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Abstract This paper presents an experimental comparison among four Automated Machine
Learning (AutoML) methods for recommending the best classification algorithm for a given
input dataset. Three of these methods are based on Evolutionary Algorithms (EAs), and the
other is Auto-WEKA, a well-known AutoML method based on the Combined Algorithm Se-
lection and Hyper-parameter optimisation (CASH) approach. The EA-based methods build
classification algorithms from a single machine learning paradigm: either decision-tree induc-
tion, rule induction, or Bayesian network classification. Auto-WEKA combines algorithm se-
lection and hyper-parameter optimisation to recommend classification algorithms from multi-
ple paradigms. We performed controlled experiments where these four AutoML methods were
given the same runtime limit for different values of this limit. In general, the difference in pre-
dictive accuracy of the three best AutoML methods was not statistically significant. However,
the EA evolving decision-tree induction algorithms has the advantage of producing algorithms
that generate interpretable classification models and that are more scalable to large datasets, by
comparison with many algorithms from other learning paradigms that can be recommended by
Auto-WEKA. We also observed that Auto-WEKA has shown meta-overfitting, a form of over-
fitting at the meta-learning level, rather than at the base-learning level.

Keywords evolutionary algorithms · algorithm recommendation · automated machine
learning · classification ·meta-learning

1 Introduction

Classification is one of the main machine learning tasks and, hence, there is a large variety of
classification algorithms available (57; 58). However, in most real-world applications, the choice
of classification algorithm for a new dataset or application domain is still mainly an ad-hoc
decision.

In this context, the use of meta-learning for algorithm recommendation is a very important
research area with seminal work dating back more than 20 years, which includes the StatLog
(36) and METAL (1) projects. Meta-learning can be defined as learning how to learn, which in-
volves learning, from previous experience, what is the best machine learning algorithm (and its
best hyper-parameter setting) for a given dataset (8; 53). Meta-learning systems for algorithm
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recommendation can be divided into two broad groups, namely: (a) systems that perform algo-
rithm selection based on meta-features (8), which is the most investigated type; and (b) systems
that search for the best possible classification algorithm in a given algorithm space (52).

Meta-feature-based meta-learning for algorithm selection and recommendation consists of
two basic steps (8). First, the creation of a meta-training set where each meta-instance repre-
sents a dataset, meta-features represent dataset properties, and each meta-class represents a
(base level) learning algorithm. Second, the induction of a meta-classification model by a (meta)
classification algorithm over the meta-training set, thus allowing the recommendation of algo-
rithm(s) for a novel dataset (not included in the meta-training set). A key issue is the design
of a good set of meta-features, with enough predictive power to support an accurate recom-
mendation of the best learning algorithm. Extensive research in this topic has produced a large
variety of meta-features (8; 23; 24), but the issue of finding a set of meta-features with very good
predictive power is still an open and difficult problem.

A limitation of meta-feature-based meta-learning research is that usually a small number of
candidate classification algorithms are considered as meta-classes. This is because in general,
the larger the number of candidate classification algorithms used as meta-classes, the more dif-
ficult it would be for the meta-classification algorithm to accurately predict all meta-classes. In
addition, it is difficult to produce large meta-datasets for meta-learning, since in order to com-
pute the meta-class of each meta-instance we need to run all candidate classification algorithms
on all datasets (one for each meta-instance).

These difficulties have motivated research on the second type of meta-learning for algorithm
recommendation, meta-learning systems using search or optimisation methods to indicate the
best classification algorithm for a given target dataset, in a given algorithm space (42; 33; 52;
43; 30; 5; 45). This work focuses mainly on this type of meta-learning systems, which is a type
of Automated Machine Learning (AutoML) (25), since such systems effectively automate the
process of selecting the best algorithm and its hyper-parameters for the input dataset.

This AutoML approach bypasses the need for designing meta-features and it can, in prin-
ciple, consider a substantially larger number of candidate classification algorithms and hyper-
parameters than meta-feature-based meta-learning systems. Note that although this approach
does not explicitly use a learning algorithm at the meta-level, some methods following this Au-
toML approach (like some methods evaluated in this work) perform a form of meta-learning
because the search is performed in the space of candidate learning algorithms and is guided by
an evaluation function based on the accuracy of learning algorithms at the base level. Therefore,
the search method at the meta-level is implicitly learning from the results of base-level learn-
ing algorithms. Note, however, that this kind of meta-learning of course does not occur in the
case of simple and popular methods for algorithm selection and parameter configuration, like
random search and grid search, which do not perform any learning by themselves.

In this context, the main contribution of this paper is to present an extensive empirical com-
parison of the predictive performance of four sophisticated AutoML methods for the recom-
mendation of classification algorithms. One of these methods, Auto-WEKA (52; 30), performs
algorithm selection and hyper-parameter configuration by considering all candidate classifi-
cation algorithms available in the well-known WEKA data mining tool, which includes algo-
rithms based on several different types of knowledge (or model) representations – e.g., decision
trees, if-then classification rules, Bayesian network classifiers, neural networks, support vector
machines, etc. The other three methods are based on evolutionary algorithms (EAs). Unlike
Auto-WEKA, each of the three EAs focuses on a search space containing classification algo-
rithms based on a single type of knowledge representation. More precisely, the EAs evolve rule
induction algorithms (42), decision-tree induction algorithms (5), and Bayesian network classifi-
cation algorithms (47). Hence, the EAs produce a narrower diversity of classification algorithms
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in terms of knowledge representation. However, within its specialized knowledge representa-
tion, an EA can have more flexibility (or autonomy) to construct new classification algorithms,
rather than just optimising the configuration of hyper-parameters for an existing classification
algorithm, as discussed later.

There are also other recently proposed EAs for related AutoML tasks. In particular, the EAs
proposed in (48; 31; 39) try to optimize an entire machine learning pipeline for a given dataset,
including the choice of data preprocessing methods (like feature scaling operators and feature
selection methods) and classification algorithm. By contrast, we focus on using EAs that rec-
ommend only classification algorithms. In addition, in (38) an EA is proposed to automatically
evolve another type of EA (genetic programming) for classification. By contrast, the EAs used
here automatically evolve more conventional (non-evolutionary) types of classification algo-
rithms, as mentioned earlier.

Controlled experiemnts were performed, where the four previous AutoML methods (the
three EAs and Auto-WEKA) had the same runtime limit for different values of this limit. In gen-
eral, the difference in predictive accuracy of the three best AutoML methods was not statistically
significant, but Auto-WEKA showed meta-overfitting, a form of overfitting at the meta-learning
level, due to evaluating many different (base-level) classification algorithms during its search
for the best algorithm. This is in contrast to the standard overfitting at the base level, due to the
evaluating many different models built by the same classification algorithm. In addition, the
EA evolving decision-tree induction algorithms have the advantage of producing algorithms
that generate interpretable classification models and that are more scalable to large datasets, by
comparison with many algorithms from other learning paradigms that can be recommended
by Auto-WEKA. Furthermore, an analysis of the different types of classification algorithms rec-
ommended by Auto-WEKA shows that overall decision-tree and ensemble algorithms were the
most frequently recommended types of algorithms, whilst rule induction algorithms were the
least recommended type.

The remainder of this paper is organised as follows. Section 2 reviews the background on
AutoML methods for classification-algorithm recommendation, focusing on the four previously
mentioned AutoML methods. Section 3 describes the methodology adopted in this study for
executing the experimental analyses, whose extensive results are presented in Section 4. Finally,
the main conclusions and future work suggestions are presented in Section 5.

