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Dysbiosis associated with acute 
helminth infections in herbivorous 
youngstock – observations and 
implications
Laura E. Peachey1,2, Cecilia Castro3, Rebecca A. Molena1, Timothy P. Jenkins   1, 
Julian L. Griffin3 & Cinzia Cantacessi   1

A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young 
vertebrates in supporting the development and regulation of the host immune system. However, 
knowledge of the impact that infections by GI helminths exert on the developing microbiota of 
juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between 
acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine 
youngstock, prior to and following treatment with parasiticides (ivermectin). We observed that high 
versus low parasite burdens (measured via parasite egg counts in faecal samples) were associated with 
specific compositional alterations of the developing microbiome; in particular, the faecal microbiota 
of animals with heavy worm infection burdens was characterised by lower microbial richness, and 
alterations to the relative abundances of bacterial taxa with immune-modulatory functions. Amino 
acids and glucose were increased in faecal samples from the same cohort, which indicated the likely 
occurrence of intestinal malabsorption. These data support the hypothesis that GI helminth infections 
in young livestock are associated with significant alterations to the GI microbiota, which may impact 
on both metabolism and development of acquired immunity. This knowledge will direct future studies 
aimed to identify the long-term impact of infection-induced alterations of the GI microbiota in young 
livestock.

A wealth of data supports the primary role(s) that the vertebrate gastrointestinal (GI) microbiome plays in overall 
host health1–3. In humans, microbial populations inhabiting the gut are acquired during early life, and a ‘stable’ 
gut microbiome is established by 31 months of age4,5. A similar process has been reported in other animals, with 
the timing of maturation and development of the gut microbiome depending on species lifespan and average age 
at weaning6,7. A balanced gut microbiota is key to vertebrate long-term health and wellbeing; nevertheless, several 
factors and life events may impact on the establishment of a ‘healthy’ gut flora in early life. Such factors include, 
but are not limited to, early life nutrition, use of antimicrobials during gestation and/or in young animals, mode 
of delivery and infectious diseases8–23.

In neonates and young animals, perturbations of the developing GI microbiota are known to pre-dispose 
to the onset of a number of systemic conditions, such as allergies, autoimmunity, obesity and colonisation by 
infectious agents, such as parasites24–29. The intimate mechanisms governing the relationships between host, gut 
microbiota and parasites are complex and, in many cases, not fully understood; however, experimental evidence 
points towards a role of the microbiota in supporting the development and regulation of the host immature 
immune system, e.g. ensuring that adequate responses are mounted against pathogenic stimuli1,30. Indeed, recent 
data generated from an amphibian model of parasite infection demonstrated that susceptibility to colonisation 
by the helminth Aplectana hamatospicula of adult animals was directly attributable to a reduced diversity of the 
microbial populations inhabiting the gut of juveniles27. On the other hand, helminth parasites have been shown 
to interact, directly and/or indirectly, with the gut flora of their vertebrate hosts31–42, and thus could potentially 
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interfere with the establishment of a ‘healthy’ microbiome in young humans and animals from endemic areas. For 
instance, experimental infections of rodents with the whipworm Trichuris muris (a model for human infections 
caused by T. trichiura) and the human blood fluke Schistosoma mansoni have been associated with drastic reduc-
tions in GI microbial diversity36–43, with likely negative implications for microbiome maturation in juvenile hosts, 
and thus for long term immune and metabolic homeostasis. Beside humans, such effects are likely to have par-
ticularly severe repercussions in managed livestock herbivore species, e.g. ruminants and equines, that often har-
bour high burdens of GI helminths due to slow development of acquired immunity and high transmission rates 
within herds44,45. Thus far, very few studies have examined the impact of helminth infections on the GI microbiota 
of herbivorous livestock, with inconsistent findings40,46–48. In particular, infection of calves (3–4 months old (mo)) 
and goats (3 mo) with the abomasal parasites Ostertagia ostertagi47 and Haemonchus contortus46, respectively, 
showed no effect of the infection on microbial diversity at the site of parasite establishment, whilst a study of H. 
contortus infection in lambs (3 mo), reported a transient increase in gut bacterial alpha diversity associated with 
parasite colonisation48. Clearly, further studies are necessary to elucidate the impact that infections with large 
burdens of parasitic helminths exert on the developing microbiome of juvenile vertebrates and, in turn, on host 
long-term health and wellbeing.

Managed equine youngstock provide an ideal system for such investigations; indeed, domestic horses are 
characterised by long lifespans when compared to other livestock species, thus enabling comparisons between 
the microbiota of young versus adult stock within herds and long-term monitoring of health parameters. In 
addition, equines are often subjected to strict diets, which provides an opportunity to overcome confounding 
factors linked to diet variability. Finally, the equine GI microbiome has been extensively characterised in both 
health and disease7,49–69, thus providing a benchmark for comparative analyses with microbiome composition in 
parasite-infected horses.

Therefore, in order to identify changes to GI microbial composition, diversity and function associated with GI 
helminth infection in young herbivorous livestock, our study characterised, for the first time, the faecal microbi-
ome and metabolome of a cohort of thoroughbred (TB) youngstock acutely infected with an economically impor-
tant group of GI helminths (i.e. the Cyathostominae, strongyle parasites characterised by a direct, non-migratory 
life cycle with oro-faecal transmission70,71) pre- and post-treatment with anthelmintic compounds.

