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Abstract

Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial
bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies
between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic variation,
linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from
each cross were assessed for tolerance to a range of stresses encountered during industrial bioethanol fermentations.
Tolerance levels within populations of F1 segregants to stress conditions differed and displayed transgressive variation.
Linkage analysis resulted in the identification of QTL's for tolerance to weak acid and osmotic stress. We tested candidate
genes within loci identified by QTL using reciprocal hemizygosity analysis to ascertain their contribution to the observed
phenotypic variation; this approach validated a gene (COX20) for weak acid stress and a gene (RCK2) for osmotic stress.
Hemizygous transformants with a sensitive phenotype carried a COX20 allele from a weak acid sensitive parent with an
alteration in its protein coding compared with other S. cerevisiae strains. RCK2 alleles reveal peptide differences between
parental strains and the importance of these changes is currently being ascertained.
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Introduction microbial fermentation [3]. In order to replace fossil fuels,
industrial scale biofuel production from lignocellulose, will rely
on the efficient conversion of all the sugars present in the feed
stocks to maximise profits, economic viability and importantly, to
obtain a smaller carbon footprint.

Saccharomyces cerevisiae is currently used for the production of
bioethanol. First generation bioethanol production has involved
the conversation of hexose sugars present in cash crops such as
sugar cane in Brazil and Maize in the United States of America
[4]. Future 2" generation production will rely not only on
fermentation of hexose sugars, but also of pentose sugars present in
plant cell walls in approximate equal amounts [3]. S. cerevisiae
cannot currently convert pentose sugars to bioethanol effectively,
but studies towards alleviating this problem are underway [5]. To
further increase the efficiency of fermentation, the problem of pre-
treatment generated inhibitor compounds, and fermentation

Fossil-based hydrocarbon fuels for generating energy, such as
coal and crude oil, are not infinite resources and at the present rate
of human consumption are predicted to be completely depleted by
2050 [1]. In order to sustain and satisfy the appetite of the planet’s
developed economies and the increasing demands of newly-
emerging industrial nations, alternative ‘renewable’ forms of
energy need to be utilised to ease the current rate of fossil fuel
consumption and to eventually replace them completely. One such
renewable source for these alternative forms of energy is
lignocellulosic residue from agricultural, forestry, municipal or
industrial processes [2]. Sugars can be released from the
lignocellulosic feedstocks using industrial pre-treatment processes,
followed by enzymatic digestion and then converted to transpor-
tation biofuels, such as bioethanol, biobutanol or biodiesel by
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stresses, also has to be addressed. Pre-treatment of lignocellulose to
release constituent sugars results in the formation of aromatic and
acidic compounds such as acetic acid, formic acid, furfural,
hydroxy-methyl furfural (HMF), levulinic acid and vanillin [6] that
are detrimental to the growth of S. cerevisiae. In addition,
fermentations carried out within bioreactors generate additional
difficulties, such as osmotic stress due to high sugar levels, elevated
heat and increasing ethanol concentrations [7-9]. Thus, resistance
to all these fermentation stresses are desirable phenotypic
attributes for improved bioethanol productivity.

Five clean lineages (West African, Wine European, Sake, North
American and Malaysian) of S. cerevisiae represent major clades
[10] and have been engineered to enable genetic tractability [11].
When two of these clean lineages are crossed and the resulting F1
hybrids sporulated to generate an F1 offspring population, the
progeny display a wide range of phenotypes including transgres-
sive variation [12]. All F1 segregants from six pairwise crosses of
four of these clean lineages (West African, Wine European, Sake
and North American) have been extensively genotyped and
phenotyped for growth in many environmental conditions of
ecological relevance [10]. This has enabled these clean lineages to
be used as powerful tools and models to determine multigenic
traits using QTL analysis. Using these F1 segregants, we have
performed phenotypic analysis of metabolic output in the
presences of stresses encountered during fermentation of lignocel-
lulosic biomass and determined QTLs governing complex traits
important for bioethanol production. By coupling our analysis to
selective breeding and evolutionary engineering, novel yeast
strains can be produced with inherent properties for improving
industrial 2" generation bioethanol production [13,14].

Materials and Methods

Yeast strains and growth conditions

We selected four representative clean lineage strains (North
American (NA): YPS128, West African (WA): DBVPG6044, Sake
(SA): Y12, Wine/European (WE): DBVPG6765) [10]. Previously
derived stable haploid versions (ho::HygMX, wra3::KanMX) from
the original wild-type homothallic strains were used [11]. Haploid
strains with opposite mating types (MatA and Mato) were crossed

Table 1. Primers utilised during this study.

