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Abstract

Mendelian randomization is the use of genetic variants to assess the effect of interven-

ing on a risk factor using observational data. We consider the scenario in which there

is a pharmacomimetic (that is, treatment-mimicking) genetic variant that can be used

as a proxy for a particular pharmacological treatment that changes the level of the

risk factor. If the association of the pharmacomimetic genetic variant with the risk

factor is stronger in one subgroup of the population, then we may expect the effect

of the treatment to be stronger in that subgroup. We test for gene–gene interactions

in the associations of variants with a modifiable risk factor, where one genetic variant

is treated as pharmacomimetic and the other as an effect modifier, to find genetic

subgroups of the population with different predicted response to treatment. If indi-

vidual genetic variants that are strong effect modifiers cannot be found, moderating

variants can be combined using a random forest of interaction trees (RFIT) method

into a polygenic response score, analogous to a polygenic risk score for risk prediction.

We illustrate the application of the method to investigate effect heterogeneity in the

effect of statins on low-density lipoprotein cholesterol. [196 words]

Keywords: Mendelian randomization, effect heterogeneity, polygenic modelling, in-

strumental variable, causal inference.
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Introduction

Genetic variants can be treated as proxies for treatments to assess the effect of inter-

vening on a particular biological pathway using observational data [Thanassoulis and

O’Donnell, 2009; Plenge et al., 2013]. For example, 3-hydroxy-3-methylglutaryl–coenzyme

A reductase (HMGCR) inhibitors (known as statins) have been developed to reduce

levels of low-density lipoprotein (LDL) cholesterol. Variants in the HMGCR gene

region that predispose individuals to having higher or lower average levels of LDL-

cholesterol can be used to predict the effect of HMGCR inhibitors on disease outcomes

[Khera and Rader, 2009]. Associations between the HMGCR variants and coronary

artery disease risk suggest that statins should reduce coronary artery disease risk

[Ference et al., 2015], as has been observed in clinical trials [Cholesterol Treatment

Trialists’ Collaboration, 2005]. The approach of using genetic variants to make causal

inferences from observational data is known as Mendelian randomization [Davey Smith

and Ebrahim, 2003; Burgess and Thompson, 2015].

An extension of Mendelian randomization known as ‘factorial Mendelian random-

ization’ uses genetic variants in two gene regions to assess treatment interactions [Rees

et al., 2019]. For example, genetic variants in the HMGCR gene region, representing

proxies for statins, and genetic variants in the proprotein convertase subtilisin–kexin

type 9 (PCSK9 ) gene region, representing proxies for PCSK9 inhibitors, showed no

interaction in their associations with either LDL-cholesterol or coronary artery disease

[Ference et al., 2016]. This suggests statins should lower LDL-cholesterol when used

in conjunction with PCSK9 inhibitors, with no dilution in their effect. Alternatively,

we can consider the interaction between an HMGCR variant and a genetic variant in

a gene region that does not correspond to a pharmacological intervention, but instead

is viewed as a stratifying variable. In this case, a statistical interaction would be

interpreted as effect modification – the association of the HMGCR variant (and, by

inference, the effect of statins) differs for individuals in different genetic subgroups

defined by the stratifying variable [VanderWeele, 2015]. Effect modification has im-

plications for precision medicine, as individuals for whom statins are more effective

could be prescribed statins earlier in life. Henceforth, when considering gene–gene

interactions, we interpret variants in one gene region as proxies for the treatment
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(referred to as pharmacomimetic variants) and other variants as stratifying variables

(referred to as moderating variants).

Few interactions between genetic variants have been robustly demonstrated [Cordell,

2009]. There are several possible reasons for this: in particular, i) genetic variants

typically have small effects on phenotypes and interaction effects are generally smaller

in magnitude than main effects; and ii) hypothesis testing approaches must incorpo-

rate correction for multiple testing, which lowers power to detect a true interaction.

In the context of risk prediction, polygenic risk scores have been used successfully to

overcome the problems of small effects and multiple testing. By summing the contri-

butions of large numbers of variants across the whole genome into a single univariable

score, prediction is improved compared to approaches that take information on a small

number of variants [Dudbridge, 2013; Inouye et al., 2018]. This suggests the possibil-

ity of using a similar approach to construct genetic subgroups of the population which

differ in their predicted response to pharmacological treatment, even if no individual

variants can be found that have a strong gene–gene interaction.

