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activities explain interphase microtubule organization
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The cytoskeleton is essential for the maintenance of cell morphology in eukaryotes. In fission yeast,
for example, polarized growth sites are organized by actin, whereas microtubules (MTs) acting
upstream control where growth occurs. Growth is limited to the cell poles when MTs undergo
catastrophes there and not elsewhere on the cortex. Here, we report that the modulation of MT
dynamics by forces as observed in vitro can quantitatively explain the localization of MT
catastrophes in Schizosaccharomyces pombe. However, we found that it is necessary to add length-
dependent catastrophe rates to make the model fully consistent with other previously measured
traits of MTs. We explain the measured statistical distribution of MT–cortex contact times and re-
examine the curling behavior of MTs in unbranched straight tea1D cells. Importantly, the model
demonstrates that MTs together with associated proteins such as depolymerizing kinesins are, in
principle, sufficient to mark the cell poles.
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The fission yeast Schizosaccharomyces pombe is a convenient
model to study cell morphogenesis (Hayles and Nurse, 2001).
Wild-type cells are simple elongated rods growing at the cell
poles and dividing in the middle. Yet, previous studies have
outlined an interesting interplay between shape, growth and
cytoskeletal organization. The first component is the rigid cell
wall surrounding yeast cells that maintains cell shape
independently of the cytoskeleton. Second, the actin cytoske-
leton is essential for cell growth and cell wall remodeling
(La Carbona et al, 2006). Lastly, although microtubules (MTs)
are not required for growth per se, they control the location of
growth sites by depositing specific marker proteins (Mata and
Nurse, 1997; Brunner and Nurse, 2000; Sawin and Snaith,
2004). Abnormal deposition, occurring for example in mutants
where MTs are shorter, results in cells that are either bent or
branched (Sawin and Nurse, 1998; Snaith and Sawin, 2005).
MTs also position the nucleus (Tran et al, 2001; Loiodice et al,
2005) and thus define the site of cytokinesis (Daga and Chang,

2005; Tolic-Norrelykke et al, 2005) and the partitioning of the
cell into daughter cells. Hence, by controlling cell
growth and division, MTs impact the evolution of shape
in the cell lineage. As MTs are constrained within the cell,
the converse is also true with MT organization being
dependent on cell shape. For the rigid S. pombe cells,
the two processes occur on very different timescales; with
MT lifetimes being in the order of minutes, whereas cells
typically double in size after 3 h. Consequently, individual
MTs are enclosed in a boundary that is effectively constant
during their lifetime. This means that it is valid to first study
how MTs depend on cell shape, and to later include cell shape
changes. We use here computer simulation for the first step,
calculating the dynamic spatial organization of MTs within a
fixed cell shape. This approach complements other efforts
where cell morphogenesis is modeled with reaction–diffusion
equations (Csikasz-Nagy et al, 2008) by focusing on the MT
cytoskeleton.
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Interphase MTs in fission yeast are typically forming 2–6
bundles, which are usually attached to the nucleus at their
middle (Tran et al, 2001) (Figure 1). Antiparallel MTs overlap
at their static minus ends, whereas the plus ends are dynamic
and grow from the overlap zone toward the cell poles (Tran
et al, 2001; Hoog et al, 2007). Such bundles transmit forces
produced at the cell poles by MT polymerization to the
nucleus. To position the nucleus near the middle of the cell
(Tran et al, 2001; Loiodice et al, 2005), MTs should efficiently
target the cell poles, and have catastrophes (the switch to
depolymerization) that are rare enough to enable MTs to reach
the cell cortex but not so rare as to induce bending of the MT
around the polar cell wall (Tran et al, 2001), a configuration
that is not observed in wild-type cells. The most popular
explanation for the timing of catastrophes involves multiple
molecular activities that are assembled at the cell poles (Mata
and Nurse, 1997). Another possibility is that forces caused by
MT polymerization feed back on MT dynamics (Dogterom

et al, 2005). This possibility has so far not been confirmed
mainly due to the lack of experimental tools in vivo. In this
study, we have circumvented this problem using stochastic
computer simulations to check whether the effect of force
measured in vitro can explain the observed MT plus end
dynamics in S. pombe. This involved constructing three
models of MT dynamics: model F (force) in which forces at
MT tips regulate MT growth and catastrophe rates, model L
(length) in which MT length affects catastrophe rate and model
FL which combines both effects.