Variation of Saccharomyces cerevisiae in Response to Stresses

to produce diploid hybrids of the parental isolates. All segregants
are available at the National Collection of Yeast Cultures (http://
www.ncyc.co.uk/index.html). We used isogenic yeast strain CC26
as the diploid parent of DBVPG6044xY12 and CC16 as the
diploid parent of YPS128xY12 [11] as the basis for reciprocal
heterozygosity and qPCR experiments. BY4741 under non-stress
conditions was used as a negative control for gPCR experiments.

For general vegetative growth, either yeast extract peptone
dextrose (YPD) medium [1% yeast extract (Oxoid); 2% (w/v)
Bacto-peptone (Oxoid); 2% (w/v); 2% (w/v) glucose], or
synthetically defined (SD) medium [0.67% (w/v) yeast nitrogen
base (YNB) with amino acids and ammonium sulphate; 6% (w/v)
glucose] were used. Cultures were cryopreserved in 20% (v/v)
glycerol at —80°C.

Phenotypic microarray analysis

For phenotypic microarray (PM) analysis, medium was
prepared using 0.67% (w/v) yeast nitrogen base (YNB) supple-
mented with 6% (w/v) glucose, 2.6 ul of yeast nutrient supplement
mixture (NS x48- 24 mM adenine-HCI, 4.8 mM L-histidine HCI
monohydrate, 48 mM L-leucine, 24 mM L-lysine-HCI, 12 mM L-
methionine, 12 mM L-tryptophan and 14.4 mM uracil) and 0.2 ul
of dye D (Biolog, Hayward, CA, USA). The final volume was
made up to 30 pL. using sterile distilled water, inhibitory
compounds were added as appropriate and water removed to
maintain a 30 pL. volume. Stock solutions (1 M) of the aliphatic
weak acids acetic acid, formic and levulinic acid were prepared
using reverse osmosis (RO) sterilised water; furfural, HMF and
vanillin were prepared as 1 M stock solutions in 100% ethanol. A
stock solution of 80% sorbitol (w/v) was prepared and adjusted to
generate 10% and 15% (w/v) concentrations in a final volume of
120 pl. For ethanol 10% (v/v) and 15% (v/v) was used to induce
ethanol stress. Temperature was adjusted to either 30°C, 35°C, or
40°C and data was taken at 15 min intervals for 96 hours at 30°C
and 35°C, and for 24 hours at 40°C. Assays at 40°C were limited
in terms of time due to the effect of evaporation if measured for
96 hours. Medium containing glucose, YNB, NS, dye, water and
inhibitory compounds (as appropriate) were prepared in bulk
corresponding to the number of wells for that particular
experiment and 30 L aliquoted out per well as appropriate.

Gene/Application Primer Sequence 5’ to 3’

COX20 deletion forward
primer

COX20 deletion reverse
primer

RCK20 deletion forward
primer

RCK20 deletion reverse

primer

COX20F sequencing forward GAAACGCGAGCTGAGAAGGG
primer

CPX20R sequencing reverse ~ CGGCATGCAAGACCAGTCAA
primer

RCK2F sequencing forward AGAAAAGACGGATCGGCCAA
primer

RCK2R sequencing reverse GGAAGGGGCGAACAATG

primer

AAACTCCACTGCTCGGTAAAGCATTGTAGTGAAGTCCACAGCAGTGCGTAACGAGCAGCTCAACAGTTAATATAAAGATGagcttttcaattcaattcatcat

TTTCGGAGAAATGTTGCATATATACATAGGAAAACGGTTAAAAGGCCCTGCTTCTACCTTCTGTTTCCCCCTCGTTCTTTagctttttctttccaatt

ACATTTAACGATTGGAAAAGACGAAAGTATTGTTAAGAGTACTGCTTATTTAGAGAGGATCAAACAAAATCTCTTCGagcttttcaattcaattcatcat

TATACTTGTAGAAGGAGTTTAATGTATATATATC AAAAAGGAATAGGTAAAAAGATTGAAACAGAAGGGAAAGTTGagctttttctttccaatt

doi:10.1371/journal.pone.0103233.t001
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Sequences in lower case indicates target site corresponding to URA3 in the pAG60 cassette.
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Figure 1. Phenotypic microarray analysis (redox signal intensity) of F1 haploid segregants from a Y12 xDBVPG6044 cross. Tolerance
to (A) 10% and 15% sorbitol, (B) 10% and 15% ethanol, (C) 35°C and 40°C, (D) 25 mM acetic acid, (E) 10 mM formic acid, (F) 10 mM levulinic acid, (G)
5 mM HMF, (H) 5 mM furfural and (I) 5 mM vanillin are shown. The Y axis represents the % of RSI (redox signal intensity) where wells containing the
listed stresses are compared to unstressed conditions. All yeast cells were grown in minimal medium with 6% glucose added at 30°C with the final
data shown at the 25 hr time point. The values shown are an average of triplicate experiments including standard deviations.