In this paper, we introduce an agnostic approach to create a composite polygenic

response score that predicts treatment effect heterogeneity similarly to a polygenic risk

score for risk prediction. We first establish the feasibility and validity of our approach

through a simulation study. Next, as a proof-of-concept example, we demonstrate the

approach for the effect of statins on LDL-cholesterol. We first construct a pharma-

comimetic score for statins from genetic variants proximal to the HMGCR gene region

which have been shown to be associated with LDL-cholesterol [Ference et al., 2016].

We then perform a genome-wide search for moderating variants in the training subset

of the data, and combine these variants using the random forest of interaction trees

(RFIT) method [Su et al., 2018, 2009]. We proceed to verify in the validation subset

whether the predicted treatment effects for different genetic subgroups are more vari-

able than expected solely based on chance, and consider the impact of leaf node sizes

and interaction significance thresholds on the variability of estimates. We conclude

by discussing the applicability of this approach to wider practice in the emerging area

of precision medicine.

Software for implementing the method is available from https://github.com/

zmx21/polyresponse.

4



Methods

Set-up and notation

We consider a risk factor xi for individuals i = 1, . . . , N , a pharmacomimetic genetic

variant zi which can be considered as a proxy for a particular intervention on the

risk factor, J candidate moderating variants gij where j = 1, . . . , J , and K measured

covariates cik where k = 1, . . . , K. The pharmacomimetic genetic variant does not

have to be one single nucleotide polymorphism (SNP), but could instead be a weighted

score, representing the predicted values of the risk factor based on genetic variants in

the pharmacomimetic gene region. This would be a worthwhile strategy if there were

multiple variants independently associated with the risk factor in that gene region.

We consider the following linear regression model:

xi = β0j + β1jzi + β2jgij + β3jzigij +
K∑
k=1

βk+3,jcik + εi for i = 1, . . . , N (1)

The main parameter of interest is β3j, representing the interaction between the phar-

macomimetic genetic variant and the jth moderating variant. The marginal associa-

tion between the pharmacomimetic genetic variant and the risk factor is β1j + β3jgij.

If β3j = 0, then the association between the pharmacomimetic genetic variant and the

risk factor does not depend on the value of gij. Whereas if β3j 6= 0, then the associa-

tion between the pharmacomimetic genetic variant and the risk factor is stronger for

some values of gij.

Equation 1 could be fitted for each of the j = 1, . . . , J moderating variants sepa-

rately in a genome-wide search. If we find a genetic variant with statistically robust

evidence for an interaction, then we can use this variant to divide the population into

genetic groups which differ in their expected response to the treatment. For exam-

ple, if the marginal association between the pharmacomimetic variant and the risk

factor is zero for individuals with gij = 0, but positive for individuals with gij > 0,

this suggests that the corresponding pharmacological intervention on the risk factor is

likely to only influence the risk factor in individuals with gij > 0, and have no average

effect in those with gij = 0. However, it is unlikely that there are many individual

variants with strong interactions. This motivates the development of approaches for
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combining variants that display some evidence of interaction into a composite genetic

moderator.

Interaction tree

The interaction tree method is a recursive partitioning approach that was introduced

by Su et al. [2009]. We first present how to construct a single interaction tree, and in

the next section describe how to construct a RFIT. For each candidate split variant

Gj, we consider an indicator variable Ii for individuals indexed by i in two ways: i)

Ii = 0 for the subgroup with gij = 0 versus Ii = 1 for the subgroup with gij = 1, 2;

and ii) Ii = 0 for gij = 0, 1 versus Ii = 1 for gij = 2. We then calculate the t-statistic

for the interaction term γ3 from the model:

xi = γ0 + γ1Ii + γ2zi + γ3ziIi +
K∑
k=1

γk+3cik + εi for i = 1, . . . , N. (2)

We split the sample into two subgroups based on the candidate variant and indicator

variable combination with the greatest squared t-statistic. We continue recursively

to split each subgroup in the same way until an additional split results in a daughter

node which is below a threshold for minimum node size, at which point a terminal

node is created without the additional split. The association of the pharmacomimetic

variant with the risk factor (the treatment effect) is calculated for each terminal node.

An example tree is shown in Figure 1.