Results
Comparison of faecal microbiota composition in equine youngstock with high versus low para-
site burdens, prior to and following anthelmintic treatment.  A cohort of 53 TB equine youngstock 
were examined for cyathostomin infection and allocated to high- and low-infection burden groups according to 
the following criteria: i) faecal parasite egg count (FEC – a proxy of parasite infection burden) of ≥100 eggs per 
gram (e.p.g.) (=C-high) or ≤10 e.p.g. (C-low) in duplicate faecal samples on day 0 (D0) of the study; (ii) negative 
for co-infections with other GI helminths; (iii) no antibiotic treatment for at least 2 months prior to sampling. 
Out of the 53 animals screened, 23 matched these criteria, of which 9 were enrolled into the C-high group and 14 
into the C-low (Supplementary Table S1). Samples were collected for analyses of faecal microbiota and metabo-
lites from all animals in the C-high and C-low groups immediately prior to treatment with ivermectin (0.2 mg/
kg) at D0, as well as at two (D2) and 14 (D14) days post-treatment. FEC analysis performed on samples col-
lected at D2 and D14 showed FEC reduction rates (FECR) of 100% by D14 in all treated animals (Supplementary 
Table S1). Following total DNA extraction from faecal samples, bacterial 16S rRNA high-throughput sequenc-
ing was performed on each sample. A total of 5,201,731 raw paired-end reads were generated from 74 DNA 
faecal extracts of C-high and C-low yearlings collected on D0, D2 and D14, respectively, and subjected to fur-
ther processing. Following primer trimming, joining of paired-end reads, filtering of low-quality sequences and 
removal of ‘contaminant’ and singleton Operational Taxonomic Units (OTUs), a total of 3,048,051 (mean 43,543; 
range 21,992–58,947) high-quality sequences were retained for further bioinformatics analyses. The rarefaction 
curves generated following in silico subtraction of low-quality and contaminant sequences indicated that the 
majority of faecal bacterial communities were represented in the remaining sequence data, thus allowing us to 
undertake further analyses (Supplementary Fig. S1). These sequences were assigned to 9,972 OTUs and 15 bac-
terial phyla, respectively. The phyla Bacteroidetes (42.303%) and Firmicutes (42.108%) were predominant in 
all samples, followed by the phyla Verrucomicrobia (1.319%), Spirochaetes (0.810%), Actinobacteria (0.402%), 
Proteobacteria (0.3908%), Tenericutes (0.073%), Fibrobacteres (0.0552%), TM7 (0.012%), Lentisphaerae 
(0.0065%), Synergistetes (0.001%), Fusobacteria (0.001%), Deferribacteres (0.001%), Cyanobacteria (0.001%) 
and Chlamydiae (0.0001%) (Supplementary Fig. S2), while 11.1% of OTUs could not be assigned to any bacte-
rial group. Predominant sub-taxa were class Bacteroidia, order Bacteroidales within the phylum Bacteroidetes; 
and class Clostridia, order Clostridiales, families Lachnospiraceae and Ruminococcacae within the Firmicutes. 
Given the male-gender bias in the C-high group (Supplementary Table S1), a supervised multivariate Canonical 
Correlation Analysis (CCA) was performed on the microbial communities detected in samples collected from the 
whole cohort (C-high and C-low) at D0 with ‘gender’ as an explanatory variable; based on the results of this anal-
ysis, gender did not impact significantly on the overall gut microbial composition or alpha diversity of equines 
enrolled in this study (P = 0.826; F = 0.48) (Supplementary Fig. S3).

Global analyses of faecal microbial composition of C-high versus C-low at D0 (pre-treatment), using Principal 
Coordinates analyses (PCoA) with Bray-Curtis distance estimates, did not show marked clustering according to 
FEC (Fig. 1a); however, a significant difference between these two groups was detected using supervised CCA 
(P = 0.002; F = 1.47) (Fig. 1b), whilst the effect of gender was insignificant (P = 0.105; F = 1.13), and on a different 
axis, in the same model (Supplementary Fig. S4). Additionally, the microbial profiles of  both C-high and C-low 
clustered separately according to sample collection time points (D0, D2 and D14) (C-high P = 0.001, F = 1.33; 
C-low P = 0.001, F = 1.99) (Fig. 1c,d).
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Microbial richness is reduced in animals with large parasite burdens, and increased following 
anthelmintic treatment.  Microbial richness was lower in C-high at D0 (P = 0.05) than in C-low at the 
same time point (Fig. 2a). Furthermore, this parameter increased post-treatment (at D2 and D14) to levels com-
parable to those detected in samples from C-low at D0, although this increase was not statistically significant 
using ANOVA (P = 0.1) (Fig. 2b). No differences in faecal microbial richness were observed between samples 
from C-low collected at D0, D2 and D14 (P = 0.87) (Fig. 2c). No statistically significant differences in microbial 
evenness and Shannon Index were detected between C-high and C-low at D0 (Fig. 2a); however, a significant 
increase in microbial evenness and Shannon index was observed in both C-high and C-low at D2 and D14 when 
compared with samples collected at D0 (evenness C-high P = 0.027, C-low P = 0.004; Shannon Index C-high 
P = 0.028, C-low P = 0.026) (Fig. 2b,c). No significant differences in faecal microbial beta diversity (measured via 
PERMDISP) were observed between C-high and C-low, according to parasite infection burden and/or sample 
collection time point post-anthelmintic administration (Supplementary Fig. S5). Given the gender bias towards 
males in the C-high group, analysis of microbial alpha diversity was repeated for C-high and C-low at D0 with 
‘gender’ as an explanatory variable; no significant difference was observed between male and female subjects 
(Shannon Index P = 0.66; evenness P = 0.7; richness P = 0.69) (Supplementary Fig. S3).

The relationships between infection burdens, anthelmintic treatment and altered abundances 
of specific microbial taxa.  Differences in the relative abundance of specific microbial taxa between groups 
were evaluated using Linear discriminant analysis Effect Size (LEfSe) and correlations between individual 
bacterial families, parasite infection burden and sample collection time points were represented by Pearson’s 