doi:10.1371/journal.pone.0103233.g001

Strains were prepared for inoculation onto PM assay plates as
follows. Glycerol stocks stored at —80°C were streaked on to YPD
plates to obtain single colonies and incubated at 30°C for
approximately 48 hrs. Two to three colonies from each strain
were then patched on a fresh YPD plate and incubated overnight
at 30°C. Cells were then inoculated into sterile water in
20x100 mm test tubes and adjusted to a transmittance of 62%
(~5x10° cells.mL™") using sterile distilled water and a turbid-
ometer. Cell suspensions for the inoculum were then prepared by
mixing 125 pl of these cells and 2.5 mL of IFY buffer (Biolog,
USA) and the final volume adjusted to 3 mL using RO sterile
distilled water, 90 pl of this mix was inoculated to each well in a
Biolog 96-well plate. Anaerobic conditions were generated by
placing each plate into a PM gas bag (Biolog, Hayward, CA, USA)
and vacuum packed using an Audion VMS43 vacuum chamber
(Audion Elektro BV, Netherlands).

An OmnilLog reader (Biolog, Hayward, CA, USA) was used to
photograph the plates at 15 min intervals to measure dye
conversion, the pixel intensity in each well was then converted
to a signal value reflecting cell metabolic output. After completion
of each run, the signal data was exported from the Biolog software
and analysed using Microsoft Excel. In all cases, a minimum of
three replicate PM assay runs were conducted, and the mean
signal values are presented. Percentage redox signal intensity was
calculated using the redox signal intensity values at 48 hrs for each
stress condition and normalised by dividing this value by the value
under non-stress conditions at the same time point except for
thermal stress at 40°C, where this was calculated using the redox
signal intensity values at 24 hours for control and stressed
conditions.

R statistical computing environment

Data from the 48 hr time points were analysed using Linkage
analysis was performed with jOQTL (http://churchilljax.org/
software/jqtl.shtml), a java graphical interface for R/qtl package
x86_64-wb4-mingw32/x64 [15], data converted into comma
delimited files and run on a R workspace. RGui 64 bit is a free
to use software for statistical analysis package http://cran.r-
project.org/bin/windows/base/. This package was used to
compare sugar utilisation of haploid S. cerevisiae yeast strains.

Linkage Analysis

Linkage analysis was performed with the jOTL software
(Churchill group) [16]; we calculated logarithm of the odds
(LOD) scores using the nonparametric model. The significance of
a QTL was determined from permutations. For each trait and
cross, we permutated the phenotype values within tetrads 1000
times, recording the maximum LOD score each time. We called a
QTL significant if its LOD score was greater than the 0.05 tail of
the 1000 permuted LOD scores.

Reciprocal Hemizygosity Analysis

To validate the presence of contributing genes within QTL’s,
we used a modified reciprocal hemizygosity assay [17]. The URA3
gene (essential for pyrimidine biosynthesis) previously deleted in
parental strains [11] was used as an auxotrophic selectable marker.

PLOS ONE | www.plosone.org

Reciprocal hemizygosity analysis was performed for genes lying
within QTL’s identified on chromosomes IV and XIII (acetic acid
tolerance) and chromosome XII (osmotic stress tolerance). Using
crosses of parental strains (CC16: YPS128xY12, and CC26:
Y12 xDBVPG6044) each allele of each gene was deleted, resulting
in a hemizygous diploid carrying one parental allele [17]. To
generate gene deletions, synthetic oligonucleotide primers were
designed to produce disruption cassettes. Each primer contained
80-bp of sequence homology for the selected gene’s open reading
frame (ORF) immediately flanking the start and stop codons
(Table 1). The addition of sequence homologous to pAG60
(Euroscarf Germany) at the 3’ end of each primer allowed the
amplification of the Kluyveromyces lactis URA3 gene as an
auxotrophic selectable marker. The URA3 gene from Kluyver-
omyces lactis, KIURA3, functions in S. cerevisiae but has litte
sequence homology which prevents recombination with the native
ScURA3 gene locus to improve transformation efficiency.
Amplification by PCR results in KIURA3 flanked by 80-bp of
sequence homologous to the target gene to be deleted. PCR
amplified URA3 deletion cassettes targeting each gene were
transformed into each corresponding heterozygote hybrid diploid
parent using methods described in Gietz and Schiestl, 2007 [18].
Positive transformants were selected on SD agar plates supple-
mented with all amino acids supplements, minus uracil (-URA)
and incubated at 30°C until colonies were formed. Single
transformants were picked and re-streaked onto fresh selective
plates to ensure pure isolates. Single colonies from these plates
were patched and used for further analysis.