Random forest of interaction trees method

The random forest is an ensemble method which aims to reduce variance (overfitting)

inherent in individual interaction trees by aggregating multiple decision trees con-

structed from bootstrap samples [James, 2013; Breiman, 2001]. The RFIT is based

on the random forest formulation, but instead of decision trees multiple interactions

trees are incorporated [Su et al., 2018]. To construct a RFIT, we initially split the

dataset at random into a training set (2/3 of the sample) and a validation set (1/3

of the sample). We take 2000 bootstrap samples of 2/3 of the training set (4/9 of

the total dataset) and construct an interaction tree for each sample. A random set
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of candidate split variants (3/4 of all available moderating variants) is considered at

each search for an optimal interaction term to decorrelate the trees within the random

forest and so further reduce overfitting [James, 2013; Breiman, 2001]. The treatment

effect for each individual in the validation dataset is calculated using the subgroup of

individuals in their assigned terminal node based on the interaction tree constructed

on the training dataset. Separating the construction of the trees (training dataset)

and the estimation of treatment effects (validation dataset) maintains honesty of the

random forest [Wager and Athey, 2018]. Individual treatment effects are then aver-

aged across all trees within the random forest. The values of the polygenic response

score are the predicted individual treatment effects. A schematic diagram illustrating

the application of the RFIT method is shown in Figure 2.

Assessing treatment effect heterogeneity

To assess whether the predicted treatment effects differ by more than expected due to

chance alone, we calculated the weighted standard deviation of the predicted treat-

ment effects in the validation set for each tree. We consider an interaction tree with

K leaf nodes, with the predicted treatment effect for the leaf node subgroups β̂1k

where k = 1, ..., K, and the sample size of the leaf nodes nk where k = 1, ..., K. The

weighted standard deviation for the tree (σ) was defined as:

σ =

√∑K
k=1 nk(β̂1k − β1)

2

N
(3)

where:

β1 =

∑K
k=1 nkβ̂1k
N

(4)

and N is the total sample size. We calculated the average of the weighted standard

deviations across trees.

We then permuted together the outcomes, covariates, and pharmacomimetic ge-

netic variant (equivalent to randomly assigning individuals to leaf nodes represent-

ing genotypic subgroups) for individuals in the validation subset, and calculated the

weighted standard deviation of the treatment effects in 1000 permuted validation

datasets. If the average weighted standard deviation of the treatment effects is similar
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in the validation and permuted validation datasets, then there is no more variability in

the treatment effect estimates than would be expected by chance alone. We calculated

a bootstrap p-value representing the proportion of permuted validation datasets for

which the weighted standard deviation is larger for the permuted validation dataset

than the original validation dataset.

Variable importance measure

We calculated variable importance based on the formulation described by Su et al.

[2009]. The method involves the permuting each split variable individually, and cal-

culating the decrease in overall interaction when a split variable is permuted. More

important split variables should contribute to a higher decrease in overall interaction

when permuted, and vice-versa. The variable importance of a variable was then cal-

culated by averaging over its variable importance in each tree of the random forest,

separately for the training and validation sets. This allows us to identify variants that

are important effect modifiers.

Simulation study

To illustrate the approach and demonstrate the expected gain in predictive perfor-

mance when multiple moderating variants are integrated into a composite effect mod-

erator using the RFIT approach, we conducted a simulation study. We simulated

data on 500,000 individuals and 100 candidate moderating variants, and varied the

strength of the moderating variants (γint).

We drew moderating variants (g) as SNPs with minor allele frequency of 0.3 from

a binomial distribution. We drew the pharmacomimetic score (z) from a N (0, 1)

distribution. We set the main effect of the pharmacomimetic score (γ0) as 0.3, and

considered two scenarios for interaction terms:

1. In Scenario 1 (all positive), we drew Jπ interaction terms γj from a N (γint, 0.01)

distribution, and set the remaining J(1− π) interaction terms to equal zero.

2. In Scenario 2 (positive and negative), we drew bJ π
2
c interaction terms γj from

a N (+γint, 0.01) distribution, dJ π
2
e interaction terms γj from a N (−γint, 0.01)
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distribution, and set the remaining J(1− π) interaction terms to equal zero.