2 AutoML Methods for Classification-Algorithm Recommendation

This section reviews the main concepts underlying several AutoML methods for automatic rec-
ommendation of the best classification algorithm for a given input dataset. It mainly covers
the four AutoML methods evaluated in this work, Auto-WEKA and three EAs, as mentioned
earlier. Its last subsection briefly reviews related work on other evolutionary AutoML methods.

2.1 Auto-WEKA and the CASH Problem

Initial work on meta-learning focused on selecting the best classification algorithm(s) for a given
dataset, explicitly or implicitly assuming a default configuration (hyper-parameter settings) for
the candidate algorithms. However, given that the success of a classification algorithm strongly
depends on its hyper-parameter settings, more recent work has focused on the so called Com-
bined Algorithm Selection and Hyper-parameter (CASH) optimisation problem (52). In this
section, we review the AutoML methods evaluated in this work that address the CASH prob-
lem by considering, as candidate algorithms to be recommended, classification algorithms from
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multiple knowledge (model) representations, like decision trees, IF-THEN classification rules,
probabilistic graphical models, neural networks, ensembles, etc.

In this context, an advanced and well-known system designed for the CASH problem is
Auto-WEKA (52; 30), whose search-space includes all classification algorithms available in Weka
(22) with their corresponding candidate hyper-parameter settings.

In order to search the space of candidate algorithms and their hyper-parameter settings,
Auto-WEKA uses a stochastic search method, named Sequential Model-Based Optimisation
(SMBO), and a loss function to measure classification error. The goal is to find the classification
algorithm and its corresponding hyper-parameter settings that minimise the value of the loss
function for the target dataset. SMBO essentially works as follows. First, the CASH problem
is formulated as a hierarchical hyper-parameter search-space where there is a new root-level
hyper-parameter that selects between algorithms. Hence, a candidate solution is an algorithm
selected at the root level and its hyper-parameters selected at lower levels. As shown in Algo-
rithm 1, SMBO initially builds a model (ML, line 1) representing the dependency of the loss
function on the candidate hyper-parameter settings. Next, it iteratively uses the model to gen-
erate a promising candidate hyper-parameter setting (λ, line 3), evaluates the setting (lines 4-5),
and updates the model according to the evaluation (line 6). SMBO is flexible enough to be able
to be used with different algorithms for building the dependency model, with random forests
being used in (52; 30).

Algorithm 1 Pseudo-code of SMBO. Adapted from (52).
1: Initialise modelML;H = ∅
2: while time budget has not been exceeded do
3: λ = candidate configuration fromML

4: compute c = L(Aλ, D
(i)
train, D

(i)
valid)

5: H = H ∪ {(λ, c)}
6: UpdateML givenH
7: end while
8: return λ fromH with minimal c

The approach used by Auto-WEKA was also extended to produce another system for solv-
ing the CASH problem, namely Auto-sklearn (17), which uses the scikit-learn machine learning
library (44) rather than Weka. Auto-sklearn extends Auto-WEKA’s approach in two ways. First,
it uses an ensemble of the classification models generated by the SMBO search method, in-
stead of just one model like in Auto-WEKA. Second, it uses meta-features-based meta-learning
to find good classification algorithm configurations (see (17; 16) for details of these two exten-
sions). In addition, meta-features-based meta-learning has been recently used to initialise the
SMBO’s search for the optimal solution to the CASH problem (18). It should be noted that the
aforementioned systems, although very advanced, are limited to find a combination of algo-
rithm and hyper-parameter settings among existing combinations in the base machine learning
toolkit being used (Weka or scikit-learn). They do not have enough autonomy for constructing
a new classification algorithm, which can be done in some cases by the EA-based meta-learning
methods discussed in the next section.

2.2 EA-based AutoML Methods

Each of the Evolutionary Algorithm-based (EA-based) AutoML methods evaluated in this work
explores a search space with classification algorithms from a different knowledge (model) rep-
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resentation, namely: rule induction (42), decision-tree induction (2), or Bayesian network clas-
sifiers (47).

EAs are search methods based on the natural selection principle (14). They have been exten-
sively used for evolving classification models in machine learning (19; 2). In this work, however,
the EAs evolve full classification algorithms rather than classification models. In EA terminol-
ogy, the EAs used in this work are hyper-heuristic search methods, which perform a search in
the space of candidate classification algorithms (43); whilst EAs that perform a search in the
space of classification models are conventional meta-heuristic search methods.

The three EAs receive as input a high-level pseudo-code with the main algorithmic compo-
nents to be used to create classification algorithms from a target algorithm type. For instance,
if the target is rule induction algorithms, the components include a rule search method, a rule
evaluation criterion, etc. Each component can be instantiated in different ways, e.g., confidence
or information gain can be used to instantiate the rule evaluation component. Given an input
dataset, an EA searches for the best combination of algorithmic components based on an evalu-
ation function (called fitness function in EAs). Thus, the EA’s output is a classification algorithm
of the target type.

Note that the EAs can sometimes generate a new classification algorithm which works in
a way different from all current (manually-designed) classification algorithms. This is because
the EAs can combine the prespecified algorithmic components in novel ways, not explored by
human algorithm designers yet.

As an example of algorithm construction, let us consider the EA for evolving decision-tree al-
gorithms. That EA’s algorithmic components include, among other types of components, 15 dif-
ferent split criteria and 5 tree-pruning methods. A manually-designed decision-tree algorithm
like J48 (WEKA’s version of C4.5) or CART offers just a subset of these split criteria and pruning
methods. Hence, when Auto-WEKA configures a decision-tree algorithm, it first chooses ex-
actly which algorithm will be configured, say J48 or CART, and then it considers only the split
criteria and tree pruning methods/hyper-parameters available in WEKA for the chosen algo-
rithm. It cannot combine, e.g., the information gain ratio used by J48 with the cost-complexity
pruning used by CART. By contrast, the EA can construct a new decision-tree induction algo-
rithm with any combination of split criteria and tree pruning method/hyper-parameters (as
well as any combination of other specific components), regardless of whether or not the chosen
combination of components occurs in a current manually-designed decision-tree algorithm.

Algorithm 2 shows the high-level pseudo-code of the three EAs for recommending classi-
fication algorithms used in this work. First, they generate a population of candidate solutions
(classification algorithms), or individuals, based on the target pseudo-code and sets of compo-
nents given as input. For a fixed number of iterations (generations) g, the classification algo-
rithms represented by the individuals in the initial population P are built and run on the input
dataset. The input dataset is divided into meta-training, meta-validation, and meta-test sets. In
order to measure the fitness (quality) of an individual, its corresponding classification algorithm
is executed over the meta-training set to build a classification model. Afterwards, a given pre-
dictive performance measure is used to evaluate the model performance on the meta-validation
set, and this measure is used as the fitness of the individual.

