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ABSTRACT
Body sounds provide rich information about the state of the human
body and can be useful in many medical applications. Auscultation,
the practice of listening to body sounds, has been used for centuries
in respiratory and cardiac medicine to diagnose or track disease
progression. To date, however, its use has been confined to clinical
and highly controlled settings. Our work addresses this limitation:
we devise a chest-mounted wearable for continuous monitoring of
body sounds, that leverages data processing algorithms that run on-
device. We concentrate on the detection of heart sounds to perform
heart rate monitoring. To improve robustness to ambient noise
and motion artefacts, our device uses an algorithm that explicitly
segments the collected audio into the phases of the cardiac cycle.
Our study with 9 users demonstrates that it is possible to obtain
heart rate estimates that are competitive with commercial devices,
with low enough power consumption for continuous use.
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1 INTRODUCTION
Body sounds are a rich source of information about the health of
an individual, and can be used for disease diagnosis or tracking.
Auscultation, the practice of listening to body sounds, has been used
for centuries [20] to diagnose cardiac, respiratory and digestive
conditions. However, most existing research on auscultation is
limited to user studies in a controlled and non-continuous settings
which limit the ability of the technique to detect diseases more
widely and promptly. Continuous acoustic-based health monitoring
has the potential to lead to affordable and scalable monitoring
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solutions, as microphones can be manufactured inexpensively and
to fit wearable form factors.

Recent works [12, 16, 23] have explored the use of body sounds
for medical diagnostics in non-clinical settings. Complementing
these works, we make a first step in constructing a continuous
sensing wearable platform that can monitor body sounds accurately
in realistic scenarios.

There are substantial challenges that must be considered to ex-
ploit audio collected from the body with a wearable device. The
device must be sensitive to the appropriate frequencies, and be
designed so it be placed near the source of the sound. Addition-
ally, the device must cope with high ambient noise levels and arte-
facts introduced by user activities, while running the inference
on-device to maintain user privacy and reduce power consumption.
This work focuses on heart rate monitoring as a motivating appli-
cation. However, the overarching goal of our research is to enable
further research into continuously monitoring different vital signs
and diseases through the use of wearable devices using an on-device
analysis framework. This work makes the following contributions:

(1) We construct a novel device for collecting non-speech body
sounds, which can be worn under the user’s clothes and
which tolerates high noise conditions.

(2) The collection of a new dataset, with 9 users, which assesses
the impact of real world conditions on the device, including
ambient noise levels and user activities.

(3) We propose an algorithm for accurately calculating heart rate
and heart rate variability (HRV) which can run continuously
on-device for 2 days.

2 RELATEDWORK
Applications ofNon-SpeechBody Sounds: Several existingworks [12,
13, 16, 22, 23] have explored monitoring body sounds using wear-
ables. Larson et al. [12] detect coughs from audio captured by a
mobile phone; ApneaApp [13] is a smartphone appwhich can detect
sleep apnea issues in a contactless manner using respiratory sounds.
Yatani et al. [22] constructed a device to record sounds from the
throat to perform human activity recognition. These works high-
light how body sounds can be used tomonitor health andwell-being.
Our work differs in two ways. Firstly, we focus on a continuous
heart rate monitoring application rather than activity recognition
or monitoring discrete respiration events; this is challenging espe-
cially in realistic settings. Secondly, we focus on user privacy by
performing all the processing locally on-device.

Heart Rate Monitoring: Different types of sensors such as
photoplethysmography (PPG) [15], inertial [8], cameras [10], and
wireless [6] have been studied for heart rate monitoring. Hernan-
dez et al. [8] showed that inertial measurement unit (IMU) sensors
can measure heart rate accurately from the wrists on some idle
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activities. Adib et al. [6] proposed doing heart rate estimation using
WiFi signals. Monitoring heart rate can be highly inaccurate with
IMU and PPG sensors as they are highly sensitive to human motion,
while both camera-based and wireless-based methods are imprac-
tical for continuous monitoring. In contrast, acoustic sensors are
expected to be less impacted by motion than an IMU or PPG sensors
but instead are sensitive to ambient noise. We show that carefully
designed hardware and algorithms can yield accurate results while
being resilient to ambient noise and motion.

