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Abstract: The development and evaluation of a Boc-AL(Boc)Q(Trt)-AMC fluorophore to detect 3C
Protease, produced by Foot and Mouth Disease Virus (FMDV) is reported, with a view to a potential
use as a rapid screen for FMDV infected livestock The peptide-linked conjugate fluorophore is
evaluated in vitro for sensitivity, specificity, stability and rapidity and shows statistically significant
increases in fluorescence when exposed to physiologically relevant concentrations of 3C Protease
and selectivity when compared with other common proteases likely to be located, typically in the
absence of FMDV. The stability of deprotected Boc-AL(Boc)Q(Trt)-AMC is reported as a limitation of
this probe.
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1. Introduction

Foot and Mouth Disease Virus (FMDV) is an extremely contagious pathogen and an outbreak
caused by this virus can cause economic devastation, food insecurity, poverty and restrict food trade [1].
As a result, strategies to control, manage and prevent the spread of infection via early detection are a
requirement. The World Organisation for Animal Health has published a manual of diagnostic tests
and vaccines that defines FMDV diagnosis tests and states diagnosis can be achieved via virus isolation,
detecting nucleic acid, viral antigen, virus specific or viral non-structural protein (NSP) antibodies
irrespective of the vaccination status of the animal [2]. A number of lab-based diagnostic techniques are
listed that can be used to detect viral pathogens and give a clinical diagnosis. Over the years, a range of
these molecular biological tests have been modified to specifically detect FMDV: complement fixation
test (CFT), virus neutralisation (VN), enzyme linked immunosorbent assay (ELISA) and polymerase
chain reaction (PCR) [3–5].

Often, the delay in diagnosis is caused by the need of the infected sample to be transported to a
high containment laboratory with certification to work with FMDV and requires skilled personnel
using specialist equipment. Other limitations for consideration are: the need of the sample originating
from a specific source to comply with the diagnostic technique—epithelial, blood and sputum, and the
expenses involved in portable systems and the stability of reagents [6].

To date three main pen-side diagnostic technologies that have been reported include:
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PCR is considered a powerful and sensitive technique, hence the development of portable PCR
systems for FMDV detection; however, field testing made the limitations of the system apparent as it
requires a precision thermo-cycling step that is carried out using expensive, fragile instrumentation that
requires a vigorous decontamination protocol of the instrument to be followed after each site use [7].
In order to reduce the costs associated with the necessary cycling at different reaction temperatures for
the portable PCR system, isothermal amplification strategies were explored in viral diagnostics. In 2000,
Notomi et al. developed a molecular technique based on loop mediated isothermal amplification
(LAMP), a technique widely used to detect viruses [8].

LFDs are rapid, deployable detection platforms; however, antibody/antigen based LFDs offer
equivalent or less diagnostic sensitivity when compared to Ag-ELISA for certain serotypes, and can
only be applied to the acute phase of FMD where samples collected contain high amounts of viral
particles from vesicular or epithelial samples. These application requirements render the device useless
in the incubation period and in the absence of obvious clinical signs, whereas isothermal-based assays
allow for the evaluation of samples from various sample types: epithelial suspensions, serum and
oesophageal–pharyngeal fluids [9,10].

A further complication with pen-side diagnostic kits is the need to maintain the integrity of the
reagents, such as enzymes being utilized. To address this, methods have been developed to lyophilise
reagents, making them stable under less optimal/harsher conditions, as seen in many areas affected by
FMD. In 2015, Howson et al. reported the validity of the use of lyophilised reagents in field settings of
East Africa (FMD endemic location) on RT-LAMP and RT-PCR assays, the group have reported no
adverse effects on the performance of the assays [11]. Despite these advances, there is still scope for a
rapid, point-of-decision-making test, which can be stored and deployed in the field easily [12]. In this
paper, we take advantage of the presentation by FMDV of viral 3C protease (3CPro).