Figure 1.  The faecal microbial profiles of youngstock with high (C-high) and low (C-low) parasite infection 
burdens prior to and following anthelmintic treatment. Multivariate analyses of the faecal microbial 
composition (based on Operational Taxonomic Unit [OTU] presence and abundance) including (a) Principal 
Coordinates Analyses (PCoA) of faecal microbial profiles from animals in C-high (≥100 eggs per gram (e.p.g.)) 
versus C-low (≤10 e.p.g.), (b) Canonical Correlation Analyses (CCA) of faecal microbial profiles from animals 
in C-high versus C-low, (c) C-high at day 0 (D0) versus day 2 (D2) and day 14 (D14), and (d) C-low at D0 versus 
D2 and D14.
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correlation network analysis (Tables 1–3; Fig. 3). At D0, Bacteroidetes were reduced in C-high compared to C-low 
(LDA effect size 4.66), which was largely attributable to a reduced abundance of bacteria belonging to the families 
Prevotellaceae and Paraprevotellaceae, and genus Alistipes (Family Rikenellaceae) (Table 1; Fig. 3a). However, in 
C-high, a relative expansion of bacteria belonging to the families Mogibacteriaceae and Leuconostocaceae (genus 
Weissella), and genus Paraeggerthella belonging to the class Clostridia (phylum Firmicutes) was observed when 
compared with C-low (Table 1; Fig. 3a). In the latter group, several taxa belonging to the class Clostridia, includ-
ing Anaerotruncus, Pseudobutyrivibrio and Unclassified Acidaminobacteraceae, were increased compared with 
C-high (Table 1; Fig. 3a). When assessing the impact of anthelmintic treatment on the faecal microbial compo-
sition of yearlings enrolled in our study, LEfSe analysis revealed a significant decrease of bacteria belonging to 
the phylum Firmicutes in C-high at D14 when compared to D0, which was largely attributable to a reduction in 
Mogibacteriaceae, Dehalobacteriaceae, Lactobacillaceae, Streptococcaceae and Enterococcaceae (Table 2; Fig. 3b); 
in contrast, Prevotellaceae were increased in faecal samples collected from C-high at D14 compared with D0 
(Table 2; Fig. 3b). A transient expansion of bacteria belonging to the families Lachnospiraceae, Clostridiaceae and 
Succinovibrionaceae was also observed in C-high at D2 (Table 2; Fig. 3b). In C-low, Betaproteobacteria (order) 
and Verrucomicrobia (phylum) were reduced and increased, respectively, at D14 when compared to D0 and D2 
(Table 3; Fig. 3c). Similar to samples collected from C-high, bacteria belonging to the families Lachnospiracaeae, 
Clostridiaceae and Succinivibrionaceae were increased at D2 compared with D0 and D14, respectively 
(Table 3; Fig. 3c). Of the several bacterial taxa whose abundance was significantly different in samples from 
C-high and C-low collected pre- and post-anthelmintic treatment, four (i.e. Mogibacteriaceae, Prevotellaceae, 
Paraprevotellaceae and Rikenellaceae; analysed individually using ANOVA at family level) were significantly 
affected at D14 following the administration of ivermectin in C-high, whilst remaining unchanged in C-low at 
the same time point (Fig. 4).

Faecal metabolite changes associated with high- and low infection burdens and anthelmintic 
treatment.  A total of 28 faecal metabolites in all samples from C-high and C-low collected at D0 and D14 
were identified and quantified by Proton Nuclear Magnetic Resonance (1H-NMR). These were subjected to PCoA 
(Supplementary Fig. S6) and CCA; the latter allowed us to identify differences between the faecal metabolomes 
of C-high and C-low at D0 (P = 0.059; F = 1.97) (Fig. 5a). Pearson’s correlation heatmap analyses demonstrated 
increased abundances of isobutyrate, trehalose, leucine, phenylalanine, glutamate, glucose, lysine and propion-
ate, and decreased nicotinate, valerate and butyrate, in C-high versus C-low (Fig. 6a); however, these differences 
were not statistically significant according to ANOVA following False Discovery Rate (FDR) correction for mul-
tiple testing (P > 0.05 for all metabolites) (Supplementary Table S2). CCA also detected a difference between 

Figure 2.  Faecal microbial richness is reduced in animals with high parasite burdens, and increased post-
anthelmintic treatment. Microbial alpha diversity (based on Operational Taxonomic Unit [OTU] presence and 
abundance), measured by richness, evenness and Shannon index, in faecal samples from (a) C-high (≥100 
eggs per gram (e.p.g.)) versus C-low (≤10 e.p.g.), (b) C-high at day 0 (D0) versus day 2 (D2) and day 14, and (c) 
C-low at D0 versus D2 and D14.
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the faecal metabolomes of C-high at D0 and D14 (P = 0.001; F = 1.2), that however, for individual metabolites, 
was not statistically significant using ANOVA following FDR correction (P > 0.05 for all metabolites) (Fig. 5b; 
Supplementary Table S3); nevertheless, a relative reduction in the short chain fatty acids (SCFAs) butyrate, 
isobutyrate and propionate was observed in samples from this group at D14 versus D0 via Pearson’s correla-
tion heatmaps (Fig. 6b). Conversely, in addition to a greater effect size according to CCA (P = 0.001; F = 5.88), 
clear differences were detected between the faecal metabolites identified in samples from C-low at D0 and D14 
(Fig. 5C; Supplementary Table S4). In particular, glucose, uracil, inosine, trehalose, leucine, butyrate and valine 
were more abundant in samples collected at D14 when compared to D0 (ANOVA; P < 0.001, P < 0.001, P = 0.001, 
P = 0.003, P = 0.022, P = 0.041 and P = 0.044, respectively) (Fig. 6c; Supplementary Table S4). Partial Least 
Squares (PLS) analysis of metabolite and bacterial OTU data obtained from faecal samples at D0, with ‘metab-
olites’ as the dependent matrix and ‘bacterial OTUs’ as the independent matrix, did not identify any significant 
association between these two datasets (P = 0.96)

Phylum Class Order Family Genus Species C-high C-low

Bacteroidetes

Bacteroidia

Bacteroidales

Prevotellaceae

Paraprevotellaceae

Rikenellaceae Alistipes

Bacteroidaceae

BF311

Firmicutes Bacilli Lactobacillales Leuconostocaceae

Weissella

Clostridia Clostridiales Mogibacteriaceae

Mogibacterium

Mogibacterium 
(unclassified)

Eubacteriaceae Paraeggerthella Paraeggerthella 
hongkongensis

Lachnospiracaeae Pseudobutyrivibrio

Acidaminobacteraceae

Acidaminobacteraceae 
(unclassified)

Acidaminobacteraceae 
(unclassified)