To simulate the MT cytoskeleton in S. pombe, we first
idealized its 3D shape as a spherocylinder (see Figure 1B and C).
A nucleus and MT bundles were then added and confined
within this volume. In vivo, MT bundles self-organize (Janson
et al, 2007), to form overlap zones of 0.84±0.29 mm (Tran et al,
2001). For the purpose of this study, it was sufficient to use
fixed overlap zones and four bundles, each containing four
antiparallel MTs, which is representative of the average
situation. The nucleus was represented by a sphere, to which
the overlap zones of the bundles were attached (Supplemen-
tary Figure S4). The deformations of the nuclear membrane
observed in vivo (Tran et al, 2001; Daga et al, 2006) were
incorporated into the model by attaching MT bundles to the
nucleus using Hookean springs of moderate stiffness. The
points to which the bundles were attached were also able to
move on the nuclear surface. This allowed elongating bundles
to align with the cell axis, as in vivo (Supplementary Figure
S5). In summary, the simulation comprised bundles of flexible
MTs and a connected spherical nucleus that were confined
within a frictionless cortex. Although MT minus ends were
static, plus ends grew and shrank independently of each other,
thus producing polymerization forces, fiber deformation and
nuclear movements. The physical equations describing the
evolution of this system were solved numerically as explained
before (Nedelec and Foethke, 2007). The specific models for
this study are detailed in the Supplementary information.

The advantage of using S. pombe as a model organism is that
numerous dynamical properties of MTs have been measured
by light microscopy, and this enables the models to be
quantitatively compared to reality. Table I lists the 10 in vivo
properties of MTs that were used to evaluate computational
models. These 10 traits summarize most of the currently
established knowledge of the wild-type cells that are relevant
for MT organization. Note that it was necessary to adjust the
definitions of these traits to what is available from the
literature (see Supplementary information). For example, it
was important to distinguish ‘bundle catastrophes,’ that affect
the longest MT in a half-bundle from other MT catastrophes.
Bundle catastrophes lead to bundle shortening, and are easy to
detect experimentally. Other catastrophes are harder to
observe because MTs overlap in vivo, and were often not
reported (Brunner and Nurse, 2000; Drummond and Cross,
2000; Tran et al, 2001). Independently of the traits, character-
istics of the cell geometry, MT bending elasticity and
cytoplasmic viscosity were obtained from the literature or
determined experimentally in the course of this study (see
Supplementary information). The models discussed here
contain two parameters: the polymerization speed v0 and the
catastrophe rate c0. They are evaluated by running thousands
of simulations with random values of v0 and c0, and then
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Figure 1 (A) S. pombe strain expressing GFP–tubulin and the nuclear pore
marker Nup85–GFP. (B) The 3D simulation contains a spherical nucleus radius
of 1.3 mm and MT bundles attached to it. (C) The cell of half-length 5.5 mm is a
cylinder closed by half-spheres, of radius 1.6 mm. In each bundle, four MTs
overlap near their minus ends, where they are linked to the nucleus. For more
information, see Supplementary information.
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testing which trait was matched in each simulation. This
systematic numerical exploration of the parameter space is
centered on v0B2.4mm/min, which is observed under standard
laboratory conditions (Tran et al, 2001), and extends to regions
where traits start to fail.

Model F corresponds to an in vitro experiment, which
showed that a barrier could inhibit tubulin assembly (Dogter-
om and Yurke, 1997). These results were described by vg¼v0

exp(�f/fs) (equation A), where fsB1.7 pN specifies the
sensitivity to force, and f is the projected force between the
barrier and the MT tip (Figure 1C). In addition, reduced
assembly in vitro was shown to promote catastrophes
according to B: c¼1/(aþ bvg) (Janson et al, 2003; Janson
and Dogterom, 2004). Model F used equations (A) and (B)
with the forces calculated for each MT. The constants fs and a
were measured experimentally with purified tubulin. The
constant b was calculated as the solution of (B) with c¼c0 and
v¼vo such that c0 and v0 correspond to the catastrophe and
assembly rates of unconstrained MTs. The resultant value of b
differs from that measured in vitro, because it represents the
combined effects of MT-associated proteins (MAPs) present in
the cell. A value for b corresponding to what was reported in
vitro without MTregulators results in excessively long MTs that
curl around the cell pole. We found that simulations with
model F consistently matched T1–8 (traits of the wild-type
cell) around the reference values of c0 and v0 (Supplementary
Figure S1). However, these simulations failed to match T9 and
T10 in this region, which lead us to investigate these traits
further.

