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Abstract: Cooperative caching among nodes is a hot topic in Content Centric Networking (CCN). However, the cooperative
caching mechanisms are performed in an arbitrary graph topology, leading to the complex cooperative operation. For this reason,
hierarchical CCN has received widespread attention, which provides simple cooperative operation due to the explicit affiliation
between nodes. In this paper, we propose a heuristic cooperative caching algorithm for maximizing the average provider earned
profit under the two-level CCN topology. This algorithm divides the cache space of control nodes into two fractions for caching
contents which are downloaded from different sources. One fraction caches duplicated contents and the other caches unique
contents. The optimal value of the split factor can be obtained by maximizing the earned profit. Furthermore, we also propose a
replacement policy to support the proposed caching algorithm. Finally, simulation results show that the proposed caching algorithm
can perform better than some traditional caching strategies.

1 Introduction

Content Centric Networking (CCN) is an emerging network model
with some innovations, such as location-independent naming, node-
based caching, name-oriented routing and received-driven commu-
nication. A key component of CCN is ubiquitous caching nodes,
which cache some popular contents for future demands. It is very
useful to earn higher profit for content provider (thereby leading to
lower contents provisioning cost) by caching the contents close to
the user. Since the finite caching space of the edge nodes, it is neces-
sary to design a good caching policy, which can make full use of all
cache nodes, and then it has a positive effect on earned profit [1]–[5].

So far, the caching policies are mainly divided into two types:
non-cooperative caching policies and cooperative caching policies
[6]–[9]. For non-cooperative caching policies, every node caches
contents independently. In this case, every node does not know the
cache status of other nodes, leading to a high content redundancy
and a low hit ratio in the whole network. For cooperative caching
policies, every node caches content and forwards requests accord-
ing to the cache status of other nodes. In this case, the requests will
be faster answered, and the provider earned profit will be improved,
e.g., bandwidth, delay, and etc. In spite of these advantages which
are beneficial to provider, it also brings some disadvantages if these
cooperative caching policies are employed in an arbitrary graph
topology. For example, making caching and forwarding decisions
via exchanging messages among nodes is very slow. The reason is
that every node without the explicit affiliation in this topology incurs
complex cooperative operations. Against that, the cooperative oper-
ation in a hierarchical topology can be simplified. Since every node
has explicit affiliation, making decisions of caching contents and for-
warding requests is very rapid [10]. To this end, cooperative caching
policy in a hierarchical topology is considered.

Cooperative caching policies in a hierarchical topology have
attracted widespread attention from the networking community
[10]–[14]. To enhance the caching and forwarding contents effi-
ciency, the works in [10] and [11] propose collaborative caching with
a request routing policy. When a node forwards a request, it needs
to refer to the caching information table recorded in the node and

forward the request to the corresponding node. This policy improves
the response speed when users request the contents. In [12], cooper-
ative caching takes place in the neighboring mobile devices of every
Social Wireless Networks (SWNET) partition. In [13], hierarchical
caching policy is used in cellular backhaul network. In [14], the
authors propose a combined caching-transmission policy, which is
a tradeoff between transmission diversity and content diversity. The
above policies have a common feature that they can not cooperate
between small cells.

In this paper, our algorithm is implemented on a two-level CCN
topology, which consists of control nodes and common nodes. One
control node and multiple common nodes form a small base system
(SBS). In this topology, content caching is performed on every SBS
under the management of the control node to achieve our optimal
objective — the maximization of the average earned profit. We for-
mulate the problem with this optimal objective, which is influenced
by a two-fold benchmark case of maximizing the local hit ratio in the
SBSs and maximizing the hit ratio in the whole network. It has been
proved that this is a NP-hard problem [15]–[17], and thus we pro-
pose a heuristic collaborative caching algorithm to attain the optimal
content placement with the objective of maximizing the network-
wide provider earned profit. The optimal content placement lives
somewhere between the above two-fold benchmark case. In [18],
the cooperative caching policy is used in SD-RAN [19], [20], which
is referred to in our algorithm. In our algorithm, we divide the cache
space of control nodes into two fractions. The first fraction caches
the most popular contents to improve the local hit ratio in the SBSs.
The second fraction caches different content coming from the server,
which improves the hit ratio in the whole network. Furthermore, we
can obtain the maximum average earned profit through finding the
optimal value of the split factor.

The main contributions of this paper can be summarized as
follows:

• To avoid the complex cooperative operation in an arbitrary graph,
a two-level CCN topology is employed. According to the twofold
benchmark case, we formulate the optimal objective of maximizing
the average earned profit as an optimal content placement problem.
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• We theoretically analyze the optimal content placement problem
under a homogenous request model. Inspired by this, we propose a
heuristic caching algorithm which divides the cache space of control
node into two fractions, and propose a replacement policy to support
this caching algorithm.
• Finally, we implement a simulation for assessing the performance
of our algorithm. The simulation results verify that our algorithm
outperforms some traditional strategies on maximizing the earned
profit.

