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Abstract: When designing models for predicting phytoplankton biomass or characterizing traits, it is
useful to aggregate the myriad of species into a few biologically meaningful groups and focus on
group-level attributes, the common practice being to combine phytoplankton species by functional
types. However, biogeochemists and plankton ecologists debate the most applicable grouping for
describing phytoplankton biomass patterns and predicting future community structure. Although
trait-based approaches are increasingly being advocated, methods are missing for the generation of
trait-based taxa as alternatives to functional types. Here we introduce such a method and demonstrate
the usefulness of the resulting clustering with field data. We parameterize a Bayesian model of
biomass dynamics and analyze long-term phytoplankton data collected at Station L4 in the Western
English Channel between April 2003 and December 2009. We examine the tradeoffs encountered
regarding trait characterization and biomass prediction when aggregating biomass by (1) functional
types, (2) the trait-based clusters generated by our method, and (3) total biomass. The model
conveniently extracted trait values under the trait-based clustering, but required well-constrained
priors under the functional type categorization. It also more accurately predicted total biomass under
the trait-based clustering and the total biomass aggregation with comparable root mean squared
prediction errors, which were roughly five-fold lower than under the functional type grouping.
Although the total biomass grouping ignores taxonomic differences in phytoplankton traits, it predicts
total biomass change as well as the trait-based clustering. Our results corroborate the value of
trait-based approaches in investigating the mechanisms underlying phytoplankton biomass dynamics
and predicting the community response to environmental changes.

Keywords: Bayesian inference; phytoplankton functional types; Gaussian mixture model; diatoms;
dinoflagellates; root mean squared prediction error; soft clustering

1. Introduction

Phytoplankton communities are extremely diverse, with typically several thousands of species [1].
When developing models to project biomass or characterize traits, it is convenient to aggregate species
into a few biologically meaningful groups and focus on group-level characteristics [2–5]. This greatly
simplifies the model parameterization since it is much easier to deal with a few taxa than the multitude
of individual species. The collection of the myriad of species to a handful of taxa is important
statistically as well, particularly when many species are frequently missing or at abundances below
common detection limits raising missing data issues, let alone the fact that predicting the pooled
biomass of many species is easier than predicting the biomass of each individual species.
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The usual practice is to aggregate phytoplankton species by functional types based on ecological
functions or biogeochemical roles [6–9]. While functional types are sensible proxies for biogeochemical
functions, several studies [8,10–12] have emphasized that functionally similar species may greatly
differ in traits that govern their biomass dynamics. Moreover, biogeochemists and plankton ecologists
often debate the most appropriate grouping for describing the biomass patterns of phytoplankton
assemblages and predicting future community structure [13]. Nonetheless, trait-based approaches
are increasingly advocated as valuable for synthesizing data across species [8,14–20]. Trait-based
approaches shift the focus from species identities to trait values, on the premise that community
structure results essentially from tradeoffs between important traits. There is often a confusion about
the meaning of the term “trait”. Following [15], we consider as trait any characteristic impacting
fitness either directly or via its effect on growth, reproduction and survival (the three components of
individual performance). Accordingly, body size, maximum growth rate in resource-replete conditions,
and half-saturation constants for limiting resources are traits. The traits used in phytoplankton models
vary widely depending of the question of interest, but commonly include the maximum growth
rate under resource-replete conditions, light and nutrient acquisition and use, predator avoidance,
and temperature sensitivity [8]. While traits have a clear meaning for species, it is not always obvious
what they mean biologically for groups of species such as functional types. However, we need some
way of aggregating species to simplify the biomass dynamics model. Generally, characteristics of
the cells that determine whether a species (or group of species) does well under specific conditions
are traits. The application of the trait concept to a group of species rather than single species is a
somewhat unusual feature of our analysis, but this approach is common in biogeochemical modeling
literature [21]. Although trait-based approaches are increasingly suggested, techniques for generating
trait-based groupings are missing.

In this study, we introduce a method for generating a trait-based clustering of phytoplankton as
an alternative to the prevalent functional type categorization. Our primary interest is in estimating
trait values and predicting total biomass from a time series of species-level biomass records and
environmental data. Species-level abundance and biomass data often include missing values which
are either due to actual absences or to the fact that many species frequently occur at abundances
below common detection thresholds. To avoid missing data issues, our method initially relies on
occurrence data and proceeds in two steps. The first involves analyzing the environmental controls of
the presence-absence of individual species and summarizing these controls in trait values. The second
generates a trait-based grouping by building a clustering on top of the occurrence trait values. Because
estimates may be uncertain for some of the occurrence traits, a principal component analysis (PCA)
is used to determine the directions of maximum variation in occurrence trait values. Species scores
on the leading principal components of occurrence traits are then used as features for the trait-based
clustering. The Gaussian mixture model (GMM) is a soft clustering method, meaning that each
species can belong to multiple clusters with different probabilities, called cluster responsibilities or
cluster assignment probabilities, summing to one. In contrast, hard clustering methods such as the
k-means algorithm assign each instance to a single cluster exclusively. We use the soft-clustering
approach of GMM since we anticipate that some species may share traits with species in more
than one cluster. For the purpose of biomass dynamics analysis, we compute the biomass time
series of each cluster by combining the biomass time series of individual species with the cluster
assignment probabilities so that at any time over the study period, each species contributes biomass
to all clusters in proportion to their respective responsibilities for that species. We illustrate the
methodology with long-term species-level phytoplankton time series and coincident measurements of
potentially important environmental variables describing water conditions and resource availability.
We parameterize a Bayesian model of biomass dynamics and examine the tradeoffs encountered
in connection with trait value characterization and biomass prediction when aggregating biomass
according to (1) the functional types, (2) the trait-based clusters generated by our method, and (3)
the total biomass (a single cluster). The group-level traits that we are interested in characterizing
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include the maximum growth rate, temperature and salinity sensitivity, and half-saturation constants
for irradiance, nitrogen and silicate representing resource acquisition ability.

