PEDOT:PSS wire transistor has a smaller 

capacitance between the electrolyte and the active material. This is particularly important for 

high-frequency operation since the RC time constant (τ=R×C) is significantly reduced. In order 

to investigate the high-frequency response of the PEDOT:PSS wire transistor, experiments were 

conducted with various gate frequencies. The frequency response was measured with an 

oscilloscope on the voltage drop across a resistor connected in series in the drain current loop. 

Figure 6 shows the frequency response of different input signals and the device exhibited a good 

frequency response. Multiple-input response was also measured, which widely exists in the 

signal processing in the neuron system (Fig.4e) and can be potentially applied for logical 

calculation 33, 34. Multiple inputs were realized by using multiple gates and each gate was 
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powered by a signal generator. Figure 6a shows the single-input response at 1 KHZ, while 

Figures 6b~e show the multiple-input responses of the transistor and the simulated results. The 

resulting output spectra are well described by a summation of multiple input signals and can be 

conveniently decomposed at high accuracy, which makes the response to very small variations 

between inputs possible. For instance, a tiny phase change (less than 0.01) of the inputs can be 

read out in the output spectra (Figure 6e). The over 1KHz bandwidth of our OECT is sufficient to 

record bio-signal in medical application, like brain mapping 19. Device performance can be 

further improved in future research by adding an insulating layer between the liquid and 

electrodes, which is expected to reduce the parasitic effects.        
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Figure 5. Schematic drawing of transistors with PEDOT:PSS wire (a) and coated PEDOT:PSS 

film (b).  
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Figure 6. Frequency response with sine, square, and pulse signal input, where the left and right 

panels are the simulated and experimental results respectively. (a) Single square signal (f=1kHz) 

was the input (the simulated signal is equivalent to the input signal in this case); (b) Two sine 

signals (f1=500Hz (600mv), f2=100Hz (300mv) ) were used as the input; (c) Two sine signals 

(f1=500Hz (600mv), f2=100Hz (200mv)) were used as the input; (d) Two sine signals (f1=500Hz 

(600mv) and f2=100Hz (100mv)) were used as the input; (e) Two pulse signals (f1=500Hz 

(600mv) and f2=100Hz (300mv)) with a duty cycle of 10% were used as the input.  

2.4. Molecular alignment of PEDOT:PSS wires during formation  

The device fabrication and characterization have been presented in the previous sections. 

Moreover, the molecular alignment of PEDOT:PSS during the guided drying process is expected 

due to the hydrophobic behavior of PDMS. This was confirmed during the experiment11 by 

optical and electrical measurements. Polarized ultraviolet-visible absorption spectroscopy was 

firstly used to indicate the polymer alignment and a maximum absorption is expected when the 

transition dipole moments align with the polarization direction of light since the transition dipole 

moment of the conjugated polymers are oriented in the direction along the polymer backbone 35, 

36. Figure 7 shows the absorbance spectrum of the fabricated PEDOT:PSS wires, in which a 

larger absorbance was observed when the PEDOT:PSS line direction was oriented parallel to the 

light polarization direction, indicating that the PEDOT chains are preferentially aligned in the 

line direction.  
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Figure 7 Absorbance of the assembled PEDOT:PSS wires. A larger absorbance is observed when 

the light polarization direction is parallel to the line orientation.   

This was further confirmed by the electrical conductivity of PEDOT:PSS thin film (spin-coating) 

and PEDOT:PSS wires with identical post treatment (100°C for 10min). The conductivity () of 

the PEDOT:PSS is calculated by  

=
I l

A V





                                 (1) 

where I is the electrical current, l is the conductive length of the PEDOT:PSS, A is the cross-

section area and V is the voltage applied. As I×l/A=×V, the conductivity () can be read out 
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from the slope of (I×l/A)  V plot, as is shown in Figure 8. Moreover, the ratio of conductivity 

between PEDOT:PSS wires and thin film (σline / σfilm) was extracted to be 2.05, which indicates  

that the PEDOT:PSS chains were preferentially aligned in the wire direction.  
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Figure 8 Electrical conductivity of spin-coated PEDOT:PSS thin film and self-assembled 

PEDOT:PSS wires. 