3Cpro is a chymotrypsin-like cysteine protease. It is 213 amino acids long with a molecular weight
of around 23kDa. The enzyme’s sequence is highly conserved, ~82–85% identical over all known
serotypes without any cellular equivalents in host cells, and it is therefore a suitable target for our FMDV
detection [13,14]. The enzyme cleaves the viral polypeptide chain and is vital for further processing of
the sequence as it recognises and cleaves 10 of the 13 polypeptide junctions. It also interacts with a
wide range of host proteins involved in the host’s immunity (Table 1), thereby successfully suppressing
cellular immune responses. This shows that 3Cpro plays a critical role in viral pathogenesis.

Table 1. Host-cell proteins cleaved by 3Cpro.

Host Cell Protein Function of Protein

eIF4G, eIF4A1 [15] Eukaryotic translation initiation factors
H3 [16] Histone

NEMO [17] NF-kappa-B an essential modulator for IFN α/β responses
Sam68 [18] Sequence-specific RNA binding protein that regulates alternative splicing

3Cpro cleaves a large number of amino acid pairs during primary and secondary processing.
These include: E/G, E/T, Q/K, Q/G, Q/T and Q/M, but the main sequence recognized and cleaved by
3CPro is H2N-Ala-Lys-Gln-OH.

The resolution of the atomic structure of 3Cpro FMDV revealed important structural features.
The enzyme adopts a chymotrypsin like fold, as observed in most serine proteases with a conserved
catalytic triad made up of Ser-His-Asp [19,20]. In an elegant example of this, Leatherbarrow et al.
probed various oligopeptides as part of a DABCYL-EDANS FRET pair for use as a continuous 3CPro

monitoring fluorophore [21]. Despite this, there has been little done to establish the selectivity of these
fluorophores for 3CPro and there remains scope for the generation of new fluorogenic assays for use as
rapid affordable field tests for FMDV [22].



Molecules 2020, 25, 3599 3 of 9

2. Results

2.1. Synthesis

The H2N-Ala-Lys-Gln-OH tripeptide was coupled to AMC using peptide coupling conditions
described in the Section 4. Initially, the synthesis of Boc-AK(Z)Q-AMC 1 proved capricious in terms of
purification. As a result, a trityl protecting group was introduced to afford Boc-AL(Boc)Q(Trt)-AMC 2.
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Introduction of the trityl group on to the glutamine’s side chain increased the stability and
solubility of the compound, improving the handling of the compound during the purification process.
However, the overall yield was still very low (Table 2), due to the reliance of the final coupling on a
coupling reagent, a problem faced throughout the project.

Table 2. Fluorogenic substrates successfully isolated and their overall percentage yields.

Fluorogenic Substrate Successfully Isolated Overall Yield

Boc AL(Z)QAMC, 1 0.4%
Boc AL(Boc)Q(Trt)AMC, 2 15.7%

Compounds 1 and 2 require acid treatment to deprotect the substrate ready for biochemical
testing. In our hands, the unprotected tripeptide sequence was unstable; therefore, the ideal situation
for the biochemical testing of this compound was to deprotect it in the presence of the target enzyme,
to minimise any premature decomposition.

3Cpro was kindly provided by the Pirbright Institute in Surrey. Details of the mutations in the
supplied 3Cpro strain are C95K and C142A., which are reported to improve solubility and proteolytic
activity, respectively [23]. DSF was used to see if in situ trityl/Boc deprotection could be undertaken
without detriment to 3Cpro activity. It was discovered that the level of TCA required for the deprotection
of the substrate in situ would denature the protein, rendering it inactive (data not shown).

2.2. Cleavage by 3Cpro—Sensitivity and Selectivity Testing

The activity of the 3Cpro in the presence of the deprotected Boc-AL(Boc)Q(Trt)-AMC 2 was
evaluated by monitoring AMC fluorescence. Fluorescence readings were taken on the Infinite M200
PRO plate reader and the parameters were set to an excitation wavelength of 360 nm and emission
wavelength of 455 nm in order to analyse the release of the fluorophore AMC.