The rest of this paper is organized as follows. In Section 2,
we introduce the related work and motivation. System model that
includes network model and profit model is described in Section 3.
The formulation of the twofold benchmark problem and the optimal
objective are presented in Section 4, while in Section 5 we propose a
heuristic caching algorithm to attain the optimal content placement
with the objective of maximizing the network-wide provider earned
profit, and propose a replacement policy of control node. Section 6
assesses the algorithm performance by means of simulation. Finally,
the conclusions are drawn in Section 7.

2 Related Work And Motivation

Content caching is an useful method to improve the user experi-
ence and content transmission performance of the Internet. In recent
years, a large body of work has been devoted to content caching
in traditional overlay network architectures, such as web-caching
[21], CDNs [22] and (P2P) [23]. However, these traditional overlay
network caching systems exhibit fundamental differences from the
in-network caching of CCN. Firstly, the caching capacity of nodes
in CCN is usually finite while the caching capacity of nodes in a
general caching network is always very large. Secondly, the caching
nodes in CCN are widely deployed in an arbitrary graph topology,
while the caching nodes in a general caching network are widely
deployed in a hierarchy topology. More importantly, the existing
caching policies are with respect to a special application in tradi-
tional overlay networks architectures, while in-network caching is an
inherent capability and irrelevant to application in CCN. Therefore,
the previous caching policies widely employed in overlay network
architectures can not be directly applied in CCN.

There are many problems concerning in-network caching policies
in CCN. In most CCN caching policies, a given content is cached
along an en-route way (i.e., nodes on the paths from a requesting
node to the one or multiple serving nodes). In this case, the feature
of universal caching in CCN cannot be efficient leveraged in terms
of improving content transmission performance due to the content
redundancy and filter effects of multihop caches [24], [25]. In order
to address this problem, some cooperative caching policies are pro-
posed, such as [10], [11] [28] and [29]. These policies not only
consider en-route notes but also nodes that are near en-route nodes
to cache the requested contents.

Cooperative caching policies can be further divided into two
types: centralized cooperative caching policies and distributed coop-
erative caching policies. Centralized cooperative caching policies
select a node as the logical control plane which monitors the net-
work status and makes caching decisions. Although the centralized
cooperative caching policies can obtain optimal caching decisions
according to the global network status, a centralized entity to mon-
itor and manage in-network caching is not possible [18], [26].
Specially, centralized cooperative caching policies are very difficult
to implement in a large scale network. In contrast caching deci-
sions are easily implemented at individual nodes independently that
employ distributed cooperative caching policies [11]–[14] and [28]–
[32]. However, employing distributed cooperative caching policies
makes it difficult to control and manage caching nodes.

In [28], the authors proposed the WAVE caching policy, in which
the upstream nodes utilize the chunk marking window to recommend
the caching decisions for the downstream nodes. As the popularity
of content increases, this window can exhibit exponentially growth.
Thus, the popular contents are widely distributed and rapidly spread

over the network. However, this policy can incur extra communica-
tion cost, which can increase as the number of cached content chunks
increases. Wang et al. in [29] propose CPHR, in which allocate
content partitions to corresponding node based on hash functions.
Although this policy can reduce content redundancy and filer effects,
it incurs expensive computational overhead. Guo et al. in [11] and
Wang et al. in [30] proposed light-weight cooperative caching poli-
cies, in which different contents are distributed along the contents
delivery paths according to the popularity of the contents. These
proposed light-weight cooperative caching policies need to add an
additional base at the nodes to maintain the caching states of the
other cooperative nodes. Although the proposed policies in [11] and
[30] can reduce the communication overhead and content redun-
dancy, they thoroughly eliminate content redundancy, which leads
to the costly transmission among caches, such as the approach in
[31]. Ming et al. in [32] proposed an Age-based cooperative caching
policy, in which the content cached at the nodes are replaced based
on the lifetime. The lifetime of a content object is decided based
on its location and popularity. Thus, the more popular a content
is, the longer lifetime it has. However, the definition of lifetime
for a content requires precise design, otherwise it will affect con-
tent replacement and network performance. In general, the existing
cooperative caching policies still suffer from the following disad-
vantages. First, they can not make a trade-off between the hit ratio
in the whole network and the local hit ratio. Although the existing
policies can reduce the content redundancy and improve the hit ratio
in the whole network, they incur costly transmission among caches
due to the low local hit ratio. Second, they can not make a trade-off
between the overhead and performance. Although the existing coop-
erative policies can reduce the access delay and improve the user
experience, they incur a high cooperative overhead.

Therefore, to overcome the above disadvantages, we make the fol-
lowing observations concerning on cooperative caching algorithm:

1) Classing the CCN topology: To make the caching policies suit-
able for a large scale network, it is necessary to combine the
centralized and distributed model by classing the CCN topol-
ogy, which has a great impact on the network performance since
there is a tradeoff between the overhead (e.g., communication and
computation overhead) and performance (e.g., access delay).