To avoid overfitting, at each s generations, the examples belonging to the meta-training and
meta-validation sets are resampled, and the best individual found in that sample is saved in
BestSet. During the EA run, individuals at different generations may be evaluated with differ-
ent data. Based on the individuals’ fitness values, the best candidate classification algorithms are
selected to undergo EA operations such as crossover and mutation, according to user-defined
probabilities. At the end of an EA run, the best algorithm output by the EA is chosen as follows.
Considering the individuals saved in BestSet, a new cross-validation procedure is performed
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Algorithm 2 Pseudo-code of evolutionary algorithms for generating classification algorithms.
BuildTailoredAlgorithm(datasets, generalPseudocode, components, g, s)
P = CreatePopulation(generalPseudocode, components)
count = 0
BestSet = ∅
while count< g do

for all indiv in P do
BuildAlgorithm(indiv)
RunAlgorithm(indiv,dataset)

end for
TournamentSelection(P)
Crossover(P)
Mutation(P)
count = count + 1
if count mod s then

BestSet = best in P
Resample dataset

end if
end while
return best in BestSet according to a predictive performance measure

on the training set. All individuals are then executed using the same cross-validation folds, and
the best classification algorithm is output. That algorithm is finally evaluated on the meta-test
set, which was not seen during the EA run, to compute the final measure of predictive accuracy
for the evolved classification algorithm.

All three EAs discussed in this paper follow Algorithm 2, but they vary on how they rep-
resent individuals, the types of components used to build classification algorithms (depending
on the type of target classification algorithm), and the performance measure used to select the
best individuals. All algorithms require user-defined hyper-parameters which include, besides
the number of iterations (generations), the number of individuals, the rates of crossover and
mutation (operators used to produce new individuals from existing ones), the rate of elitism
(i.e. the percentage of individuals from the current generation that are passed unaltered to the
next generation), and the number of individuals selected to undergo tournament selection.

2.2.1 Evolving Rule Induction Algorithms with Grammar-based Genetic Programming

The first EA proposed for generating a full classification algorithm customised to a given input
dataset evolves rule induction algorithms (which output IF-THEN classification rules), using a
Grammar-based Genetic Programming (GGP) algorithm (42), named GGP-RI (GGP for Rule In-
duction). GGPs differ from standard EAs as they receive as input a grammar, and all candidate
solutions generated must obey the grammar production rules.

The grammar has production rules specifying how the following components of induction
algorithms can be instantiated and combined together into valid algorithms: the decision to
generate an unordered rule set or an ordered rule list, different methods to initialize, search,
evaluate and prune rules, as well as different loop structures and conditional statements to
control the iterative processes of constructing a rule and adding/removing rules to/from a
set/list. Each individual is represented by a tree generated by applying the production rules.
Each tree is mapped to a rule induction algorithm. The GGP grammar has 26 non-terminals and
83 production rules, and, varying the order in which the production rules are applied, the GGP’s
search-space has over 2 billion different rule induction algorithms. GGP’s fitness function is the
F-Measure (the harmonic mean of precision and recall) of a candidate rule induction algorithm
in the meta-validation set (as explained earlier).
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2.2.2 Evolving Decision-Tree Induction Algorithms with a Hyper-Heuristic Evolutionary Algorithm

A hyper-heuristic EA that generates decision-tree induction algorithms, called HEAD-DT (Hyper-
heuristic Evolutionary Algorithm for Automatically Designing Decision-Tree algorithms), is de-
scribed in (3; 4). Unlike GGP, HEAD-DT is based on a genetic algorithm with linear encoding.
An individual (candidate decision-tree induction algorithm) consists of a set of many options
to instantiate the following components of decision-tree induction algorithms: the data split
procedure used at each node of the tree (i.e., whether performing a binary or multi-way split
and which feature evaluation function should be used), the tree expansion stopping criteria,
approaches to cope with missing values (in both the training and testing phases), and the tree
pruning procedure. For each algorithmic component, an individual specifies both categorical
options (e.g., the choice of feature evaluation function, out of 16 predefined functions) and
the numerical value of hyper-parameters associated with the chosen options (e.g., a hyper-
parameter that controls the degree of pruning for a given pruning method). HEAD-DT’s fit-
ness function is the F-Measure of a candidate decision-tree induction algorithm in the meta-
validation set, and its search space contains 21,319,200 different decision-tree algorithms. It was
applied with success in different application domains, such as gene expression classification (4)
and rational drug design (6).

2.2.3 Evolving Bayesian Network Classification Algorithms with a Hyper-Heuristic Evolutionary
Algorithm

The EA for generating Bayesian Network Classification (BNC) algorithms is named HHEA-
BNC (Hyper-Heuristic Evolutionary Algorithm for creating a BNC algorithm) (47; 46). BNC
algorithms usually have two phases (9; 10): (i) network-structure learning; and (ii) parameter
learning. In the first phase, the algorithm learns which nodes (features) in the network should be
connected to each other. The parameter learning phase, in turn, learns the Conditional Probabil-
ity Tables (CPTs) for each node of the network (the BNC model). However, learning the param-
eters of a BNC model is a relatively straightforward procedure when the network structure has
been determined. For this reason, HHEA-BNC focuses on the structure learning phase. HHEA-
BNC encodes candidate BNC algorithms using a dynamic array-like representation, where each
position in the array represents a different algorithm component to be instantiated. In order to
select and instantiate the components of the BNC algorithm, HHEA-BNC uses a top-down ap-
proach, where the first instantiated component of the BNC algorithm being created is the search
method, with a choice among 12 different methods. The search method defines the type of algo-
rithm being generated (naïve Bayes, score-based, constraint-based or hybrid) and, consequently,
the type of BNC model being created (i.e. tree, graph, or no edges between features, in the case
of naïve Bayes). Based on this first choice, different BNC algorithms can be generated, including
components like scoring metrics, statistical independence tests, maximal number of parents per
node, etc. The smallest individual has three components, while the largest has 11. The search-
space of HHEA-BNC has 60,510,000 different candidate BNC algorithms. HHEA-BNC’s fitness
function is the F-measure of a candidate BNC algorithm in the meta-validation set.

2.2.4 Related Work on EA-based AutoML Methods

We also have identified three evolutionary AutoML methods that try to optimize the entire
classification pipeline: (i) Tree-based Pipeline Optimization Tool (TPOT) (39; 40); (ii) Genetic
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Programming for Machine Learning (GP-ML) (31); and (iii) REsilient ClassifIcation Pipeline
Evolution (RECIPE) (48). A pipeline is defined as a machine learning workflow that solves the
classification task. To solve this type of task, a pipeline may contain data preprocessing methods
(e.g., feature normalization or feature selection), must have a classification algorithm (e.g., naïve
Bayes or a support vector machine) and may have a post-processing approach (e.g., voting
or stacking). Therefore, these methods take into account various aspects of machine learning
instead of focusing only on the classification algorithm. This means that these methods could
select and configure a range of different classification-related methods during the evolutionary
search, as they are not centered on just one type of classification algorithm. This basic principle is
also followed by Auto-WEKA and Auto-sklearn, which are well-known non-EA-based AutoML
methods. The aforementioned EA-based AutoML methods are discussed in somewhat more
detail next.

TPOT is a genetic programming-based method that searches for the most suitable classifica-
tion pipeline to the input dataset. It encompasses (part of) the available methods in the scikit-
learn library in its search space, and allows different ways of combining the data preprocessing
methods (in sequence or in parallel) and the classification algorithms (supporting ensemble ap-
proaches or not). Although TPOT has been designed for general classification, it alternatively
has a specific version for bioinformatics studies, named TPOT-MDR (50). TPOT-MDR includes
two new data preprocessing operators that are used in genetic analyses of human diseases: the
Multifactor Dimensionality Reduction (MDR) and the Expert Knowledge Filter (EKF). Besides,
both versions perform multi-objective search using Pareto selection (based on the well-known
NSGA-II algorithm) (11) with two objectives: maximizing the predictive accuracy measure of
the pipeline and minimizing the pipeline’s overall complexity (which is represented by the
number of pipeline operators).