Figure 1 shows the fluorescence data from the 3Cpro cleavage of the Boc-AL(Boc)Q(Trt)-AMC
2, after 10 min of incubation at 37 ◦C, one-way ANOVA data and Dunnett’s multiple comparison
test results. Both of these tests were run on Graphpad 6; the Dunnett’s multiple comparison data are
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represented using asterisks (* = p < 0.05, **** = p < 0.0001). The full details of concentrations and
volumes used are in the Supporting Information. The error bars represent the standard deviation of
replicates (n = 3) [24].
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Figure 1. The graph represents the fluorescence data from biological testing after 10 min of incubation
at 37 ◦C, one-way ANOVA data and Dunnett’s multiple comparison test results. Both these tests
were run on Graphpad 6; the Dunnett’s multiple comparison data are represented using asterisks.
(*): control, 2:[E] = 1.38 µM and 13.8 µM, respectively, [S] was controlled in all wells. The full details of
concentrations and volumes used given in the appendix; Table 1. The error bars represent the standard
deviation of replicates (n = 3).

A significant statistical difference was seen using the one-way ANOVA test between the negative
control and the testing wells at 13.8 µM enzyme (p < 0.0001), indicative of a significant change in
fluorescence measurements. Further statistical analysis using the Dunnett’s multiple comparison test
was performed to determine significance from the negative control and each testing well. This is
represented in the graph shown in Figure 1. So, from the Dunnett’s multiple analysis, we found the
higher [E] of 13.8 µM and 10 min incubation caused a more significant change in fluorescence when
compared to the ten-fold less [E] of 1.38 µM with the negative control wells. Therefore, the higher
concentration and volume of 3Cpro was used in further assay tests [23,24].

It is apparent that the fluorescence measurements at time = 0 were slowly increasing over time,
for the stored deprotected substrate solutions [25]. An increase for the [S] at 100 µM from ~1000 RFU
to ~2000 RFU was seen after 4 h in buffer solution (Supporting Information S2). This was thought to
be due to the detection probe decomposing, releasing the free fluorophore and highlighting a major
problem with stability, an issue faced throughout the synthesis and purification part of the project.
Eventually, no change in fluorescence measurements was being recorded, indicating no substrate
hydrolysis, as a possible result of the inevitable denaturation of the target enzyme or the decomposition
of the unstable probe. Further evidence of cleavage in the presence of our target enzyme has been
gained through increased fluorescence, substrate concentrations of 100 µM and 150 µM, this increase
in fluorescence was found to be a significant change in comparison to the negative control using the
one-way ANOVA statistical method (p < 0.005).

To further test the application of the detection probe, a series of experiments were designed to
expose the conjugate to other proteases that may be found in a clinical sample taken from livestock
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infected with FMDV. The 3Cpro enzyme is reported to have properties characteristic of cysteine and
serine proteases; therefore, the following commonly occurring serine type proteases were selected
to test against: chymotrypsin, thrombin and trypsin. To specifically test the amino acid sequence
attached to the fluorophore, another enzyme was selected—Tobacco Etch Virus (TEV)—as this is a
related cysteine protease with a Q/G and Q/S selectivity similar to that mentioned for the 3C protease.
This illustrates the importance of the protease when evaluating selectivity. The consensus sequence for
TEV is Glu-Asn-Leu-Tyr-Phe-Gln.

From Figure 2, it is apparent that substrate 2 shows selectivity to the 3Cpro enzyme over commonly
occurring enzymes in clinical samples. The TEV protease was found to have no significant change in
fluorescence measurements recorded in comparison to the negative control using the one-way ANOVA
statistical method (p > 0.05). Furthermore, the duration of time fluorescence measurement was chosen
to be the same length as the assay experiments run with the target enzyme 3Cpro reported earlier as, in
the presence of the 3Cpro, fluorescence would be generated more rapidly and, therefore, a delayed
increase in fluorescence would be indicative of the breakdown of the conjugate via other routes.
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3. Discussion

From the biochemical testing, the proof of breakdown was gained from our detection probe as a
consequence of our target enzyme’s activity.

Testing using a range of common proteases shows that the substrate was selectively cleaved by
3Cpro, but not by chymotrypsin, thrombin, trypsin and the TEV protease. From the results obtained,
it can be concluded that our detection probe is recognised by the 3Cpro and the enzyme is capable of
recognising and processing shorter fragments of peptides, previously reported not to be the case [26].