2) Eliminating content redundancy appropriately: In CCN, con-
tent redundancy elimination is considered as one of the effective
measures for improving caching performance. However, existing
policies completely eliminate content redundancy, thus incurring
costly transmission among caches. So the content redundancy
should be eliminated appropriately.

Based on the above, we propose a cooperative caching algorithm
in the two-level CCN, which is aimed at maximizing the provider
earned profit.

3 System Model

In this section, we exhibit a new system model of the two-level CCN,
including the network model and profit model.

3.1 Network Model

The two-level CCN network topology consists of control nodes and
common nodes (i.e., black nodes and grey nodes in Fig. 1), where
one control node and its neighboring common nodes form a SBS
[10]. Besides caching, the control node, likes a logical control plane
in [33], manages all common nodes by the index in the associ-
ated SBS and cooperates with other SBSs. However, the common
node only caches contents and forwards requests. The copies of con-
tents are cached at the control nodes along the contents delivery
paths, while the common nodes only cache the contents discarded by
its associated control node according to the Least Frequently Used
(LFU) policy. Every control node maintains an index table to record
which common node caches the discarded contents. The topology
is centralized in each SBS and distributed in the whole network.
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Fig. 1: The content caching and replacement scenario in CCN with
multiple SBSs. This default caching strategy (i.e., the greedy non-
collaboration strategy) can cause low content diversity and high
content redundance within the whole network.

Therefore, it combines the advantages of the centralized structure
with straight forward control and distributed structure with a certain
scalability. The detailed process of constructing the two-level CCN
is as follows:

• Step 1: Initially mark all nodes white.
• Step 2: Select the node of the largest degree and then color it
black.
• Step 3: Color all adjacent nodes of the black node grey.
• Step 4: Select a gray node which has the largest white neighbor
nodes, then we color it black and all its adjacent white nodes grey.
• Step 5: Repeat Step 3 until all the nodes are colored black or grey.

For ease of illustration, we assume that there are N control
nodes in the network. Then the whole network consists of N SBSs
s1, s2, . . . , sN . The contents requested by a user come from a finite
library F = {f1, . . . , fm, . . . , fM} [14], whose size is equal to M ,
where fm denotes the mth popular content. All contents of the
library have the same size which is set to 1. Each control node can
store K contents, while each common node can store H contents.
The caching size of each SBS isCi, i ∈ N = {1, . . . , N}. Thus, the
whole network can cache

∑N
i=1 Ci contents. Let Ci denote the set

of contents cached at the SBS si. We assume that the request pattern
is homogenous, then all nodes maintain the same content popularity
distribution and obey the Zipf law, which is used to shape video pop-
ularity [34]. Accordingly, the popularity of the mth content from F
is given by

pm =

(
mα

M∑
m=1

m−α
)−1

, (1)

where α (0 ≤ α ≤ 1) denotes the Zipf parameter. As α increases,
the requests are more focused on the popular contents. As m
increases, the popularity of contents decreases, i.e., p1 > p2 >
· · · > pM . The variable pm also represents the probability of gener-
ating a request for content fm in the whole network.

Since the control node maintains an index which records the
caching information of the associated common nodes, both the
caching information and routing table are considered in the rout-
ing process. Therefore, the detailed content search process in the
two-level CCN is as follows: Firstly, as receiving a request, the
node checks the local content store (CS). If the node caches the
corresponding content, it directly forwards the content to the user.
Otherwise, the type of this node needs to be determined. If it is a con-
trol node, it searches the index table whether there is a corresponding
content cached at the associated common node. If it is a common
node, the request is forwarded to the control node.Secondly, if the
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Fig. 2: Content delivery flow and profit model.

search in index table succeeds, the request is forwarded to the corre-
sponding common node. Otherwise, the SBS cannot respond to the
request. Then, the request is forwarded to any other SBS accord-
ing to the routing table.Finally, due to the finite cache space, it is
impossible to cache all kinds of contents in the network. Therefore,
if the requested content is not cached in the network, we forward this
request to the server according to the routing table.

3.2 Profit Model

Responding a request at the local SBS, at other SBSs, or the server
will result in different transmission cost for the content provider (see
Fig. 2). Meanwhile, as the transmission distance of the requested
content increases (thereby resulting in longer transmission delay),
the consumer will use the service provided by the provider less often,
and then the lower profit is earned by the provider. Similarly, as the
transmission distance of the requested content decreases (thereby
resulting in shorter transmission delay), the consumer will use the
service provided by the provider more often, and then the higher
profit is earned by the provider.

Since the control node is adjacent to the common nodes in a SBS,
we assume that their accessing cost for a content is approximately
equal. Formally, let RL denote the average earned profit that the
request is served at the local SBS. We use RD to denote the aver-
age earned profit that the request is served at other SBSs, and RM
denotes the average earned profit that the request is served at the
server. In the given network structure, we can getRM < RD < RL
[15].

In a practical scenario, provider sets the parameters RL, RD ,
and RM based on the operational cost, such as energy consumption,
bandwidth and transmission delay [15], [18]. The lower operational
cost of provisioning content, the higher profit will be set by the
provider.

