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Abstract 

The increased use of the urban subsurface for competing purposes, such as anthropogenic infrastructures 

and geothermal energy applications, leads to an urgent need for large-scale sophisticated modelling 

approaches for coupled mass and heat transfer. However, such models are subject to large uncertainties 

in model parameters, the physical model itself and in available measured data, which is often rare. Thus, 

the robustness and reliability of the computer model and its outcomes largely depend on successful 

parameter estimation and model calibration, which are hampered by the computational burden of large-

scale coupled models. 

To tackle this problem, we develop a novel Bayesian approach for parameter estimation, which allows 

us to account for different sources of uncertainty, is capable of dealing with sparse field data and makes 

optimal use of the output data from expensive numerical model runs. This is achieved by combining 
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output data from different models that represent the same physical problem, but at different levels of 

fidelity, e.g. reflected by different spatial resolution. By applying this new approach to a 1D analytical 

heat transfer model and a large-scale semi-3D numerical model while using synthetic data, we show that 

the accuracy and precision of parameter estimation by this multi-fidelity framework by far exceeds the 

standard single-fidelity results. The consideration of different error terms in the Bayesian framework 

also allows assessment of the model bias and the discrepancy between the different fidelity levels. These 

are emulated by Gaussian Process models, which facilitate re-iteration of the parameter estimation 

without additional model runs. 

Keywords 

Large-scale hydro-thermal modelling; parameter estimation; Bayesian inference; numerical modelling; 

subsurface temperature  

Nomenclature 

Abbreviations 

GP Gaussian Process model 

HMC Hamiltonian Monte Carlo 

KOH Kennedy & O’Hagan framework 

MF Multi-Fidelity 

RBKC Royal Borough of Kensington and Chelsea 

Variables 

m measured field/synthetic data 

n model output data 

p number of state variables 

q number of calibration parameters 

t time [s] 

T temperature [°C] 

x state variable  

y model output 

z combined data set for parameter estimation 

X geographical X-ccordinate in the model domain 

Y geographical Y-ccordinate in the model domain 

Z depth layer of the model 
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β smoothness hyper-parameter of GP models 

δ model bias  

ε random error 

ζ non-observable physical process 

η emulator term 

θ calibration parameters 

κ thermal diffusivity [m²/s] 

λ precision hyper-parameter of GP models 

μ model discrepancy 

Σ covariance function of GP model 

τ frequency 

Subscripts 

a annual variation  

c computed data/model output 

f field/measured data 

h high-fidelity 

l low-fidelity 

1 Introduction 

Due to the rapid rate of urbanisation, the shallow subsurface of dense cities is exploited for various 

purposes such as transport, additional residential/commercial spaces, storage, and industrial processes. 

Recent studies have clearly demonstrated that anthropogenic heat flow from such underground 

structures influences the subsurface temperatures, especially in the proximity of urban aquifers (Attard 

et al., 2016; Bidarmaghz et al., 2019a; Epting and Huggenberger, 2013; Menberg et al., 2013). Tracking 

these temperature variations is crucially important for long term resilience of ground resources (such as 

water, energy, etc.), as well as for the energy efficiency of underground structures and geothermal 

systems. At the same time, modelling of spatial variations of temperatures in the subsurface also poses 

immense challenges, not only due to the large scale of these models, but also due to the significant role 

of local and often unknown thermal-hydrological effects and subsurface heterogeneities (Bayer et al., 

2019). Various studies have thus tested different types of analytical and numerical geothermal models 

of varying levels of complexity in terms of spatio-temporal resolution, boundary conditions, type of heat 

sources, etc. (see Bayer et al. (2019) for a review).  
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While analytical or simple numerical models have been found to lack in accuracy to replicate the local 

thermal effects, detailed 3D numerical models are often computationally too expensive to allow iterative 

evaluations (Bayer et al., 2019). Yet, these are needed to perform some form of parameter estimation 

and model calibration, and to quantify the uncertainty in the inputs using inverse modelling techniques. 

In combination with sparse measurement data this renders any meaningful inference from calibrating 

the model with subsurface data difficult.  

Unlike geothermal modelling, large-scale modelling of the subsurface has a more sustained record in 

the field of groundwater modelling, particularly with respect to parameter estimation. As there are a 

number of similarities between the two applications, it makes sense to review the state-of-the-art in the 

calibration and parameter estimation of groundwater models. Indeed, a common feature amongst 

groundwater flow and subsurface heat and fluid transport model is the problem of ill-posedness, or 

underdetermination owing to a large number of model inputs and few observations (Moore and Doherty, 

2006). Several tools for automatic parameter estimation and model calibration are used extensively in 

the groundwater modelling community: for example, PEST (Doherty, 2010), PEST++ (Welter et al., 

2015), UCODE (Poeter and Hill, 1998; Poeter and Hill, 1999) and UCODE_2014 (Lu et al., 2014). 

These tools apply different regularisation techniques to reduce the problem of high parameterisation and 

to prevent over-fitting. They are most widely utilised to tune parameters that obtain a simple ‘best fit’ 

between model outputs and data (Voss, 2011a; Voss, 2011b). More recent studies have emphasised the 

importance of accounting for uncertainty in a more comprehensive manner by explicitly including 

different error terms into the inference procedure (Rajabi et al., 2018). 

In the context of solving inverse problems under uncertainty, and with sparse data, Bayesian approaches 

provide a suitable framework. This has lead to an increasing interest in Markov Chain Monte Carlo 

(MCMC)-based Bayesian techniques in hydro(geo)logy (Rajabi et al., 2018). Bayesian approaches offer 

a different perspective on uncertainty than classical (i.e. frequentist) statistical methods by interpreting 

probability as a reasonable expectation representing a state of knowledge, and allow to update this 

knowledge by combining prior beliefs with measured data (Gelman et al., 2014). Thus, Bayesian 
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inference can be applied to obtain posterior probability distributions of model parameters based on the 

defined prior probability distributions and the likelihood of the match between model outputs and the 

measured data. The approximation of the complex likelihood function, however, requires iterative 

evaluation of the model using MCMC methods, which is often computationally prohibitve for large-

scale numerical subsurface models. 