Whilst substrate 2 is stable, upon removal of the trityl group, it appears to decompose in solution.
Despite this, we can quite confidently conclude the cleavage of substrate 2, after removal of the trityl
groups, was enzyme-assisted and not due to spontaneous decomposition as the measurements recorded
from the control wells (enzyme-absent well) remained constant. We also observed the selectivity of
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our probe for 3CPro in comparison with other proteases, suggesting the evolution of fluorescence
is enzyme-linked.

However, in solution, the deprotected detection probe was found to have a short shelf-life in
comparison to a commercially available BocValProArg-AMC. Although the imminent need for a rapid
detection probe has been highlighted in this paper and the recognition of the smaller peptide fragment
by 3Cpro has been proven, further work on the stability of the deprotected 2 could potentially provide
a more commercially viable detection probe. Immediate immobilization of the BocValProArg-AMC
fragment is a possibility.

The AKQ sequence, appears prone to hydrolysis in solution; however, is otherwise stable as
a dry solid. From a practical perspective, this may be a limitation, owing to the need to prepare a
solution thereof prior to use, however the sensitivity and selectivity of substrate 2 after the removal
of the trityl group is compelling and, in this manuscript, we have proved the principle of a selective
fluorescent probe, which could be applied as a rapid point-of-decision-making test for FMDV in the
field. The authors acknowledge that such an application would demand a stable vehicle for the probe.

4. Materials and Methods

4.1. Synthesis

NMR was recorded using a Bruker (Coventry, UK) Avance III 400 two channel FT-NMR
spectrometer and the Bruiker Avance III 600 three channel FT-NMR spectrometer. 1H NMR spectra
were recorded at either 400 or 600 MHz and 13C NMR spectra were recorded at 100 MHz. 19F NMR
spectra were recorded at 376 MHz. Chemical shifts were referenced to the solvent used and noted
in the experimental. IR (infrared) was recorded using a Perkin Elmer Spectrum (Buckinghamshire,
UK) 100 FT-IR spectrometer. GC/MS was recorded on an Agilent Technologies 5973 mass selective
detector, 6890 N Network GC system. HR-MS and elemental analysis results were obtained via Medac
Ltd. (Woking, UK).

TLC analysis was carried out on silica, aluminium oxide, reverse phase silica coated plates and
were visualised by a single method or a combination of the following methods: (a) viewing under UV
at 254 nm; (b) viewing under UV at 365 nm; (c) exposure to a ninhydrin solution, containing 2 g of
ninhydrin in 60 mL of ethanol; (d) exposure to a vanillin solution, containing 6g of vanillin, 250 mL of
ethanol and 1.5 mL of 12M aqueous sulphuric acid.

Preparative TLC was carried out on normal phase silica-based plates; the mobile phase solvent
mix is described in ratios in the procedure details. Manual columns were run using normal phase
silica of particle size 250–500 µm and 35–60 mesh. Representative NMR and HR-MS data for substrate
2 are in Supporting Information S4.

4.1.1. Synthesis of 1

Under a nitrogen atmosphere, BocAlaLys(Z)OH (65mg, 0.14 mmol, 1.5 eq.), NH2GlnAMC (29 mg,
0.96 mmol, 1 eq.) and HATU (72 mg, 0.19 mmol, 2eq.) were dissolved in 1.5 mL of anhydrous
DMF. To this solution the base DIEA (5.68 g, 80 µL, 5 eq.) was added. The resultant yellow solution
was left at 50 ◦C for a week. The reaction progression was monitored via TLC. The reaction was
quenched with 2 mL of water and extracted with 6 mL ethyl acetate and further washed with 3 × 2 mL
saturated lithium chloride solution and dried over Na2SO4. The reaction mixture was concentrated
under reduced pressure and placed on the high vacuum. The crude mixture was purified using
preparative TLC (6.5% MeOH:DCM) (3mg, 0.4%),1H NMR (400 MHz, methanol-d4) δ ppm 1.26–1.35
(m, 1 H), 1.41–1.46 (m, 9 H), 1.47–1.51 (m, 1 H), 1.51–1.52 (m, 1 H), 1.52–1.54 (m, 1 H), 1.88–1.90 (m, 1 H),
2.43–2.48 (m, 1 H), 2.69–2.73 (m, 1 H), 2.91–2.93 (m, 1 H), 3.09–3.16 (m, 1 H), 3.34–3.36 (m, 1 H), 3.45–3.50
(m, 1 H), 3.62–3.65 (m, 1 H), 5.02–5.07 (m, 1 H), 6.21–6.26 (m, 1 H), 7.25–7.38 (m, 1 H), 7.67–7.76 (m, 3 H),
7.85–7.87 (m, 1 H) and 7.90–7.95 (m, 1 H). Electrospray, Time of flight, Mass Spectrometry (ES TOF MS)
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found 737.35, requires 736.8 for C37H48N6O10. The molecular formula verified by elemental analysis:
C, 60.01; H, 6.87; N, 11.37; O, 21.70.