4 Problem Formulation

Since the control node is adjacent to the common nodes in a SBS, we
assume that their accessing cost for a content is approximately equal.
For clarity, let b(i)m (i ∈ N ,m ∈ {1, . . . ,M}) be the 0-1 content
placement decision variable that indicates whether to cache con-
tent fm in SBS si or not. For a content request in the network,
the variables p(c)

m , p(r)
m and p(i)

m denote the probabilities of gener-
ating a request for content fm in a common node c, a control node
r and the associated SBS si, respectively. We define ni (i ∈ N )
as the number of common nodes in a SBS si. All nodes have the
same request probability for a same content in the homogenous
request model, then p

(i)
m =

∑ni
c=1 p

(c)
m + p

(r)
m = (ni + 1)p

(c)
m =

(ni + 1)p
(r)
m . Thus, the popularity of the mth popular content is

pm =
∑N

i=1
p

(i)
m =

∑N

i=1
(ni + 1)p

(r)
m . (2)
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4.1 Twofold Benchmark Problem

Firstly, we solve the problem of maximizing the local hit ratio in the
SBS as follows

max{
b
(i)
m

}N
i=1

F1 =

N∑
i=1

M∑
m=1

b
(i)
m · p

(i)
m , (3)

s.t.

M∑
m=1

b
(i)
m ≤ Ci, ∀i ∈ {1, . . . , N}.

According to (3), if each SBS caches the most popular contents
independently, it can reach the maximum of the local hit ratio. Due
to employing the greedy non-collaboration strategy [12], [10], the
control node of each SBS caches the same set of contents, which
results in the low content diversity and provider profit.

Secondly, we solve the problem of maximizing the hit ratio in the
whole network

max
C

F2 =

C∑
m=1

Bm · pm, (4)

where C denotes the available cache size (i.e., the number of con-
tent items that can be cached) in the whole network, and Bm
(m ∈ {1, . . . ,M}) is a binary function. If the content fm is cached,
Bm = 1; otherwise, Bm = 0. If collaboration among SBSs does
not exist, we have C = Cmax where Cmax ≥ Ci (i ∈ N ). If col-
laboration among SBSs exists, i.e., each SBS caches a content set
with different types, we have C =

∑N
i=1 Ci. Then we can easily

get Cmax <
∑N
i=1 Ci.

According to (4), if the same contents are not cached in differ-
ent SBSs, it can reach the maximum of the local hit ratio within the
whole network. The full collaboration for all N SBSs [35] results in
greater content diversity in the whole network. Then many requests
can be satisfied in the network without forwarding to the server.
However, it leads to frequent access among SBSs. The profit owing
to hitting content at other SBSs is lower than that of hitting at a SBS
locally.

4.2 Maximization of the Average Earned Profit by Provider

The optimal objective of maximizing the average earned profit is

max{
b
(i)
m

}N
i=1

Ravg = RL
∑
i∈N

Hi
i +RD

∑
i∈N

∑
j∈N ,j 6=i

Hj
i

+RM
∑
i∈N

HN+1
i , (5)

s.t.

M∑
m=1

b
(i)
m ≤ Ci, ∀i ∈ {1, . . . , N},

where

Hi
i =

M∑
m=1

b
(i)
m · p

(i)
m , (6)

Hj
i =

M∑
m=1

b
(j)
m · p

(i)
m , (7)

HN+1
i =

M∑
m=1

(1−Bm) · p(i)
m . (8)

The variable Hi
i denotes the local hit ratio that a request from SBS

si is responded at local SBS. Let Hj
i denote the remote hit ratio that

a request from SBS si is responded at SBS sj(j ∈ N ). Denoting

the variable HN+1
i as the miss ratio that a request from SBS si is

responded to at the server.
The above problem is a well-known 0-1 multi-knapsack problem

which is NP-complete [15] – [17]. It is difficult to determine the opti-
mal b(i)m for i ∈ {1, . . . , N} and m ∈ {1, . . . ,M}, especially when
there is a large collection of SBSs and contents. However, based on
the twofold benchmark problem, we can get some guiding principles
on how to effectively increase the earned profit.

5 A Heuristic Cooperative Caching Algorithm

According to the above analysis, the optimal objective of maximiz-
ing the average earned profit is converted into an optimal content
placement problem. To solve this problem, a heuristic coopera-
tive caching algorithm is proposed. Meanwhile, we also propose a
replacement policy to support the caching algorithm.