2. Materials and Methods

2.1. Description of Data

We consider a long-term series of weekly phytoplankton records for 74 species (57 diatoms
and 17 dinoflagellates), along with coincident measurements of potentially important environmental
variables recorded at Station L4 (50◦15.00′ N, 4◦13.02′ W) over 349 consecutive weeks between 14
April 2003 and 21 December 2009. Station L4 is located in the Western English Channel about
10 nautical miles south-west of Plymouth, UK, with a water column depth of approximately
50 m (Harris 2010). Phytoplankton samples were analyzed by microscopy [22] and converted to
biomass using appropriate conversion factors based on empirically established carbon to volume
relationships [23]. The environmental variables under consideration include sea-surface temperature
(◦C), photosynthetically active radiation (PAR; mol m−2 d−1), salinity, and concentration (µmol L−1) of
dissolved inorganic nitrogen (nitrate + nitrite), silicate, and phosphate (Figure 1).
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Figure 1. Time plots of environmental variables at Station L4 between 14 April 2003 and 21
December 2009.

Before explaining the details of our proposed trait-based clustering procedure and illustrating the
value of the ensuing clustering with the L4 data, we start by specifying the Bayesian model describing
the biomass dynamics of phytoplankton taxa. The structure of the biomass dynamics model is the same
for all three clustering schemes examined in this study and can be used with any clustering of species.
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2.2. Bayesian Model of Cluster-Level Biomass Dynamics

We model the biomass dynamics of a cluster of phytoplankton species by assuming that the
realized growth rate is determined by cluster-specific traits governing the effect of environmental
conditions (temperature, salinity) and resource availability (light and nutrients). Let Yg,w and Zk,w
denote the biomass of cluster g and the Z-score (a standardized value indicating how many standard
deviations an observation is above or below the mean), respectively, of the kth environmental condition
(temperature and salinity) during week w. We assume that Yg,w depends on Yg,w−1 and on the set of
abiotic factors under consideration as:

Yg,w = Yg,w−1 exp
(
µg,w +

∑2

k=1
βg,k Zk,w

)
ηg,w (1)

where µg,w is the realized net growth rate of taxon g from week w− 1 to w at average environmental
conditions, βg,k is the effect of the kth environmental condition on biomass growth for cluster g, and
ηg,w (w = 1, . . . , W) are multiplicative noise terms assumed to be log-normality distributed and serially
independent. The log-normality assumption on the biomass distribution is sensible on theoretical and
empirical grounds [8,24]. For purposes of estimating the model parameters, it is convenient to re-write
Equation (1) on the natural logarithmic scale. That is,

yg,w = yg,w−1 + µg,w +
∑2

k=1
βg,k Zk,w + εg,w (2)

where yg,w = ln
(
Yg,w

)
and εg,w = ln

(
ηg,w

)
. Biotic interactions and resource limitation enter the growth

dynamics model by letting

µg,w = rg

1 +

∑G
h=1 αgh ln

(
Yh,w−1

)
kg

 L(w, g) (3)

where rg is the intrinsic rate of biomass growth for cluster g representing the maximum net growth
rate of that cluster at average environmental conditions and no resource limitation. The parameter
αg,h represents the effect of cluster h on the growth of cluster g, with all intra-specific effects αg,g set
equal to −1 [25,26], kg is the carrying capacity of cluster g intended to capture density-dependent
feedbacks. Finally, PARw, Nitw and Silw denote respectively photosynthetic active radiation, nitrogen
concentration and silicate concentration during week w. Resource limitation to the growth rate
of cluster g is captured by L(w, g), which is a function of the resources available during week w,
with 0 < L(w, g) ≤ 1. We assume that:

L(w, g) = min
{

PARw

KEg + PARw
,

Nitw

KNg + Nitw
,

Silw
KSg + Silw

}
(4)

where KEg, KNg and KSg denote respectively the irradiance, nitrogen and silicate half-saturation
constants for cluster g. The modeling of resource limitation by combining Michaelis–Menten saturating
functions of various resources with the minimum function guarantees that the growth rate of each cluster
is, at any time, solely limited by the scarcest resource (the resource with the lowest Michaelis–Menten
term), in line with Liebig’s law of the minimum [27,28].

2.3. Description of the Trait-Based Clustering Method

Species-level abundance and biomass data for highly diverse systems such as plankton assemblages
typically include missing values. To avoid missing data issues, our trait-based clustering methodology
relies initially on presence-absence data, and proceeds in two steps as described in Sections 2.3.1
and 2.3.2
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2.3.1. Analyzing the Environmental Drivers of Species Occurrence

Let ds,t (s = 1, . . . , N, t = 1, . . . , T) represent the binary indicator for the presence of species s at
time t so that ds,t = 1 when species s is observed at time t and ds,t = 0 otherwise, and let x jt ( j = 1, . . . , J)
indicate the Z-score of the jth environmental variable (temperature, salinity, irradiance, nitrogen,
phosphate and silicate concentration) at time t. We assume that:

ds,t ∼ Bernoulli(πs,t) (5)

where logit(πs,t) = πs,t/(1−πs,t) depends linearly on the Z-scores of the abiotic variables at time
t through:

logit(πs,t) = αs +
∑J

j=1
βs, j x j,t (6)

In Equation (6), αs is the intercept specific to species s, βs, j is the regression coefficient of the jth
variable for species s. In the Bayesian framework [29,30] adopted here, the logistic regression model is
easy to fit by Markov chain Monte Carlo (MCMC) simulation [31] through freely available Bayesian
software packages such as OpenBUGS [32]. The BUGS code for the logistic model is relatively easy to
write (e.g., [33]).