4.1.2. Synthesis of 2

Under a nitrogen atmosphere, BocAlaLys(Boc)Gln(Trt)OH (50 mg, 0.0634 mmol, 1 eq.), AMC
(11 mg, 0.0635 mmol, 1 eq.) and HATU (48 mg, 0.127 mmol, 2 eq.) were dissolved in 5 mL of anhydrous
DMF. To this solution, the base DIEA (41 mg, 55 µL, 5 eq.) was added. The resultant yellow solution was
left at 50 ◦C for 3 nights. The reaction progression was monitored via TLC. The reaction was quenched
with 10 mL of water and extracted with 3 × 10 mL ethyl acetate and further washed with 3 × 8 mL
saturated lithium chloride solution and dried over Na2SO4. The reaction mixture was concentrated
under reduced pressure and placed on the high vacuum. The crude mixture was purified using
preparative TLC with solvent conditions: 5%/95% MeOH:DCM to give BocAlaLys(Boc)Gln(Trt)AMC as
a clear oil (10 mg, 15.7%). 1H NMR (400 MHz, methanol-d4) δ ppm 1.05–1.22 (m, 3 H), 1.23–1.35 (m, 4 H),
1.37–1.53 (m, 18 H), 2.81 (s, 1 H), 2.86 (d, J = 0.75 Hz, 1 H), 2.96–3.08 (m, 2 H), 3.69 (d, J = 6.78 Hz, 1 H),
3.81–4.17 (m, 1 H), 4.34–4.51 (m, 1 H), 4.58–4.67 (m, 1 H), 4.68–4.80 (m, 1 H), 6.22–6.25 (m, 1 H), 7.13–7.33
(m, 15 H). 13 C NMR (100 MHz, methanol-d4) δ ppm, 16.61, 17.31, 18.43, 19.91, 23.10, 27.45, 28.12,
28.41, 29.93, 30.35, 30.83, 31.31, 32.6, 33.24, 33.33, 36.46, 37.10, 38.35, 40.23, 49.05, 49.20, 51.56, 54.27,
111.13, 117.25, 121.35, 122.05, 127.04, 128.18, 128.21, 133.5. The mass, confirmed by Electrospray, Time
of flight, Mass Spectrometry (ES TOF MS) was found to be 967.4595 C53H64N6O10Na, requiring 945 for
C53H64N6O10. The molecular formula was verified by elemental analysis: C, 67.31; H, 6.87; N, 8.81;
O, 16.70.

4.2. SDS-PAGE

3Cpro was kindly provided by the Pirbright Institute in Surrey (volume of 100µL at concentration of
13.8 µM). Details of the mutations in the supplied 3Cpro strain are C95K and C142A. These substitutions
are reported to improve solubility and proteolytic activity, respectively. The enzyme was stored at
−80 ◦C on arrival and thawed to room temperature for biological assays.

4.3. DSF

Following an adapted protocol reported by Niesen et al., pepsin (from porcine stomach mucosa
Sigma-Aldrich, Dorset, UK) was diluted to 64 µg/mL in PBS pH 7.4, 0.5 mM EDTA and 5× Sypro
Orange (Oxoid). The fluorescence was measured using an MX3005p qRT-PCR (Stratagene) and the
temperature was increased from 25 ◦C to 95 ◦C at an increment of 1 ◦C /minute.