Clostridiaceae Anaerotruncus Anaerotruncus 
unclassified

Proteobacteria Gammaproteobacteria Pasteurellales

Pasteurellaceae

Epsilonproteobacteria Campylobacterales Camplylobacteraceae Campylobacter Campylobacter jejuni

Alphaproteobacteria RF32

RF32 (unclassified)

RF32 (unclassified)

Betaproteobacteria Burkholderiales

Table 1.  Increased abundance of Mogibacteriaceae, Leuconostocaceae and Eubacteriaceae, and reduced 
abundance of Prevotellaceae, Paraprevotellaceae and Rikenellaceae in faecal samples from youngstock with high 
parasite infection burdens. Differences in relative abundance of selected microbial taxa in faecal samples from 
C-high (faecal egg count (FEC) > 100 eggs per gram (e.p.g.)) and C-low (FEC < 10 e.p.g.). Light grey: effect size 
of 3.5–4.5; dark grey: effect size >4.5.
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Discussion
In this study, acute helminth infections in a cohort of equine youngstock were associated with significant alter-
ations in gut microbial profiles and diversity, which were reversed following parasiticide treatment. The fae-
cal microbial profiles of the yearlings in our study were in line with those described previously for managed 
equines54,67,69,72,73, with the predominance of OTUs assigned to Bacteroidetes (42.3%) and Firmicutes (42.1%); 

Phylum Class Order Family Genus Species D0 D2 D14

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae

Prevotellaceae unclassified

Prevotellaceae unclassified

Firmicutes
Bacilli

Lactobacillales
Lactobacillaceae

Lactobacillus

Enterococcaceae Enterococcus
Enterococcus casseliflavus

Streptococcaceae

Streptococcus

Erysipelotrichales Erysipelotrchaceae RFN20

RFN20 unclassified

Clostridia Clostridiales

Lachnospiraceae

Roseburia
Roseburia inulinivorans

Pseudobutyrivibrio

Pseudobutyrivibrio 
unclassified

Clostridiaceae Clostridium

Mogibacteriaceae
Mogibacterium

Mogibacterium unclassified

Dehalobacteriaceae Dehalobacteriaceae 
unclassified

Dehalobacteriaceae 
unclassified

Ruminococcaceae
Oscillospira

Oscillospira guillermondi

Ruminococcus Ruminococcus bromi

Ruminococcaceae 
unclassified

Proteobacteria Gammaproteobacteria

Aeromonadales

Succinivibrionacae

Table 2.  Increased abundance of Clostridiales and Prevotellaceae, and reduced Lactobacillaceae and 
Mogibacteriaceae in faecal samples from youngstock with high infection burdens following anthelmintic 
treatment. Differences in relative abundance of selected microbial taxa in faecal samples from C-high 
(FEC > 100 egg per gram (e.p.g.)) prior to treatment (D0), and 2 (D2) and 14 (D14) days post-treatment. Light 
grey: effect size of 3.5–4.5; dark grey: effect size >4.5.
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nevertheless, a greater interindividual variation in taxonomic composition was observed in this group of animals 
when compared to a cohort of adult broodmares hosted on the same farm40. This discrepancy may be suggestive 
of a ‘developing microbiome’ in these young animals. Indeed, a recent study in human infants demonstrated the 
occurrence of three stages of microbial development in the GI tract during early life, which include an early phase 
characterised by rapid changes in the core GI microbiota over time, an intermediate transitional phase charac-
terised by fewer changes over time, and a final and stable ‘adult’ microbial profile4. In support of our findings, 
a previous study conducted in equine youngstock demonstrated that, although gut microbiome re-modelling 
occurs mostly during the first 60 days of life, the gut microbial profiles of horses of 9 months of age is still signif-
icantly different from those of adult animals7. Of note, environmental and pathogenic stimuli which impact on 
the order of colonisation of the GI tract during the developmental phase may have significant repercussions on 
adult microbiome composition and homeostasis1,28,74. Hence, given the known roles of the gut microbiome in 
immune regulation and metabolism, it is likely that the alterations in faecal microbiome composition of equine 
youngstock observed in association with GI helminth infections may result in long-term implications for animal 
health and wellbeing.

Indeed, the abundance of several bacterial taxa with key roles in metabolism and immune-regulation dif-
fered significantly between C-high and C-low. For instance, bacterial families belonging to the classes Clostridia 
and Bacteroidetes, were increased and decreased, respectively, in C-high when compared to C-low prior to 
anthelmintic treatment. Of note, several differences in faecal microbial profiles observed between groups before 
treatment were reversed following anthelmintic administration; for instance, bacteria belonging to the families 
Mogibacteriaceae (phylum Firmicutes; class Clostridia), Prevotellaceae (phylum Bacteroidetes; class Bacteroidetes) 
were similar in abundance in faecal samples from C-low and C-high by D14. A reduction in Bacteroidetes (gen-
era Prevotella and Parabacteroides) was also observed in mice experimentally infected with the murine whip-
worm, T. muris36. Members of the family Prevotellaceae are commensals of mammalian mucosal surfaces, and 
are known potential pathobionts, particularly associated with oral infections75. Prevotella spp. have been demon-
strated to promote pro-inflammatory Th17-mediated immune responses75,76; thus, a decreased abundance of 
this bacterial family in the presence of GI helminth infections could be linked to the known immune-regulatory 
properties of these parasites77. Indeed, a reduction in Th17-inducing segmented filamentous bacteria has been 
previously reported in association with Nippostrongylus brasiliensis infection in a rodent model34, indicating that 
this may be a common immune-modulatory mechanism in GI helminth infections. Nevertheless, in herbivores, 
Prevotellaceae also play a key role in the break-down of indigestible fibres78,79; moreover, in a study by Houlden 
et al.36, an observed increase in long chain fatty acids in the faeces of T. muris infected mice was attributed to 
inefficient breakdown of plant fibres as a result of reduced abundance of Prevotella and Parabacteroides. This 
dichotomy of function in Prevotella spp. has been well described80, and demonstrates that, whilst Prevotella are 
commensal bacteria with an important metabolic role, they can be pro-inflammatory in association with mucosal 
pathology. It is also worth reporting that, in contrast to our findings, a positive association between helminth 
infections and Prevotella spp. abundance was observed in the abomasum of 3 mo small ruminants colonised 
by the GI helminth H. contortus46. Whilst this apparent discrepancy may be linked to fundamental differences 
between the host:parasite systems under investigation and infection sites (stomach versus large intestine), this 
data calls for further investigations of the mechanisms governing the interactions between GI helminths and 
Prevotella spp. and their implications for the developing microbiome of young vertebrates.