In order to improve the MCMC performance in the presence of a high-dimensional parameter space (i.e. 

when dealing with a large number of uncertain parameters), Cui et al. (2011) introduced an adaptive 

delayed-acceptance Metropolis-Hastings (MH) algorithm (ADAMH) and applied it to a large-scale deep 

geothermal reservoir model with unknown spatial permeability variation. Their algorithm increases the 

computational efficiency of estimating the Bayesian posterior distribution of model parameters by using 

a coarse model (3,335 elements) that approximates the fine numerical model (26,005 elements), 

accounting for the error between the two models. However, as the two models are coupled within the 

sampling process, they require the same parameterisation and an upscaling scheme for the model outputs 

(Cui et al., 2011).  

This approach also makes the simultaneous use of surrogate models or emulators infeasible, which are 

a convenient mean to reduce the computational costs for optimisation problems in hydrological 

modeling (Asher et al., 2015; Razavi et al., 2012). Razavi et al. (2012) distinguish between two families 

of surrogate models: response surface models (or model emulators) and lower-fidelity models. 

Approaches for response surface models used in hydro(geo)logical modeling include polynomials, 

neural networks, Gaussian process models, and radial basis functions amongst others, which are all data-

driven approximations of the physical model (Asher et al., 2015). Lower-fidelity surrogates on the other 

hand are less-detailed, physical representations of the more sophisticated, original model (Razavi et al., 

2012). 

Often models can be built at different levels of fidelity (e.g. spatial resolutions), which can be joined 

into a multi-fidelity framework that builds on a few runs from an expensive model and a larger number 

of fast runs from a more simple approximation (Fernández-Godino et al., 2016). Such multi-fidelity 
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approaches are particularly convenient for optimization of complex models (Forrester et al., 2007; 

Robinson et al., 2008), and have been applied to a wide field of optimisation problems in engineering 

and natural sciences in combination with different surrogate models (Durantin et al., 2017; Sun et al., 

2010). In the field of groundwater modelling, multi-fidelity approaches have received some attention in 

recent years (Asher et al., 2015; Zhang et al., 2018; Zheng et al., 2019), in particular schemes that apply 

multi-scale finite element methods (Efendiev et al., 2013) and multi-scale finite volume method (Jenny 

et al., 2003). However, as dicussed by Asher et al. (2015) most multi-fidelty approaches applied in the 

field of groundwater modelling so far, are intrusive methods that are implemented specifically for certain 

software codes (Panday et al., 2013). In the context of uncertainty quantification, multi-fidelity Bayesian 

frameworks were also developed and employed on environmental and hydrodynamical models (Goh et 

al., 2013; Kennedy and O'Hagan, 2000).  

Gaussian Process (GP) emulators are particularly suited to be used in conjunction with multi-fidelity 

frameworks (Zaytsev and Burnaev, 2017). In the field of large-scale groundwater modeling Cui et al. 

(2018) employed a GP emulator to approximate a large-scale groundwater model of a river catchment 

(> 200,000 elements). By doing so they were able to apply Approximate Bayesian Computation (ABC) 

to calibrate the 38 uncertain parameters in their model against 900 groundwater head measurements. 

Originally introduced for diagnostic model evaluation, ABC does not require the explicit formulation of 

a likelihood function, which makes it particularly suitable for problems that have large sets of measured 

data available (Vrugt and Sadegh, 2013). Instead, the use of an acceptance criterion based on the distance 

between the observed and simulated data, makes inference straightforward and efficient, albeit at the 

cost of not explicitly considering different sources of uncertainty (Vrugt et al., 2009). Indeed, informal 

Bayesian approaches provide similar results in terms of the total predictive uncertainty (Beven and 

Binley, 1992; Beven and Binley, 2014), but require sufficiently large quantities of data.   

Untangling the effect of the different error terms stemming from data, parameter, and model uncertainty 

is, however, prerequisite for improving the underlying numerical models and to better interpret model 

predictions. Following the conceptual framework from Kennedy and O'Hagan (2001), Xu and Valocchi 
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(2015) and Xu et al. (2017b) account for different sources of uncertainty, i.e. structural model error, 

parameter and input data uncertainty in groundwater flow models. By decomposing the predictive 

variance of the model outputs, they showed that the structural model error can be the primary source of 

uncertainty in predicted hydraulic heads (Xu et al., 2017a). Thus, considering different sources of 

uncertainty is not only crucial in order to get robust model predictions, but analysis of these errors also 

improves understanding of model deficiencies. Indeed, formal Bayesian approaches (e.g. the DREAM 

framework (Vrugt, 2016; Vrugt et al., 2008)) have been shown to perform better for parameter 

estimation of hydrological models (Vrugt et al., 2009). 

In the field of geothermal modelling, formal Bayesian approaches for systematic uncertainty 

quantification are still scarce, and the adoption of approaches from other related fields, such as 

hydrology, is very limited (Heße et al., 2019). There are no applications that leverage recent 

developments in inverse modelling, and good quality field observations are scarce. This paper addresses 

this gap with the objective of tackling a challenge that is equally applicable to both the geothermal and 

groundwater modelling communities: performing parameter estimation (or calibration) of 

computationally expensive, large-scale numerical models, under different sources of uncertainties 

(including the uncertainty from structural errors in the numerical model and random measurement 

errors), and with sparse and limited amount of observations. We present a methodology and the first 

parameter estimation and model calibration of an urban-scale geothermal numerical model. The 

methodology is based on using multi-fidelity numerical models with a formal Bayesian implementation, 

which employs an efficient Hamiltonian Monte Carlo algorithm to sample from the posterior 

distribution. In addition, the framework can account for random (i.e. data) and structural (i.e. model) 

uncertainty by following the conceptual calibration framework introduced by Kennedy and O'Hagan 

(2001). We apply Gaussian Process models to emulate the model bias function and model outputs, which 

stem from different fidelities of numerical models for the same physical problem. While structural 

uncertainty can stem from many sources (conceptualisation, spatial heterogeneity etc.), we here focus 
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on spatial discretization, and modify the spatio-temporal resolution of our models to create 

representations with different fidelities.  

The methodology is first explained and tested on an analytical model for 1D heat transfer in the 

subsurface. We use the analytical solution to generate synthetic data for the test. Through this example, 

we demonstrate the ability of our proposed method to identify the true parameter values under different 

settings. We then apply the method to calibrate a semi-3D large-scale numerical model of coupled 

thermal and hydraulic transport in the subsurface (Bidarmaghz et al., 2020), where the main quantity of 

interest is spatial variations of long term ground temperatures resulting from the combined influence of 

anthropogenic heat sources, geological, and hydrogeological make-up of the ground at different depths.  