Spectral properties were used for the detection of Sypro Orange: excitation wavelength at
300/472 nm and emission wavelength at 570 nm. Data analysis was completed using software tools
obtained from the Structural Genomics Consortium Oxford (ftp://ftp.sgc.ox.ac.uk/pub/biophysics).
The raw DSF data were fitted to the Maxwell–Boltzmann distribution in Graphpad Prism 6 to determine
the TM value.

4.4. Enzymatic Fluorescence Assay

All enzyme measurements were performed at room temperature in white round-bottomed plates
using an Infinite M200 plate reader (Tecan). To test for the turnover of the substrate by 3C protease,
100 µM of deprotected AlaLysGlnAMC substrate was mixed with 13.8 µM or 1.38 µM enzyme in
a final reaction volume of 100 µL PBS 5% DMSO. Proteolytic cleavage was measured via increased
fluorescence intensity (ex 365, em 450). To test for the selectivity of cleavage, all other enzymes were
tested under identical experimental conditions.

Supplementary Materials: The following are available online, S1 DSF; S2 Dose Response of 3Cpro to Substrate 2;
S3 SDS-PAGE Conditions; S4 Characterisation data for BocAlaLys(Boc)Gln(Trt)AMC, 2; Figure S1. Measuring the
effects of TCA on the thermal melt curve of the common enzyme pepsin. The changing percentages of acid are:
A (control), 0% TCA; B, 1% TCA; C, 0.5% TCA; D, 0.25% TCA; Figure S2. Performance testing results represented

ftp://ftp.sgc.ox.ac.uk/pub/biophysics
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as fluorescence generation in the presence of the target enzyme, 3Cpro, [E] = 13.8 µM. The error bars represent the
standard deviation of replicates (n = 3); Table S1. Biological materials for selectivity testing. All enzymes were
stored at −5 to −20◦C and thawed to room temperature before running biological assays.

Author Contributions: Conceptualization, A.L.G.; methodology, S.M.; validation, A.L.G. and A.R.; formal
analysis, S.M.; investigation, S.M.; resources, A.L.G.; data curation, A.L.G.; writing—original draft preparation,
A.L.G.; writing—review and editing, A.R. and S.M.; visualization, S.M.; supervision, A.L.G.; project administration,
A.L.G.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to Veronica Fowler at the Pirbright Institute for the provision of
3CPro and for useful conversations. We are also grateful to Kingston University for providing SM with a fully
funded PhD studentship and to Jean-Marie Peron for excellent NMR support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Birtley, J.R.; Knox, S.R.; Jaulent, A.M.; Brick, P.; Leatherbarrow, R.J.; Currey, S. New insights into catalytic
mechanism and cleavage specificity. J. Biol. Chem. 2005, 280, 11520–11527. [CrossRef] [PubMed]

2. Kristensen, T.; Normann, P.; Gullberg, M.; Fahnoe, U.; Polacek, C.; Rasmussen, T.B.; Belsham, G.J.
Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus-infected
cells. J. Gen. Virol. 2017, 98, 385–395. [CrossRef]

3. Curry, S.; Roqué-Rosell, N.; Sweeney, T.R.; Zunszain, P.A.; Leatherbarrow, R.J. Structural analysis of
foot-and-mouth disease virus 3C protease: A viable target for antiviral drugs? Biochem. Soc. Trans. 2007, 35,
594–598. [CrossRef] [PubMed]

4. Zahur, A.B.; Irshad, H.; Hussain, M.; Anjum, R.; Khan, M.G. Transboundary animal diseases in Pakistan.
Zoonoses Public Health 2006, 53, 19–22. [CrossRef]

5. Knowles, N.J.; He, J.; Shang, Y.; Wadsworth, J.; Valdazo-González, B.; Onosato, H.; Fukai, K.; Morioka, K.;
Yoshida, K.; Cho, I.-S.; et al. Southeast asian foot-and-mouth disease viruses in eastern asia. Emerg. Infect. Dis.
2012, 18, 499–501. [CrossRef]