Experimentally, T9 was measured in cells that are made
asymmetric by centrifugation, with the nucleus ending up
nearer one cell pole. It was observed that during nucleus re-
centering, MTs have longer contact time with the proximal than
with the distal pole (B92±53 and B46±36 s, respectively;
Daga et al, 2006). Model F showed opposite effects because, as
shown by our simulation, MTs experience stronger compression
on the proximal side than on the distal side. This result agrees
with Euler’s formula for the critical bucking force (p n/L)2,
which indicates that the maximum force of an MT at
equilibrium is inversely proportional to its length. However,
contrary to this formula, the simulation considers the rate of
MTs reaching the cell ends, and the motion of the nucleus and
thus calculates the effective force rather than an upper limit.

The other unmatched trait T10 represents the centering
precision of bundles when they are not attached to the nucleus
(Carazo-Salas and Nurse, 2006). To understand why T10 fails,
we can consider the simpler situation of an unattached bundle

made of two antiparallel MTs. This bundle mechanically
behaves as a single elastic beam of small viscous drag: the
forces at both ends equalize very fast. Consequently, the plus
tips of both MTs experience similar forces no matter where the
overlap zone is located: there are little centering cues. The
simulation shows that the situation with bundles of four MTs is
essentially similar: they are centered on average, but with a
large variance ofB3 mm2. However, when a nucleus is present,
additional averaging occurs on the positions of MT minus
ends: the nucleus connects multiple independent bundles, and
averages their fluctuations over time, because its mobility is
much lower than that of individual bundles. Thus, T10
contains different information than T7 and T8. In conclusion,
although model F matched most measurements listed in
Table I, its failure to match T9 and T10 prompted us to
investigate how it could be adjusted.

In the situation considered for T9, MTs are shorter on the
proximal side than on the distal side, and therefore the
observed asymmetry in contact times may indicate that the
length of an MT influences its stability, which was not the case
in model F. To test this possibility, we simulated a catastrophe
rate that depends on MT length L according to c¼hL/(aþ bvg)
(equation B0). The constant h was set to 0.2/mm, so that c0

would determine the catastrophe rate at L¼5 mm (the length at
which MTs typically undergo catastrophe in average cells).
This makes the resulting model FL directly comparable to
model F, except that longer MTs are less stable compared with
short ones. With model FL, T9 was matched with, for example,
contact times of 102±68 s on the proximal side, and 51±31 s
on the distal side. The length dependence overcompensated
for the effects of force in a situation where the nucleus is close
to the cell pole. In fact, model FL matched the 10 traits robustly
with respect to (v0, c0) around their expected in vivo values
(Figure 2A). Although the average MT–cortex contact time in
the symmetric case was already considered in T4, comparing
the shape of their distribution would provide another test of
the model. To this extent, we measured 303 in vivo contact
events (66±36 s mean and standard deviation). Being
approximately 20% shorter, they were comparable to what
had previously been reported (83±46 s) (Daga et al, 2006).
Interestingly, model FL matched the distribution (see
Figure 3A), showing that the contact times are explained by
the memory-less (first-order) MT catastrophe transition,
because as MTs continue to grow after contact, forces building
up increase the instantaneous catastrophe rate. Note that this
distribution is also matched by model F (see Supplementary
Figure S2), which was anyhow discarded for other reasons.

Table I Measured features of wild-type S. pombe cells (defined in Supplementary information)

Trait Description Range References

T1 Bundle catastrophes at cell poles 90–100% Brunner and Nurse (2000)
T2 Bundle catastrophes in contact with the cortex 90–100% Brunner and Nurse (2000)
T3 Number of bundles contacting the cell poles 2–6 Daga et al (2006) and this study
T4 Mean MT contact time with the cell pole (from contact to catastrophe) 60–100 s Brunner and Nurse (2000) and this study
T5 Bundle length divided by cell length 0.6–1.0 This study
T6 Probability of seeing a curled MT 0–1% Behrens and Nurse (2002)
T7 Variance of nuclear motions 0–0.25 mm2 Daga and Chang (2005) and Daga et al (2006)
T8 Re-centering speed of initially off-centered nucleus 0.2–0.9mm/min Daga et al (2006)
T9 Mean contact times of MTs with proximal cell pole, for off-centered nucleus 20–70 s Daga et al (2006)
T10 Variance of MT bundles in enucleated cells 1.4–3.4mm2 Carazo-Salas and Nurse (2006)
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The simulation also predicts the location of the hidden MT
catastrophes (Figure 3B), which are frequent but difficult to
observe in vivo because these events occur on the side of a
longer MT in the same bundle.