The posterior estimates of the environmental effects for the occurrence model (herein occurrence
traits) are potential features for our clustering procedure. Since some estimates may be very uncertain,
we apply a principal component analysis (PCA) to the N × J matrix of species-specific occurrence trait
value estimates (posterior means scaled by corresponding posterior standard deviations) to identify
the directions of maximum variability (the leading principal components). PCA transforms a set of J
correlated variables into a smaller number Q < J of new variables called principal components (PCs)
or orthogonal components that are uncorrelated linear combinations of the initial variables retaining
most of the variation. The first PC represents the direction of highest variability in the data; the second
PC represents the direction of second highest variability in the data, and so on. Species scores on the
leading PCs provide features for the clustering carried out in second step.

2.3.2. Clustering Using GMM and the E-M Algorithm

The clustering step is achieved by fitting a Gaussian mixture model (GMM) to species scores on
the leading principal components of occurrence traits. The GMM is a convex linear combination of a
finite number of Gaussians. For a d-dimensional feature space, the density of a point x ∈ Rd under a
G-component GMM is given by:

p(x) =
G∑

g=1

λgNd(x| µg, Σg) (7)

where λg ≥ 0 is the mixing coefficient for the gth Gaussian (g = 1, . . . , G) with
∑

g λg = 1. Nd(.
∣∣∣µg, Σg)

denotes the d-dimensional normal distribution with mean vector µg ∈ Rd and covariance matrix
Σg ∈ Rd×d, and G is a pre-set number of mixture components. Although the GMM is a flexible model, it
may involve a large number of parameters to estimate with no closed-form expression available when
class memberships are unknown. A general technique for finding maximum likelihood estimators
in models involving missing or latent variables is the expectation-maximization (EM) algorithm
introduced in a general form by Dempster et al. [34]. The EM algorithm starts with an initial guess of
the model parameters and alternates iteratively, until convergence, between the expectation (E) step
that creates a function for the expectation of the log-likelihood evaluated at the current parameter
values and the maximization (M) step that maximizes the expected log-likelihood obtained in the E step
to re-estimate the parameters. The EM algorithm for fitting a G-component GMM starts with an initial

guess of the model parameters namely, mean vectors
{
µg

}G

g=1
and the covariance matrices

{
Σg

}G

g=1
for
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each Gaussian, as well as a G-vector λ = (λ1, . . . ,λG) of non-negative mixing weights summing to one.
It then cycles iteratively until convergence between the E-step and the M-step described below.

E-step: determine for each species s (s = 1, . . .N) and each component g of the Gaussian mixture
(g = 1, . . .G), the, the assignment score qs,g of species s to the g-th mixture component called the
“responsibility” of the gth Gaussian mixture component for the feature vector xs ∈ Rd characterizing
species s. This assignment score is computed as:

qs,g = Pr(Cluster = g
∣∣∣xs) =

λg Nd(xs
∣∣∣ µg, Σg)∑G

r=1 λr Nd(xs
∣∣∣ µr, Σr)

(8)

It is clear from Equation (8) that qs,g represents the relative density of xs under the gth
Gaussian component. If xs is very likely under the gth Gaussian, qs,g will be large, and vice-versa.
The denominator

∑G
r=1 λr Nd(xs

∣∣∣ µr, Σr) in Equation (8) is nothing but a normalizing factor guaranteeing
that

∑G
g=1 qs,g = 1. The total responsibility allocated to the gth cluster

ng =
∑

s
qs,g (9)

represents the relative number of species assigned to the gth cluster, and
∑G

g=1 ng = N is the total
number of species under consideration.

M-step: update the parameters of each mixture component namely, the mean vector µg and the
covariance matrix Σg (g = 1, . . . , G) as the weighted mean and weighted covariance matrix of the
assigned data respectively, where the weights are given by the responsibilities obtained in the E-step.
More specifically, compute:

µg =
1

ng

∑
s

qs,gxs (10)

Σg =
1

ng

∑
s

qs,g
(
xs − µg

)(
xs − µg

)T
(11)

The updated total responsibility allocated to cluster g determines the updated mixing coefficient
λg of cluster g through:

λg =
ng

N
(12)

The model’s log-likelihood function is:

log p(x) =
∑

s
log

 G∑
g=1

λg Nd(xs| µg, Σg)

 (13)

Since each iteration of the EM algorithm increases the log-likelihood [35], a plot of the observed
data log-likelihood against the EM iteration number can indicate that the model has converged when
the log-likelihood reaches a plateau and does not increase any further. Since the Gaussian mixture
is a proper probability distribution, we can use the log-likelihood of the validation or the test set to
assess the model fit. We can also determine the number of Gaussian components by maximizing the
log-likelihood with respect to the number of clusters, starting with a single cluster.

For biomass dynamics modeling, we require the biomass time series of each cluster. Since the
GMM produces a soft clustering, each species may contribute biomass to all clusters, in contrast
to hard clustering procedures such as the k-means algorithm that assign each species to a single
cluster exclusively. If Bs,w and qs,g denote respectively the biomass of species s during week w and the
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responsibility of cluster g for species s, then the biomass contributed to cluster g by species s during
week w is Bs,wqs,g. Accordingly, the biomass Yg,w of cluster g during week w is given by:

Yg,w =
N∑

s=1

Bs,wqs,g (14)

where N denotes the total number of species under consideration.