2 Bayesian parameter estimation 

 Bayesian framework with single fidelity level 

The Bayesian parameter estimation framework is based on Bayes’ paradigm, which relates the 

probability p of an event (or a specific parameter value, θ) given evidence (or data, y), p(θ|y), to the 

probability of the event, p(θ), and the likelihood p(y|θ) (Gelman et al., 2014): 

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃) × 𝑝(𝑦|𝜃) (1) 

Using this relation allows one to combine prior belief (i.e. expert judgement) about an event and 

evidence about this event (i.e. measured data), to update the prior knowledge and to quantify it in the 

form of posterior probabilistic distributions. Kennedy and O'Hagan (2001) adopted this principle and 

formulated a Bayesian framework (hereafter KOH framework) for parameter estimation and model 

calibration, which considers multiple sources of errors in the data and the model itself. The KOH 

framework relates field observations, yf, to one set of computer simulation outputs, yc, over a range of 

state (or forcing) variables x (Kennedy and O'Hagan, 2001):  

𝑦𝑓(𝑥) =  𝜁(𝑥) + 𝜀 = 𝑦𝑐(𝑥, 𝜃) + 𝛿(𝑥) + 𝜀 = 𝜂(𝑥, 𝜃) + 𝛿(𝑥) + 𝜀 (2) 
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Here ζ represents the true, non-observable physical process, ε is the random measurement errors 

corresponding to the field observations, and δ(x) is the structural discrepancy between the model and 

the true process. Instead of iteratively evaluating computationally demanding computer models, most 

studies approximate these models by an emulator η(x, θ), depending on a set of model parameters, θ, of 

interest. In line with previous studies that applied the KOH framework (Chong and Menberg, 2018; Goh 

et al., 2013; Higdon et al., 2004), we use Gaussian Processes (GP) to emulate the simulation model η(x, 

θ) and the model bias function δ(x). Both emulators are built simultaneously based in the same training 

data. All GP models in this study are assigned a zero mean function, while the covariance functions for 

the emulator, Ση, and the model discrepancy, Σδ, are specified as suggested by Higdon et al. (2004).  

Σ𝜂(𝑖,𝑗) =
1

𝜆𝜂

exp [− ∑ 𝛽𝜂,𝑘(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

− ∑ 𝛽𝜂,𝑝+𝑘(𝜃𝑖,𝑘′ − 𝜃𝑗,𝑘′)
2

𝑞

k′=1

𝑝

𝑘=1

] (3) 

Σ𝛿(𝑖,𝑗) =
1

𝜆𝛿

exp [− ∑ 𝛽𝛿,𝑘(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

𝑝

𝑘=1

] (4) 

This formulation introduces several unknown hyper-parameters, which need to be estimated in the 

inversion alongside the model parameters (θ). The precision hyper-parameters λη and λδ determine the 

magnitude of the covariance function, and thus the variation in the output explained by the model 

emulator and the model bias, while the correlation hyper-parameters βη and βδ determine the smoothness 

of the emulator and model bias function in dimensions of x and θ. Here, p represents the number of state 

variables (x), and q the number of calibration parameters (θ). The random measurement error, ε, is 

independent of x and θ, and represented by the covariance Σε. All hyper-parameters are uncertain and 

assigned prior distributions following the suggestions in previous studies (Guillas et al., 2009; Higdon 

et al., 2004). For details about the selection of prior distributions of hyper-parameters the reader is 

referred to the study by Chong and Menberg (2018).  

The covariance function of the combined data set, z, used for parameter estimation, which contains both 

field observations and computer model outputs, can be written as (Higdon et al., 2004):  
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Σ𝑧 = Σ𝜂 + (
Σ𝛿 + Σ𝜀 0

0 0
) (5) 

 Multi-fidelity Bayesian framework 

For expensive computer models, generating a few hundred model outputs, yc, required to build the GP 

emulator of sufficient quality, might be infeasible. To overcome this problem, Goh et al. (2013) 

suggested a hierarchical modification of the KOH framework that uses outputs from computer models 

with different physical accuracies and computational expenses to solve inverse problems. This approach 

combines a few parametric model outputs from a physically accurate, but expensive, high-fidelity 

computer code, ηh, with a larger number of evaluations from a less expensive and less accurate model, 

ηl. These two simulators can share the same set of unknown model parameters, θ, or individual sets for 

low-fidelity, θl, and high-fidelity, θh. Following the nomenclature of the original KOH framework 

(Kennedy and O'Hagan, 2001), the discrepancy between the measured or synthetic data, yf, and ηh is 

termed model bias, δ. The systematic difference between the two computer model outputs, ηh and ηl, is 

referred to as model mismatch, μ, which describes the relationship between the low- and high-fidelity 

model. Accordingly, the mathematical concept from eq.(1) can be re-written as (Goh et al., 2013):  

This represents a hierarchical workflow, where the low-fidelity model (or emulator) is first calibrated 

against the high-fidelity under consideration of the mismatch between the two. This step requires outputs 

from forward runs of both the low (nl) and the high-fidelity model (nh), which also results in the 

dependency of ηl on the parameters of the high-fidelity model θh (eq. 6) (Fig. 1). In a second step this 

updated model is calibrated against the field data, yf, while accounting for the bias in the high-fidelity 

model and a random error inherent to field observations.  

In line with the KOH framework described above, Gaussian Process models for the approximation of 

the different terms (ηl, μ, δ)  in eq. (6) are used. As the low-fidelity emulator, ηl, and the model mismatch, 

μ, depend on both the calibration parameters and the state variables, their covariances, Σηl and Σμ, can 

𝑦𝑓(𝑥) =  𝜂ℎ(𝑥, 𝜃ℎ, 𝜃𝑙) + 𝛿(𝑥) + 𝜀 = 𝜂𝑙(𝑥, 𝜃ℎ, 𝜃𝑙) + 𝜇(𝑥, 𝜃ℎ, 𝜃𝑙) + 𝛿(𝑥) + 𝜀 (6) 
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be formulated by adapting eq. (3) to new hyper-parameters, i.e. ληl, βηl and λμ, βμ, respectively, and 

considering separate sets of model parameters, θl and θh, if needed (eqs. 7 & 8).  