6. Cottam, E.M.; Haydon, D.T.; Paton, D.J.; Gloster, J.; Wilesmith, J.W.; Ferris, N.P.; Hutchings, G.H.; King, D.P.
Molecular epidemiology of the foot-and-mouth disease virus outbreak in the United Kingdom in 2001.
J. Virol. 2006, 80, 11274–11282. [CrossRef] [PubMed]

7. Madi, M.; Hamilton, A.; Squirrell, D.; Mioulet, V.; Evans, P.; Lee, M.; King, D.P. Rapid detection of
foot-and-mouth disease virus using a field-portable nucleic acid extraction and real-time PCR amplification
platform. Vet. J. 2011, 193, 67–72. [CrossRef]

8. Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated
isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [CrossRef]

9. Sajid, M.; Kawde, A.N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review.
J. Saudi Chem. Soc. 2016, 82, 286. [CrossRef]

10. Medina, G.N.; Segundo, F.D.-S.; Stenfeldt, C.; Arzt, J.; de los Santos, T. The different tactics of foot-and-mouth
disease virus to evade innate immunity. Front. Microbiol. 2018, 9. [CrossRef]

11. Howson, E.L.A.; Armson, B.; Madi, M.; Kasanga, C.J.; Kandusi, S.; Sallu, R.; Chepkwony, E.; Siddle, A.;
Martin, P.; Wood, J.; et al. Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth
disease virus directly from clinical samples in field settings. Transbound. Emerg. Dis. 2017, 64, 861–871.
[CrossRef] [PubMed]

12. Shinowara, G.Y. Human thrombin and fibrinogen the kinetics of their interaction and the preparation of the
enzyme. Biochim. Biophys. Acta (BBA)–Enzymol. Biol. Oxid. 1966, 113, 359–374. [CrossRef]

13. Wang, D.; Fang, L.; Chen, Q.; Bi, J.; Cao, L.; Luo, R.; Chen, H.; Xiao, S. Foot and mouth disease virus leader
proteinase inhibits dsRNA-induced RANTES transcription in PK-15 cells. Virus Genes 2011, 42, 388–393.
[CrossRef] [PubMed]

14. Belsham, G.J.; McInerney, G.M.; Ross-Smith, N. Foot-and-mouth disease virus 3C protease induces cleavage
of translation initiation factors EIF4A and EIF4G within infected cells. J. Virol. 2000, 74, 272–280. [CrossRef]

15. Falk, M.M.; Grigera, P.R.; Bergmann, I.E.; Zibert, A.; Multhaup, G.; Beck, E. Foot-and-mouth disease virus
protease 3C induces specific proteolytic cleavage of host cell histone H3. J. Virol. 1990, 64, 748–756. [CrossRef]

http://dx.doi.org/10.1074/jbc.M413254200
http://www.ncbi.nlm.nih.gov/pubmed/15654079
http://dx.doi.org/10.1099/jgv.0.000664
http://dx.doi.org/10.1042/BST0350594
http://www.ncbi.nlm.nih.gov/pubmed/17511659
http://dx.doi.org/10.1111/j.1439-0450.2006.01015.x
http://dx.doi.org/10.3201/eid1803.110908
http://dx.doi.org/10.1128/JVI.01236-06
http://www.ncbi.nlm.nih.gov/pubmed/16971422
http://dx.doi.org/10.1016/j.tvjl.2011.10.017
http://dx.doi.org/10.1093/nar/28.12.e63
http://dx.doi.org/10.1016/j.jscs.2014.09.001
http://dx.doi.org/10.3389/fmicb.2018.02644
http://dx.doi.org/10.1111/tbed.12451
http://www.ncbi.nlm.nih.gov/pubmed/26617330
http://dx.doi.org/10.1016/S0926-6593(66)80075-9
http://dx.doi.org/10.1007/s11262-011-0590-z
http://www.ncbi.nlm.nih.gov/pubmed/21399922
http://dx.doi.org/10.1128/JVI.74.1.272-280.2000
http://dx.doi.org/10.1128/JVI.64.2.748-756.1990


Molecules 2020, 25, 3599 9 of 9

16. Wang, D.; Fang, L.; Li, K.; Zhong, H.; Fan, J.; Ouyang, C.; Zhang, H.; Duan, E.; Luo, R.; Zhang, Z.; et al.
Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J. Virol. 2012,
86, 9311–9322. [CrossRef]