2.4. Application to the Station L4 Data

2.4.1. Analyzing the Environmental Controls of Species Occurrence

We first analyzed the factors that determine the presence-absence of individual species through
the Bayesian logistic regression model described in Section 2.3, using sea-surface temperature,
photosynthetically active radiation, salinity, nitrogen (nitrate + nitrite), silicate, and phosphate as
environmental predictors. MCMC implemented in OpenBUGS allowed us to simulate from the joint
posterior of the model parameters, yielding a good estimate of the joint posterior distribution of the
model parameters from 16,000 iterations of three parallel Markov chains after discarding the first 6000
iterations of each Markov chain as burn-in period and thinning the remainder by a factor of 20.

Temperature and irradiance emerged as the key drivers of species occurrence patterns, followed
by nitrogen. The temperature and irradiance responses were broadly negative for diatoms and
positive for dinoflagellates, whereas nitrogen effects were largely positive for diatoms and negative
for dinoflagellates. These results imply increased presence of diatoms at temperature and irradiance
levels below the average values over the time series and higher than average nitrogen concentrations,
in contrast with the dinoflagellates thriving in warm and nutrient-poor waters. These results are
consistent with trends of taxonomic succession at Station L4 [22] and findings of previous analyses of
the L4 data, including [8].

The first three principal components explained 76% of variation in occurrence trait values across
species. Temperature and irradiance loadings dominated the first principal component accounting for
35% of variation, whereas nitrogen and phosphate loadings dominated the second and third principal
components explaining 26% and 15% of total variation, respectively (Table 1).

Table 1. Loadings of the environmental variables on the three leading principal components accounting
for 76% of variation in presence-absence trait values across species. Bold numbers highlight the
variables that dominate each principal component.

Variable PC1 PC2 PC3

Irradiance (PAR) 0.66 −0.19 0.53
Temperature 0.67 −0.06 −0.25

Salinity 0.02 0.14 0.14
Nitrogen 0.23 0.94 −0.07
Silicate 0.11 −0.19 −0.02

Phosphate 0.20 −0.16 −0.79

2.4.2. Implementation of the Trait-Based Clustering

We generated our trait-based clustering by building a three-component GMM on top of species
scores on the first three principal components of occurrence trait values. We used the EM algorithm
implemented in R [36] through the mixtools package [37] to find maximum likelihood estimates of
the GMM parameters. After roughly 15 EM iterations, the log-likelihood function reached a plateau,
indicating convergence (Figure S1 in Supplementary Material). If for visualization purposes we
consider the maximum a posteriori (MAP) clustering solution assigning each species s to the cluster
with highest responsibility for its feature vector xs, the resulting clustering exhibits the following three
striking features. (1) One of the clusters, Cluster 1, the second largest with twenty-six species, comprises
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exclusively diatoms. (2) All dinoflagellates except Prorocentrum balticum fall in the same cluster namely,
Cluster 3, the largest cluster with thirty-five species. (3) The only dinoflagellate excluded from Cluster 3
namely, Prorocentrum balticum forms with twelve diatoms the smallest cluster, Cluster 2. Tables A1–A3
in Appendix A show the species assigned to Clusters 1–3 by the maximum a posteriori clustering
solution, along with their functional types and their assignment probabilities to each of the three
GMM clusters.

A visualization of the three clusters in the plane determined by the first two principal components
PC1 and PC2 of occurrence trait values with each species assigned to the single cluster implied by
the maximum a posteriori clustering solution separates the clusters primarily along PC1. The largest
cluster, Cluster 3 (blue symbols), and the second largest cluster, Cluster 1 (black symbols) are
non-overlapping, and the smallest cluster, Cluster 2 (red symbols), falls along the strip between Cluster
1 and Cluster 3 (Figure 2). The R code used to carry out the GMM clustering is available in the Online
Supplementary Material.

Diversity 2019, 11, x FOR PEER REVIEW 8 of 18 

 

cluster, Cluster 2. Tables A1–A3 in Appendix A show the species assigned to Clusters 1–3 by the 
maximum a posteriori clustering solution, along with their functional types and their assignment 
probabilities to each of the three GMM clusters. 

A visualization of the three clusters in the plane determined by the first two principal 
components PC1 and PC2 of occurrence trait values with each species assigned to the single cluster 
implied by the maximum a posteriori clustering solution separates the clusters primarily along PC1. 
The largest cluster, Cluster 3 (blue symbols), and the second largest cluster, Cluster 1 (black symbols) 
are non-overlapping, and the smallest cluster, Cluster 2 (red symbols), falls along the strip between 
Cluster 1 and Cluster 3 (Figure 2). The R code used to carry out the GMM clustering is available in 
the Online Supplementary Material. 

 
Figure 2. Configuration of the 74 species in the plane defined by the first two principal components 
PC1 and PC2 of occurrence trait values. The shapes of plotting characters indicate the functional type 
of each species (filled circles for diatoms and filled triangles for dinoflagellates), while the colors 
indicate the cluster membership of each species with black, red and blue indicating Cluster 1, Cluster 
2 and Cluster 3, respectively. 

The biomass time series of the three trait-based clusters exhibit different patterns of temporal 
variation with prominent inter-annual variability in the log-biomass of Cluster 1 and Cluster 3 in 
contrast with extended periods of near-constant log-biomass in Cluster 2 (Figure 3). The timing of 
peak biomass differs between Clusters 1 and 3, coming slightly earlier in the year for Cluster 3. 