Σ𝜂𝑙(𝑖,𝑗) =
1

𝜆𝜂𝑙

exp [− ∑ 𝛽𝜂𝑙,𝑘(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

− ∑ 𝛽𝜂𝑙,𝑝+𝑘′ (𝜃ℎ𝑖,𝑘′ − 𝜃ℎ𝑗,𝑘′)
2

𝑞ℎ

𝑘′=1

− ∑ 𝛽𝜂𝑙,𝑝+𝑞ℎ+𝑘′′ (𝜃𝑙𝑖𝑘′′ − 𝜃𝑙𝑗𝑘′′)
2

𝑞𝑙

𝑘′′=1

𝑝

𝑘=1

] (7) 

Σ𝜇(𝑖,𝑗) =
1

𝜆𝜇
exp [− ∑ 𝛽𝜇,𝑘(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)

2
− ∑ 𝛽𝜇,𝑝+𝑘′ (𝜃ℎ𝑖,𝑘′ − 𝜃ℎ𝑗,𝑘′)

2
𝑞ℎ

𝑘′=1

−  ∑ 𝛽𝜇,𝑝+𝑞ℎ+𝑘′′ (𝜃𝑙𝑖𝑘′′ − 𝜃𝑙𝑗𝑘′′)
2

𝑞𝑙

𝑘′′=1

𝑝

𝑘=1

] (8) 

As for eqs. (3) and (4), the uknown hyper-parameters in eqs. (7) and (8) will be sampled and estimated 

alongside the thermal and hydraulic model parameters, which are specified in more detail for each model 

below. For the model bias, δ, in the multi-fidelity approach eq. (4) is adopted as it stands. Accordingly, 

the overall covariance function of the combined data set, z, which here contains outputs from the low- 

and high-fidelity computer models and the measured data, can be written as (Goh et al., 2013): 

Σ𝑍 = Σ𝜂𝑙 + (
Σ𝜇 0

0 0
) + (

Σ𝛿 + Σ𝜀 0 0
0 0 0
0 0 0

) (9) 

Thus, eq. (9) represents the mathematical implementation of the conceptual framework in eq. (6), 

specifically for the use with Gaussian Process emulators for the approximation of the low-fidelity model, 

model mismatch and model bias. Figure 1 shows a comparison of the mathematical concepts of the 

single and multi-fidelity approaches based on the different model terms used for the calculation of the 

covariances, as well as the field observations and model output data considered in the individual 

components.  
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Figure 1: Conceptual overview on the data sets and the components of the Gaussian Process (GP) 

covariance formulation of the single-fidelity approach (Kennedy & O’Hagan framework) and the multi-

fidelity approach for Bayesian parameter estimation.  

 Implementation of the Bayesian frameworks 

In order to obtain the likelihood and approximate the posterior distributions of the unknown parameters, 

repeated model evaluations with iterative sample draws for x and θ are required to generate the data sets 

n, nh and nl. We implemented the KOH and the multi-fidelity framework using the STAN programming 

language (mc-stan.org), which provides a software platform for solving inverse problems using 

Bayesian statistics (Carpenter et al., 2017). It employs an efficient Hamiltonian Monte Carlo (HMC) 

algorithm for sampling from the posterior distributions (Betancourt, 2016; Hoffman and Gelman, 2014). 

We run HMC with 500 samples on four independent sampling chains for each parameter estimation 

shown in this study (the first 250 runs are discarded as the burn-in phase). In order to check the 

convergence of the HMC, we employ the 𝑅̂ criterion which compares the inner and inter-chain variance 

of the posterior samples (Gelman and Rubin, 1992). 

A detailed step-by-step guidance through the implementation process of the Bayesian calibration 

framework from Kennedy and O'Hagan (2001) in STAN is provided by Chong and Menberg (2018). 
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The multi-fidelity framework is set up in the same manner by adding the formulations for the additional 

covariance terms introduced in eqs. (7) and (8) and Figure 1 to the STAN code.  

3 Demonstrative analytical heat transfer model 

3.1 Model description and setup  

The newly adapted multi-fidelity approach for parameter estimation of subsurface models is first tested 

on a 1D analytical heat transport model. This small-scale application allows a clear assessment of 

different setups with respect to the prior distributions of the unknown (hyper-)parameters. The analytical 

model represents a one-dimensional solution for temperature, T (°C), variation in the subsurface over 

time, t (s), and depth, Z (m). It is calculated based on the thermal diffusivity, κ (m²/s), of the ground and 

seasonal variation of the surface temperature, Ta (°C) (eq. (10)) (Grathwohl, 2012): 

𝑇(𝑍, 𝑡) = 𝑇𝑎 + 𝐴 𝑒𝑥𝑝 [
𝑍

(𝜅 ∗ 𝜏 ∗ 𝜋−1)0.5
] ∗ 𝑠𝑖𝑛 [

2 𝜋 𝑡

𝜏
 − 

𝑍

(𝜅 ∗ 𝜏 ∗ 𝜋−1)0.5
] (10) 

where A (°C) is the annual amplitude of the surface temperature and τ (s) is the frequency of the seasonal 

variations. Accordingly, the average temperature over depth at a certain time is the quantity of interest, 

y, while different times of the year are used as state variable values for x. Ta and A are set to 12 °C and 

15 °C, respectively, reflecting typical climatic conditions in central Europe. Thermal diffusivity of the 

ground is the unknown model parameter to be estimated. In contrast to the examples given in Goh et al. 

(2013) the high- and low-fidelity simulators in our study share the same set of parameters to be 

estimated, θ, as well as the same state variables, x, so the mathematical formulations stated above can 

be simplified. 

The analytical model is expressed at multiple levels of fidelity by varying the resolution in depth, which 

leads to significantly different outputs of the average temperature at the considered time steps. 

Accordingly, the low-fidelity model outputs are obtained for a lower depth resolution (2m) than the 

high-fidelity model outputs (0.05m) (Figure 2). 
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Figure 2: Model outputs of the 1D analytical heat transfer model at different levels of fidelity, i.e. 

different resolutions in depth for the ten time steps used as state variables.  

These data sets are calibrated against synthetic data, generated from the model run with a very fine 

resolution in depth, and a thermal diffusivity of 7.0 * 10-7m²/s, which is a typical value for saturated 

sand and gravel deposits (Stauffer et al., 2013). Knowing the true value of the parameter to be estimated 

allows us to verify that the Bayesian framework is able to quantify the “unknown” parameter correctly. 