We set π = 0.06, corresponding to 6 out of the 100 variants being true moderating

variants. The risk factor x was simulated for each individual i as:

xi = (γ0 +
∑
j

γjgij)zi + εi (5)

where εi is an error term with N (0, 1) distribution. We denote the predicted

treatment effect for the ith individual, defined as the association between the phar-

macomimetic variant and the risk factor, as δi = γ +
∑

j γjgij. We estimate δ̂i in

subsets of the population defined by the moderating variants using the RFIT method.

We trained the RFIT in the simulated training set (2/3 of the data) with a minimum

node size of 5000, and measured the predictive accuracy in the simulated testing set

(1/3 of the data). We calculate the root-mean squared error (RMSE) between the

estimated treatment effects and the true values:

RMSE =

√√√√ N∑
i=1

(δi − δ̂i)2
N

(6)

We also calculated the predicted treatment effects using two comparison methods:

1) as a single estimated treatment effect value for all individuals in the population,

and 2) in genetic subgroups defined by a single moderating genetic variant, taken as

the variant having the strongest interaction with the pharmacomimetic score.

Example: effect modification for statins

We applied our method to investigate treatment effect heterogeneity for statins using

data from the UK Biobank study. Data were available on 502,682 participants (94% of

self-reported European ancestry) recruited between 2006 and 2010 in 22 assessment

centres throughout the UK. We considered individual-participant data on 348,629

unrelated individuals of European descent who passed extensive quality control pro-

cedures as described in Astle et al. [2016]. Briefly, we excluded participants having

non-European ancestry (self-report or judged by genetics), low call rate, or excess het-

erozygosity (> 3 standard deviations from the mean). We included only one of each set
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of related participants (third-degree relatives or closer). We also excluded individuals

with missing data on LDL-cholesterol, body mass index (BMI), or cholesterol-lowering

medication status. LDL-cholesterol was measured on blood serum samples collected

at recruitment. For individuals who reported taking cholesterol-lowering medication,

the LDL-cholesterol measurement was multiplied by a factor of 1.25 to approximate

their LDL-cholesterol level without medication. A pharmacomimetic score was con-

structed as a weighted score using six genetic variants in or around the HMGCR gene

region, as previously reported by Ference et al. [2016], and weighting by the asso-

ciations of the variants with LDL-cholesterol where effect alelles were coded as the

LDL-lowering alleles (Web Table A1, Web Figures A1-A2).

In total, 805,426 genetic variants were measured on the UK BiLEVE Axiom array

or the UK Biobank Axiom array. Around 40 million further variants were imputed

using reference data from the Haplotype Reference Consortium [Bycroft et al., 2018].

We considered all available variants outside of the HMGCR gene region (±2 megabase

pairs) with a minor allele frequency > 0.05 and an info score > 0.5 as potential mod-

erating variants. Interaction was assessed for each moderating variant in turn using

linear regression (equation 1) with main effect terms for the pharmacomimetic score

and moderating variant, an interaction term between the pharmacomimetic score and

moderating variant, and covariates (age, sex, BMI, and five principal components of

ancestry). All variants with a p-value for the interaction term below a given sig-

nificance threshold were clumped based on correlation (variant removed if r2 > 0.3

against index variant), with the variant having the lowest p-value for interaction being

preferentially selected. The set of independent variants from the clumping procedure

were then taken forward to the RFIT method. We considered interaction significance

thresholds between p < 10−4 and p < 3×10−6 and minimal node sizes of 5000, 10 000,

20 000, 30 000, and 40 000.

We note that our example differs somewhat from a standard application of Mendelian

randomization, in that we do not consider genetic associations with an outcome vari-

able. We restrict our interest to the genetic associations with LDL-cholesterol for two

reasons: first, the causal effect of LDL-cholesterol on coronary artery disease risk has

been well-established and differences in coronary artery disease risk have been shown

to be log-linear in the change in LDL-cholesterol in both trials [Cholesterol Treatment
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Trialists’ Collaboration, 2010] and Mendelian randomization investigations [Ference

et al., 2012]; and second, because interactions in the genetic associations with coro-

nary artery disease are more difficult to detect: coronary artery disease is less proximal

to the genetic variants, and the disease variable is binary and relatively uncommon.

We assume that any observed heterogeneity in the genetic associations with LDL-

cholesterol for the pharmacomimetic variant (and, by inference, in the effect of statins

on LDL-cholesterol) would lead to heterogeneity in the genetic associations with coro-

nary artery disease risk (and, by inference, in the effect of statins on coronary artery

disease risk).