5.1 Optimal Content Placement

In this subsection, we analyze an optimal content placement problem
that is aimed at maximizing average provider earned profit by mak-
ing a trade-off between the hit ratio in a SBS and the hit ratio in the
whole network. For ease of illustration, let PL =

∑
i∈N Hi

i , PD =∑
i∈N

∑
j∈N ,j 6=iH

j
i and PM =

∑
i∈N HN+1

i denote the local
SBSs hit ratio, the other SBSs hit ratio and the server hit ratio,
respectively. The above equation (5) can be simplified as

Ravg = PLRL + PDRD + PMRM , (9)

where
PM = 1− PL − PD. (10)

Since, the parameter RL and RD are the given constants, let
RD = τRL, where 0 ≤ τ ≤ 1. As time goes on, the amount of con-
tents that are cached at the small cells increases. The requests do not
need to be forwarded to the server leading to a smaller value ofRM ,
then we let RM = 0. The above equation (9) can be rewritten as

Ravg = (PL + PDτ)RL. (11)

The probability of finding the content in SBS si can be writ-
ten as P iL =

∑
m∈Ci pm, and thus the probability of finding a

content item at any given SBS in the network is
∑N
i=1 P

i
L/N or∑N

i=1

∑
m∈Ci pm/N . This is also the average local hit ratio HL,

which can be simplified as

PL =
1

N

M∑
m=1

dmpm, (12)

where dm denotes the number of duplications of content fm within
the network. Since the maximum number of content items cached
within the network is C =

∑N
i=1 Ci, the parameter M in (12) can

be replaced by C.
Let B denote the set of all cached contents in the network. The

probability of finding a content in the network can be written as∑
m∈B pm. The variable

∑
m∈B pm denotes the hit ratio in the

whole network which is equal to 1− PM . Expressing
∑
m∈B pm

as 1− PM and substituting the value of PL from (12) in (10), we
can obtain PD =

∑
m∈B pm −

1
N

∑C
m=1 dmpm. Substituting the

expression for PL and PD into (11), we can obtain

Ravg =

(1− τ)
1

N

C∑
m=1

dmpm + τ
∑
m∈B

pm

RL. (13)

For a given τ , the average profit in (13) is a function of the vector
~d = (d1, d2, . . . , dM ). A content placement ~d is optimal when it
incurs maximum average provider earned profit in (13).
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Lemma 1. For any popularity-based content request pattern, such
as the Zipf distribution, the optimal placement scheme must obey the
following constraint in a steady state.

A content should not be cached in the network when at least one
more popular content is not cached in the network. In other words,
the content fm (i.e., m-th popular content) can not be cached when
a higher popularity content fk (k < m) is not cached. This is the
popularity cache constraint.

Proof. Employing the proofs by contradiction, we assume that
there exists an optimal placement that maximizes the average
provider earned profit in (13) and violates the popularity cache con-
straint. This means that a content fm does not exist in the network
(i.e., dm = 0) while a less popular content fl exists in the network
(i.e., l > m, nl > 0). �

According to the equation (13), it can be observed that if content
fl is replaced with a more popular content fm, the profit will be
higher. This contradicts our assumption, and thus the optimal content
placement must obey the popularity cache constraint.

Now, we assume that the parameter fT is the least popular con-
tent which is cached in the network. Based on the popularity cache
constraint, there is at least one duplication of contents from f1 to fT
in the network. Therefore, the (13) can be rewritten as

Ravg =

(
(1− τ)

1

N

T∑
m=1

dmpm + τ

T∑
m=1

pm

)
RL. (14)

Lemma 2. In the optimal content placement, a content fk (i.e.,
kth popular content) should not be copied unless all other more
popular contents have been copied in all SBSs.

Proof. According to the above constraint, there exists at least one
duplication of content from f1 to fT in the network. Therefore, the
(13) can be rewritten as

Ravg =

(
T∑

m=1

(
(1− τ)

1

N
dm + τ

)
pm

)
RL. (15)

Now we let d` 6= dk, 1 < d`, dk < N , and ` < k. It can be seen
that a higher profit is possible by increasing the d` while decreasing
the dk. This case can imply the following claim: when there is space
for caching more duplications of content f` (i.e., d` < N ), less pop-
ular contents (e.g., content fk, k > `) should not be copied. Obeying
the above claim, we can not copy the content f2 unless we have the
duplications of content f1 in all SBSs (i.e., d1 = N ). So, we can not
copy the content fm unless we already have the duplications of more
popular contents in all SBSs. �

Claim. The optimal content placement ~d has the following char-
acteristics:

1)nm = N for 1 ≤ m ≤ `, where ` denotes the least popular con-
tent that are cached in the network. The value of ` should be
determined by τ . There is one duplication of contents from f1 to
f` that will be cached in all SBSs.

2)dm = 1 for `+ 1 ≤ m ≤ T , where T =
∑N
i=1 Ci −N`+ `+

1. This means that the remaining cache space will cache the unique
contents.

3)dm=0 for m > T .

Proof. Based on the Lemma 1, there must exists at least one dupli-
cation of contents form f1 to fT in the network. Lemma 2 illustrates
that a content should not be copied before all other more popular
contents have been copied in all SBSs. This means that if ` denotes
the least popular content which are cached in the network, there
should existN duplications of contents from f1 to f` in the network.

�
Note that the value of ` is not specified in the above analysis, and

actually we do not know how many contents should be copied in all
SBSs to achieve the optimal content placement. It only describes that
if the optimal solution needs the copy, it must be across all SBSs. In
the following subsection we will illustrate how to get the value of `.