Since synthetic data is used in this exercise and no random observational error is assigned to yf, the 

covariance Σε is not included in the mathematical framework (see eqs. (5) and (9)). 

As 10 points in time are considered and the very fine model is evaluated once at each time step, the size 

of data set m = 10. The high-fidelity output data is supposed to stem from a computationally expensive 

model, so 20 Latin Hypercube samples (LHS) are chosen here (representing 20 iterative model 

evaluations) each evaluated at the 10 values of x, which leads to the size of data nh = 200. Based on the 

study by Goh et al. (2013), a higher number of 50 LHS is used for the low-fidelity output data so that 

the size of nl = 500. These larger LHS samples sizes in the multi-fidelity approach, as compared to the 

samples sizes typically used in the single-fidelity KOH framework, are related to the higher number of 

unknown, non-physical hyper-parameter to be estimated here. Prior probability distributions need to be 

defined for all unknown quantities in the KOH as well as the multi-fidelity framework. Regarding the 
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unknown model parameter thermal diffusivity, we test different normal distributions around the true 

value to evaluate the replicability of the estimation results. The prior distributions for the different GP 

hyper-parameters, λ and β, are set according to recommendations given in previous studies (Table 1) 

(Chong and Menberg, 2018; Guillas et al., 2009; Heo et al., 2012; Higdon et al., 2004).  

Table 1: List of uncertain (hyper-) parameters in the single and multi-fidelity parameter estimation 

frameworks. 

parameter parameter description 
prior probability 

distribution 

θ model (calibration) parameters Normal (μ, σ) 

λη precision parameter for model emulator Gamma (10, 1) 

ληl precision parameter for low-fidelity model emulator Gamma (10, 1) 

λδ precision parameter for model bias Gamma (10, 0.03) 

λμ precision parameter for model mismatch Gamma (10, 0.03) 

βη correlation strength parameter for model emulator Beta (1, 0.5) 

βηl correlation strength parameter for low-fidelity model emulator Beta (1, 0.5) 

βδ correlation strength parameter for model bias Beta (1, 0.7) 

βμ correlation strength parameter for model mismatch Beta (1, 0.7) 

 

3.2 Parameter estimation results 

We compare the thermal diffusivity value obtained from the single-fidelity KOH framework (using the 

synthetic data and either the low- or high-fidelity model) against the multi-fidelity approach (using the 

synthetic data and both high- and low-fidelity models) given different prior information on the thermal 

diffusivity. All parameter estimation results show 𝑅̂ values smaller than 1.1, indicating good 

convergence. Figure 3 shows the prior and posterior probability density functions of the thermal 

diffusivity in relation to the defined value in the analytical model used to obtain the synthetic data. For 

the higher prior probability distribution (Figure 3a) both KOH and the multi-fidelity method estimate 

posterior values around the true values, although the posterior from the KOH with the high fidelity 

model and the multi-fidelity framework perform slightly better. For the second prior distribution, 

however, the parameter inference with only the high- or low-fidelity models suggest the thermal 

diffusivity to be smaller than the true value, while the multi-fidelity approach correctly estimates higher 
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diffusivity values. Here, the combination of highly accurate information from the high-fidelity model 

and the additional information of the low-fidelty model steming from a large number of iterative runs 

with a dense sampling of the parameter space, is crucial for a reliable estimation of the true parameter 

value.  

The different error functions in the multi-fidelity framework also allow a comparison of the magnitude 

of the model bias (i.e. discrepancy between the synthetic data and high-fidelity model output) and the 

model discrepancy (i.e. discrepancy between high- and low-fidelity model). The posterior distribution 

of the model bias precision hyper-parameter, λδ, has a higher mean value of 336, than the posterior of 

the model discrepancy hyper-parameter, λμ, with 36 (Figure S1). According to the covariance 

formulation (eq. (4)) this indicates that the model bias is smaller than the model discrepancy. This 

difference of about one order of magnitude is in good agreement with the difference in resolution along 

depth in Figure 2.  

 

Figure 3: Posterior distribution of thermal diffusivity from the standard KOH framework using either 

the low or high-fidelity model (blue lines) versus the posterior distribution obtained from the multi-

fidelity approach (MF) (red line) using both model outputs for two different prior distributions (a & b). 

Dashed line shows the true parameter value. 
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4 Hydro-thermal model of urban subsurface  

4.1 Model description 

Sustainable utilisation of geothermal energy in urban areas requires reliable and detailed knowledge of 

subsurface temperature distribution. Due to the scarcity of ground temperature measurements, numerical 

simulations are often utilised to estimate the ground temperature variations in urban subsurface.  A key 

challenge in modelling urban ground temperatures at large scales are the model size and computational 

expense. The thermal interactions between the ground, surface, underground structures, and 

groundwater variations make the full 3D hydro-thermal modelling of urban subsurface an invalid option. 

Considering the large lateral scale of urban districts (many square kilometres) compared to the vertical 

scale (~ 100m) in such problems, Bidarmaghz et al. (2020) developed and validated a semi-3D 

modelling methodology, in which the 3D volume of the urban subsurface is numerically divided into 

several 2D horizontal planes. Conductive and convective heat transfer and fluid flow are considered at 

horizontal planes. Each set of equations (with variables of temperature, pressure, and velocity) refers to 

one specific plane – at a specific depth – taking into account the geology, hydrogeology and underground 

built environment characteristics at the relevant depth. Heat transfer in Z direction (depth) is evaluated 

by coupling the temperature distribution at each depth (Tn) to the temperature distribution of a shallower 

depth (Tn-1) and a deeper depth (Tn+1) by accounting for the selected vertical distance between the planes 

and effective thermal conductivity of the porous ground. This model is developed and used to analyse 

the impact of heat rejection from 13,000 residential basements in the Royal Borough of Kensington and 

Chelsea (RBKC), London. The basements are single level with a floor area of 50m2, reflecting the 

basement of a typical two-bedroom terrace house and an average ceiling height of 3m. The consequent 

shallow subsurface temperature disturbance is investigated by coupling and solving the heat transfer and 

fluid flow equations in a porous medium (ground) with groundwater flow using COMSOL Multiphysics, 

which is a general purpose finite element solver. Depending on the depth that each 2D plane represents 

in the semi-3D model, its geological distribution and groundwater regime would vary following the 

thickness of the permeable gravel layer overlaying the London Clay Formation. To account for these 
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variations, the correspondent geological units and hydraulic head differences are assigned to the relevant 

2D planes from surface the bottom of the permeable layer. 