The preferential alignment of PEDOT chain can be explained by the deposition and collapsing of 

gel-like particles from the solution 37, as is shown in Figure 9. The PEDOT:PSS dispersion can 

be regarded as being composed of gel-like particles comprising PSS and PEDOT polymers. The 

gel-like particles are collapsing and aggregating during the line deposition process. The PEDOT 

chains are packed either with pure PEDOT chains or PEDOT:PSS chains alternatively in the 

aggregates 37-39. The aggregates are connected to form percolation network of charge conduction. 
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The way of aggregate arrangement and associated global chain-orientation along the PEDOT-

lines is required by energy minimization during PEDOT:PSS deposition.   

 

Figure 9 Schematic illustration of PEDOT:PSS deposition from solution. The bottom deposited 

line is composed by aggregates with PSS rich part (Grey color) and PEDOT rich part (Blue 

color).  

3. Conclusion  

We have applied the mould-guided drying process to pattern PEDOT:PSS with high resolution 

directly from its water-based suspension and small-sized OECT was successfully fabricated. The 

transistor characteristics of the OECT with small-scale channel width and channel length were 

demonstrated, and its high-frequency and multiple-input response were also investigated. In 

addition, PEDOT:PSS chain alignment of the assembled lines was observed and verified by 

optical and electrical measurement. Such ion-sensitive transistors with small dimensions are 

particularly promising for high-resolution electrophysiological recording and sensing.  



 16 

4. Experimental method  

Template preparation and line forming: The PDMS template with proper line patterns was made 

with commercial silicone elastomer (Sylgard ®184, Dow Corning). The silicone elastomer, 

consisted of a two-part liquid component kit (a 10:1 mix ratio), was poured onto a photoresist 

master predefined by optical lithography. The thickness of the photoresist carried on Si wafer 

was 1.5 m which defines the groove depth of the PDMS template. After curing of the silicone 

elastomer along with the photoresist master at 70 °C for 1h, the PDMS elastomer with duplicated 

pattern was peeled-off from the master. PEDOT:PSS and PVP patterning was performed with 

self-developed stainless-steel clamping platform, which enabled the proper alignment of the 

substrates and PDMS template, and adjustment of the applied pressure.  

Device fabrication and measurements: To fabricate the patterned PEDOT:PSS wire transistors, 

the PEDOT:PSS solution was formulated with a PEDOT:PSS (Clevios PH-1000) water-based 

suspension (from Heraeus) by adding 20% ethylene glycol and 0.92% Triton X-100 (Sigma-

Aldrich) (both in volume percentage) to PEDOT:PSS suspension in order to improve material 

conductivity and reduce the surface tension. It was observed that the PEDOT:PSS solution 

formulation was critical for the PEDOT:PSS patterning, which is the reason why direct 

patterning of PEDOT:PSS could not be previously achieved by mould-guided drying. The 

pattern quality is particularly sensitive to the amount of Triton X-100 added to the solution. It 

was found that a high-quality pattern is obtained when 0.92mg/mL of Triton X-100 was 

contained in the formulated solution. Insufficient addition of Triton causes line non-continuity 

induced by the high surface tension of the liquid. In contrast, higher concentration of Triton often 

induces residual material between the patterned lines. The PEDOT:PSS wire transistors were 

tested with Agilent 4156A Precision Semiconductor Parameter Analyzer (Yokogawa-Hewlett-
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Packard Ltd, Tokyo, Japan).  

Analysis of molecule alignment and electric conductivity: To analyse electric conductivity, a 90 

nm-thick PEDOT:PSS film was spin-coated onto SiO2 (300nm) / Si substrate and annealed at 

100°C for 10min. PEDOT:PSS wires were fabricated using the method developed and annealed 

at the same condition. The Jasco V-670 absorption spectrometer with attached linear polarizer 

was used to measure the absorption of the patterned PEDOT:PSS wires. The cross-section area 

of the PEDOT:PSS wires was measured by a profilometer.  
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