Model FL postulated length-dependent catastrophe rates to
match all traits. Indeed, such phenomenon was observed
previously in Xenopus egg extracts (Dogterom et al, 1996), and
Tischer et al have confirmed experimentally that this behavior
occurs in S. pombe cells, observing that catastrophe rates
increase linearly from B0.1/min at LB2 mm up to B0.3/min
at LB5 mm, for MTs that do not contact the cell cortex
(Tischer et al, in this upload). The measured magnitude of the
dependence of catastrophe upon MT length is identical to what
we have assumed, in the center of the region in which all traits
are fulfilled (c0¼0.3/min). It is tempting to speculate about the
molecular mechanism that could mediate the destabilization
of longer MTs. The S. cerevisiae kinesin-8 Kip3p produce a
length-dependent destabilizing activity in vitro, because after
binding at any point along the length of the MT, it moves
processively to the tips, where it has a depolymerizing activity
(Gupta et al, 2006; Varga et al, 2006). It is possible that the two
homologs of Kip3p in S. pombe, Klp5p and Klp6p (West et al,
2001) have a similar activity. Consistent with this view, the

double deletion of klp5 and klp6 produced elongated MTs that
curl at cell poles (West et al, 2001), and reduces the length
dependence of catastrophe (Tischer et al). Simulations show
that length-dependent catastrophe rates offer several potential
advantages to the cell. First, nucleus repositioning is faster by a
factor 2 in model FL compared with model F (data not shown),
because proximal MTs push for a longer time than distal MTs
(T9). Second, bundles that are observed to detach from the
nucleus (Tran et al, 2001; Carazo-Salas and Nurse, 2006)
would keep their overlap regions better centered (their
variance was B2mm2 instead of B3 mm2 for model F), which
may allow them to reattach more rapidly (we did not simulate
this hypothesis).

Finally, a model L having the length dependence present in
model FL, but without any force dependence also fails to fulfill
all traits (Supplementary Figure S1), showing that the length
dependence is not sufficient to adjust MTs within the cell.
Hence, in model FL, the established response to force together
with the length-dependent MT-destabilizing activity of MAPs,
leads to the accurate description of the dynamics of MTs in
wild-type S. pombe cells. Remarkably, in both model F and FL,
it was not necessary to assume that the cell poles had any
localized activity associated with them that would affect MTs.
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This shows that, as anticipated (Dogterom et al, 2005), forces
in principle are sufficient to account for the location of MT
catastrophes at the cell poles.

In future work, it will be necessary to explicitly distinguish
MAPs to be able to recapitulate their mutant phenotypes. To do
so will require knowing how the dynamic equilibrium
distribution of MAPs near MT tips is affected by force.
However, having no free parameter, our current model is
already predictive in calculating how cell morphology affects a
wild-type MT cytoskeleton, and this sheds light on some
mutant phenotypes. In the current model, the catastrophe rate
c0 represents the combined action of all MAPs on MTs. This in
particular includes the potential effect of Tea1p, Tip1p or
Tea2p, which are located on growing MT plus ends. These
proteins are later deposited at the cell ends, but our model does
not include any influence of the deposited proteins on MTs in
return. In the case of Tea1p, however, such an influence has
been suggested (Brunner et al, 2000), because genetic deletion
affects MTs. The observed defect is that MTs exhibit curling at

the cell poles (see Figure 3C). In the simulation, we noticed
that cell diameter (but not cell length) affected MTcurling (see
Figure 3D). This prompted us to measure MT curling in vivo,
together with the dimensions of cells. There also, we found a
clear correlation between cell diameters and the extent of MT
curling (see Figure 3E), and no correlation between cell
lengths and curling. Thus, the curling phenotype can be
explained by the fact that tea1D cells were, on average, wider
than wild-type cells (Figure 3F). Furthermore, thin tea1D cells
exhibited a comparable level of curling to wild-type cells of
similar diameter, which confirmed that the MT phenotype is
largely the consequence of the increased diameter, and that
unlike previously speculated, Tea1p may not directly influence
MTcatastrophes. The variability around the average behavior
is smaller in the simulation than in reality, most likely because
irregularities in cell shape together with measurement errors
have not been modeled. However, the slopes of the best linear
fit were comparable in vivo and in the computational model
(Figure 3D and E). In summary, it seems that unbranched
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tea1D cells have wild-type MTs in a body that is wider than
wild type. It will be important to investigate branched cells to
confirm these results. This is beyond the scope of the current
study however, because it requires redefining many of the
traits, which are only meaningful for cells having two ends.

The simulation available on www.cytosim.org can be
extended to further investigate MT organization in S. pombe.
A successful account of interphase MT dynamics, as initiated
here, is a necessary step to understand the determination of
cell shape in this simple organism.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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