17. Lawrence, P.; Schafer, E.A.; Rieder, E. The nuclear protein Sam68 is cleaved by the FMDV 3C protease
redistributing Sam68 to the cytoplasm during FMDV infection of host cells. Virology 2012, 425, 40–52.
[CrossRef]

18. Rabbani, G.; Ahmad, E.; Khan, M.V.; Ashraf, M.T.; Bhat, R.; Khan, R.H. Impact of structural stability of cold
adapted candida antarctica lipase B (CaLB): In relation to PH, chemical and thermal denaturation. RSC Adv.
2015, 5, 20115–20131. [CrossRef]

19. Rabbani, G.; Ahmad, E.; Zaidi, N.; Fatima, S.; Khan, R.H. PH-induced molten globule state of rhizopus niveus
lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys.
2012, 62, 487–499. [CrossRef]

20. Roqué Rosell, N.R.; Mokhlesi, L.; Milton, N.E.; Sweeney, T.R.; Zunszain, P.A.; Curry, S.; Leatherbarrow, R.J.
Design and synthesis of irreversible inhibitors of foot-and-mouth disease virus 3C protease. Bioorg. Med.
Chem. Lett. 2014, 24, 490–494. [CrossRef]

21. Jaulent, A.M.; Fahy, A.S.; Knox, S.R.; Birtley, J.R.; Roqué-Rosell, N.; Curry, S.; Leatherbarrow, R.J. A continuous
assay for foot-and-mouth disease virus 3C protease activity. Anal. Biochem. 2007, 368, 130–137. [CrossRef]
[PubMed]

22. Niesen, F.H.; Berglund, H.; Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions
that promote protein stability. Nat. Protoc. 2007, 2, 2212–2221. [CrossRef] [PubMed]

23. Birtley, J.R.; Curry, S. Crystallization of foot-and-mouth disease virus 3C protease: Surface mutagenesis and
a novel crystal-optimization strategy. Acta Cryst. D 2005, 61, 646–650. [CrossRef] [PubMed]

24. Sweeney, T.; Roqué Rosell, N.; Birtley, J.; Leatherbarrow, R.; Curry, S. Structural and mutagenic analysis of
foot-and-mouth disease virus 3c protease reveals the role of the -ribbon in proteolysis. J. Virol. 2007, 81,
115–124. [CrossRef]

25. Rabbani, G.; Ahmad, E.; Zaidi, N.; Khan, R.H. PH-dependent conformational transitions in conalbumin
(ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem. Biophys. 2011, 61, 551–560. [CrossRef]

26. Knight-Jones, T.J.D.; Robinson, L.; Charleston, B.; Rodriguez, L.L.; Gay, C.G.; Sumption, K.J.; Vosloo, W.
Global Foot-and-mouth disease research update and gap analysis: 1—Overview of global status and research
needs. Transbound. Emerg. Dis. 2016, 63, 3–13. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1128/JVI.00722-12
http://dx.doi.org/10.1016/j.virol.2011.12.019
http://dx.doi.org/10.1039/C4RA17093H
http://dx.doi.org/10.1007/s12013-011-9335-9
http://dx.doi.org/10.1016/j.bmcl.2013.12.045
http://dx.doi.org/10.1016/j.ab.2007.05.026
http://www.ncbi.nlm.nih.gov/pubmed/17631855
http://dx.doi.org/10.1038/nprot.2007.321
http://www.ncbi.nlm.nih.gov/pubmed/17853878
http://dx.doi.org/10.1107/S0907444905007924
http://www.ncbi.nlm.nih.gov/pubmed/15858279
http://dx.doi.org/10.1128/JVI.01587-06
http://dx.doi.org/10.1007/s12013-011-9237-x
http://dx.doi.org/10.1111/tbed.12528
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Synthesis 
	Cleavage by 3Cpro—Sensitivity and Selectivity Testing 

	Discussion 
	Materials and Methods 
	Synthesis 
	Synthesis of 1 
	Synthesis of 2 

	SDS-PAGE 
	DSF 
	Enzymatic Fluorescence Assay 

	References