A recording of heart sounds is known as a phonocardiogram
(PCG), and techniques for automated analysis have been investi-
gated. Applications include heart rate estimation or identifying
heart abnormalities [14, 17, 18, 21]. However, these works are not
analysed in the context of a limited computational or energy bud-
get. These techniques require significant computational resources,
which may be achieved using offloading from the wearable. How-
ever, there are privacy concerns and issues with power consump-
tion. Our work explicitly addresses these issues: we aim to perform
continuous, on-device, heart rate monitoring in realistic settings.

3 WEARABLE DEVICE DESIGN
Hardware: We now provide an overview of the hardware.

Microphone Selection: We used an off-the-shelf contact micro-
phone [1] that uses a piezoelectric transducer, rather than electret or
condenser microphones, as they offer an excellent low-frequency
response, making them sensitive to the frequencies of interest.
These microphones pick up vibrations from the skin directly—
necessitating the use of an elastic strap to hold the microphone
against the skin—but making them less susceptible to ambient noise.

Microcontroller: A Teensy 3.2 development board was used to
control the wearable as it has low power consumption and has been
successfully used for other audio datalogging projects [3]. Although
we used the Teensy to collect the data, we do not foresee it being
used in a commercial product due to reasons specified in section 5.

Printed Circuit Board Implementation: The PCB design had di-
mensions of 31x37mm. Most board area is devoted to audio, but
some ancillary functionality was included such as a microSD card
slot and an IMU sensor to collect inertial data. The PCB imple-
mented buffering and amplification circuits to amplify the signal
and improve the impedance match between the microphone and the
Teensy’s ADC. The design used a low-power operational amplifier
designed for wireless microphones. An enclosure was 3D printed
and mounted onto an elastic strap to be worn around the torso.

Placement: Four possible placements, often evaluated in clinical
settings, were considered: (1) bottom of sternum, (2) on the back
behind the heart, (3) bottom of ribcage (offset towards heart) and (4)
at the top of the chest (offset towards heart). The last placement was
chosen to align with the bronchus, which was hypothesised to allow
better transmission of respiratory sounds. Placement 1 was unstable
due to the surrounding curvature on the body, which has a wide
inter-person variance. Placement 2 is also problematic: shoulder
blade movement displaces the device from the skin. Placement 3
and 4 were evaluated by one of the authors. The top of the chest
was selected after assessing the audio recorded while performing
7 different activities, including sitting quietly, deeply breathing,
drinking, coughing, sniffing, throat clearing, and talking.

4 HEART RATE ESTIMATION ALGORITHM
Our proposed algorithm uses the sounds present in the cardiac cycle.
We first discuss the cardiac cycle and the associated sounds, before
proceeding to describe heart rate and HRV estimation algorithms.

Cardiac Cycle: The heart consists of 4 chambers: 2 atria, and 2
ventricles [24]. Between the chambers, there are one-way valves
which force the blood into the next chamber upon a contraction;
when these valves close, the heart sounds are produced. There are
two sounds in healthy hearts: S1, referred to as “lub”, and S2 (“dub”),
which is usually quieter. This process is shown in Figure 1; for more
detail, we refer the reader to Gersh [24].

Figure 1: Heart sounds in cardiac cycle [5]

HeartRate EstimationUsing Segmentation: Springer et al. [19]
proposed a state-of-the-art algorithm for PCG segmentation, which
used a hidden semi-markov model (HSMM) to model transitions
between 4 states: S1, systole, S2 and diastole [19]. Using an HSMM
allows for the state residence time to be modelled, as the transition
probabilities are dependent on the time that has elapsed since entry
to the current state. The emission probabilities for each state is
modelled using logistic regression trained from envelope features
extracted from the PCG. However, the results on our collected data
were extremely poor: envelope-based features are disrupted by
transient changes in signal amplitude. Another issue is that these
features are computationally expensive. Hence, we propose several
modifications to the original algorithm.

Adaptations for Continuous Monitoring: We used log-magnitudes
of Short-Time Fourier Transform (STFT) coefficients as features,
as different activities introduce power into different parts of the
spectrum. Therefore a classifier can learn to ignore known noise
profiles.We used audio sampling rate of 500Hz to enable frequencies
below 200Hz to be distinguished. The STFT was performed on 16
samples (Hann windowing, hop length of 5 samples) yielding 100
features per second. A plot of the features against time is reported
in Figure 2. When the user is stationary, consistent spikes in all
features can be observed, corresponding to heart sounds.