 Cache Space of Control Node K

Duplicate Unique

λK (1-λ)K

Fig. 3: Control node cache partitioning in a heuristic caching
algorithm.

5.2 A Heuristic Caching Algorithm

In order to realize the optimal content placement, an optimal heuris-
tic cooperative caching algorithm is proposed. The algorithm divides
the cache space of control nodes into two fractions by a split fac-
tor λ (0 ≤ λ ≤ 1) in a SBS (see Fig.3). One is a duplicate fraction
(λK portion) to cache the same copies of the most popular con-
tents. The other is a unique fraction ((1− λ)K portion) that only
caches the different contents which are not cached at any other con-
trol nodes. With the caching policy of common nodes, they only
store the contents discarded by duplicate fraction according to con-
trol node replacement policy. Therefore, a SBS caches the contents
which are also ever cached at its control node. This proposed caching
algorithm makes it possible to increase the survival time of the most
popular contents so as to enhance the hit ratio[32].

• In order to increase the earned profit on serving requests at the
local SBS, there should be a duplicate fraction in every SBS cache
space, i.e.,Zλ(λK + niH), to cache the most popular contents. The
minimum duplicate fraction is Zλ(λK + nminH) for each SBS,
where nmin denotes the minimum number of common nodes for
each SBS in the network, and Zλ denotes that the binary function is
equal to 1 when 0 < λ ≤ 1 and 0 otherwise.
• In order to increase the earned profit on serving request in the
whole network, there should be a unique fraction in every SBS cache
space, i.e., (1− λ)K. The size of this fraction is equal to the size of
the unique fraction of the control node caching space.

At steady state, the total number of different contents cached
in the network is Zλ(λK + nmaxH) +N(1− λ)K, where nmax

denotes the maximum number of common nodes for each SBS in the
network.

5.3 Control Node Cache Replacement

Algorithm 1 Control node cache replacement policy

INPUTS: A data packet Onew;
BEGIN: Checking the label of the packet header;

if Labeling value is equal to one then
Omin = the least popular content in the duplicate fraction;

else
Omin = the least popular content in the whole cache space;

end if
if Onew.popularity > Omin.popularity then

Replacing Onew with Omin;
if Replaced content which comes from the duplicate fraction
then

Caching Omin at the associated common node;
else

Discarding the Omin;
end if

else
Keeping original content;

end if
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For the control node replacement policy, the first fraction of the
control node caching space caches duplicated contents downloaded
from the other SBS rather than the server. In the second fraction,
the control node only caches the unique contents that need to be
downloaded from the server. For distinguishing the type of content,
the data packet header uses a label (only one bit) to mark the source
of contents. For caching a new unique content whose label is 0, the
least popular content in the whole cache will be replaced when cache
space is full. For caching a duplicated content whose label is 1, the
discarded content is only selected from the first duplicate fraction of
the cache space. In this case, the evicted content will be cached at
the associated common node. The pseudocode of control node cache
replacement policy is shown in Algorithm 1.

5.4 Average Provider Earned Profit

Due to RM = 0, the equation (5) can be simplified as

max
b
(i)
m

Ravg = RL
∑
i∈N

Hi
i +RD

∑
i∈N

∑
j∈N ,j 6=i

Hj
i .

(16)

To compute the average provider earned profit, we should know Hi
i

andHj
i used in (16). The local SBS si hit ratio consists of the dupli-

cate fraction hit ratio Hi
id and the unique fraction hit ratio Hi

iu.
Furthermore, the probability that the request from SBS si is served
at unique fraction of other SBS sj is Hj

iu. For N(1− λ)K unique
contents, we assume that these unique contents are uniformly cached
at each unique fraction. Those can be expressed as

Hi
id =

Λi∑
m=1

p
(i)
m , (17)

Hi
iu =

∑Γ
m=Λmax+1 p

(i)
m

N
, (18)

Hj
iu =

∑Γ
m=Λmax+1 p

(i)
m

N
, i 6= j, (19)

where Γ = Λmax +N(1− λ)K, Λi = Zλ(λK + niH), and Λmax =
Zλ(λK + nmaxH). The local SBS si hit ratio isHi

i = Hi
id +Hi

iu,
the hit ratio at other SBS sj rather than the associated one is
Hj
i = Hj

iu +
∑Λj
i=Λi+1 p

(i)
m , and the miss ratio is HN+1

i = 1−
Hi
i − (N − 1)Hj

i , respectively.
Substituting the expressions of Hi

i and Hj
i into (16), we convert

the problem of maximizing average earned profit to the problem of
determining the optimal split factor λopt, i.e., maxλRavg, where

Ravg = RL

 N∑
i=1

Λi∑
m=1

p
(i)
m +

∑N
i=1

∑Γ
m=Λmax+1 p

(i)
m

N


+RD

 (N − 1)
∑N
i=1

∑Γ
m=Λmax+1 p

(i)
m

N

+

N∑
i=1

∑
j∈N ,j 6=i

Λj∑
m=Λi+1

p
(i)
m

 .