The main issue when using TPOT is that it can generate classification pipelines that are
invalid or arbitrary during its evolutionary process, i.e., pipelines that do not solve the classifi-
cation task itself. This happens because TPOT does not impose any constraints when combining
the ML components to create the pipelines. For instance, TPOT can create a pipeline without a
classification algorithm (39). This, of course, makes the evolutionary process to waste resources
as various individuals would not solve the classification task. This can be considered a signifi-
cant drawback of TPOT in the context of the classification task.

GP-ML overcomes this limitation by using a strongly typed genetic programming (STGP)
method. A STGP method restricts the scikit-learn pipelines in such a way that makes them valid
from the machine learning point of view. In addition, GP-ML applies an asynchronous evolu-
tionary algorithm (49) instead of a generational one. (49) observed that asynchronous evolution
is biased towards the evaluation of faster pipelines in some parts of the search space. However,
(31) consider this bias an advantage to the AutoML task, because a faster pipeline is usually
preferable to a slower one, when both present similar predictive accuracy values.

RECIPE follows the same basic principle of GP-ML, i.e., it only allows the generation of valid
pipelines during the evolutionary process. In order to implement this principle, RECIPE defines
a grammar which encompasses the classification knowledge in scikit-learn. Therefore, RECIPE
makes use of a grammar-based genetic programming (GGP) (35) to perform the search for the
most suitable classification pipeline. The grammar prevents the generation of invalid/arbitrary
pipelines, and could also speed up the search.
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3 Experimental Methodology

The experiments are divided into two parts. The first part compares the results obtained by the
EAs with the results obtained by Auto-WEKA (52), whose search space includes all 33 classifi-
cation algorithms available in WEKA. These experiments used 20 datasets.

The second part of the experiments compares one of the EAs (HEAD-DT, the EA evolving
decision-tree algorithms) against Auto-WEKA, on an extended set of 40 datasets. The main
reason for using a smaller number of datasets in the first type of experiment was the very long
computation time associated with comparing four methods. HEAD-DT was chosen because,
among the two most successful EAs overall (HEAD-DT and HHEA-BNC, as discussed later),
HEAD-DT has the advantage of producing decision tree algorithms which are more scalable to
larger datasets than the Bayesian network classification algorithms produced by HHEA-BNC.
The datasets used in both types of experiments are described next.

3.1 Datasets

The first part of the experiments focus on 20 challenging datasets, characterised in general (with
one exception) by a small number of instances and a large number of attributes. Table 1 sum-
marises their main characteristics, including number of instances, number of numerical and
nominal attributes, percentage of missing values, class balance ratio (class bal.) and number
of classes. Class bal. is the ratio of the minority class frequency over the majority class fre-
quency – values closer to 0 (1) indicate datasets with more (less) class distribution imbalance.
The first 12 datasets in this table are bioinformatics datasets, whilst the last 8 ones are text min-
ing datasets. The first six datasets involve data from the biology of ageing. Datasets CE-T3,
SC-T3, DM-T3, and MM-T3 are described in (55); whilst datasets DNA-T3 and DNA-T11 are
described in (20). Dataset PS-T3 involves post-synaptic proteins (41). The 5 microarray datasets
are publicly-available microarray gene expression datasets, described in (51). Finally, the 8 text
mining datasets were obtained from OpenML (54).

Table 1 Summary of the 20 datasets used in both the first and the second sets of experiments.

Type Dataset # inst # num # nom % miss class bal # classes

Ageing

CE-T3 478 0 764 0 0.66 2
DM-T3 119 0 586 0 0.49 2
MM-T3 89 0 887 0 0.41 2
SC-T3 248 0 698 0 0.19 2
DNA-T3 139 3 333 9 0.31 2
DNA-T11 135 2 103 26 0.32 2

PS PS-T3 4303 2 443 0 0.06 2

Microarray

chen-2002 179 85 0 0 0.72 2
chowdary-2006 104 182 0 0 0.68 2
nutt-2003-v2 28 1070 0 0 1.00 2
singh-2002 102 339 0 0 0.96 2
west-2001 49 1198 0 0 0.96 2

Text

dbworld-bodies 64 0 4702 0 0.83 2
dbworld-bodies-s 64 0 3721 0 0.83 2
oh0.wc 1003 3182 0 0 0.26 10
oh5.wc 918 3012 0 0 0.40 10
oh10.wc 1050 3238 0 0 0.32 10
oh15.wc 913 3100 0 0 0.34 10
re0.wc 1504 2886 0 0 0.02 13
re1.wc 1657 3758 0 0 0.03 25
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Table 2 summarises the main characteristics for 20 additional datasets which were used only
in the final experiments, comparing HEAD-DT and Auto-WEKA. The first 15 datasets used in
this Table were used in (52), whilst the other 5 datasets where used in (16).

Table 2 Summary of the 20 datasets used only in the second set of experiments.

Dataset # inst # num # nom % miss class bal # classes

abalone 4177 7 1 0.00 <0.01 28
car 1728 0 6 0.00 0.05 4
convex 58000 784 0 0.00 1.00 2
germancredit 1000 7 13 0.00 0.43 2
krvskp 3196 0 36 0.00 0.91 2
madelon 2600 500 0 0.00 1.00 2
mnist 62000 784 0 0.00 0.80 10
mnistrotationbackimagenew 62000 784 0 0.00 0.81 10
secom 1567 590 0 4.54 0.07 2
semeion 1593 256 0 0.00 0.96 10
shuttle 58000 9 0 0.00 <0.01 7
waveform 5000 40 0 0.00 0.98 3
winequalitywhite 4898 11 0 0.00 0.00 11
yeast 1484 8 0 0.00 0.01 10
sick 3772 7 22 5.54 0.07 2
splice 3190 0 61 0.00 0.46 3
kropt 28056 0 6 0.00 0.01 18
quake 2178 3 0 0.00 0.80 2
pc4 1458 37 0 0.00 0.14 2
magicTelescope 19020 10 0 0.00 0.54 2

3.2 Evaluation Methodology

The 10-fold cross-validation technique (10-cv) (57) was used in the experiments. Since Auto-
WEKA and the Evolutionary Algorithms (EAs) are non-deterministic, their results are an av-
erage over 5 executions, generating, for each method, 1000 algorithms. All results presented in
Section 4 refer to the predictive accuracy of the recommended algorithms in the test sets.

Two predictive accuracy measures are used. First, the Geometric Mean (GMean) of sensitiv-
ity (Sens) and specificity (Spec) (27), defined as GMean =

√
Sens× Spec. Sens is the proportion

of positive instances that were correctly predicted as positive. Spec is the proportion of negative
instances that were correctly predicted as negative. These measures were calculated consider-
ing each class in turn as the positive class, and then computing the weighted average of these
measures, by weighing the classes according to their relative frequency. The GMean measure
was also used to evaluate some datasets in (55). The second predictive accuracy measure used
is the simple classification accuracy measure used by Auto-WEKA to choose the best algorithm
for each dataset.