Figure 2. Configuration of the 74 species in the plane defined by the first two principal components
PC1 and PC2 of occurrence trait values. The shapes of plotting characters indicate the functional type of
each species (filled circles for diatoms and filled triangles for dinoflagellates), while the colors indicate
the cluster membership of each species with black, red and blue indicating Cluster 1, Cluster 2 and
Cluster 3, respectively.

The biomass time series of the three trait-based clusters exhibit different patterns of temporal
variation with prominent inter-annual variability in the log-biomass of Cluster 1 and Cluster 3 in
contrast with extended periods of near-constant log-biomass in Cluster 2 (Figure 3). The timing of
peak biomass differs between Clusters 1 and 3, coming slightly earlier in the year for Cluster 3.
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Figure 3. Time plots of log-biomass for Cluster 1 (top), Cluster 2 (middle), and Cluster 3 (bottom) over
the study period. Dashed vertical lines mark April 1 each year to highlight differences in seasonality
between clusters 1 and 3.

2.4.3. Extraction of Cluster-Specific Trait Values and Total Biomass Prediction

We used the Bayesian model of cluster-level biomass dynamics described by Equations (1)–(3) to
extract cluster-specific trait values and predict the total biomass using three different sets of clusters.
(1) The functional types represented in the data (diatom, dinoflagellate), (2) the three clusters generated
by our method, and (3) the aggregate biomass of all species irrespective of functional type, herein
referred to as total biomass. Drawing on our previous experience with the Station L4 data [8,9,24],
we defined relatively informative priors for some of the model parameters. We assigned Gamma priors
with shape parameter 6 and scale parameter 3 independently to cluster-specific intrinsic growth rates,
rg, and carrying capacities, kg, and placed standard normal priors independently on the temperature
effects, βg,1, and salinity effects, βg,2. We assigned positively truncated normal priors with mean zero
and variance 0.01 and 1, on the nitrogen and silicate half-saturation constants, respectively. Estimation
of the irradiance half-saturation constant from observation time series required well-constrained priors.
We assigned to the irradiance half-saturation constants positively truncated normal priors centered at
15-mol m−2 d−1. In order to assess the model sensitivity to prior inputs under the different clustering
schemes, we considered a strong prior with prior variance 20, and a relatively less informative
counterpart with prior variance 100, on the premise that the prior will be more influential under a
clustering that conveys less information on the underlying factors and vice-versa.

We carried out the model fitting by MCMC simulation through OpenBUGS. We ran 10,000 iterations
of three parallel Markov chains following a burn-in period of 6000 iterations and applied a thinning
factor of 20 to the post burn-in samples. We assessed the convergence of the Markov chains informally
through visual inspection of the trace plots and autocorrelation plots, and formally through the
Gelman-Rubin statistic [30].

The posterior estimates of trait values differ widely between taxa under both the functional type
typology and the trait-based grouping (Figure 4). Under the trait-based grouping, Cluster 1 dominated
by diatoms has the highest intrinsic growth rate with a doubling time of 2 days, followed by Cluster 3
with a doubling time of 4 days. Cluster 3, which essentially combines biomass contributions from
one third of the diatoms and all dinoflagellates except Prorocentrum balticum, stands out as the most
responsive to changing environmental conditions with a positive response to increasing temperature
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and a negative response to increasing salinity (Figure 4b,c). Cluster 2, which mostly integrates biomass
from a few diatoms and roughly half of the Prorocentrum balticum biomass (see assignment probabilities
in Table A2, Appendix A) has the lowest intrinsic growth rate with a doubling time of 8 days, and
exhibits the least sensitivity to environmental changes. This partly explains the weak seasonal cycles
in the log-biomass of Cluster 2 as opposed to the other two clusters (Figure 3).

Under the functional type typology, the diatoms have, as a group, a slightly higher intrinsic
growth rate than dinoflagellates with a mean doubling time of 2.5 days versus 3 days for dinoflagellates
(Figure 4a). The temperature coefficient is negative and the salinity coefficient is roughly zero for
diatoms (Figure 4b,c), implying that the optimal growth temperature at Station L4 for this group of
diatoms is lower than the average temperature over the study period. The dinoflagellate biomass is
highly sensitive to changing environmental conditions with positive response to increasing temperature
and negative response to increasing salinity (Figure 4b,c), implying higher dinoflagellate biomass
accumulation at higher temperatures and lower salinity than the average values over the study period,
in line with findings from previous analyses of the Station L4 data [8].

Under the single cluster aggregation, the biomass dynamics model does not distinguish traits
across species and models total diatom and dinoflagellate biomass, similar to many biogeochemical
models that resolve only a single ‘large’ phytoplankton species. The intrinsic growth rate of the total
biomass is intermediate between the growth rates of three clusters under the trait-based clustering and
between those of the diatom and dinoflagellate biomass under the functional type grouping, with a
doubling time slightly below 3 days (Figure 4a). The temperature and salinity coefficients are roughly
null (Figure 4b,c).

The posterior distributions of half-saturation constants for resource acquisition (Figure 4) reveal
tradeoffs across clusters of species (Figure 4d–f). Under the trait-based clustering, Cluster 2 has,
on average, the highest irradiance half-saturation constant and the lowest silicate half-saturation
constant. Cluster 3 has a very low nitrogen half-saturation constant and a relatively high silicate
half-saturation constant. Cluster 1 has, on average, the highest nitrogen and silicate half saturation
constants and the second largest half-saturation constant for irradiance. Under the functional type
grouping, dinoflagellates have, on average, lower irradiance, nitrogen and silicate half-saturation
constants than diatoms. Under the total biomass aggregation, the nitrogen half-saturation constant
exhibits a large posterior uncertainty reflected in a wider credible interval (Figure 4e). The irradiance
and silicate half-saturation constants echo those of diatoms under the functional type grouping
(Figure 4d,f), which is not surprising since diatoms account for over 80% of the total biomass.
The posterior distributions of trait values were under the trait-based clustering robust to the prior input,
whereas under the functional type clustering, the posterior distribution of the irradiance half-saturation
constant KE was unrealistically low (near zero) for dinoflagellates when assuming the relatively
non-informative N+(15, 100) prior on KE (results not shown), where N+

(
µ, σ2

)
denotes the positively

truncated Gaussioan with mean µ and variance σ2. We only report the results based on independent
N+(15, 20) for the cluster-specific irradiance half-saturation constants under all clustering schemes.