Sequence analysis

To confirm allelic variation in strains during reciprocal
hemizygosity analysis sequencing was used. PCR amplification
was performed using primers (COX20F and COX20R: RCK2F
and RCK2R Table 1) with an initial denaturation of 98°C for 30 s
followed by 35 cycles of 98°C for 10S; 60°C for 30S, 72°C for
2 min and a final elongation for 72°C for 5 min using Phusion
Taq polymerase (NEB, Ipswich, UK). PCR generated amplicons
were purified using commercially available purification columns
(Qiagen, Netherlands) and sequenced using the MWG Eurofin
service (Ebersberg, Germany). Six tranformants were sequenced
for each gene.

Each sequence read from the amplified PCR products were
compared against sequences from the Saccharomyces genome
resequencing project available on the Welcome Trust Sanger
Institutes website (https://www.sanger.ac.uk/research/projects/
genomeinformatics/sgrp.html) using Vector NTI Advance ver-
sionl1 (Invitrogen, Paisley, UK). Amino acid sequence differences
were identified in Cox20p and Rck2p proteins from each clean
lineage using the BLAST tool in the SGRP site

Quantative PCR analysis

The diploid hybrid strains used to generate the reciprocal
hemizygotes were used in gPCR analysis, (CC26-for osmotic stress
and CC16 for acetic acid stress). These were grown to the mid-
logarithmic stage of growth in YPD at 30°C and stressed by the
addition of 25 mM acetic acid, or 20% sorbitol for 15 min, rotated
at 150 rpm. Cells were broken with glass beads using a

August 2014 | Volume 9 | Issue 8 | 103233
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Figure 2. Assessment of variation of yeast populations to stresses encountered during bioethanol fermentations. F1 segregants from
six pairwise crosses of four parental S. cerevisiae clean lineages were tested for (A) acetic acid, (B) formic acid, (C) HMF, (D) furfural (E) vanillin (F)
sorbitol, (G) ethanol and (H) thermal (35°C) stress. Each population exhibited a range of tolerance and sensitivity beyond the parameters set by the

phenotypic response of either parent.
doi:10.1371/journal.pone.0103233.g002

MagNalyser (Roche, Burges Hill, UK) bead beater for 30 seconds
at 4°C, before incubating on ice for 15 min to precipitate proteins.
Cell debris and proteins were harvested by centrifugation for
15 min (17,000 x g at 4°C). The cell-free supernatant was used for
the extraction of total RNA using an isolation kit from Qjagen
(Hilden, Germany) and cDNA prepared using a first strand cDNA
synthesis kit (GE Healthcare, Bucks, UK). Transcriptional levels
were determined by qPCR using the following conditions follows:
0.5 ng/pl ¢cDNA, 6.25 uM forward primer, 6.25 uM reverse
primer, 5 pl of 2x SYBR Green master mix (Applied Bio Systems)
and made up to 20 pl using molecular grade water. All data was
compared against ACTI as an internal normaliser and expression
data from genes within the relevant loci were presented as fold-
change in comparison to ACTI transcript levels in control and
stress conditions.

Results

The phenotypic response of haploid F1 segregants
derived from a six pairwise crosses to stresses
encountered during bioethanol fermentation

Using a phenotypic microarray assay, we analysed 96 haploid
F1 segregants, derived from six pairwise crosses between four clean
lineage strains of S. cerevisiae, for their response to stresses
encountered during bioethanol fermentation. By comparing
profiles of stressed cells to non-stressed control cells, (defined here
as the percentage of redox signal intensity to that of a control) we
determined the response of each F1 segregant population to each
individual stress from each cross. Typical results from one of these
crosses are shown in Figure 1 A-H (96 haploid F1 segregants plus
parental strains) and for other crosses as Figure S1 and data S1,
S2, S3, S4, S5, S6. These plots demonstrated considerable
phenotypic variation and which was observed in all populations
of haploid segregants and to every stress assayed, and did not
correlate with the phenotypic response of either parental strain
(Figures 1A—1H). This observation of continuous variation among
offspring with no large step changes is consistent with being
polygenic for each individual stress.

Transgressive variation with some better than either
parent in the segregant populations is not universal
The local neutrality hypothesis has been defined as the process
of shaping the yeast genotype-phenotype map causing large
differences in fitness within a population [19]. This hypothesis
suggests that loss-of function mutations in parental lineages
promote a strong bias towards superior F1 hybrids compares to
parental yeast strains, however, how F1 haploid segregants
perform is more complex as they will contain multiple bad
combinations revealed in their haploid status. We characterised
the phenotypic response of each of the populations of F1 haploid
segregants, as compared to their parents for tolerance to a range of
stress conditions (Figure 2). For stress conditions such as acetic
acid, or HMF, there was a clear improvement in the performance
of the offspring when compared to their parents (Figures 2A and
2E). Response to formic acid, sorbitol and temperature stress was
dependent on the particular population screened. In some
populations, an increase in tolerance, when compared with either
parent was observed e.g. Y12xDBVPG6044 to formic acid;

PLOS ONE | www.plosone.org

(Figure 2B), other populations displayed sensitivity to the same
stress (DBVPG6044 xDBVPG6765 to formic acid) (Figure 2B).
However, for population responses to furfural, vanillin and ethanol
there was a reduction in tolerance in the F1 progeny when
compared with their parental strains (Figures 2C, 2E and 2G).
However, even when in general performances of the 'l haploids
were worse than either parent, we still observed individuals within
the population which outperformed either parent.