We also use Random Forests (RF) instead of logistic regression
(LR) as a RF can learn non-linear decision boundaries, while ad-
mitting efficient inference on a microcontroller. A RF (10 trees,
maximum depth 8) was trained to predict the presence of either
type of heart sound. This optimisation was made as the two heart
sounds are difficult to distinguish. By tying the emission probabili-
ties, the inference of the most likely path through the states relies
on duration of the states observed. This is relatively easy as the
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Figure 2: Plot of spectral features used for segmentation
against time; in this scenario the user is still. Higher-
indexed features correspond to higher frequencies.

Figure 3: Devices: Ours (top), ground truth (bottom).

S1-S2 and S2-S1 durations are notably different: 0.128 ± 0.062 and
0.356 ± 0.121 seconds respectively in our dataset.

Estimating Heart Rate and Variability: The segmentation is post-
processed by Algorithm 1, which describes steps to obtain the heart
rate and HRV. The intervals between heartbeats are found from
the labels; intervals are the differences between the start of two S1
states. Kalman filtering was used to estimate heart rate from the
intervals. For accurate HRV estimation outliers were rejected using
a standard technique [9].

Algorithm 1 HR and HRV estimation.
function EstimateHeartRate(labels)

deltas = FindTimesBetweenBeats(labels)
bpm = 60 / (deltas / labelSampleRate)
bpm = KalmanFilter(bpm)
return bpm

function EstimateVariability(labels)
deltas = FindTimesBetweenBeats(labels)
retainedDeltas = List()
for i in 1. . .Len(deltas) - 1 do

window = deltas[Max(i - 4, 0): i]
m = Mean(window)
if m × 0.7 ≤ deltas[i] ≤ m × 1.3 then

retainedDeltas.Append(deltas[i]) // Reject if outlier

return StandardDeviation(retainedDeltas)

5 RESULTS
User Study: Nine participants (3 female, 6 male, all healthy) per-
formed the data collection after we obtained ethics approval. Par-
ticipants wore the device (Figure 3) and perform several activities
under 3 noise regimes: silence, music placed 1 meter from the par-
ticipant (average loudness of 63dB) and background noise from a

Activity Noise Regime
Median

Absolute
Error / BPM

Mean
Absolute

Error / BPM

Median
Percentage Error

Mean Percentage
Error

Rest Silence 0.23 ± 0.01 1.18 ± 0.08 0.33 ± 0.02 1.49 ± 0.09
Rest Music 0.20 ± 0.01 2.91 ± 0.11 0.26 ± 0.02 3.34 ± 0.13
Rest Conversation 0.14 ± 0.04 2.54 ± 0.12 0.22 ± 0.07 2.77 ± 0.13
Deep Breathing Silence 5.18 ± 0.27 7.15 ± 0.11 6.04 ± 0.32 7.80 ± 0.12
Deep Breathing Music 11.84 ± 0.43 14.20 ± 0.21 13.91 ± 0.56 15.07 ± 0.24
Deep Breathing Conversation 8.47 ± 0.74 12.29 ± 0.30 9.94 ± 0.82 13.25 ± 0.34
Coughing Silence 13.75 ± 1.45 13.61 ± 0.61 14.24 ± 1.38 14.33 ± 0.67
Coughing Music 5.81 ± 0.40 8.59 ± 0.23 6.98 ± 0.49 9.53 ± 0.29
Coughing Conversation 5.32 ± 0.32 8.73 ± 0.19 6.75 ± 0.57 9.57 ± 0.23
Clearing Throat Silence 5.40 ± 0.57 7.90 ± 0.35 6.71 ± 0.85 8.96 ± 0.41
Clearing Throat Music 4.14 ± 0.50 7.27 ± 0.33 5.70 ± 0.67 8.68 ± 0.49
Clearing Throat Conversation 1.40 ± 0.18 4.78 ± 0.36 1.91 ± 0.19 5.31 ± 0.40
Swallowing Silence 2.51 ± 0.78 5.65 ± 0.27 2.93 ± 0.90 6.28 ± 0.32
Swallowing Music 3.24 ± 0.86 5.42 ± 0.31 3.98 ± 0.81 6.19 ± 0.35
Swallowing Conversation 3.09 ± 0.53 8.11 ± 0.18 4.33 ± 0.76 9.46 ± 0.24
Drinking Silence 7.07 ± 0.27 7.97 ± 0.30 8.23 ± 0.38 9.18 ± 0.34
Sniffing Silence 2.89 ± 0.41 4.63 ± 0.29 3.63 ± 0.34 5.73 ± 0.44
Sniffing Music 1.02 ± 0.22 3.85 ± 0.39 1.45 ± 0.35 4.79 ± 0.55
Sniffing Conversation 1.18 ± 0.10 3.77 ± 0.22 1.64 ± 0.11 4.31 ± 0.26
Speech Silence 7.55 ± 0.41 10.81 ± 0.26 11.11 ± 0.56 13.85 ± 0.37
Walking Silence 6.11 ± 0.10 8.56 ± 0.09 7.35 ± 0.17 9.29 ± 0.11
Running Silence 37.61 ± 0.40 38.99 ± 0.25 31.62 ± 0.31 30.64 ± 0.20