We evaluated the performance of the Bayesian time series model for predicting the total
biomass under our three clustering schemes through root mean squared prediction errors (RMSPEs).
The posterior means (and standard deviations) of the RMSPEs obtained under the trait-based,
functional-type, and total biomass clustering were 1.39 (0.12), 6.68 (1.24) and 1.37 (0.10), respectively.
The RMSPEs under the trait-based and total biomass groupings were similar and roughly 5-fold lower
than under the functional-type clustering.
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Figure 4. Estimated trait values for three different clustering schemes (total biomass, top; functional type
clustering, middle; trait-based clustering, bottom) showing: (a) intrinsic growth rates; (b) temperature
effect on growth rate; (c) salinity effect on the growth rate; (d) irradiance half-saturation constant;
(e) nitrogen half-saturation constant; and (f) silicate half-saturation constant for each cluster of species.
Error-bars (posterior mean ± 1 SD) represent 68% credible intervals around the posterior means
(filled circles). These results are based on independent N+(15, 20) priors on cluster-specific irradiance
half-saturation constants under our three clustering schemes.

3. Discussion

We developed a Bayesian model of phytoplankton biomass dynamics and analyzed a long-term
series of weekly species-specific data collected at Station L4 in the Western English Channel, UK.
In addition to the usual functional type categorization of phytoplankton species, we generated a
trait-based clustering by building a three-component Gaussian mixture model using species scores on
the leading principal components of occurrence traits as clustering features. Being soft in nature, the
GMM clustering allows each species to belong to multiple clusters with different cluster assignment
probabilities or cluster responsibilities summing to one. Our biomass predictions from the trait-based
clustering were superior to the predictions from the functional-type clustering. Under relatively
constrained priors, trait values for the three trait-based clusters showed variation similar to the results
from the functional-type clustering, both of which were more informative than the trait values for
aggregate biomass (Figure 4). This demonstrates the utility of subdividing total phytoplankton biomass
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into biologically meaningful clusters and underscores the need for exploring clustering schemes other
than those determined strictly by taxonomic identity or biogeochemical role.

The maximum a posteriori clustering solution assigning each species to the cluster with the highest
responsibility for the species’ feature vector partitioned the 74 species under consideration into three
clusters with different characteristics. Cluster 1, the second largest cluster in terms of the number
of species with twenty-six species, was comprised exclusively of diatoms. The largest cluster with
thirty-five species, Cluster 3, combined all- dinoflagellates but Prorocentrum balticum and a third of the
diatoms under consideration. Prorocentrum balticum, the only dinoflagellate excluded from Cluster
3, formed with twelve diatoms the smallest cluster, Cluster 2. The two large clusters (Cluster 1, 3)
are clearly separated in the plane determined by the first two principal components PC1 and PC2 of
occurrence traits. The species belonging to Cluster 2 fell in a narrow band between the two large clusters
(Figure 2). The distribution of species in the trait-based clusters corroborates the documented diversity
of diatoms [38] and the broadness of their ecological niche as a group. On the other hand, the restriction
of all the dinoflagellates under consideration except Prorocentrum balticum to a single cluster suggests
that their ecological niches overlap extensively. While balticum literally means, “pertaining to the
Baltic sea”, Prorocentrum balticum is a cosmopolitan species found in cold temperate to tropical waters
worldwide [39]. Adaptation to cold temperatures may partly explain its niche segregation from the bulk
of dinoflagellates, as dinoflagellates generally thrive in warmer stratified and nutrient-poor waters.

We expect species of different clusters to differ in some other aspects. Looking at the cell volume
of individual species, we discovered that species in the three clusters exhibit different cell volume
distributions, with relatively larger cells in Cluster 1 followed by Cluster 3, and smaller cells in Cluster
2 (Figure 5). Size differences have far-reaching implications including differential grazing pressure:
smaller species undergo a tighter grazing constantly keeping their biomass in check. This may partly
explain the extended periods of near-constant log-biomass for Cluster 2, in contrast with the sustained
seasonal cycles exhibited by the log-biomass of Cluster 1 and Cluster 3 (Figure 3).

The results of our trait-based clustering support the patterns of seasonal succession at Station
L4. Cluster 1 species appearing in Table A1 are typical of the spring/autumn; Cluster 2 (Table A2)
contains several species that are more typical of winter (e.g., Odontella mobiliensis and Pararlia sulcata)
and early spring (Skeletonema costatum) when temperatures are low and turbulence is high. Cluster
3 species (listed in Table A3) such as smaller diatoms of the genus Rhizosolenia and Pseudo-Nitzschia,
and the bulk of the dinoflagellates especially Karenia mikimotoi, generally reflect summer conditions
when temperatures are warm [22].