Population response to one stress can be linked to
tolerance to other stresses

Ranking of F1 haploid segregants according to their response to
an individual stress allowed us to look for shared phenotypes with
respect to their individual responses to the other stress inducing
conditions. Using this approach it was observed that the haploid
segregants response to acetic acid tended to correlate with their
response to formic acid (Figures 3A-3F). We also observed that
haploid segregants populations stressed with HMF, furfural and
vanillin also shared common phenotypic responses (Figures 3A—
3F). However, there were exceptions to this observation, as there
was little correlation in response to furfural and vanillin in the F1
population derived from the Y12xYPS128 cross (Figure 3A), the
same was observed between HMF and vanillin stress in haploids
segregants derived from a DBVPG6044 xDBVPG6765 cross
(Figure 3C). There was also an association in the phenotypic
response to osmotic stress (sorbitol) and ethanol stress in some F1
segregant haploid populations such as DBVPG6765xY12 (Fig-
ure 3E) but not in others such as the DBVPG6044 xDBVPG6765
cross (Figure 3C). In general, data from temperature stressed 1
segregant haploid populations correlated well (Figures 3A, 3C,
3D, and 3E). However, some populations failed to show this
correlation (Figures 3B and 3F).

Identification of QTL's for stresses encountered in
bioethanol fermentation

Inhibitory compounds released during pre-treatment processes
affect microbial growth and therefore the efficiency of bioethanol
production. Using QTL analysis, we identified three loci which to
a degree overlapped each other on chromosome IV under acetic
acid stress and formic acid stress, from different crosses (Table 2).
A further locus was identified on chromosome XIII from the
Y12xDBVPG6044 cross for acetic acid tolerance; this cross also
generated a locus in response to formic acid on chromosome XI
(Table 2). Additional loci were identified on chromosome XII for
tolerance to osmotic stress under anaerobic conditions from the

YPS128 xDBVPG6765 and YPS128 XY 12 crosses (Table 2).

Identifying genes present in QTLs involved in yeast
response to stress

All genes present within the identified Q' T'Ls are listed (data S7),
as each QTL contained between 40 and 60 genes and we focused
our research on the QTL’s identified on chromosomes IV (acetic
acid tolerance) and XII (osmotic tolerance), as they were identified
from different populations and growth conditions.

Expression data from the loci identified under acetic acid stress
on chromosome IV in the hybrid DBVPG6044 xY12 (Figure 4),
identified genes up-regulated such as mitochondrial cytochrome C

August 2014 | Volume 9 | Issue 8 | 103233
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Figure 3. Statistical comparison (using R) of F1 haploid segregants. F1 haploid segregants were grown under stress conditions from crosses
(A) Y12xYPS128, (B) YPS128 xDBVPG6765, (C) DBVPG6044 X DBVPG6765, (D) Y12 xDBVPG6044, (E) DBVPG6765 %Y 12 and (F) YPS128 xDBVPG6044 for
shared phenotypic response to acetic acid, formic acid, furfural, HWMF, vanillin, osmotic (sorbitol), ethanol and temperature (35°C and 40°C).

doi:10.1371/journal.pone.0103233.g003

oxidase assembly gene COX20, (Figure 4A). Cytochrome C
oxidase activity has been associated with acetic acid induced
programmed cell death [20]. Furthermore, expression data from
all the genes within the loci identified under osmotic stress on
chromosome XII in the hybrid (YPS128 xDBVPG6765), identi-
fied genes up-regulated under osmotic stress including Hsp60p a
known heat shock protein in S. cerevisiae [21,22], It was observed
that the majority of the genes present in this locus (area
corresponding to 599-699 kb) were down-regulated under
osmotic stress (Figure 4B). This was similar for the expression
data for the genes present in the locus (area corresponding to 389—
489 kb) identified from the YPS128 and Y12 cross, five genes were
up-regulated TISI11, SMD3, STMI, YLRI49¢ and PCDI
(Figure 4C). Amongst those genes down-regulated is PUTI which
has been identified as important in yeast as a response to osmotic
stress [23].