Results

Simulation study

Figure 3A presents the scenario where moderating variants all have positive effects

(Scenario 1). In the setting where there are no true moderating variants (γint = 0), the

true treatment effects are identical across the population. As expected, predictions

based on a single estimated treatment effect value for all individuals outperformed

the RFIT slightly in this setting. However, as the strength of the moderating effects

increased, the degree of which the RFIT approach outperformed the other two ap-

proaches also increased. For example, at γint = 0.075, which is 1/4 the strength of

the pharmacomimetic main effect (γ0), we observed an approximate 50% decrease in

RMSE when predictions were generated by a composite effect moderator instead of a

single moderating variant.

Figure 3B presents the scenario where moderating variants can have both posi-

tive and negative effects (Scenario 2). The results were very similar to Scenario 1,

suggesting that the treatment effect predictions based on the RFIT method are not

adversely influenced when effects of moderating variants are in both directions.
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Example: effect modification for statins

Baseline characteristics of participants

Baseline characteristics of UK Biobank participants in the analytic sample are pre-

sented in Table I both for the whole sample, and for individuals with pharmacomimetic

score above and below the median value. The pharmacomimetic score was not associ-

ated with age, sex, or blood pressure. There was an association of the score with BMI,

although the magnitude of association was small. This motivates the inclusion of BMI

as a covariate in the interaction tests. There was a strong association of the phar-

macomimetic score with LDL-cholesterol and with current use of cholesterol-lowering

medication, as expected.

Gene–gene interactions

To test for the independent interaction effects between moderating variants and the

pharmacomimetic score, we conducted a genome-wide interaction search where we

applied Equation 1 separately for each j = 1, . . . , J variants. No individual genetic

variants were found that had a gene–gene interaction at a genome-wide significance

level (Web Figure A3). The quantile–quantile plot suggested that there was minimal

inflation due to population stratification, and the distribution of interactions was no

stronger than would be expected due to chance alone (Web Figure A4).

Predicted treatment effects

To construct a composite effect modifier of statins, we applied the RFIT method to

the UK Biobank cohort (Figure 2). Predicted treatment effects for all individuals

in the validation dataset are displayed in Figure 4. These effects can be interpreted

as values of the polygenic response score. For more stringent values of the p-value

threshold, the distribution of predicted treatment effects is irregular due to the small

number of moderating variants, whereas for less stringent values, the distribution

approximates a normal distribution. Effect estimates are similar for all individuals

in the population at all parameter values for the interaction significance threshold

and minimal node size. No individuals had an predicted treatment effect that was

positive, or even close to zero. This means that no genetically-defined subgroup of the
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population was identified that would not be expected to benefit from statin treatment.

Figure 5 shows the average difference between the weighted standard deviation

of treatment effect estimates in the validation and bootstrap-permuted validation

datasets. While the difference was generally positive, indicating higher identified

heterogeneity in the validation subset, it was small throughout. The bootstrap p-

value was only 0.18 at its minimum value with node size of 40 000 and interaction

p-value threshold of 7×10−6 (Web Figure A6). Hence the predicted treatment effects

were no more variable than would be expected due to chance alone.

Variable importance measure

Variants having the strongest interactions are displayed in Web Figure A5, together

with their variable importance measures. Only two variants (rs162724 and rs12884142)

displayed positive variable importance in both the training set and validation datasets,

which suggests the generalizability of these effect modifiers.

rs162724 is an intronic variant (minor allele frequency of 0.16 and interaction p-

value of 1.2× 10−6) located proximal to the GRM7 gene on chromosome 3. Previous

genome-wide association studies have found strong associations of variants within the

GRM7 gene region with major depressive disorder, schizophrenia, and the efficacy

of antipsychotic medication [Need et al., 2009; Stevenson et al., 2016; Shyn et al.,

2011; Sacchetti et al., 2017]. The use of some antipsychotics has been found to be

associated with altered risk of hyperlipidaemia, and in some studies with elevated

LDL-cholesterol levels [Meyer and Koro, 2004; Saari et al., 2004]. Thus, it is possible

that the variant (rs162724) acts as a proxy for antipsychotic use in our study, which

in turn acts an indirect effect modifier of statins by altering cholesterol levels.