Similar to the analytical model presented in Section 3, three levels of fidelity are created for this semi-

3D numerical model. This is done by varying the model resolution by depth, i.e. the number of horizontal 

planes representing the total 3D volume. The resulting so-called fine, intermediate and coarse models 

each comprises a certain number of layers in Z direction (depth) directly correlated to the resolution of 

the model. A maximum depth of 50m is considered in all models to: 1) capture all the geological 

variations down to the base of the London Clay Formation, 2) set the model base boundaries deep 

enough to avoid numerical edge effects and forced temperature constraints. 

The finest, computationally most expensive model (Figure 4a) is used to produce synthetic data for the 

calibration of the coarse and the intermediate model. The fine model consists of 50 horizontal planes 

with a uniform 1m plane interval. A successful parameter estimation also requires computationally 

robust and efficient models for the high- and low-fidelity representations of the problem without 

significantly compromising on the level of details and accuracy. Therefore, the model resolution is 

reduced for the intermediate model (high-fidelity model) by considering a non-uniform plane interval 

distribution by depth. The high-fidelity model consists of 16 planes (Figure 4b), with plane intervals 

selected such that the model captures all the changes from surface to 50m depth including geological, 

hydrogeological and subsurface built environment variations. For example, in RBKC, the depth of the 

permeable River Terrace Deposits varies between 2m to 10m overlaying the London Clay Formation, 

and residential basements have a depth of 3m. The intermediate model, therefore, consists of plane 

intervals of 1-2m for the first 10m below the ground surface, and a uniform 4m plane interval from 10m 

to 50m depth. For the model with the lowest level of fidelity (coarse model), the number of planes is 

reduced to 10 with non-uniform plane intervals varying between 1m, 2m and 10m (Figure 4c). For the 

first 10m where the majority of changes occur, the coarse model has a slightly lower resolution than the 

intermediate model. Deeper than 10m, where the subsurface variations are minor, the model resolution 

is significantly reduced. Model predictions of time and depth-dependent ground temperature at 8 
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selected locations (shown in Figure 4d) are calibrated against synthetically generated observations (fine 

model outputs).  

 

Figure 4: Semi-3D model setup for a) fine model used to generate synthetic data, b) intermediate model 

reflecting high-fidelity output data and c) coarse model reflecting low-fidelity output data, and d) 

location of the eight selected points used in the parameter estimation and section line A-A`.   
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4.2 Uncertainty and Sensitivity Analysis 

In order to reduce the computational demand of the parameter estimation process, a sensitivity analysis 

was conducted on the heat and mass transfer finite element model of RBKC using the Morris method 

with factorial sampling for parameter screening (Menberg et al., 2016; Morris, 1991). In this process the 

parameter space is transformed into a unit-length hypercube, where repeated sampling sequences (so-

called trajectories, t) start at a randomly chosen point and in which one parameter at the time is varied 

by a pre-defined value. The variations in the model output (so-calles elementary effects, EE) due to 

these changes in parameter values from the different trajectories can be statistically evaluated for each 

parameter. Here, we evaluate the absolute mean value μ∗ as an indication of the magnitude of influence 

(Campolongo et al., 2007) (eq. 11), and standard deviation σ as a measure for the spread in the model 

output due to changes in a specific parameter i (Morris, 1991) (eq. 12):  

𝜇∗
𝑖 = 0.5 ∑|𝐸𝐸𝑖𝑡|

𝑟

𝑡=1

 (11) 

𝜎 =  √
1

(𝑟 − 1)
 ∑(𝐸𝐸𝑖𝑡 −  𝜇𝑖)²

𝑟

𝑡=1

 (12) 

The sensitivity analysis evaluated the modelled ground temperature sensitivity to the 10 potentially 

uncertain and important parameters of the finite element model (details of the model set up in 

(Bidarmaghz and Narsilio, 2018; Bidarmaghz et al., 2017)). The uncertain parameters in the model and 

the range of their values are listed in Table 2. The range of initial temperature values is based on 

measured groundwater temperatures in the London area, which are mostly between 10°C and 15.5°C at 

60m depth, with a trend of lower temperatures in the shallow subsurface (Headon et al., 2009). Table 2 

also shows the result of the sensitivity analysis, as modified mean μ∗ and standard deviation σ, which 

were obtained with 110 runs of the fine model (10 parameters and a chosen trajectory number of t=10). 

We use the parameter estimation process to infer the uncertainty in the four most influential parameters: 

1) ground initial temperature, 2) thickness of gravel, 3) surface cover type and 4) density of basements.  
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Table 2: Uncertain model parameters and sensitivity analysis results from Morris method.  

rank parameter unit 
true 

value 

minimu

m 
maximum 

mean 

(*) 

standard 

deviation 

(σ) 

1 ground initial temperaturea,b °C 12.5 9 15 4.45 4.06 

2 thickness of gravelc,d m 8 2 10 3.02 3.64 

3 surface cover typee - 0.8 0.1 0.9 2.56 2.99 

4 density of basements - 1 1 2 2.22 2.39 

5 heat source temperaturef °C 18 18 22 1.18 1.28 

6 depth of heat source  m 3 3 18 0.88 1.21 

7 ground hydraulic conductivityg  m/s 5.6e-4 3.3e-6 3.3e-3 0.62 0.77 

8 thermal conductivity (gravel)a W/(m.K) 2.5 0.77 2.6 0.37 0.53 

9 hydraulic head differencec,h m 10 4 12 0.40 0.39 

10 thermal conductivity (clay)a W/(m.K) 1.7 1.5 2.45 0.18 0.27 

a Busby et al. (2009) b Price et al. (2018)  c Bidarmaghz et al. (2019b) d BGS (2017) 
e Baggs (1983)  f Heo et al. (2012)  g Bricker and Bloomfield (2014)  
h Mansour et al. (2018)  

4.3 Setup of the inverse problem 

As aforementioned, 8 locations in RBKC were selected to investigate the time and depth-dependent 

ground temperature variations as the quantity of interest. The synthetic data (m) mimics field 

measurements of ground temperatures at these 8 different locations (combinations of X and Y values), 

and at each location, for 10 points in depth (Z). Thus, there are m = 80 total observations, which follows 

the rationale that field data measurements are typically scarce and limited in depth. These are generated 

by running the fine model with the ‘true’ parameter values listed in Table 2 and shown in Figure 5.  