(20)

Substituting (2) into (20), we have

Ravg = RL

N∑
i=1

βi

Λi∑
m=1

pm

+

N∑
i=1

βi

Γ∑
m=Λmax+1

pm

(
RL
N

+
(N − 1)RD

N

)

+RD

N∑
i=1

βi
∑

j∈N ,j 6=i

Λj∑
m=Λi+1

pm,

(21)

where βi = ni+1∑N
i=1 ni+1

denotes the proportion of the number of
nodes in SBS si to the number of all nodes in the network. From
(21), we have

max
λ

Ravg = RL

N∑
i=1

βi
Λ1−α
i − 1

M1−α − 1

+

N∑
i=1

βi

(
Γ1−α − 1

M1−α − 1
− (Λmax + 1)1−α − 1

M1−α − 1

)
(
RL
N

+
(N − 1)RD

N

)

+RD

N∑
i=1

βi
∑

j∈N ,j 6=i

(
Λ1−α
j − 1

M1−α − 1
− (Λi + 1)1−α − 1

M1−α − 1

)
,

(22)

where the equality follows from the relation
∑k
m=1 pm ≈

k1−α−1
M1−α−1

[12]. By equating the derivation of the above equation to
zero, we can compute the λopt at which profit is maximized.

6 Simulation Results

The performance of the proposed heuristic cooperative caching
algorithm was evaluated using the previously derived equations in
Section 5, and then via open source ndnSIM [36] network simula-
tion (version 2.1), which can provide basic structure of the CCN
node, i.e., policy layer, Content Store (CS), Pending Interest Table
(PIT) and Forwarding Information Base (FIB). There are 4 SBSs
in the network topology, where the backbone consists of 4 control
nodes as shown in Fig.4.

For simulation, the arrival of the requests follows a Poisson pro-
cess and the content popularity distribution obeys the Zipf law.
To support the proposed caching algorithm in the ndnSIM, we
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Fig. 4: Simulation topology.
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install a cache module named caching-duplicated-unique on the con-
trol node, which enable the split CS implement different caching
schemes. The duplicate fraction caches the same copies of the most
popular contents, while the unique fraction caches the different con-
tents which cannot be cached at any other control nodes. We also
add a tag module named content-source-tag in the data packet to
support our replacing policy of control node in the ndnSIM. When
the value of tag is one, the coming content belongs to the duplicated
content. When the value of tag is zero, the coming content belongs
to the unique content. In addition, we perform simulation 20 times,
and each time is 500s. We acquire the average values as the sim-
ulation results. For illustrative convenience, let RD = τRL where
0 ≤ τ ≤ 1, and γ = K

M which denotes the cache-library ratio. The
simulation runs with the setting benchmark parameters, which are
shown in Table 1.

Table 1 Baseline Simulation Parameters

Parameters Values
Number of SBSs in the whole network (N ) 4
Number of common nodes in each SBS (ni) 3,2,2,2
Cache size in each common node (H) 20
Earned profit (RL,RM ) 20,0
Rebate-to-earn-profit ratio (τ ) 0 ≤ τ ≤ 1
cache-library ratio (γ) 0 ≤ γ ≤ 1
The size of content library (M ) 1000

6.1 Hit Ratio and Earned Profit

Fig. 5(a) describes the effects of split factor λ on the hit ratios
when α = 0.8 and γ = 0.05. In the case of λ = 0, control node of
each SBS will cache different contents and common nodes of each
SBS do not cache any content, which leads to frequent communica-
tion among SBSs and can not effectively use caching resource of
common nodes. Therefore, when the value of λ increases a little
(i.e., λ=0.1), the local hit ratio (PL) will increase rapidly, while the
remote hit ratio (PD) will decrease rapidly. In the case of λ = 1, the
unique fraction of the control node is zero, which leads to a low con-
tent diversity, and then PD =

∑N
i=1

∑
j∈N ,j 6=i

∑Λj
m=Λi+1 p

(i)
m .

A large λ value will result in more copies of the popular contents
cached at the local SBS, which brings high local SBS hit ratio (PL)
and low remote hit ratio (PD). The larger λ value is, the easier the
requested content can be found.

The probability that the request is hit on the server PM is related
to the total number of the unique contents in the network. When λ >
0.1, PM will increase with the increase of λ, which means there is
a lower content diversity. However, when 0 ≤ λ ≤ 0.1, the common
nodes gradual begin to cache the content. In this case, the diversity
of content will increase. From Fig. 5(a), the difference between the
theoretical value and the simulation value is very small, indicating
that the equations derived in Section 5 are correct.