Discussion

In this paper, we have introduced an agnostic approach to combine genetic variants

into a composite effect modifier (a polygenic response score) that divides the popula-

tion into genetic subgroups which are predicted to respond differently to a particular

treatment. This approach relies on the principles of Mendelian randomization that

pharmacomimetic genetic variants can be treated as if they have been randomized,
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and can be used as an unconfounded proxy for the treatment. Through a simulation

study, we have demonstrated the applicability of our approach when multiple mod-

erating variants are present. As a proof-of-concept example, we have illustrated the

approach for the effect of statins on LDL-cholesterol levels. In this example, no more

heterogeneity in the predicted treatment effect was detected than would be expected

by chance alone, the sign of the predicted treatment effect was the same for all in-

dividuals in the population, and there was no subgroup of the population for whom

the predicted treatment effect was close to zero. Therefore the clinical impact of this

finding is low. However, the approach may have more applicability in other contexts.

A proposed setting where our approach may have clinical utility is for CETP

inhibition. While CETP inhibitors have generally failed to demonstrate effectiveness

in untargeted clinical trials [Schwartz et al., 2012; Lincoff et al., 2017] (although see

[HPS3/TIMI55–REVEAL Collaborative Group, 2017]), there is some evidence for a

protective effect of dalcetrapib in a particular genotypic subgroup of the population

defined by a variant in the ADCY9 gene region [Tardif et al., 2015]. Our method could

be used to further refine this finding by searching for subgroups based on multiple

genetic variants, rather than just considering single variant interactions.

Previous attempts have been made to find genetic variants that predict response

to treatment [Lewis et al., 2019], including for statins [Postmus et al., 2014], based on

data from clinical trials. Our paper makes two additional methodological contribu-

tions to the literature. First, we use the Mendelian randomization paradigm, which

allows treatment response to be predicted from cross-sectional data. Secondly, we con-

struct a polygenic response score based on multiple variants from across the genome,

rather than just individual variants. Results from our simulation study demonstrate

that our method is especially applicable in the scenario where there are multiple mod-

erating variants. The statins example we provide may be indicative of such a scenario,

since no strong genome-wide significant gene-gene interactions were observed.

Our results provide some evidence in the wider debate as to whether treatment

effect heterogeneity is widespread or uncommon. For example, Senn [2018] argues

that treatment effect heterogeneity should not generally be expected, meaning that

precision medicine approaches are unlikely to exist for many treatments. More ex-

tensive investigations are required to judge whether the degree of effect heterogeneity
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observed in this paper is typical or not.

Since the true number of moderating variants is unknown a priori, the optimal

minimum node size setting for the RFIT is unclear. Specifically, a small minimum

node size would be preferable in scenarios where there are a large number of true

moderating variants. We thus propose the use of the weighted SD of treatment effects

as a guide to inform us of a suitable of minimum node size. For each minimum

node size, the weighted SD of the true validation set could be compared against the

permuted validation set, in order to determine if more treatment heterogeneity than

expected by chance has been captured by the RFIT. A minimum node size should

then be chosen such that more heterogeneity than chance is captured (illustrating the

presence of a signal), in order to reduce over-fitting.

Our proposed approach has strengths and also weaknesses. While it would be pos-

sible to investigate treatment effect heterogeneity more directly in a trial setting, our

approach is able to leverage the large sample sizes available in cross-sectional ‘biobank’

data. Biobank samples are often more representative of the general population than

clinical trials, meaning that estimates are obtained in a more relevant target popu-

lation, particularly if the treatment is for primary prevention. Furthermore, lack of

efficacy is the major contributor to failure of phase 3 clincal trials [Fogel, 2018]. Our

method allows prior prediction of treatment response, so that trials can be conducted

in targeted genetic subgroups. Finally, since there is usually no a priori knowledge

with regards to the types of interactions present, one of the strengths of our approach

lies in its hypothesis-free nature. Specifically, our approach offers the flexibility to

model multi-way interactions (interactions between moderating variants), but is still

able to model scenarios where there may not be interactions between moderating vari-

ants. However, there are also potential weaknesses. First, there are many reasons why

a statistical interaction may be observed that does not correspond to a biological in-

teraction. For example, it may be that moderating variants increase LDL-cholesterol

levels, and that the association of HMGCR variants with LDL-cholesterol is simply

larger in individuals with greater LDL-cholesterol levels. While this is an example

of effect modification, the conclusion that individuals with greater LDL-cholesterol

levels would benefit more from LDL-cholesterol lowering is not particularly insightful.