The 3D spatial coordinates (X, Y, and Z) are used as state variables (x) in the Bayesian framework, as 

the temperature is expected to vary spatially. Indeed, as shown in Figure 5, the temperatures as well as 

the difference between the models vary from point to point within RBKC. Locations that have larger 

depths of permeable ground and therefore, larger ground temperature disturbance, show significant 

output dependency to the subsurface resolution of the model (such as point 7 in Figure 4d with 10m of 

River Terrace Deposits and the associated temperature profile shown in Figure 5a). In contrast, at points 

where the permeable material is shallow, the impact of model resolution on temperature outputs 
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decreases, resulting in smaller deviations between synthetic data, and high- and low-fidelity outputs 

(points 6, 5 and 1 in Figure 4d with 5m, 2m and 0m of permeable ground respectively).  

 

Figure 5: Model outputs of the heat and mass transfer processes obtained with the true values from 

Table 2 after 25 years at different points in RBKC (refer to Figure 4d) with different depths of 

permeable River Terrace Deposits: a) 10m, b) 5m, c) 2m and d) 0m. 

As aforementioned, the intermediate model represents a high-fidelity model of heat and fluid transport 

in RKBC. As for the analytical problem, it is run with 10 LHS samples of parameter combinations. Each 

model execution is evaluated at the same 8 values of X and Y, but only for 3 points in depth (1m, 10m, 

50m). Hence, we have nh = 8 x 3 x 10 = 240 high-fidelity model outputs. The low-fidelity, i.e. the coarse 

model, is run with 50 LHS samples of parameter combinations, and each model execution is evaluated 

at only 2 points in depth (1m, 10m) at the 8 locations. Thus, we have nl = 8 x 2 x 50 = 800 low-fidelity 

model outputs. Accordingly, the dimension of the overall data matrix, z, equals 1120*1120 (including 

the m = 80 total observations), which is still suitable for inversion. These are shown in Figure 6. 
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The selection of LHS sample size follows the rationale that the expensive numerical model is executed 

fewer times to minimize computational burden, yet the few samples provide accurate information at a 

few crucial points in the parameter space. The cheaper, low-fidelity model is evaluated for a larger range 

of combinations of model parameter values, providing information that is less accurate but covers the 

parameter space well. The prior distributions for the GP hyper-parameters are set identically to the 

analytical problem (Table 1). The four model parameters to be estimated are assigned normal 

distributions with mean values set arbitrarily higher and lower than their true values, and standard 

deviations that cover the true values (Table 3).  

Table 3: Specified prior distributions for the calibration parameters of the RBKC model.   

parameter distribution 

ground initial temperature Normal (10.9, 1.2) 

thickness of gravel Normal (6.0, 1.6) 

surface cover type Normal (0.5, 0.16) 

density of basements Normal (1.5, 0.2) 

 

 

Figure 6: Input data for the single and multi-fidelity parameter estimation at each location. The depth 

refers to the corresponding layer of the semi 3D numerical model picked for temperature evaluation.  
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4.4 Parameter estimation results  

The single (KOH) and multi-fidelity parameter estimation frameworks are applied using the data sets 

shown in Figure 6 to infer the posterior probability distributions of the most influential parameters of 

the numerical model. 𝑅̂ values for all unknown (hyper-)parameters were below 1.1 indicating good 

convergence of the HMC chains.  

The results from the two parameter estimation frameworks in Figure 7 reveal a significant difference. 

The KOH framework using only the low-fidelity model yields rather wide posterior distributions, which 

for the first two parameters show shifts away from the true parameter values. Although the KOH 

framework correctly identifies a large model bias function (i.e. between the low-fidelity model and the 

synthetic data), the information contained in the sparse amounts of synthetic data is insufficient to learn 

about the model parameters. The exercise with only the high-fidelity model significantly improves the 

parameter estimation for the gravel thickness and surface cover. This is because the high-fidelity model 

is composed of more layers in the shallow subsurface (up to 10 m depth). Hence it contains temperature 

outputs that contain information relevant to these two parameters (Figure 4b & c). Neither the low-

fidelity nor the high-fidelity model parameter estimation result in correct inference of the other two 

parameters: initial ground temperature and density of basements. On the other hand, the mode values of 

the posterior distributions of all four parameters obtained from the multi-fidelity framework agree very 

well with their true parameter values. Also, the narrow ranges of uncertainty around the mode values 

reflect a high degree of confidence about these values, which leads to overall excellent results for this 

parameter estimation exercise (Figure 7). Additional parameter estimation exercises with varying prior 

distributions for the hyper-parameters of the KOH and the multi-fidelity approach show that the median 

values of resulting posteriors of the four model parameters are very consistent (Figure S2, S3 & S4), 

which higlights the robustness of the parameter estimation results.  
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Figure 7: Parameter estimation results for the four influential parameters (a-d) of the numerical model 

shown as assumed prior probability distribution, posterior probability distributions using one set of 

model outputs (KOH) each, and both data sets at different levels of model fidelity (MF).  

To investigate the contribution of the proposed parameter estimation framework to the accuracy of the 

subsurface hydro-thermal model, the mode values of the inferred parameters (posteriors) are fed back 

into the high-fidelity numerical model. Results show that the deviation of ground temperatures from the 

synthetic data are significantly reduced compared to the deviation resulting from using the prior 

estimates of model parameters. These are displayed in Figure 8 which shows the temperature 

discrepancy resulting from the mode values of the prior and posterior estimates along section A-A’ of 

the modelled area. More importantly, Figure 8 shows that there are distinct differences in the magnitude 

of discrepancy reduction across the different areas of the modelling domain, both horizontally and in 



Manuscript draft accepted for publication in Sciene of the Total Environement (July 2020) 

26 

 

 

the exemplary depth layers. In areas where the ground is dominantly consisting of London Clay (e.g. 0-