Fig. 5(b) and Fig. 5(c) depict the relation between earned profit
and λ when α = 0.8 and γ = 0.05. When τ = 0.2 and τ = 0.7, the
profit will increase with the increase of λ; but after λ ≥ λopt, the
profit will decrease with the increase of λ as shown in Fig. 5(b).
This λopt can be derived by making equation (22) equal to 0. As
long as λ is not equal to 0, λopt always exists, which is used to
get the maximum profit. In other words, it converts searching for
the maximum of earned profit to the determination of λopt. When
τ = 0.2 and τ = 0.7, λopt is equal to 0.6 and 0.1 respectively. Thus,
a smaller λopt is needed when local profitRL and remote profitRD
are not much different.

From Fig. 5(c), when τ = 0 (i.e.,RD = 0), the equation (11) can
be simplified as Ravg = RLPL, which means profit is only related
to the PL for a given RL, where PL increases with the increase of
λ. Therefore, when τ = 0, λ = 1 gives rise to the maximum PL,
i.e., the maximum profit. When τ = 1 (i.e., RL = RD = 20), the
equation (11) can be written as Ravg = RL(1− PM ), whose value

τ

τ

τ

τ

τ

τ

τ

τ

Fig. 5: (a) Hit Ratio vs. Split Factor (λ). (b) and (c) Provider Earned
Profit vs. Split Factor (λ) when τ = 0, 0.2, 0.7, 1.

is only related to PM . This can be used to explain why the profit
increases with the decrease of λ. Intuitively, when RL = RD , there
is no benefit of caching content in local SBSs. In this case, the only
measure to increase profit is to find minimum PM .

Fig. 6 and Fig. 7 describes the impacts of the Zipf parameterα and
the cache-library ratio γ on the average provider earned profit Ravg.
Due to the feature of Zipf parameter, it is easily seen that a higher
Ravg is achieved with a greater α. When the requests from the users
become more focused on the popular contents, the local SBS can
respond to the more requests. Hence, the providers can earn more
profit. Likewise, as γ increases, because the SBS can cache more
contents that increases the local hit ratio, the provider earned profit
can be effectively increased. However, the value of γ is irrelevant
to the optimal λ. Additionally, we can clearly seen that the optimal
split factor λ increases with a greater α from Fig. 6. The reason is
that the requests from the users become more focused on the popular
contents, the bigger duplicate fraction is needed when the value of τ
is small. On the other hand, from Fig. 7, we will find the optimal λ
remains the same with an increase in α when the value of τ is large.
The reason is that a smaller λopt is needed when the local profit RL
and remote profit RD are not much different. Furthermore, with a
greater τ , a clearly higher profit is achieved.

7



λ

α

λ

λ

γ

γ

γ

γ

α

λ

λ

α

λ

Fig. 6: The impacts of α and γ on the average provider earned profit
when τ = 0.3.

6.2 Comparison with Traditional Caching Strategies

Recently, some caching algorithms are proposed for solving wireless
caching problems. Because of the difference between the wire-
less communication and wired communication, the wireless caching
schemes cannot be directly applied to a structured wired envi-
ronment, while the traditional caching strategies can be applied
to wireless and wired networks. Therefore, in this subsection, we
use some representative traditional caching strategies such as Least
Recently Used (LRU), Random (RNDM) and Least Frequently Used
(LFU) in [37] as performance benchmarks. In Fig. 8, let α = 0.8
and γ = 0.05, and then we set λ to 0, 1, λopt. Among them, LRU
and LFU cache content based on content popularity, while RNDM

λ

α

λ

λ

γ

γ

γ

γ

α

λ

λ

α

λ

Fig. 7: The impacts of α and γ on the average provider earned profit
when τ = 0.8.

does not. As expected, when λ = λopt, the profit reaches maximum
as shown in Fig. 5(b) and 5(c). When λ = 0, since the impact of
PD on the profit will increase from (11), the profit line is slowly
approaches to the optimal curve with τ increasing. However, it can
never can reach close to the best performance, because the cache
space of common nodes can not be fully used when λ = 0.

From Fig. 8, when λ = 1, since the impact of PL on the profit
will increase from (11), and the profit line is very close to the
optimal curve as the value of τ decreases. PL reaches maximum
when λ = 1. The profit lines of all traditional strategies are located
between lines of our algorithm with λ = 1 and λ = 0 as shown in
Fig. 8. Since the RNDM caches contents randomly, its performance
is superior to the other two traditional caching strategies when τ is
larger than a certain value. Since LFU is very sensitive to popularity,
its profit line is very close to the optimal curve when λ = 1.
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Fig. 8: Comparison with some traditional strategies.

7 Conclusion

In this work, in order to avoid the disadvantages caused by the CCN
with arbitrary topology and to achieve the goal of maximizing the
earned profit, we propose a heuristic collaborative cache algorithm
under a CCN two-level topology to achieve optimal content place-
ment. In this algorithm, the cache space of control node is divided
into two fractions. One fraction caches the most popular contents
which could be cached in any control node, while the other caches
the less popular contents. We also propose a caching replacement
policy for the control nodes corresponding to our collaborative cache
algorithm. The optimal split factor has been derived and verified
in NDNsim simulations. Finally, we compare our algorithm with
some traditional caching strategies to verify its performance, and the
results indicate that our algorithm achieves significant profit gains.
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