Table 1: Accuracy of segmentation-based algorithm.

coffee shop placed 1 meter from the participant (average loudness
of 42dB). Participants did the following activities: breathing nor-
mally and deeply, coughing, clearing throat and sniffing 10 times,
swallowing 5 times, drinking water, reading a news article, and
walking and jogging for 5 minutes. A Zephyr Bioharness 3 was also
worn to provide ground truth ECG data.

Accuracy: The results reported are an average of 10 runs using
leave-one-person-out cross validation.

Processing ECG based Ground Truth Data: Raw ECG data was
processed using BioSPPY [4] and Neurokit [2] libraries to obtain
heart rate estimates from the ground truth data. Using the raw signal
derived from the inter-beat-intervals yields noisy results because
of HRV. To compensate, we applied exponential smoothing.

Heart Rate Estimation: The heart rate estimates were compared
to the ground truth every 2 seconds and are shown in Table 1 The
results shows that accuracy when resting is competitive with com-
mercially available chest-mounted heart rate trackers: one study
indicated a popular device had a mean percentage error of 0.8% [7].
We obtained a mean percentage error of approximately 3.34% in the
worst case, but median percentage error was below 0.33% for each
scenario. Different noise regimes have minimal impact, demonstrat-
ing our approach’s noise robustness.

Reasonable heart rate estimates can also be obtained when doing
other activities: while walking, the median percentage error was
7.35%. This result confirms our hypothesis that the classifier can
learn to classify heart beats from the spectral coefficients when
there is noise. Running, however, introduces sufficient noise for
the classifier to degrade substantially. Performance also degrades
during speech, for both genders. We believe that this is due to low
frequency respiratory noise rather than the vocal frequencies.

Segmentation Accuracy: The segmentation quality is assessed
by evaluating the precision and recall of the predicted S1 states,
relative to the ground truth ECG. If the start of the S1 state occurs
within 100ms of an R-Peak in the corresponding ECG signal, then
the segmentation algorithm is deemed to have correctly predicted
the S1 state. The results are reported in Table 2 and are comparable
to Springer et al. [19] (F1 0.956) when users are at rest—despite
their data coming from a clinical digital stethoscope. We observe
a larger than expected difference between precision and recall for
deep breathing: this may be due to a phenomenon where the heart
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Activity Noise Regime Precision Recall F1