Dissection of weak acid QTL’s from chromosomes IV and
Xl

Using the expression data under acetic acid stress and the
putative roles of genes underlying the two QTL, following a review
of gene function, a number of candidate genes were selected for
further testing. These were ADH3, GCN2, MSN2, COX20 and
AACI. All of these candidates were subjected to reciprocal
hemizygosity analysis. A distinct segregation into tolerant and
sensitive heterozygous diploid transformants was observed in the
case of COX20; sequencing of the remaining COX20 allele in each
case revealed that sensitive transformants carried the COX20 allele
inherited from S. cerevisiae strain Y12. We had previously shown
that Y12 displays sensitivity to acetic acid when compared with
other Saccharomyces spp strains, whereas, DBVPG6044 is more
tolerant [24]. Sequence comparison of alleles from both parents
revealed that the COX20 gene of Y12 harboured a glutamic acid
to arginine change at position 9 (Figure 5C). However, glutamic
acid is the most frequent residue at this position in the COX20
gene within the Saccharomyces spp (data S8). Within S. cerevisiae
and S. paradoxus, only S. cerevisiae strains isolated from sake
fermentations (K11, Y9 and Y12) contained an arginine residue at
position 9 (data S8). Analysis of COX20 genes from other
Saccharomyces spp yeast revealed that none contained an arginine
residue at position 9 in their predicted COX20 peptides (data S8).
Reciprocal hemizygosity analysis of the other candidate genes
tested failed to show any observable variation checked by
performance using the phenotypic arrays and sequencing alleles
from the resultant transformants (data not shown).

Dissection of the osmotic QTL from chromosome Xl

Expression data from the loci identified on chromosome XII
from the YPS128 xDBVPG6765 cross highlighted genes which
were up-regulated under osmotic stress including Hsp60p, a
known heat shock protein in S. cerevisiae [21,22], It was observed
that the majority of the genes were down-regulated under osmotic
stress (Figure 4B), however, a few genes were significantly up-
regulated such as HSP60, TIS11, and PCDI (Figures 4B and
4C). Amongst genes down-regulated is PUTI which has been
identified as important in yeast as a response to osmotic stress [23]
(Figure 4C).

We examined the genes present within the QTL identified
under osmotic stress on chromosome XII and selected HSP60,
RCK2, GSY1 and PUTI as candidate genes for reciprocal
hemizygosity analysis. We observed using the phenotypic micro-
array screen that heterozygous diploid transformants harbouring
different RCK2 or HSP60 alleles exhibited different tolerances to
osmotic stress (Figure 6A). Sequencing the wild-type HSP60 and
RCK2 alleles in these diploid heterozygous strains revealed
nucleotide and peptide differences for RCK2, however, we failed
to discern any differences in nucleotide or peptide sequences for
HSP60. Tolerant transformants carried the RCK2 allele inherited
from strain DBVPG6765 (Figure 6B) which has been previously
shown to display tolerance to osmotic stress when compared with
other Saccharomyces spp strains [24].

RCK2 from DBVPG6765 has a glutamic acid at residue 113
and a serine at residue 456, while RCK2 from YPS128 has a
histidine at residue 113 and an alanine at residue 456, respectively
(Figure 6C). Sequence analysis revealed that all S. paradoxus
strains and 56% (22/39) of S. cerevisiae strains contained a
glutamic acid at residue 113, and an alanine at residue 456. This
included the yeast reference strain S288c. Approximately 39%
(15/39) of the S. cerevisiae strains in the SGRP collection
contained a histidine at residue 113 and a serine at residue 456,
respectively (data S8). Two §. cerevisiae strains had a histidine at
residue 113 but had a serine at residue 456 (data S8). These yeast
have previously been identified as having a mosaic genome [10].
Heterozygous diploid transformants harbouring deletions of
PUTI and GSY2 did not exhibit any changes in their tolerance
to osmotic stress when compared to their isogenic parents; this was
confirmed for both alleles using sequencing.

Discussion

A robust yeast strain tolerant to all inhibitory conditions and
pre-treatment inhibitors exposed to during bioethanol fermenta-
tion has yet to be identified. In this study, we performed linkage

Table 2. Linkage analysis for acetic acid and osmotic stress from different segregant populations.

