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Abstract

Modern theorem provers utilise a wide array of heuristics to
control the search space explosion, thereby requiring optimi-
sation of a large set of parameters. An exhaustive search in
this multi-dimensional parameter space is intractable in most
cases, yet the performance of the provers is highly dependent
on the parameter assignment. In this work, we introduce a
principled probabilistic framework for heuristic optimisation
in theorem provers. We present results using a heuristic for
premise selection and the Archive of Formal Proofs (AFP) as
a case study.

Introduction
Theorem provers use heuristics at various points in their
operation, such as in search control and premise selection.
These heuristics often have parameters that greatly influence
the practical performance of a prover. Existing approaches to
selecting such parameters require human supervision, rules
of thumb or extensive testing (Hoder and Voronkov 2011).
Such testing is often conducted on large theory sets, and is
thus computationally expensive. For instance, Open CYC
(Matuszek, Cabral, and Wirbrock 2006) contains over 3 mil-
lion axioms while each of the problems has a proof involving
up to 20 premises. An alternative to the exhaustive search is
to sparsely navigate the multi-dimensional space of parame-
ters. We argue that probabilistic search enables efficient and
automated optimisation of parameterised heuristics in theo-
rem proving.

Here, we explore Bayesian Optimisation (Močkus 1975)
with Gaussian Processes (GPs) (Rasmussen and Williams
2005) as a general solution to efficient heuristics tuning in
automated theorem proving. We conduct a case study in
premise selection using a state-of-the-art heuristic Sumo In-
ference Engine (SInE) (Hoder and Voronkov 2011). Our
framework based on GPs takes at most nine minutes to
find the optimal set of parameters in ten AFP articles. The
premises recommended by the optimised SInE were suffi-
cient to prove 85.3% of the conjectures using Sledgehammer
(Böhme and Nipkow 2010).
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The Sequential Model-based Algorithm Configuration
framework (Hutter, Hoos, and Leyton-Brown 2011) takes a
similar approach, but is distinguished from our work due to
its use of the Expected Improvement criterion. We employ
the Upper Confidence Bound (UCB) criterion, as explained
below. The parameter κ available in UCB allows a fine tun-
ing of the exploration-exploitation trade-off.

Method
Premise selection can be defined as follows:

Definition 1 Given a set of premises P, an Automated The-
orem Prover A and a new conjecture C, select the premises
from P that will most likely lead to a proof of C by A.

SInE was developed for premise selection in large the-
ories; it filters lemmas based on the symbols used in their
statement. Symbols are considered globally rare if their fre-
quency is less than g across all theories; and locally rare if
they occur infrequently within the lemma, with a frequency
less than t times the frequency of all local symbols. The
premise set P is built inductively, starting with the goal the-
orem. For every globally or locally rare symbol σ in P, any
lemma containing σ is added to the set P, and this is repeated
for a maximum of k iterations. The algorithm is therefore
parameterised by one continuous parameter t and two dis-
crete parameters g and k. As was demonstrated in (Hoder
and Voronkov 2011), these parameters greatly influence the
performance of the algorithm.

We maximise an objective function which is correlated to
the number of conjectures an ATP system would be able to
prove given the premises selected by SInE. We assume this
function was sampled from a GP. As we evaluate the per-
formance of SInE given the point in the parameter space,
the Bayesian Optimisation framework improves the poste-
rior distribution for the objective function as the agent be-
comes more certain of which regions are worth exploring.
In our implementation we choose the point in the parame-
ter space to be evaluated in the next iteration based on the
posterior distribution and upper confidence bound of a GP
which is one of the standard methods referred to as the Gaus-
sian Process-Upper Confidence Bound (GP-UCB) algorithm
(Srinivas et al. 2010)



Table 1: Premise selection results on the AFP articles.
AFP article Nr of goals Proofs found [%] Time [s] Optimal parameters

Polynomials 135 87% 57s t: 16.3, g: 58, k: 131
AbstractHoareLogics 793 63% 249s t: 17.6, g: 57, k: 130

Completeness 475 89% 151s t: 18.9, g: 63, k: 134
FinFun 263 95% 73s t: 19.6, g: 57, k: 132

HeardOf 716 93% 331s t: 19.5, g: 57, k: 131
InductiveConfidentiality 1425 82% 451s t: 19.6, g: 58, k: 130

RefineMonadic 1509 95% 522s t: 14.7, g: 64, k: 123
MiniML 345 84% 104s t: 19.1, g: 58, k: 131

RecursionTheory 656 85% 205s t: 19, g: 57, k: 130
SortEncodings 776 80% 437s t: 14, g: 64, k: 123

Experiments

Dataset AFP (Jaskelioff and Merz 2005) is a collection of
proofs formalised in Isabelle (Nipkow, Wenzel, and Paulson
2002). We used a parsed version of the dataset that meets
the input requirements of MaSh (Kühlwein et al. 2013), the
machine learning premise selector currently implemented in
Isabelle. Here, we report the results on 10 articles containing
various theories and of sizes ranging from around 100 to
around 1500 conjectures. Each conjecture was paired with a
history of premises extracted from Sledgehammer logs that
were used to determine which lemmas are needed to prove a
goal.

Evaluation In premise selection, it is acceptable to pro-
vide more premises than necessary to prove a conjecture in
order to minimise the risk of missing a key lemma. How-
ever, the main purpose of filtering is to lower the cost of
considering irrelevant lemmas, and so an efficient algorithm
should minimise the number of unnecessary recommenda-
tions. To let this trade-off guide the optimisation process,
we use a metric based on precision and recall . At the testing
stage we evaluate the algorithm based on the number of con-
jectures that would be proved in practice by Sledgehammer
using the premises recommended by SInE. We assume that
all of the premises used by Sledgehammer are necessary to
prove the conjecture whereas in practice the prover might be
able to find an alternative solution that requires a different
set of premises. Consequently, this testing metric will tend
to underestimate the number of conjectures proved using the
SInE recommendations.

Analysis Preliminary results (see Table 1) suggest that the
framework is efficient in finding the optimal parameter com-
bination across different theories. This allows us to explore
a wider range of parameters and produce an offline heuristic
recommendation to a theorem prover.

Future Work

A possible future direction involves reproducing our premise
selection experiments on a larger set of conjectures, and ap-
plying the Bayesian Optimisation framework to another bot-
tleneck in automated theorem proving, for example strategy
scheduling.
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Močkus, J. 1975. On bayesian methods for seeking the ex-
tremum. In Marchuk, G. I., ed., Optimization Techniques
IFIP Technical Conference Novosibirsk, July 1–7, 1974,
400–404. Berlin, Heidelberg: Springer Berlin Heidelberg.
Nipkow, T.; Wenzel, M.; and Paulson, L. C. 2002. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic.
Berlin, Heidelberg: Springer-Verlag.
Rasmussen, C. E., and Williams, C. K. I. 2005. Gaus-
sian Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press.
Srinivas, N.; Krause, A.; Kakade, S.; and Seeger, M. 2010.
Gaussian process optimization in the bandit setting: No re-
gret and experimental design. In Proceedings of the 27th In-
ternational Conference on International Conference on Ma-
chine Learning, 1015–1022. USA: Omnipress.