4500m), the ground temperatures obtained from the model with the estimated values show relatively 

smaller deviation than the model with the prior values for all depths. Conversely, in the southern part of 

the district (ca. 4700-6700m), where shallow ground consists of sand and gravel, both prior and posterior 

model results show smaller deviation in shallow depths, which becomes larger by depth. These 

observations are attributed to different heat transfer mechanisms occurring in different parts of the 

studied area. Within the London Clay Formation, heat transfer is dominated by conduction, in which the 

ground temperature distribution is largely impacted by the initial thermal state. In the southern parts of 

the area, however, heat transfer at shallow depth is mainly by convection, which reduces the effect of 

initial ground temperature. Therefore, deviations for both prior and posterior models are relatively small 

at shallow depths and become larger where the ground consists of London Clay at greater depths. When 

interpreting these findings one has to bear in mind, that the model results are compared against synthetic 

data obtained from a very accurate model, and not to real data. Thus, the results are a reflection of 

increased accuracy of the heat and mass transport modelling and their influence on subsurface 

temperature elevations. These, in turn impact the robustness of planned geothermal systems, in terms of 

efficient and sustainable use, as well as cost-efficient system installation.  

It has to be noted that due to the use of synthetic data from the fine model, the training data contains no 

noise. Using real data would require additional random error terms in the Gaussian Process emulation 

(see eqs. (6) and (9)), and that would increase the number of unknowns to be estimated. Also, previous 

studies that applied the KOH framework to other types of numerical models observed a potential 

confounding of inference between the model bias (in our synthetic example the error between the finest 

and the intermediate model) and the random (measurement) error, which leads to larger confidence 

intervals of the estimated parameters (Li et al., 2016; Menberg et al., 2017; Menberg et al., 2018). On 

the other hand, the comparably intuitive interpretation of the GP hyper-parameters of the error terms as 

precision and smoothness of the error functions over x and θ also allows a detailed assessment on where 

improvement of the model or more informative data is needed.  
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Figure 8: Temperature deviation between the synthetic model output (true parameter values) and the 

model output using the prior and posterior mode values in the high-fidelity model, respectively, along 

section line A-A’ (see Figure 4d) at a) 3m, b) 10m and c) 40m depth. 

Apart from the run time of the numerical models, the computational costs of matrix inversion during the 

parameter estimation represent a significant factor. Obviously, the multi-fidelity framework with a 

matrix size of zMF=1120*1120, has higher computational expenses than a single model framework 

(zSF=880*880). While the increase in precision and accuracy of the estimated parameter is significantly 

worthwhile, it is advised to use a programming language that is efficient at matrix calculations, such as 

Cholesky decomposition. It also has to be mentioned, that compared to traditional parameter estimation 

approaches, which aim at minimizing solely the error between model output and observations, our 

Bayesian multi-fidelity approach is likely to be more time-consuming, due to the large sets of model 

output needed for the inference of the hyper-parameters. Yet, it provides potentially interesting 

information about the different error terms.   

The multi-fidelity Bayesian framework presented in this study is also specifically designed to work with 

Gaussian Process emulators. This means that once the training data for these is generated, there is no 
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need to run the expensive numerical models again. This allows testing different parameter estimation 

setups (e.g. in terms of prior distributions, data sub-sets, etc.) more efficiently than in frameworks, which 

calibrate directly against outputs from the numerical codes. In our study, we were thus able to use 

different combinations of XY-planes at different depths Z from the high- and low-fidelity model outputs 

for building the GP models. Parameter estimation results from those different GP models revealed a 

strong sensitivity to the information contained at different depths of the numerical model. In particular, 

a good estimation of the initial ground temperature value requires information from the deep layers, as 

the temperature change over time in this depth is minimal, and thus the absolute temperature after 25 

years of simulation time is very sensitive to the initial state. This example shows that multiple re-

iterations of parameter estimation with the emulators under different input data settings can provide 

valuable knowledge and enhance our understanding of subsurface heat and mass transport processes. 

5 Conclusion 

This paper presents a novel Bayesian parameter estimation approach using outputs from models at 

different levels of fidelity, reflecting different spatial resolutions and accordingly different 

computational burdens. Our framework combines information from a few parametric model outputs 

from a physically accurate, but expensive, high-fidelity computer model, with a larger number of 

evaluations from a less expensive and less accurate low-fidelity model. This enables us to include 

accurate information about the model output at sparse points in the parameter space, as well as dense 

samples across the entire parameter space, albeit with a lower physical accuracy.  

We first apply the multi-fidelity approach to a simple 1D analytical heat transfer model, and secondly 

on a semi-3D coupled mass and heat transport numerical model, and estimate the unknown model 

parameters. By using synthetic data generated with known parameter values, we were able to test the 

reliability of the new method, as well as the improved performance over the standard single-fidelity 

approach, under different framework settings. Overall, the results from the analytical and numerical 

model show that combining 50 runs of the low resolution model with data from only 10 runs of a higher 
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resolution model significantly improved the posterior distribution results, both in terms of agreement 

with the true parameter values and confidence interval around this value.  

In addition to estimating unknown model parameters, the Bayesian formulation allows examination of 

error terms, such as model bias and the discrepancy between high- and low-fidelity model, and thus the 

loss in accuracy when decreasing the model resolution. As we use synthetically generated data in our 

studies, the resulting errors terms showed realistic magnitudes. However, it is well known that the 

inference of error terms is likely to be more limited when large random (measurement) noise is present 

in the data. Also, the novel framework hugely benefits from the use of Gaussian Process models for 

emulating numerical model outputs, as well as error functions, which allows re-estimation (and thus re-

calibration) under different settings without additional runs from the expensive numerical model. In 

particular, for large-scale, coupled heat and mass transport models this represents a significant advantage 

over manual or existing parameter estimation frameworks.  

While the use of synthetic data allows assessment of the performance of the single and multi-fidelity 

approach, it also simplifies the inverse problems and reduces the number of unknown parameters to be 

estimated in the Bayesian framework. The next steps for further testing of the method are therefore 

employing real data from field measurements and adding statistical formulations for model prediction 

based on the inferred posterior distributions of the estimated parameters. This will also facilitate a 

comprehensive comparison with other calibration frameworks, in terms of accuracy and predictive 

power. Also, many other forms of structural uncertainty exist, besides spatial discretization that is 

employed here. It might be worthwhile for future studies to look into spatial heterogeneity, as a major 

contributor to overall uncertainty in many subsurface flow and heat models. 
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