Stress/growth conditions Cross

Chromosome QTL

Acetic acid aerobic Acetic acid

anaerobic Y12 xDBVPG6044 DBVPG6044 xDBVPG6765

Formic acid anaerobic YPS128 xDBVPG6765 DBVPG6044 xDBVPG6765

Osmotic stress anaerobic

Y12 xDBVPG6044 Y12 xDBVPG6044 Y12 xDBVPG6044

YPS128 xDBVPG6765 YPS128 xDBVPG6765 YPS128xY12

IV XV XHE X 921-1021 351-451 925-1025

304-405 801-901
935-1035 205-305 7-107
51-151 599-699 389-489

IV X1l XI
X1 X1

doi:10.1371/journal.pone.0103233.t002
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Figure 4. Expression data for genes using qPCR under (A) acetic acid stress present in loci identified on chromosome IV (region
921-1021) in the isogenic diploid parental strain Y12xDBVPG6044, (B) Expression data for genes present in loci identified on
chromosome XIl (region 599-699 kb) under osmotic stress in the isogenic diploid parental YPS128 xDBVPH6765 and (C)
Expression data for genes present in loci identified on chromosome XII (region 389-489 kb) under osmotic stress in the isogenic
diploid parental YPS128 xY12.

doi:10.1371/journal.pone.0103233.9g004

analysis using divergent S. cerevisiae clean lineages to map
bioethanol relevant QTL’s. We analysed F1 segregants for their
response to stresses present in bioethanol fermentation using a

phenotypic microarray assay and observed F1 haploid segregants
derived from six pairwise crosses of S. cerevisiae clean lineages are
as being phenotypically distinct to either parent. This observation
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Figure 5. Phenotypic microarray screening of (A) heterozygous diploid transformants (transformants labelled T1-T6) harbouring
reciprocal deletions of COX20 alleles to acetic acid stress. DNA sequence comparisons (B) and protein sequence comparisons (C) of T5 and T6

transformants are shown along with their parental strains DBVPG6044 and Y12.
doi:10.1371/journal.pone.0103233.g005
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Figure 6. Phenotypic microarray screening of (A) heterozygous diploid transformants (transformants labelled T1-T10) to osmotic
stress harbouring reciprocal deletions of RCK2 alleles (B) DNA and (C) Protein sequence comparison of RCK2-::rck2 T2 and T10
transformants and their parental strains DBVPG6567 and YPS128.

doi:10.1371/journal.pone.0103233.g006

agrees with previous studies that phenotypic variation can be oenological phenotypes in haploid yeast strains but not for
displayed in progeny from F1 hybrids when compared with fermentation stresses [17].

parental strains, including increased vigour. Transgressive varia- Mapping QTL’s to a phenotype in yeast has been successful for
tion for stress tolerance has been described previously for heat and desired traits such as ethanol tolerance [25], sensitivity to heavy
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metals or pesticides [26] and performance of yeast in a
fermentation [27], however, QTL’s desirable for bioethanol
fermentations have not been published previously. A QTL
identifying an asparaginase from wine yeast haploid segregants
producing acetic acid was identified, however, this QT'L was only
apparent when yeast were utilising asparagine as the sole nitrogen
source [28]. We identified QTL’s related to weak acid stress and to
osmotic stress, within the QTL’s we identified genes whose
expression changed under stress conditions.

We performed reciprocal hemizygosity analysis of candidate
genes within each QTL, demonstrating that an allele of COX20, a
mitochondrial cytochrome C oxidase gene conferred acetic acid
tolerance. This phenotype was dependent on which parental allele
had been inherited and sensitive progeny contained COX20 from
strain Y12. This strain has been previously identified as being
sensitive to acetic acid in comparison to DBVPG6044 [24]. DNA
sequence analysis of COX20 revealed that the acetic acid tolerant
yeast strain (DBVPG6044) has a glutamic acid at residue 9
whereas the acetic acid sensitive strain (Y12) has an arginine
residue at this position.

Cytochrome C oxidase activity has been associated with
programmed cell death (PCD) in yeast [29], where a loss of
function along with addition of acetic acid has been shown to
induce PCD [30]. Yeast strains with altered cytochrome C oxidase
activity maybe more tolerant to the inducement of PCD by acetic
acid, the importance of cytochrome C oxidase has been reported
in work on improving acetate tolerance in E. coli [31].

Applying reciprocal hemizygosity to candidate genes within the
QTL identified under osmotic stress, null alleles of rck2 and hsp60
were generated in the YPS128 xDBVPG6567 F1 hybrid. It was
demonstrated that RCK2 mediated osmotic tolerance was
dependent on the inherited parental allele. Sensitive heterozygous
diploid transformants contained the RCK2 allele from the parental
strain YPS128 and resistant progeny from DBVPG6567. RCK2 is
a protein kinase which has a known regulatory role in the Hogl
pathway [32] and has been previously highlighted for response to
oxidative and osmotic stress in yeast, particularly salt tolerance
[33,34]. QTL analysis has worked in plant cell lines under osmotic
stress highlighting variations between different cultivars of
Arabidopsis  [35] and wheat [36] and identifying loci on
chromosomes specifically for plant response under osmotic stress.