We used the Bayesian model of biomass dynamics and the L4 data to examine, in connection
with trait value characterization and biomass prediction, the tradeoffs encountered when aggregating
biomass according to our trait-based clustering versus functional types and all species in a single
cluster (total biomass). The model adequately estimated trait values under our trait-based clustering
and proved robust to prior inputs. Under the functional type grouping however, the model required
well-constrained priors, particularly on the irradiance half-saturation constant, to identify trait values.
By consistently aggregating species with similar traits, our trait-based clustering provides a practical
basis for exploring community-environment relationships. Within a functional type, species may have
distinct and even conflicting environmental responses, as is the case for Prorocentrum balticum and the
rest of dinoflagellates under study or for diatom species assigned to different clusters. Aggregating the
biomass of species with conflicting trait will result in a weak community-environment relationships and
inflated prediction errors, which explains the high model sensitivity to prior inputs and poor predictive
performance of the Bayesian model of biomass dynamics under the functional type grouping.



Diversity 2020, 12, 295 13 of 17

Diversity 2019, 11, x FOR PEER REVIEW 13 of 18 

 

 
Figure 5. Box and whisker diagrams of log cell volume distributions in the three trait-based clusters 
based on the maximum a posteriori clustering solution. Each box plot shows the median (thick line), 
the interquartile range (box) and the full range of the distribution from 1.5 interquartile range below 
the first quartile to 1.5 interquartile range beyond the third quartile (whiskers). Clusters are arranged 
in order of decreasing medians. 

We used the Bayesian model of biomass dynamics and the L4 data to examine, in connection 
with trait value characterization and biomass prediction, the tradeoffs encountered when 
aggregating biomass according to our trait-based clustering versus functional types and all species 
in a single cluster (total biomass). The model adequately estimated trait values under our trait-based 
clustering and proved robust to prior inputs. Under the functional type grouping however, the model 
required well-constrained priors, particularly on the irradiance half-saturation constant, to identify 
trait values. By consistently aggregating species with similar traits, our trait-based clustering 
provides a practical basis for exploring community-environment relationships. Within a functional 
type, species may have distinct and even conflicting environmental responses, as is the case for 
Prorocentrum balticum and the rest of dinoflagellates under study or for diatom species assigned to 
different clusters. Aggregating the biomass of species with conflicting trait will result in a weak 
community-environment relationships and inflated prediction errors, which explains the high model 
sensitivity to prior inputs and poor predictive performance of the Bayesian model of biomass 
dynamics under the functional type grouping. 

4. Conclusions 

Phytoplankton communities are extremely diverse and species-level abundance or biomass data 
are typically sparse, prompting the need to aggregate species into a few biologically meaningful 
groups when developing models to project biomass or characterize traits However, the choice of the 
applicable taxonomic resolution depends critically on the issue being addressed [40]. Phytoplankton 
functional types are valuable proxies for biogeochemical functions, but biomass prediction under the 
functional type clustering is prone to large prediction error since functional types combine species 
with very different or even contrasting traits. Our analysis of the L4 data demonstrates that grouping 

Figure 5. Box and whisker diagrams of log cell volume distributions in the three trait-based clusters
based on the maximum a posteriori clustering solution. Each box plot shows the median (thick line), the
interquartile range (box) and the full range of the distribution from 1.5 interquartile range below the
first quartile to 1.5 interquartile range beyond the third quartile (whiskers). Clusters are arranged in
order of decreasing medians.

4. Conclusions

Phytoplankton communities are extremely diverse and species-level abundance or biomass data
are typically sparse, prompting the need to aggregate species into a few biologically meaningful groups
when developing models to project biomass or characterize traits However, the choice of the applicable
taxonomic resolution depends critically on the issue being addressed [40]. Phytoplankton functional
types are valuable proxies for biogeochemical functions, but biomass prediction under the functional
type clustering is prone to large prediction error since functional types combine species with very
different or even contrasting traits. Our analysis of the L4 data demonstrates that grouping species by
occurrence traits rather than the usual functional type labels can greatly enhance the characterization
of traits used in biogeochemical models and improve the predictive accuracy of the biomass dynamics
model. The trait-based clustering technique presented here applies to monitoring data from species-rich
communities such as plankton assemblages for which data sparsity is ubiquitous. However, the idea
is also applicable to observational time series with no missing data. For such data, the trait-based
clustering can be generated by fitting the Bayesian model of biomass dynamics (Equations (1)–(4)) to
species-level data and building a GMM with appropriate number of components on top of trait values
characterizing species-environment relationships or their projections in a low dimensional space of
leading principal components.

Projections of changes in phytoplankton communities and biogeochemical cycling typically
rely on mechanistic models of phytoplankton productivity parameterized with traits [15]. As a
result, trait-based approaches hold great promise for analyzing the biomass dynamics of species-rich
communities and predicting the community response to environmental changes, which is highly
valuable in the context of ongoing climate change.
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Appendix A

As a soft or probabilistic clustering method, the GMM provides assignment probabilities of each
species to every cluster. For visualization purposes, we considered the maximum a posteriori clustering
solution assigning each species to the cluster with highest responsibility for its feature vector. More
specifically, the maximum a posteriori solution assigns species s with feature vector xs to the cluster
with highest responsibility for xs. Tables A1–A3 show the species assigned to Cluster 1, Cluster 2 and
Cluster 3 respectively, along with their functional types and assignment probabilities to all Clusters.

Table A1. List of species assigned to Cluster 1 by the maximum a posteriori clustering solution, their
functional types, and their assignment probabilities to the three clusters. This cluster is the second
largest in terms of the number of species with 26 species all of which are diatoms.