Secondly, our approach for identifying moderating variants was relatively simple, and
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more complex approaches could be considered. For example, we may believe that

genetic variants with strong interaction effects are likely to also have strong main

effects. Rather than considering the p-value for each interaction term in isolation,

we could consider the p-values for the main effect and the interaction effect jointly.

Thirdly, the genetic associations with LDL-cholesterol are not particularly strong,

with the strongest individual per allele genetic association corresponding to a 0.06

mmol/L change in LDL-cholesterol. In contrast, statins can reduce LDL-cholesterol

by around 1 mmol/L. Hence our null result may correspond to a lack of power. How-

ever, genetic associations typically represent lifelong changes in the trajectory of a

risk factor and so the proportional effect on a disease outcome is generally stronger

[Burgess et al., 2012], meaning that genetic interactions may be easier to detect. Also,

genetic associations do not suffer from lack of adherence that can attenuate effects

in trials. Fourthly, our method relies on the assumption that the pharmacomimetic

variants can be treated as proxies for the relevant treatment. In practice, there may

be ways in which the genetic variant does not mimic treatment use. For example,

we would not be able to detect effect modifiers which are drug metabolizers. Genetic

polymorphisms in Cytochrome P450, a drug metabolizing enzyme, has been shown

to be strongly associated with response to statins [Lynch and Price, 2007; Canestaro

et al., 2014]. It is possible that majority of the effect heterogeneity may be attributed

to drug metabolism. Finally, our results could be affected by population factors such

as ethnicity. Detecting such heterogeneity would be useful, as it would still identify

subgroups of the population that have different treatment response. However, varying

a treatment regime based on ethnicity would not generally be regarded as precision

medicine, as precision medicine seeks to find differences within populations rather

than between populations. We have tried to reduce the impact of ethnicity by re-

stricting our analysis to individuals of European descent and adjusting for genomic

principal components. However, we cannot rule out a residual effect of population

stratification on our results.

In conclusion, we have demonstrated an agnostic genome-wide approach to create

a polygenic response score that explains heterogeneity in the predicted effect of a

treatment. While the clinical impact of the example demonstrated here is limited,

this approach may be useful to detect individuals with particularly strong or weak

16



predicted response to particular treatments, leading to opportunities for precision

medicine.
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Table

Table I: Baseline characteristics of participants: Baseline characteristics (mean
and standard deviation, or percentage) of the European ancestry subset of UK
Biobank. P-values for differences in characteristics between the subgroups below and
above the median HMGCR score are calculated using a t-test for continuous traits
and a χ2 test for categorical traits.

HMGCR score HMGCR score
Overall ≤ Median >Median p-value

(N = 348,629) (N=178,263) (N=170,366)
Age (years) 57.15± 8.03 57.17± 8.02 57.13± 8.03 0.17

Body mass index (kg/m2) 27.35± 4.75 27.30± 4.74 27.41± 4.77 2.65× 10−11

Male (%) 45.92 45.95 45.89 0.73

Systolic blood pressure (mmHg) 137.64± 18.62 137.59± 18.61 137.68± 18.62 0.14

Diastolic blood pressure (mmHg) 81.97± 10.13 81.97± 10.12 81.96± 10.14 0.77

LDL-cholesterol (mmol/L) 3.689± 0.834 3.724± 0.838 3.652± 0.828 6.19× 10−102

Use of cholesterol
lowering medication
(%)

16.90 17.43 16.34 8.27× 10−18
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Figures

rs181828726

= 0 > 0

rs162724

= 0 > 0

rs12884142

= 0 > 0

N = 48646 N = 31981

N = 34538

N = 39781

β = -0.2735 β = -0.4290

β = -0.1870

β = -0.4665

Figure 1: Example of a single interaction tree, constructed with interaction signif-
icance threshold p < 7 × 10−6 and minimum node size of 30 000. Terminal nodes
show the predicted treatment effect estimate for that subgroup (β) and the size of the
subgroup (N).
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Construct pharmacomimetic 
score:
Aggregate variants proximal to 
drug target proxy gene. 