Within the phylum Firmicutes, a number of families belonging to class Clostridia were significantly 
more abundant in the faecal microbiota of C-high when compared to C-low at D0, according to LEfSe 
(Mogibacteriaceae and Eubacteriaceae) and network (Dehalobacteriaceae and Clostridiacae) analyses. Clostridia 
have been frequently implicated in studies of helminth-microbiome interactions, with increased abundances 
being reported in the gut of mice experimentally infected with T. muris36,81,82, and in association with mixed 

Figure 3.  Network analyses reveal associations between faecal microbial composition, parasite infection 
burden, and time pre- and post-anthelmintic treatment. Pearson’s correlation network analyses showing 
bacterial taxa (at family level) that were positively associated to faecal samples from (a) C-high (≥100 eggs 
per gram (e.p.g.)) (in red) versus C-low (≤10 e.p.g.) (in blue), (b) C-high at Day 0 (D0) (in red), day 2 (D2) (in 
yellow) and day 14 (D14) (in green) post-treatment, and (c) C-low at D0 (in blue), D2 (in yellow) and D14 (in 
green). For taxa associated with multiple sample groups, the respective circle colors are mixed according to the 
strength of the association.
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Phylum Class Order Family Genus Species D0 D2 D14
Bacteroidetes Bacteroidia

Bacteroidales

Verrucomicrobia

Verruco5
WCHB141

RFP12

RFP12 unclassified RFP12 unclassified

Firmicutes Bacilli
Lactobacillales

Lactobacillaceae Lactobacillus Lactobacillus ruminis

Enterococcaceae Enterococcus Enterococcus casseliflavus

Enterococcus

Clostridia Clostridiales Lachnospiraceae

Roseburia
Roseburia inulinivorans

Pseudobutyrivibrio

Pseudobutyrivibrio 
unclassified

Clostridiaceae Clostridium

Clostridium butyricum

Acidaminobacteraceae Mitsuokella
Mitsuokella multacida

Eubacteriaceae Eubacterium

Eubacterium unclassified

Eubacteriaceae

Ruminococcaceae
Oscillospira

Oscillospira guillermondi

Ruminococcus Ruminococcus bromii

Ruminococcaceae 
unclassified

Ruminococcus
Ruminococcus callidus

Proteobacteria Gammaproteobacteria
Aeromonadales

Succinivibrionacae

Betaproteobacteria
Burkholderiales

Alphaproteobacteria RF32
RF32 unclassified

RF32 unclassified

Table 3.  Increased abundance of Clostridiales, Bacteroidales and Verrucomicrobia, and reduced α- and 
β-Proteobacteria in faecal samples from youngstock with low parasite infection burdens prior to and following 
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GI helminth infections in humans82. Clostridia are known to exert immune-regulatory functions, since they 
produce SCFAs with anti-inflammatory properties, including butyrate83,84. Hence, the increased abundances of 
Mogibacteriaceae and other Clostridiaceae observed in the faecal microbiota of youngstock with heavy para-
site burdens could represent a mechanism by which helminths suppress host immune responses, thus reducing 
pathology and facilitating the establishment of chronic infections83. However, Mogibacteriaceae are not butyrate 
producers85; in addition, metabolomic analysis of faecal samples collected in this study revealed lower levels of 
butyrate in faeces from C-high when compared to C-low prior to anthelmintic treatment. In accordance with this 
observation, a recent study investigating the faecal metabolome of human volunteers with chronic infections by 
Strongyloides stercoralis also detected lower levels of butyrate in samples from parasite-colonised individuals42. 
These data indicate that, whilst increases in SFCAs have been described previously in association with GI hel-
minth infection83, this link may not be applicable to all host-parasite systems. Of note, Clostridia belonging to the 
family Mogibacteriaceae have also been associated with GI inflammation in periodontal disease86, and hence their 
increased abundance in animals with higher infection levels in this study may suggest a role for these bacteria in 
the onset of mucosal pathology. On the other hand, increased levels of Mogibacteriaceae have also been identified 
as a biomarker of health in studies comparing subjects with inflammatory bowel disease and irritable bowel dis-
ease, to healthy controls87–89. These apparent contradictions are analogous to those described above for Prevotella 
spp., and highlight the need for mechanistic studies to unravel the complex function of microbial species within 
the gut flora colonising different hosts, and in various disease states.