Rest Silence 0.976 ± 0.001 0.960 ± 0.003 0.968 ± 0.002
Rest Music 0.937 ± 0.004 0.893 ± 0.004 0.915 ± 0.004
Rest Conversation 0.963 ± 0.004 0.934 ± 0.006 0.948 ± 0.005
Deep Breathing Silence 0.864 ± 0.004 0.772 ± 0.004 0.815 ± 0.004
Deep Breathing Music 0.776 ± 0.007 0.637 ± 0.008 0.699 ± 0.007
Deep Breathing Conversation 0.819 ± 0.004 0.703 ± 0.005 0.757 ± 0.005
Coughing Silence 0.693 ± 0.011 0.568 ± 0.010 0.624 ± 0.011
Coughing Music 0.768 ± 0.009 0.682 ± 0.011 0.722 ± 0.010
Coughing Conversation 0.749 ± 0.011 0.655 ± 0.011 0.699 ± 0.011
Clearing Throat Silence 0.725 ± 0.012 0.658 ± 0.011 0.690 ± 0.011
Clearing Throat Music 0.820 ± 0.013 0.765 ± 0.012 0.791 ± 0.013
Clearing Throat Conversation 0.783 ± 0.011 0.736 ± 0.009 0.759 ± 0.010
Swallowing Silence 0.902 ± 0.015 0.865 ± 0.021 0.883 ± 0.018
Swallowing Music 0.866 ± 0.006 0.790 ± 0.010 0.827 ± 0.008
Swallowing Conversation 0.829 ± 0.013 0.752 ± 0.013 0.789 ± 0.013
Drinking Silence 0.801 ± 0.007 0.717 ± 0.005 0.756 ± 0.006
Sniffing Silence 0.832 ± 0.005 0.797 ± 0.006 0.814 ± 0.005
Sniffing Music 0.822 ± 0.008 0.790 ± 0.008 0.805 ± 0.008
Sniffing Conversation 0.818 ± 0.008 0.785 ± 0.008 0.801 ± 0.008
Speech Silence 0.652 ± 0.008 0.599 ± 0.007 0.624 ± 0.008
Walking Silence 0.548 ± 0.005 0.494 ± 0.005 0.519 ± 0.005
Running Silence 0.456 ± 0.004 0.309 ± 0.003 0.368 ± 0.003

Table 2: Accuracy of S1 heart sound localisation.

Activity Noise Regime
Median

Absolute
Error / ms

Mean
Absolute

Error / ms

Median
Percentage Error

Mean Percentage
Error

Rest Silence 4.01 ± 0.79 8.28 ± 1.30 6.14 ± 1.19 14.51 ± 2.66
Rest Music 7.50 ± 6.10 19.18 ± 2.77 14.74 ± 9.37 39.25 ± 10.13
Rest Conversation 7.78 ± 3.27 9.81 ± 1.43 13.26 ± 4.75 20.38 ± 3.10

Table 3: Accuracy of HRV estimates.

sounds split during deep breathing. Despite the poor results for
segmentation during walking, the heart rate estimates for walking
are reasonably accurate. This is because of the emission probability
estimates for footsteps being high enough that the Viterbi algorithm
takes them for a heart sound, if there is a plausible time difference
between the footstep and an actual heart sound. This leads to the
true S1 sound being reported as the S2 sound, and the S2 sound not
being identified, as it has a lower energy than the S1 sound.

Heart Rate Variability: Table 3 only gives the results for HRV es-
timation when participants were at rest as HRV estimation requires
accurate segmentation. To the best of the authors’ knowledge, no
empirical survey has assessed HRV accuracy for commercially avail-
able heart rate monitors which makes it difficult to compare. Values
reported for HRV in healthy adults had an inter-quartile range of
approximately 30ms [11]; the accuracy obtained by our approach
is therefore likely sufficient for indicative readings.

PowerConsumption andLatency: An STMicroNucleo L496ZG-
P board was used to run latency and power consumption exper-
iments as it is a realistic microcontroller that could be used in a
commercial product. We used the Teensy to reduce development
time, but we do not expect a commercial device to be based upon it.

Latency: It took 3ms to extract 1 second of audio features, ap-
proximately 1.2ms to calculate 1 second of emission probabilities
and 695ms to run Viterbi algorithm. Therefore, assuming over-
heads, the segmentation algorithm requires approximately 700ms
of computation for 1s of audio.

Power Consumption: The biggest consumer of power was the
microcontroller: 4.5mA during run-mode and 276 µA during sleep
(with ADC enabled), at 3.3V. As a contact microphone is a passive

sensor it does not need external power, and amplification uses neg-
ligible power. Assuming a 3.7V 200mAh lithium-polymer battery
and a safety margin of 0.7, the battery life is approximately 48 hours.

6 CONCLUSION
Body sounds are an excellent source of information for understand-
ing the state of the human body and are being increasingly explored
in the area of digital health. We designed a wearable device to as-
sess the viability of monitoring heart rate continuously using heart
sounds. This work has explicitly considered the difficult challenges
associated with our goal: noisy measurements and limited compu-
tational and energy budgets. Our work makes an important step
towards enabling heart sounds to be monitored continuously in
non-clinical conditions, and we believe that similar approaches can
be adopted for other types of body sounds.
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