UK Biobank
( N =  487,409)

European Ancestry 
( N =  367,643)

Non-Missing Covariates
( N =  348,629)

Sample Filtering:
Individuals with non-
European ancestry

Sample Filtering:
missing covariate 
data

Training Set
( N = 232,419)

Validation Set
( N =  116,210)

1/3 split 2/3 split

Pharmacomimetic 
Score

Moderating Variants

Identify strong effect moderators: 
Genome-wide scan for variants with strong 
interactions with pharmacomimetic score.

Random Forest of 
Interaction Trees

Construct composite effect moderator: 
Construct RF using bootstrap samples, and use 
effect moderating variants as predictors.

Genetic Subgroups and Individualized 
Treatment Effects

Apply validation set: 
Assign individuals to genetic 
subgroups and construct 
individualized treatment effects.

Figure 2: Summary of the RFIT method to construct the composite effect modifier
(polygenic response score) for the applied example.
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Method RFIT Single Moderating Variant Single Value
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Figure 3: Simulation results illustrating the testing set root-mean squared error
(RMSE) between the predicted treatment effects and the true values. RMSE of the
treatment effect predictions based on the RFIT are compared against predictions
based on: 1) A single estimated treatment effect value for all individuals in the popu-
lation 2) Estimated treatment effect values that vary with a single moderating variant.
a) Scenario 1: Moderating effect are all positive. b) Scenario 2: Moderating effect
can be positive or negative.
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Figure 4: Histograms of predicted individual treatment effects estimated using random
forest method with different minimum node sizes and different p-value thresholds for
including moderating variants in the analysis.
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Figure 5: Average difference in weighted standard deviation of the predicted subgroup
treatment effect estimates calculated in the validation dataset and boostrap-permuted
validation set based on trees estimated in the training dataset. Positive differences
indicate higher heterogeneity of predicted subgroup treatment effects identified in true
validation dataset compared to the bootstrap-permuted validation set.
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Appendix

Web Table A1: SNPs selected for the construction of pharmacomimetic score in or
around the HMGCR gene region: rsid, p-value (P) and effect size for association
with LDL-cholesterol in mmol/L (Beta), standard error (SE), chromosome (Chr) and
position number in hg19 (Pos), LDL-lowering coded allele / effect allele (A1), non-
effect allele (A2) and effect allele frequency (EAF) calculated from included samples
within the UK Biobank.

rsid P Beta SE Chr Pos A1 A2 EAF
rs12916 1× 10−226 -0.0647 0.0020 5 74656539 T C 0.60

rs17238484 2× 10−114 -0.0535 0.0024 5 74648496 G T 0.77
rs10066707 2× 10−96 -0.0427 0.0021 5 74560579 G A 0.63

rs5909 3× 10−49 -0.0499 0.0034 5 74656175 G A 0.91
rs2006760 2× 10−47 -0.0358 0.0025 5 74562029 C G 0.80
rs2303152 8× 10−23 -0.0323 0.0033 5 74641707 G A 0.90
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Web Figure A1: r2 values illustrating the linkage disequilibrium between SNPs in-
cluded in the HMGCR pharmacomimetic score.
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Web Figure A2: Zoomed-in Manhattan plot of genetic associations with LDL-
cholesterol for variants in and around the HMGCR gene region.
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Web Figure A3: Manhattan plot for interactions, where p-value indicates the strength
of interaction between the candidate moderating variant and HMGCR score in their
association with LDL-cholesterol.
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Web Figure A4: Quantile–quantile plot of p-values for interaction term from linear
regression using each candidate moderating genetic variant in turn. The inflation
factor λ is very close to one, suggesting no inflation due to population stratification.
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Web Figure A5: Variable importance of SNPs used in the construction of RFIT with
significance threshold of p < 7 × 10−6 and minimum node size of 30 000. In total, 8
SNPs had an interaction p-value below this threshold, although 2 variants were never
selected as splitting variants as they divided the validation dataset into subsets that
were below the minimum node size.
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Web Figure A6: Weighted standard deviation of the predicted individual treatment
effect estimates calculated in the validation dataset based on trees estimated in the
training dataset for (left) true validation dataset and (right) bootstrap-permuted vali-
dation dataset. Error bars indicate the 2.5th to the 97.5th percentiles of the weighted
SD illustrating its variability across the 1000 bootstrapped permutations
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