Amongst other bacterial taxa with well-known immune-modulatory functions, those belonging to the order 
Lactobacillales (phylum Firmicutes, class Bacilli), were also expanded in the faecal microbiota of C-high ver-
sus C-low at D0, and bacteria of the family Lactobacillaceae were significantly reduced following anthelmintic 
treatment in the former group. The existence of a mutualistic association between Lactobacillaceae and parasitic 
helminths has been hypothesised based on experimental evidence obtained from murine models of infection 
with the intestinal nematode Heligmosomoides polygyrus38,90. Indeed, in a key study by Reynolds et al.90, H. poly-
gyrus infections were associated with significantly expanded populations of Lactobacillaceae in the gut of colo-
nised mice; in addition, oral administration of L. taiwanensis prior to helminth exposure was followed by the 
onset of T regulatory cell mediated immune responses and significantly increased worm burdens91. Based on this 
knowledge, it is tempting to speculate that similar relationships may exist between cyathostomin parasites and 
equine hosts. Moreover, the increased abundance of bacterial taxa with immune-modulatory roles in animals 
with heavy burdens of helminth infections may alter the susceptibility of the equine hosts to colonisation by other, 
‘opportunistic’ pathogens. Indeed, potential pathobionts such as Campylobacter jejuni and Pasteurellaceae were 
expanded in animals with high FEC, and reflected data collected in previous investigations of helminth-infected 
horses and pigs92,93. In humans and rodents, Lactobacillaceae are also generally considered to have positive health 
benefits for the host94; however, the beneficial effects of Lactobacillaceae to the health and homeostasis of the 
equine GI microbiota is yet to be demonstrated54,95. A recent review of data collected from equine gut microbi-
ome studies has highlighted the roles of other bacterial taxa, such as Lachnospiraceae (phylum Firmicutes, class 
Clostridia), in supporting intestinal health54. In particular, increased abundances of OTUs assigned to the family 
Lachnospiraceae have been reported in the faecal microbiome of healthy horses when compared with animals 
with colitis51,68; furthermore, ponies with innate resistance to helminth infection, and consequently lower para-
site burdens, have been shown to harbour larger populations of this bacterial family93. Accordingly, in our study, 
the genus Pseudobutyrivibrio (family Lachnospiraceae) was significantly more abundant in the faecal microbi-
ome of C-low versus C-high prior to treatment. Together, this data points towards a detrimental effect of acute 
cyathostomin infections on the development and maturation of the equine gut microbiome, an effect which is 
highly likely to have repercussions on susceptibility to a range of infectious and non-infectious diseases1,27,93,96. 
In support of this hypothesis, faecal microbial richness (a measure of microbial alpha diversity and a proxy of 
gut ‘health’29,66,97–99) was significantly lower in samples from C-high when compared to C-low prior to treat-
ment. Acute helminth infections have been frequently associated with decreased alpha diversity of microbial 
gut populations36,42,43 and attributed primarily to alterations of the GI microenvironment in response to mount-
ing immune reactions against the invading parasites. Nevertheless, these data contrast with our previously pub-
lished work in which we reported a trend towards increased alpha diversity in the gut microbiome of chronically 
helminth-infected adult horses40. Differences between the systems investigated (i.e. acutely versus chronically 
infected horses) may provide a possible explanation, whereby infections of immunologically naïve animals and 
subsequent pro-inflammatory responses are accompanied by a significant decrease in gut microbial diversity; the 
latter may be restored (or increased; cf.39,42,100) during chronic helminth infections, due to a synergic effect of host 
adaptive immune responses and immune-suppressive properties of helminth parasites101 that contributes to the 
dampening of local inflammation102.

Given the impact of helminth infections on the composition and diversity of the youngstock gut microbiome, 
we sought to investigate the associations between such changes and the composition of the faecal metabolome. 
A multivariate analyses of faecal metabolite levels in samples from C-high and C-low prior to and following 
ivermectin administration revealed only moderate differences between the faecal metabolic profiles of these two 
groups. A greater abundance of the SCFA isobutyrate, the amino acids leucine, lysine and phenylananine, and the 
products of carbohydrate breakdown glucose and trehalose were observed in samples from C-high versus C-low 
prior to ivermectin administration. Of note, increases in selected amino acid abundance have also been described 

anthelmintic treatment. Differences in relative abundance of selected microbial taxa in faecal samples from 
C-low (FEC < 10 egg per gram (e.p.g.)) prior to treatment (D0), and 2 (D2) and 14 (D14) days post-treatment. 
Light grey: effect size of 3.5–4.5; dark grey: effect size >4.5.
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in the faecal metabolome of both mice36 and humans infected by GI helminths42. This consistent observation may 
indicate a reduction in the absorption of the products of microbial metabolism, for example, as a consequence 
of ongoing intestinal inflammation caused by helminth colonisation. This hypothesis is supported by the lack of 
significant correlations between the abundance of specific gut bacteria and metabolites detected by PLS analy-
sis, which might indicate that host-related factors, such as malabsorption, might have been responsible for the 
observed changes. In the context of livestock management, a reduction in amino acid absorption is likely to have 
considerable implications for animal performance and production. Thus, the relationships between metabolite 
production and absorption should be further investigated via metabolomics analyses of faeces and other biofluids 
(e.g. urine and blood) of equines and other livestock species infected by parasitic helminths103. Administration of 
anthelmintics to C-high did not result in significant alterations of concentrations of faecal metabolites detected 
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Figure 4.  The abundances of faecal Paraprevotellaceae, Rikinellaceae, Prevotellaceae and Mogibacteriaceae 
prior to and following anthelmintic treatment. The relative abundances of Paraprevotellaceae, Rikinellaceae, 
Prevotellaceae and Mogibacteriaceae in (a) C-high and C-low prior to anthelmintic treatment and (b) C-high 
(≥100 eggs per gram (e.p.g.)) and (c) C-low (≤10 e.p.g.) prior to and following anthelmintic treatment 
(ANOVA).

Figure 5.  The faecal metabolic profiles of youngstock with high and low parasite infection burdens prior to and 
following anthelmintic treatment. Canonical Correlation Analyses (CCA) plots depicting differences between 
global faecal metabolic profiles of samples from (a) C-high (≥100 eggs per gram (e.p.g.)) (in red) versus C-low 
(≤10 e.p.g.) (in blue); (b) C-high at day 0 (D0) (in red) and day 14 (D14) (in brown); and (c) C-low at D0 (in 
green) and D14 (in blue).
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before treatment, suggesting that any malabsorptive component of the observed increase in amino acids and 
glucose, did not resolve over the time-scale of the study. In contrast, concentrations of glucose, uracil, inosine 
and trehalose in faecal samples from C-low were significantly increased post-treatment. As these animals did 
not harbour significant parasite burdens prior to anthelmintic treatment, this finding supports a possible role of 
other environmental factors, such as grass quality and/or anthelmintic administration, on faecal metabolite and 
gut bacteria abundance over time.

Concluding remarks.  Data from both bacterial 16S rRNA sequences and 1H-NMR analyses of faecal sam-
ples from equine youngstock with high versus low parasite burdens revealed a number of helminth-associated 
perturbations to GI microbial composition and metabolism, with likely repercussions on medium- to long-term 
host susceptibility to a range of infections and diseases which should be further investigated. In particular, we 
advocate for in-depth studies of the impact that early colonisation of young production animals by parasites 
(e.g. calves, lambs and piglets) exerts on host gut microbial composition and metabolism, given the likely severe 
economic impact of alterations of the gut homeostasis of these species. In addition, data from our study calls for 
further explorations of the role/s that parasite-associated changes in gut microbiota may play in the immunopa-
thology of helminth infections in children from endemic areas, and their susceptibility to other parasitic, bacterial 
and viral infectious agents in areas of poor sanitation.