Statistical significance analysis was applied to the experimental results. In the first set of
experiments (comparing four methods), we have adopted Demšar’s (12) recommendation to
use the Friedman test with the adjusted statistic FF (26) to compare multiple algorithms over
multiple datasets, followed by the Nemenyi post-hoc test for pairwise comparisons. In the fi-
nal experiment comparing only two methods we have used the Wilcoxon test (56). The main
advantage of all these statistical tests is that they are non-parametric, so that they do not make
the assumption that the data follows the normal distribution (nor assume any other probability
distribution, for that matter). All statistical tests were used with the conventional significance
level of 0.05.
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3.3 Settings for the Evolutionary Algorithms (EAs) and for Auto-WEKA

In order to perform a fair comparison, all EAs were configured with the same hyper-parameters
values, listed in Table 3.

Table 3 Parameter values for the evolutionary algorithms.

Parameter Description Value

Number of individuals 100
Number of generations before changing the validation set 5
Tournament selection size 2
Elitism rate 5%
Crossover rate 95%
Mutation rate 5%

Table 4 shows the hyper-parameter settings for Auto-WEKA based on the options provided
by its Experiment Builder (52). Note that the 10-cv mentioned in Table 4 is another cross-
validation procedure used by Auto-WEKA, but this time over the training set (generated by
the outermost 10-cv) to evaluate its candidate solutions regarding their predictive accuracy.

Table 4 Hyper-parameter values for all versions of Auto-WEKA.

Parameter Description Value(s)

Instance generator 10-fold cross-validation, seed = 1,..,5

Evaluation measure error rate (classification)

Optimisation method

SMAC, with executable =
smac-v2.06.01-development-619/smac
Initial Incumbent = Random
Execution Mode = SMAC
InitialN = 1

memLimit 15 GB

timeLimit from 1,000s to 10,000s

None of the 4 meta-learning methods had their hyper-parameter values optimised to indi-
vidual datasets. A more robust hyper-parameter optimisation procedure would be too time-
consuming, given the very large number of experiments carried out in this work.

3.4 Computational Environment and Runtime Limits

The experiments were executed in a Dual Intel 2.10GHz Xeon E5-2683 v4 Hexadeca-Core with
128GB RAM. In order to perform controlled experiments comparing different meta-learning
methods with the same computational budget, recall that two types of experiments are per-
formed, as reported in Section 4. The first type of experiment compares the results obtained
by the three EAs (each evolving classification algorithms based on a single type of knowledge
representation) with the results obtained by Auto-WEKA, which can recommend classification
algorithms based on multiple knowledge representations. The second type of experiments com-
pares the best EA (HEAD-DT, evolving decision-tree algorithms) against Auto-WEKA in an
extended set of datasets.
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In both types of experiments, to have a fair comparison among all meta-learning methods,
each of them is allocated the same runtime limit. Experiments were performed with ten increas-
ing values of the runtime limit for each meta-learning method, namely 1,000s (seconds), 2,000s,
..., up to 10,000s. These runtime limits refer to the time taken by a single run of each method
on each dataset, on a single cross-validation fold. Due to space restrictions, the next section will
report only the results for the smallest and the largest runtime limits, i.e., 1,000s and 10,000s.
The results for the other runtime limits can be seen in (7).

In addition to the parameters that are common to all three EAs, which were set as described
in Table 3, there is a parameter that is used by GGP-RI and HHEA-BNC, but not by HEAD-DT.
This parameter is a timeout to evaluate each individual (candidate algorithm) of the EA. For
GGP-RI, the value of this parameter starts with 10s (seconds) when the runtime limit for the
entire run of GGP-RI is 1,000s. Then the individual evaluation timeout increases by 10s for each
increase of 1,000s in GGP-RI’s runtime, up to 100s, when the GGP-RI’s runtime limit is 10,000s.
For HHEA-BNC, the value of this parameter starts with 50s (seconds) when the runtime limit
for the entire run of HHEA-BNC is 1,000s. Then the individual evaluation timeout increases by
50s for each increase of 1,000s in HHEA-BNC’s runtime, up to 500s, when the HHEA-BNC’s
runtime limit is 10,000s. HEAD-DT does not need this parameter because the decision tree in-
duction algorithms produced by this EA are relatively fast. The values of this parameter for
HHEA-BNC are larger than the values for GGP-RI because the Bayesian network classification
algorithms generated by the former tend to be considerably slower than the rule induction al-
gorithms generated by the latter EA.

4 Experimental Results

This section presents the results of the following two types of experiments:

1. Experiments comparing four AutoML methods: the three EAs (HEAD-DT, GGP-RI, HHEA-
BNC) and Auto-WEKA.

2. Experiments comparing one of the EAs (HEAD-DT, evolving decision tree algorithms) with
Auto-WEKA, on an extended set of datasets.

As mentioned earlier, due to the very large number of experiments, the first type of exper-
iments use the 20 datasets shown in Table 1; whilst the second type of experiments uses an
extended set of 40 datasets (the 20 datasets in Table 1 plus the 20 datasets in Table 2). We report
results for the values of accuracy and Gmean (the geometric mean of sensitivity and specificity)
for each dataset; and the average values of accuracy and GMean, as well as the average rank
of each method based on these measures, over the corresponding datasets. The lower the rank,
the better the method. A method that outperforms every other method in every dataset has an
average rank of 1.0 (first position). The complete tables with per-dataset results can be found
in the Supplementary Results file. Recall that, although we performed experiments with the
runtime limit for meta-learning methods varying from 1,000 to 10,000 seconds, in increments of
1,000s, in general only the results for 1,000s and 10,000s are reported in this section, due to space
restrictions. The results for the 10 different runtime limits can be found in the Supplementary
Results file.

4.1 Results Comparing Four AutoML Methods

This section compares four types of AutoML methods, the three EAs and Auto-WEKA, in con-
trolled experiments where all the four methods use the same runtime limit, as mentioned earlier.
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Tables 5 and 6 show the GMean results for each method, for the runtime limits of 1,000s and
10,000s, respectively. Recall that these runtime limits refer to a single run of a meta-learning
method, for each fold of the cross-validation procedure. The last row of these tables show the
average rank based on GMean over all 20 datasets. Tables 7 and 8 show the accuracy results for
each method, for the runtime limits of 1,000s and 10,000s, respectively.

Table 5 GMean results for the four AutoML methods (time limit: 1,000s).

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.564 0.576 0.501 0.604
DM 0.559 0.596 0.523 0.557
MM 0.596 0.637 0.524 0.572
SC 0.535 0.497 0.392 0.471
DNA3 0.704 0.741 0.582 0.700
DNA11 0.568 0.544 0.498 0.506
PS 0.888 0.827 0.445 0.830
chen-2002 0.891 0.852 0.658 0.922
chowdary-2006 0.956 0.966 0.830 0.988
nutt-2003-v2 0.790 0.746 0.631 0.861
singh-2002 0.772 0.771 0.613 0.867
west-2001 0.913 0.886 0.617 0.888
dbworld-bodies 0.725 0.753 0.582 0.765
dbworld-bodies-stemmed 0.815 0.770 0.652 0.825
oh0.wc 0.895 0.940 0.398 0.863
oh5.wc 0.911 0.913 0.361 0.878
oh10.wc 0.867 0.876 0.370 0.831
oh15.wc 0.847 0.909 0.382 0.864
re0.wc 0.831 0.841 0.489 0.849
re1.wc 0.886 0.832 0.407 0.851

Average 0.776 0.774 0.523 0.775
Average Rank 2.000 2.000 4.000 2.000

Table 6 GMean results for the four AutoML methods (time limit: 10,000s).