Species Functional Type
Cluster Responsibilities

Cluster 1 Cluster 2 Cluster 3

Guinardia delicatula diatom 0.98 0.00 0.02
Meuniera membranacea diatom 1.00 0.00 0.00
Cerataulina pelagica diatom 1.00 0.00 0.00
Thalassiosira 10 µm diatom 0.70 0.18 0.12
Eucampia zodiacus diatom 1.00 0.00 0.00
Thalassionema nitzschioides diatom 0.98 0.00 0.02
Guinardia striata diatom 0.50 0.45 0.05
Guinardia flaccida diatom 0.98 0.00 0.02
Dactyliosolen fragilimus diatom 0.96 0.00 0.04
Chaetoceros densus diatom 0.86 0.00 0.14
Corethron criophilum diatom 0.59 0.00 0.41
Ditylum brightwel diatom 0.60 0.40 0.00
Rhizosolenia imbricata 5 µm diatom 0.97 0.00 0.03
Rizosolenia imbricata 15 µm diatom 0.68 0.00 0.32
Thalassiosira rotula diatom 0.99 0.00 0.01
Thalassiosira 20 µm diatom 0.76 0.00 0.24
Rhizoselenia styliformis diatom 0.88 0.00 0.12
Rhizosolenia setigera 25 µm diatom 0.77 0.23 0.00
Pseudo-nitzschia pungens diatom 0.99 000 0.01
Chaetoceros socialis diatom 0.64 0.22 0.14
Thalassiosira punctigera diatom 1.00 0.00 0.00
Small pennate diatom 0.87 0.11 0.02
Proboscia truncata diatom 0.99 0.01 0.00
Leptocylindrus mediterraneus diatom 1.00 0.00 0.00
Proboscia alata diatom 0.47 0.45 0.08
Detonula pumila diatom 1.00 0.00 0.00

http://www.mdpi.com/1424-2818/12/8/295/s1
www.westernchannelobservatory.org.uk
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Table A2. List of species assigned to Cluster 2 by the maximum a posteriori clustering solution,
their functional types, and their assignment probabilities to the three clusters. This cluster is the
smallest in terms of the number of species. It involves 12 diatoms and a single dinoflagellate namely
Prorocentrum balticum.

Species Functional Type
Cluster Responsibilities

Cluster 1 Cluster 2 Cluster 3

Paralia sulcata diatom 0.00 0.79 0.21
Diplomesis cabro diatom 0.00 0.78 0.22
Chaetoceros debilis diatom 0.20 0.54 0.26
Proboscia alata 5 µm diatom 0.00 0.84 0.16
Chaetoceros danicus diatom 0.24 0.48 0.28
Nitzschia sigmoidea diatom 0.20 0.64 0.17
Roperia tesselata diatom 0.04 0.79 0.17
Skeletonema costatum diatom 0.03 0.95 0.02
Chaetoceros affinis diatom 0.41 0.44 0.15
Odontella mobiliensis diatom 0.02 0.97 0.01
Pleurosigma planctonicum diatom 0.33 0.52 0.15
Chaetoceros simplex diatom 0.17 0.49 0.34
Prorocentrum balticum dinoflagellate 0.34 0.48 0.18

Table A3. List of species assigned to Cluster 3 by the maximum a posteriori clustering solution,
their functional types, and their assignment probabilities to the three clusters. This cluster is the
largest in terms of the number of species with 35 species and involves all dinoflagellates except
Prorocentrum balticum.

Species Functional Type
Cluster Responsibilities

Cluster 1 Cluster 2 Cluster 3

Nitzschia closterium diatom 0.00 0.00 1.00
Pseudo-nitzschia delicatissima diatom 0.04 0.04 0.96
Pleurosigma diatom 0.00 0.00 1.00
Pseudo-nitzchia seriata diatom 0.00 0.00 1.00
Lauderia annulata diatom 0.22 0.00 0.78
Navicula distans diatom 0.05 0.00 0.95
Leptocylindrus danicus diatom 0.03 0.00 0.97
Rhizosolenia setigera 5 µm diatom 0.17 0.04 0.79
Navicula sp. diatom 0.12 0.37 0.51
Leptocylindrus minimus diatom 0.01 0.01 0.98
Chaetoceros decipiens diatom 0.08 0.02 0.90
Pennate 50 µm diatom 0.04 0.01 0.95
Rhizosolenia imbricata 10 µm diatom 0.03 0.00 0.97
Podosira stelligera diatom 0.00 0.48 0.52
Thalassiosira 4 µm diatom 0.00 0.00 1.00
Bacillaria paradoxa diatom 0.25 0.23 0.52
Pennate 30 µm diatom 0.00 0.00 1.00
Coscinodiscus radiatus diatom 0.25 0.05 0.70
Psammodictyon panduriforme diatom 0.00 0.00 1.00
Ceratium fusus dinoflagellate 0.01 0.00 0.99
Ceratium horridum dinoflagellate 0.00 0.00 1.00
Ceratium lineatum dinoflagellate 0.01 0.00 0.99
Ceratium tripos dinoflagellate 0.00 0.00 1.00
Dinophysis acuminata dinoflagellate 0.00 0.00 1.00
Karenia mikimotoi dinoflagellate 0.00 0.00 1.00
Gonyaulax spinifera dinoflagellate 0.00 0.00 1.00
Gymnodium sp. dinoflagellate 0.02 0.00 0.98
Gymnodium cf. pygmaeum dinoflagellate 0.00 0.00 1.00
Mesoporos perforatus dinoflagellate 0.00 0.00 1.00
Micranthodinium sp. dinoflagellate 0.00 0.00 1.00
Prorocentrum micans dinoflagellate 0.00 0.00 1.00
Prorocentrum minimum dinoflagellate 0.16 0.00 0.84
Prorocentrum triestinum dinoflagellate 0.07 0.00 0.93
Scripsiella trochoidea dinoflagellate 0.00 0.00 1.00
Scripsiella sp. cyst dinoflagellate 0.08 0.00 0.92
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