Methods
Ethics statement.  This study was approved and carried out in strict accordance and compliance with the 
guidelines of the Institutional Ethical Review Committee, Department of Veterinary Medicine, University of 
Cambridge, UK (Ref. No. CR190). Written informed consent was obtained from the stud farm from which study 
samples were collected.

Study population and diagnostic procedures.  A cohort of TB yearlings was recruited from a stud farm 
in eastern England, UK. The stud hosts ~50 yearlings each year, which are kept at pasture in groups of 2–8 across 
486 hectares. Routine control of parasite infections in the stud relies on administration of targeted anthelmintic 
treatments (with ivermectin and fenbendazole), based on evaluation of individual parasite burdens (inferred by 
FEC, that consist in counting the number of parasite e.p.g. of faeces) at 2 monthly intervals. In addition, prazi-
quantel is administered to each yearling three times a year for tapeworm control, whilst a single moxidectin treat-
ment is administered in late November for control of cyathostomins. Samples used in this study were collected in 
April 2017; all yearlings had received ivermectin (0.2 mg/kg) and fenbendazole (10 mg/kg) in February 2017, and 
praziquantel (1.5 mg/kg) in March 2017. A total of 53 TB yearlings, between 12–16 months of age at the time of 

Figure 6.  Faecal metabolic profiles of youngstock with high and low parasite infection burdens prior to 
and following anthelmintic treatment. Pearson’s correlation heatmaps depicting differences in the relative 
abundances of faecal metabolites between (a) C-high (≥100 eggs per gram (e.p.g.)) and C-low (≤10 e.p.g.) at 
day 0 (D0); (b) C-high at D0 and day 14 (D14); and (c): C-low at D0 and D14.
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sampling, were screened for infection by cyathostomins. Briefly, duplicate faecal samples were collected from all 
horses on D0; aliquots of each sample were subjected to (i) FEC analysis using a centrifugal floatation technique 
sensitive to one e.p.g.104, and (ii) screening for infections with the common equine cestode Anoplocephala perfo-
liata using a double sugar flotation technique105, and (iii) larval culture and microscopic examination to screen for 
infections with large strongyle nematodes, e.g. Strongylus vulgaris. Horses were recruited in the study if they sat-
isfied the following criteria: (i) FEC of ≥100 e.p.g. (=C-high) or ≤10 e.p.g. (C-low) in duplicate faecal samples at 
D0; (ii) negative for co-infections with other GI helminths (i.e. Strongylus spp., Parascaris equorum, Strongyloides 
westeri, A. perfoliata) and no history of or clinical signs of infection by Oxyuris equi; (iii) no antibiotic treatment 
for at least 2 months prior to sampling. Of the 53 horses screened, 23 matched these criteria, of which 9 were 
enrolled into the C-high group, and 14 into C-low (Supplementary Table S1). A power calculation was performed 
based on a bacterial 16S rRNA amplicon sequence dataset from a previous study conducted using samples from 
equines on the same farm40. A Wilcoxon-Mann-Whitney test for comparing OTU-specific abundances between 
two samples, as described by Mattiello et al.106 (https://fedematt.shinyapps.io/shinyMB), demonstrated that the 
current study with 23 samples had sufficient power (0.81) to detect an effect size of 2, in at least 20 OTUs between 
C-high and C-low.

Anthelmintic treatment and sampling.  Individual, freshly voided, faecal samples were collected from 
the centre of the faecal mass from all C-high and C-low animals at D0. Immediately following sample collec-
tion, an anthelmintic treatment (Eqvalan: ivermectin 0.2 mg/kg) was administered to each animal. Sampling 
was repeated as above at D2 and D14. A 100 g aliquot of each faecal sample was snap frozen, transported to the 
laboratory and stored at −80 °C within 2 h of collection, prior to genomic DNA extraction, high-throughput 
sequencing of the bacterial 16S rRNA gene and metabolite extraction; the remainder was kept fresh and subjected 
to FEC analysis as described above.

DNA extractions and bacterial 16S rRNA gene Illumina sequencing.  Previously published40,42 
bacterial 16S rRNA high-throughput sequencing protocols and bioinformatics analyses of sequence data were 
adapted for this study. Briefly, genomic DNA was extracted from each faecal sample, as well as from five negative 
‘blank’ (=no DNA) controls, using the PowerSoil® DNA Isolation Kit (Qiagen, Carlsbad, CA, USA), according to 
the manufacturers’ instructions. High-throughput sequencing of the V3-V4 hypervariable region of the bacterial 
16S rRNA gene was performed by Eurofins Genomics on an Illumina MiSeq platform according to the stand-
ard protocols with minor adjustments. Briefly, the V3-V4 region was PCR-amplified using universal primers, 
that contained the adapter overhang nucleotide sequences for forward (TACGGGAGGCAGCAG) and reverse 
primers (CCAGGGTATCTAATCC). Amplicons were purified using AMPure XP beads (Beckman Coulter) and 
set up for the index PCR with Nextera XT index primers (Illumina). The indexed samples were purified using 
AMPure XP beads (Beckman Coulter) and quantified using the Fragment Analyzer Standard Sensitivity NGS 
Fragment Analysis Kit (Advanced Analytical) and equal quantities from each sample were pooled. The resulting 
pooled library was quantified using the Agilent DNA 7500 Kit (Agilent), and sequenced using the v3 chemistry 
(2 × 300 bp paired-end reads, Illumina).