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.581 0.578 0.502 0.605
DM 0.517 0.629 0.544 0.544
MM 0.590 0.598 0.550 0.563
SC 0.559 0.528 0.389 0.454
DNA3 0.705 0.730 0.583 0.712
DNA11 0.578 0.497 0.506 0.524
PS 0.897 0.824 0.448 0.838
chen-2002 0.892 0.862 0.659 0.925
chowdary-2006 0.956 0.958 0.833 0.991
nutt-2003-v2 0.790 0.809 0.611 0.887
singh-2002 0.772 0.777 0.638 0.877
west-2001 0.913 0.879 0.624 0.878
dbworld-bodies 0.725 0.784 0.585 0.816
dbworld-bodies-stemmed 0.815 0.805 0.649 0.892
oh0.wc 0.893 0.918 0.398 0.884
oh5.wc 0.914 0.896 0.364 0.880
oh10.wc 0.864 0.847 0.369 0.835
oh15.wc 0.859 0.900 0.381 0.867
re0.wc 0.831 0.827 0.489 0.841
re1.wc 0.894 0.883 0.407 0.859

Average 0.777 0.777 0.526 0.783
Average Rank 2.050 2.100 3.850 2.000

In Table 5, with GMean results for the smallest runtime limit of 1,000s, the best average
ranks were jointly obtained by three methods, HEAD-DT, HHEA-BNC and Auto-WEKA; whilst
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HEAD-DT obtained a slightly better average GMean value. In Table 6, with results for the
longest runtime limit of 10,000s, Auto-WEKA obtained a slightly better result (regarding both
the average rank and the average GMean value) than HEAD-DT and HHEA-BNC. In both ta-
bles, GGP-RI was clearly the worst performing method. This result seem partly due to the fact
that GGP-RI had poor results in many datasets with a large number of numerical attributes.
Comparing the average GMean values of each method across both tables, one can observe that
the three EAs have only slightly improved their GMean values from 1,000s to 10,000s – an im-
provement of just 0.001 for HEAD-DT and 0.003 for the other two EAs. By contrast, Auto-WEKA
obtained a somewhat greater GMean improvement of 0.008, when the runtime limit increased
from 1,000s to 10,000s.

Hence, Auto-WEKA has benefited from the increase in runtime limit more than the EAs.
This seems due to the fact that Auto-WEKA is searching in a much more diverse space of clas-
sification algorithms, in terms of knowledge representations. Recall that each EA’s search space
includes algorithms from a single knowledge representation (decision trees, if-then classifica-
tion rules or Bayesian network classifiers), whilst Auto-WEKA’s search space includes 33 clas-
sification algorithms from multiple types of knowledge representation. Hence, it seems natural
that Auto-WEKA requires more time to find the best type of algorithm to be recommended.

When analyzing the results for the accuracy measure, the scenario changes a little. It is possi-
ble to see, in both Table 7 and Table 8, for the runtime limits of 1,000s and 10,000s, respectively,
there is a clearer difference in relative ranks of the three best methods. More precisely, when
predictive accuracy is evaluated by the accuracy measure, Auto-WEKA is the best method,
followed by HHEA-BNC and HEAD-DT in second in third places, respectively, in terms of av-
erage rank. In terms of average accuracy, HHEA-BNC and Auto-WEKA obtain the joint best
result in Table 7 (1,000s), but Auto-WEKA is again the clear winner in Table 8 (10,000s). Again,
Auto-WEKA was the method that most benefited from the increase in the runtime limit, with
a small improvement of average accuracy, namely 0.008. Again, GGP-RI was clearly the worst
performing method.

To explain these results, recall that Auto-WEKA explicitly optimizes the accuracy measure
when searching for the best algorithm configuration, whereas the EAs are optimizing the F-
Measure. Hence, it is natural that Auto-WEKA obtains the best predictive performance when
the results are evaluated by the Accuracy measure.

Figure 1 shows the critical diagrams comparing the four AutoML methods in terms of their
average rank based on both GMean (in the top two diagrams) and accuracy (in the bottom two
diagrams). For both measures, and for both the runtime limits of 1,000s and 10,000s, we can
see that there is no statistically-significant difference among all methods, with the exception of
GGP-RI, which is significantly outperformed by the other three methods.

CD

1 2 3 4

HHEA-BNC
Auto-WEKA

GGP-RI
HEAD-DT

(a) GMean: 1,000s

CD

1 2 3 4

Auto-WEKA
HEAD-DT

GGP-RI
HHEA-BNC

(b) GMean: 10,000s

CD

1 2 3 4

Auto-WEKA
HHEA-BNC

GGP-RI
HEAD-DT

(c) Accuracy: 1,000s

CD

1 2 3 4

Auto-WEKA
HHEA-BNC

GGP-RI
HEAD-DT

(d) Accuracy: 10,000s

Fig. 1 Critical diagrams showing average GMean/Accuracy ranks and Nemenyi’s critical difference (CD) for the four
AutoML methods.
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Table 7 Accuracy results for the four AutoML methods (time limit: 1,000s).

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.613 0.615 0.478 0.649
DM 0.637 0.708 0.598 0.672
MM 0.720 0.748 0.641 0.722
SC 0.826 0.802 0.764 0.828
DNA3 0.846 0.841 0.760 0.856
DNA11 0.752 0.743 0.682 0.708
PS 0.982 0.978 0.933 0.975
chen-2002 0.896 0.867 0.663 0.926
chowdary-2006 0.959 0.971 0.832 0.991
nutt-2003-v2 0.760 0.730 0.537 0.840
singh-2002 0.772 0.771 0.539 0.867
west-2001 0.910 0.888 0.511 0.880
dbworld-bodies 0.721 0.764 0.523 0.764
dbworld-bodies-stemmed 0.806 0.783 0.610 0.825
oh0.wc 0.825 0.896 0.070 0.778
oh5.wc 0.846 0.848 0.048 0.789
oh10.wc 0.777 0.790 0.053 0.721
oh15.wc 0.746 0.844 0.061 0.774
re0.wc 0.755 0.760 0.240 0.783
re1.wc 0.807 0.742 0.084 0.755

Average 0.798 0.805 0.481 0.805
Average Rank 2.150 2.025 4.000 1.825

Table 8 Accuracy results for the four AutoML methods (time limit: 10,000s).

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.623 0.614 0.482 0.649
DM 0.604 0.713 0.615 0.665
MM 0.702 0.730 0.658 0.706
SC 0.818 0.806 0.764 0.826
DNA3 0.847 0.838 0.758 0.855
DNA11 0.747 0.730 0.685 0.701
PS 0.984 0.977 0.933 0.975
chen-2002 0.896 0.868 0.666 0.927
chowdary-2006 0.959 0.965 0.837 0.993
nutt-2003-v2 0.760 0.790 0.517 0.873
singh-2002 0.772 0.777 0.574 0.877
west-2001 0.910 0.883 0.538 0.868
dbworld-bodies 0.721 0.792 0.530 0.812
dbworld-bodies-stemmed 0.806 0.814 0.605 0.891
oh0.wc 0.824 0.868 0.071 0.809
oh5.wc 0.850 0.829 0.051 0.793
oh10.wc 0.773 0.754 0.056 0.727
oh15.wc 0.764 0.832 0.060 0.778
re0.wc 0.752 0.746 0.240 0.774
re1.wc 0.820 0.802 0.084 0.767

Average 0.797 0.806 0.486 0.813
Average Rank 2.150 2.050 3.950 1.850

As mentioned earlier, the analysis of the results so far focused only on the runtime limits of
1,000s and 10,000s due to space restrictions, but we performed experiments with 10 different
limits (from 1,000s up to 10,000s). Figure 2(a) shows the evolution of the GMean average ranks
for the four meta-learning methods across the 10 runtime limits. This figure shows that HHEA-
BNC tends to achieve overall the best (lowest) average rank until the runtime limit of 7,000s,
whilst for longer runtime limits Auto-WEKA and HEAD-DT tend to share the best rank, with
Auto-WEKA slightly better at the last runtime limit.