Expression data revealed that HSP60 was significantly up-
regulated under osmotic stress, furthermore, differential response
levels were observed among HSP60::hsp60 transformants under
osmotic stress. Heat shock proteins have been observed to play key
roles in response to other stress conditions in S. cerevisiae such as
freezing, oxidative and temperature stress [37,38]. HSP60 has
been identified as a novel target site to understand the direct
relationship between osmotic and heat shock stress response to
find novel (QTLs) target sites for strain improvement. Surprisingly
we did not find any protein sequence differences between these
alleles; therefore we haven’t identified a rationale for the
phenotypic variation, alignment studies of HSP60 in Saccharomy-
ces spp has revealed that this protein is highly conserved with
minimal variation in amino acids across the genus (data not
shown) indicating that differences in expression of the gene
between the two alleles rather than sequence variation could be
responsible for the variation observed in the transformants, this is
currently being pursued.

Analysis of other candidate genes such as ADH3, GCN2,
MSN2, and AACI (acetic acid) and PUTI1, GSYI (osmotic stress)
exhibited no differences between transformants (PCR analysis
revealed that some of each allele had been knocked out) to the
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relevant stress even under stress levels greater than originally used
in the phenotypic screen.

We have looked at some of the candidate genes within the
QTL’s, however, we haven’t analysed all the genes within the
QTL’s so other candidate genes responsible for the tolerance to
stress could be present. Despite extensive experiments we were
unable to identify QT'L’s for other stresses inherent to bioethanol
fermentations such as HMF, furfural, vanillin, ethanol, or
increasing temperature despite phenotypic variation between the
segregants. QTL analysis is not without limitations such as the
requirements for large sample size and can only map differences
inherent in the parental strains [39] so QTL’s for these traits
maybe present in other haploid yeast populations as the sample
size was too small and the linkage disequilbrium (LD) was too big
as it is only a one generation cross, ethanol tolerance in larger
populations has been successful in identifying transcription factors
influencing yeast phenotypes [25,40].

There were other genes chosen for reciprocal hemizygosity
analysis but no difference in phenotypes between alleles was
observed. We acknowledge that not all genes within all loci were
examined in this study by reciprocal hemizygosity analysis and
that additional genes within these loci may also contribute to
resistance of fermentation inhibitors within S. cerevisiae strains. As
we were working with F1 segregant populations in this study with
limited crossing-over events, the QTL’s that we identified
contained between 40 and 60 genes due to large blocks of linked
SNPs. Further crosses between the F1 segregants used in this study
and crosses of subsequent populations derived from them will
enable us to shorten the LD blocks and eventually facilitate the
identification of loci contributing to a trait at a single gene level as
has been done for heat tolerance [41].

In conclusion, our studies have revealed QTL’s from yeast
haploid populations under stress and has highlighted allelic
variation (COX20 or RCK2) and changes in gene expression
levels (HSP60 and COX20) under stress conditions. This study has
highlighted the phenotypic variation for any population of yeast to
stresses inherent to bio-ethanol fermentations, using this approach
we have identified chromosomal regions responsible for the
genetic and molecular basis for natural variation in bioethanol
traits.

Supporting Information

Figure S1 Phenotypic microarray analysis (redox signal
intensity) of F1 haploid segregants for tolerance to (A)
25 mM acetic acid (B) 10 mM formic acid, (C) 10 mM
furfural (D) 10 mM HMF, (E) 10 mM vanillin, (F) 20%
sorbitol, (G) 5 10% ethanol, (H) 35°C are shown. Slide |
Data from F1 haploid segregants from S. cerevisiae DBVPG6765
and YPS128, slide 2 - Data from F1 haploid segregants from S.
cerevisiae DBVPG6765 and Y12, slide 3 - Data from F1 haploid
segregants from S. cerevisiae DBVPG6765 and DBVPG6044,
slide 4 - Data from F1 haploid segregants from S. cerevisiae
YPS128 and DBVPG6044, slide 5 - Data from F1 haploid
segregants from S. cerevisiae YPS128 and Y12, and slide 6 - Data
from F1 haploid segregants from S. cerevisiae DBVPG6044 and
Y12. The values shown are an average of triplicate experiments
including standard deviations.

(PPTX)

Data S1 Phenotypic microarray data for F1 haploid
segregants from S. cerevisiae YPS128 and Y12.
(XLSX)
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Data S2 Phenotypic microarray data for F1 haploid
segregants from S. cerevisiae YPS128 and DBVPG6044.
(XLSX)

Data S3 Phenotypic microarray data for F1 haploid
segregants from S. cerevisiae DBVPG6765 and Y12.
(XLSX)

Data S4 Phenotypic microarray data for F1 haploid
segregants from S. cerevisiae DBVPG6765 and Y12.
(XLSX)

Data S5 Phenotypic microarray data for F1 haploid
segregants from §. cerevisiae DBVPG6044 and Y12.
(XLSX)

Data S6 Phenotypic microarray data for F1 haploid
segregants from §. cerevisiae DBVPG6044 and
DBVPG6765.

(XLSX)
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