Bioinformatics and statistical analyses of 16S rRNA sequencing data.  Raw paired-end Illumina 
reads were trimmed for 16S rRNA gene primer sequences using Cutadapt (https://cutadapt.readthedocs.org/en/
stable/) and sequence data were processed using the Quantitative Insights Into Microbial Ecology 2 (QIIME2-
2018.4; https://qiime2.org) software suite107. Successfully joined sequences were quality filtered (Read cut-off: 17; 
286 and 17; 255 for forward and reverse, respectively), dereplicated, chimeras identified, and paired-end reads 
merged in QIIME2 using DADA2108. A phylogenetic tree was generated for diversity analysis, followed by calcu-
lation of alpha and beta diversity metrics using the ‘core-metrics-phylogenetic command’ in QIIME2. Sequences 
were assigned to taxonomy using the feature classifier: Greengenes 13_8 99% OTUs full-length sequences. A 
feature table with the assigned taxonomy was exported from QIIME2 alongside a weighted UniFrac distance 
matrix for downstream biostatistical analysis. Statistical analyses were executed using the Calypso software109 
(cgenome.net/calypso/); total sum scaling (TSS) normalisation was applied, followed by square route transfor-
mation to account for the non-normal distribution of taxonomic counts data. Microbial community profiles 
were ordinated using PCoA (Bray-Curtis distances) and supervised CCA including infection status and sample 
collection time point as explanatory variables. Differences in bacterial alpha diversity (richness, evenness and 
Shannon Index) between study groups (C-high and C-low at D0; as well as D0, D2 and D14 for each C-high and 
C-low) were evaluated based on rarefied data (read depth of 25,868) using ANOVA. Differences in beta diversity 
(weighted UniFrac distances) were measured using PERMDISP110. Differences in the abundances of individual 
microbial taxa between groups were assessed using the LEfSe workflow111, accounting for the paired nature of 
samples pre- and post-anthelmintic treatment. Furthermore, networks of correlation were constructed using the 
Calypso software109 to identify clusters of co-occurring bacteria based on their association with helminth infec-
tion status. Taxa and explanatory variables were represented as nodes, taxa abundance as node size, and edges 
represented positive associations, while nodes were coloured according to infection status. Taxa abundances were 
associated with infection status using Pearson’s correlation and nodes were then coloured based on the strength 
of this association. Networks were generated by first computing associations between taxa using Pearsons’s rho 
and the resulting pairwise correlations were converted into dissimilarities and then used to ordinate nodes in a 
two-dimensional plot by PCoA. Therefore, correlating nodes were located in close proximity and anti-correlating 
nodes were placed at distant locations in the network.
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Metabolite extraction.  Metabolites were extracted from 200 mg aliquots of each faecal sample using a 
methanol–chloroform–water (2:2:1) procedure, as described previously42. In particular, 600 μl of methanol–
chloroform mix (2:1 v:v) were added, samples were homogenised using stainless steel beads and sonicated for 
15 min at room temperature. 200 μl each of chloroform and water were added, samples were centrifuged and the 
separated aqueous and lipid phases were collected. The procedure was repeated twice, and the aqueous fraction 
from each extraction were pooled. The aqueous fraction was dried in a vacuum concentrator (Concentrator Plus, 
Eppendorf).

1H-NMR analysis of aqueous extracts.  Protocols of 1H-NMR metabolite analysis have been described 
previously42. Briefly, the dried aqueous fractions were re-dissolved in 600 μl D2O, containing 0.2 mM sodium-3- 
(tri-methylsilyl)-2,2,3,3-tetradeuteriopropionate (TSP) (Cambridge Isotope Laboratories, MA, USA) as an inter-
nal standard and phosphate buffer (40 mM NaH2PO4/160 mM Na2HPO4). The samples were analysed using an 
AVANCE II + NMR spectrometer operating at 500.13 MHz for the 1H frequency and 125.721 MHz for the 13C 
frequency (Bruker, Germany) using a 5 mm TXI probe. The instrument is equipped with TopSpin 3.2. Spectra 
were collected using a solvent suppression pulse sequence based on a one-dimensional nuclear Overhauser effect 
spectroscopy (NOESY) pulse sequence to saturate the residual 1 H water signal (relaxation delay = 2 s, t1 incre-
ment = 3 us, mixing time = 150 ms, solvent pre-saturation applied during the relaxation time and the mixing 
time). One hundred and twenty-eight transients were collected into 16 K data points over a spectral width of 
12 ppm at 27 °C. In addition, representative samples of each data set were also examined by two-dimensional 
Correlation Spectroscopy (COSY), using a standard pulse sequence (cosygpprqf) and 0.5 s water presaturation 
during relaxation delay, 8 kHz spectral width, 2048 data points, 32 scans per increment, 512 increments. Peaks 
were assigned using the COSY spectra in conjunction with reference to previous literature and databases and the 
Chenomx spectral database contained in Chenomx NMR Suite 7.7 (Chenomx, Alberta, Canada). 1D-NMR spec-
tra were processed using TopSpin. Free induction decays were Fourier transformed following multiplication by a 
line broadening of 1 Hz, and referenced to TSP at 0.0 ppm. Spectra were phased and baseline corrected manually. 
The integrals of the different metabolites were obtained using Chenomx. Metabolites were normalised to faecal 
dry matter, total area and differential abundance of metabolites between samples from C-high and C-low, at D0 
and D14. Faecal metabolite abundances from each sample were ordinated by PCoA according to infection status 
(C-high and C-low) and sample collection time point (D0 and D14). Predicted associations among metabolites 
identified in the faecal metabolome of each sample group were also identified by Pearson’s correlation heatmaps 
in Calypso109 (cgenome.net/calypso/). In particular, heatmaps were constructed to identify associations between 
metabolite abundance and infection status (i.e. C-high and C-low) and time point pre- and post-treatment (i.e. 
D0 and D14). Differences in individual metabolite abundance between groups were evaluated for statistical sig-
nificance using ANOVA with FDR correction for multiple comparisons. In order to identify linear correlations 
between metabolites and bacterial OTUs identified in faecal samples, PLS analysis was performed on data from 
all samples at D0 (pre-treatment) in Simca-P v15, with metabolites as the dependent and OTU as the independent 
matrix, respectively.

Data Availability
The raw 16s rRNA and HNMR data, metadata and QIIME2 feature table are available at Mendeley Data (https://
doi.org/10.17632/95m8sfd3kt.1).
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