Figure 2(b) shows the same evolution, but this time regarding average accuracy ranks. In this
case, Auto-WEKA remains the best method across all runtime limits, and for nearly all runtime
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limits, the second place is obtained by HHEA-BNC. Note that GGP-RI remained consistently
the worst method across all 10 runtime limits, for both GMean and accuracy results.
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Fig. 2 Evolution of average ranks for all AutoML methods across the 10 runtime limits.

Figures 3(a) and 3(b) show the broad types of algorithms recommended by Auto-WEKA per
dataset, for the runtime limits of 1,000s and 10,000s, respectively. Since Auto-WEKA considers
a large number of algorithms, instead of referring to specific algorithms, the graphs show the
frequency of recommendations for five broad types of algorithms, namely: the three types of
algorithms that are considered by the three EAs (decision trees, if-then classification rules, and
Bayesian network classifiers), ensemble methods and all the others. Note that the variability of
the selected types of algorithms is high, highlighting the difficulty of selecting the best algorithm
for each dataset.

For the runtime limit of 1,000s (Figure 3(a)), ensembles had the highest prevalence across the
datasets; they were selected by Auto-WEKA in 33.9% of the cases, closely followed by decision-
tree algorithms, selected in 31.4% of the cases. For the runtime limit of 10,000s (Figure 3(b)),
these two types of classification algorithms swapped places in the ranking by prevalence, i.e.,
decision-tree algorithms were selected by Auto-WEKA in 34.7% of the cases, whilst ensembles
were selected in 27.3% of the cases. Bayesian classification algorithms also did relatively well,
partly because they had a high prevalence among the text mining datasets. For both runtime
limits, Bayesian classification algorithms were the third most selected type of classification al-
gorithm: they were selected in 16.7% of the cases in Figure 3(a) and in 24.2% of the cases in
Figure 3(b). For both runtime limits, rule induction algorithms had small frequencies of selec-
tion, only 7.9% in Figure 3(a) and 6.7% in Figure 3(b). This is consistent with the fact that, out
of the 3 EAs for AutoML evaluated in this work, GGP-RI (which evolved rule induction algo-
rithms) obtained clearly the worst result.

4.2 More extensive experiments comparing HEAD-DT and Auto-WEKA

In this section we compare HEAD-DT and Auto-WEKA in an extended set of 40 datasets. This
includes the 20 datasets used in the previous section plus 20 other datasets, as discussed in
Section 3.1. As mentioned earlier, the motivation for using this larger set of datasets only to
compare the two methods in this section, rather than to compare more methods in the previous
section, is the much larger amount of time associated with the experiments using all the 40
datasets. This section uses the same experimental methodology used in the previous section,
using 10-fold cross-validation and comparing the two methods with the same runtime limit,
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Fig. 3 Number of times each type of classification algorithm is selected by Auto-WEKA.

varying this limit from 1,000s to 10,000s, in increments of 1,000s. Again, due to space restrictions,
we report results only for the smallest and longest runtime limits, namely 1,000s and 10,000s;
but the results for the 10 different runtime limits can be found in the Supplementary Results
file.

Table 9 and Table 10 show the accuracy and GMean values, respectively, obtained by HEAD-
DT and Auto-WEKA with the runtime limits of 1,000s and 10,000s. In terms of accuracy, Auto-
WEKA has somewhat outperformed HEAD-DT overall, whilst the opposite was observed for
the GMean measure. This result is consistent with the fact that Auto-WEKA’s search tries to
optimize the accuracy measure (unlike HEAD-DT), as discussed earlier. However, the result of
a Wilcoxon significance test, at the conventional significance level of 0.05, indicates that there is
no statistically significant difference of predictive performance between HEAD-DT and Auto-
WEKA (for both accuracy and GMean measures), for each of the 10 runtime limits.

Figure 4(a) shows the evolution of the average GMean values (across all datasets) for Auto-
WEKA and HEAD-DT across the 10 runtime limits. This figure shows that HEAD-DT obtains
a better (higher) GMean value for all runtime limits. Figure 4(b) shows the same type of evo-
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Table 9 Accuracy results for HEAD-DT and Auto-WEKA (time limits: 1,000s and 10,000s).

1,000s 10,000s
HEAD-DT Auto-WEKA HEAD-DT Auto-WEKA

CE 0.613 0.649 0.623 0.649
DM 0.637 0.672 0.604 0.665
MM 0.720 0.722 0.702 0.706
SC 0.826 0.828 0.818 0.826
DNA3 0.846 0.856 0.847 0.855
DNA11 0.752 0.708 0.747 0.701
PS 0.982 0.975 0.984 0.975
chen-2002 0.896 0.926 0.896 0.927
chowdary-2006 0.959 0.991 0.959 0.993
nutt-2003-v2 0.760 0.840 0.760 0.873
singh-2002 0.772 0.867 0.772 0.877
west-2001 0.910 0.880 0.910 0.868
dbworld-bodies 0.721 0.764 0.721 0.812
dbworld-bodies-stemmed 0.806 0.825 0.806 0.891
oh0.wc 0.825 0.778 0.824 0.809
oh5.wc 0.846 0.789 0.850 0.793
oh10.wc 0.777 0.721 0.773 0.727
oh15.wc 0.746 0.774 0.764 0.778
re0.wc 0.755 0.783 0.752 0.774
re1.wc 0.807 0.755 0.820 0.767
abalone 0.265 0.263 0.269 0.263
car 0.984 0.994 0.983 0.997
convex 0.712 0.531 0.714 0.531
germancredit 0.750 0.738 0.750 0.739
krvskp 0.995 0.962 0.995 0.962
madelon 0.781 0.735 0.768 0.784
mnist 0.886 0.929 0.887 0.934
mnistrotationbackimagenew 0.343 0.214 0.343 0.225
secom 0.932 0.932 0.931 0.933
semeion 0.763 0.894 0.758 0.907
shuttle 1.000 0.999 1.000 0.999
waveform 0.760 0.868 0.763 0.868
winequalitywhite 0.622 0.676 0.627 0.672
yeast 0.584 0.602 0.582 0.607
sick 0.989 0.978 0.989 0.980
splice 0.990 0.949 0.988 0.955
kropt 0.796 0.680 0.801 0.761
quake 0.535 0.553 0.529 0.546
pc4 0.889 0.891 0.886 0.896
magicTelescope 0.852 0.831 0.853 0.840

Average 0.785 0.783 0.784 0.792
# wins 18 21 17 23

lution for the accuracy measure. In this case, HEAD-DT obtains the best average accuracy for
the smallest runtime limit, but Auto-WEKA obtains higher accuracy for all other runtime lim-
its. It should be noted, however, that in both graphs the differences of predictive performance
between HEAD-DT and Auto-WEKA are small, less than 1% in general, across the different
runtime limits.

Finally, the presence of signs of overfitting for HEAD-DT and Auto-WEKA was also investi-
gated. This investigation compared HEAD-DT’s GMean values on the validation set (a holdout
part of the training set) and Auto-WEKA-Trees’ GMean values for the internal 10-CV procedure
(on the training set) with their corresponding GMean values on the test set. A GMean value on
the test set much smaller than the corresponding GMean value on the validation set or internal
10-CV procedure (depending on the method) was considered a sign of overfitting. This kind of
overfitting can be called meta-overfitting, since it occurs at the meta-learning level, rather than
the conventional overfitting at the base-learning level (involving the difference between GMean
values on the training and validation sets).
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Table 10 GMean results for HEAD-DT and Auto-WEKA (time limits: 1,000s and 10,000s).

1,000s 10,000s
HEAD-DT Auto-WEKA HEAD-DT Auto-WEKA

CE 0.564 0.604 0.581 0.605
DM 0.559 0.557 0.517 0.544
MM 0.596 0.572 0.590 0.563
SC 0.535 0.471 0.559 0.454
DNA3 0.704 0.700 0.705 0.712
DNA11 0.568 0.506 0.578 0.524
PS 0.888 0.830 0.897 0.838
chen-2002 0.891 0.922 0.892 0.925
chowdary-2006 0.956 0.988 0.956 0.991
nutt-2003-v2 0.790 0.861 0.790 0.887
singh-2002 0.772 0.867 0.772 0.877
west-2001 0.913 0.888 0.913 0.878
dbworld-bodies 0.725 0.765 0.725 0.816
dbworld-bodies-stemmed 0.815 0.825 0.815 0.892
oh0.wc 0.895 0.863 0.893 0.884
oh5.wc 0.911 0.878 0.914 0.880
oh10.wc 0.867 0.831 0.864 0.835
oh15.wc 0.847 0.864 0.859 0.867
re0.wc 0.831 0.849 0.831 0.841
re1.wc 0.886 0.851 0.894 0.859
abalone 0.486 0.483 0.489 0.483
car 0.987 0.996 0.987 0.998
convex 0.712 0.531 0.714 0.531
germancredit 0.655 0.630 0.657 0.638
krvskp 0.995 0.961 0.995 0.962
madelon 0.781 0.735 0.768 0.784
mnist 0.935 0.960 0.936 0.963
mnistrotationbackimagenew 0.564 0.441 0.564 0.452
secom 0.254 0.274 0.256 0.268
semeion 0.862 0.940 0.859 0.947
shuttle 1.000 0.997 1.000 0.997
waveform 0.818 0.900 0.820 0.900
winequalitywhite 0.712 0.738 0.716 0.728
yeast 0.708 0.721 0.706 0.724
sick 0.940 0.888 0.943 0.894
splice 0.993 0.961 0.991 0.965
kropt 0.881 0.808 0.884 0.858
quake 0.516 0.498 0.506 0.496
pc4 0.689 0.550 0.694 0.579
magicTelescope 0.821 0.793 0.823 0.802

Average 0.770 0.757 0.771 0.766
# wins 24 16 21 19
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Fig. 4 Evolution of average predictive values for HEAD-DT and Auto-WEKA across the 10 runtime limits.



20 M. P. Basgalupp et al.

Note that the meta-overfitting is measured in somewhat different ways in HEAD-DT and
Auto- WEKA due to the different approaches to evaluate candidate solutions during their
searches. That is, HEAD-DT performs a single partition of the training set into two subsets, one
for building the model, the other (validation set) for evaluating the model; whilst Auto-WEKA
uses internal cross-validation on the training set. Despite this difference, the principle used for
measuring meta-overfitting is the same in both types of methods: the degree of meta-overfitting
is measured by comparing predictive performance on the test set (not accessed during the en-
tire execution of HEAD-DT or Auto-WEKA) with the predictive performance on the part of the
training set used as a hold-out set to evaluate the model built from the remaining part of the
training set.

For the runtime limit of 1,000s (10,000s), the average GMean value (over all 40 datasets)
of HEAD-DT on the validation set is 0.756 (0.758), whilst its average GMean on the test set is
0.770 (0.771). In addition, for the runtime limit of 1,000s (10,000s), the average accuracy value
of HEAD-DT on the validation set is 0.766 (0.767), whilst its average accuracy on the test set is
0.785 and 0.784. Hence, HEAD-DT shows no sign of meta-overfitting, since its GMean and accu-
racy values on the test set are slightly larger than on the validation set. This small increase in the
GMean and accuracy values on the test set, for both runtime limits, can be explained mainly by
two factors. First, since the algorithms were evolved by HEAD-DT using the F-measure of pre-
cision and recall in the fitness function, they were not optimizing GMean or accuracy. Second,
the classifier used to classify the test set is in principle a higher-quality classifier than the one
used to classify the validation set, because the former was induced from all training instances,
whilst the latter was induced from a subset of the training set (excluding the validation set).

Turning to Auto-WEKA, for the runtime limit of 1,000s (10,000s), the average GMean value
(over all 40 datasets) for the internal 10-CV of Auto-WEKA is 0.896 (0.899), whilst its GMean
on the test set is 0.757 (0.766). In addition, for the runtime limit of 1,000s (10,000s), the average
accuracy value for the internal 10-CV of Auto-WEKA is 0.912 (0.915), whilst its accuracy on the
test set is 0.783 (0.792). Hence, for both the GMean and accuracy measures, Auto-WEKA clearly
shows a substantial degree of meta-overfitting.

5 Conclusions

AutoML is currently a very popular issue, having attracted a great deal of attention, with the
proposal of new tools, mainly based on optimization (25; 15; 37; 13; 34; 32; 29; 28; 21). Based on
the relevance of AutoML, this work has evaluated four methods for recommending a classifica-
tion algorithm for a target dataset: three Evolutionary Algorithms (EAs) and Auto-WEKA (52),
in two sets of experiments. In the first set of experiments, we have compared the four AutoML
methods with the same runtime limit on 20 datasets. Auto-WEKA can recommend classification
algorithms of various types (paradigms), whilst each of the three EAs is restricted to recom-
mend a different type of classification algorithm: decision tree, rule induction or Bayesian net-
work classification algorithms, in the case of HEAD-DT, GGP-RI and HHEA-BNC, respectively.
In these experiments, there was no statistically significant difference of predictive accuracy be-
tween the three best methods, namely two EAs (HEAD-DT and HHEA-BNC) and Auto-WEKA.
However, these three methods obtained significantly better predictive accuracy than the other
EA (GGP-RI). These results were broadly consistent across the 10 different runtime limits used
in the experiments. In the second set of experiments, where a larger set of 40 datasets was used
to compare the predictive accuracy of HEAD-DT and Auto-WEKA only, again there was no
statistically significant difference between the predictive performance of these two methods.
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However, the focus of HEAD-DT on only on decision-tree algorithms has two advantages
from the perspective of other algorithm-evaluation criteria. First, in applications where it is
important that the classification model be interpreted by users (e.g. in medical applications),
decision-tree algorithms have the advantage of generating interpretable classification models.
By contrast, since Auto-WEKA can select any algorithm out of many types of classification
algorithm, it can recommend classification algorithms producing black-box (non-interpretable)
models. Indeed, in our experiments, Auto-WEKA often recommended ensembles, which are
not easily interpretable. Second, decision-tree algorithms also have the advantage of being in
general more scalable to large datasets than several other types of classification algorithms in
Auto-WEKA’s search space, like neural networks, support vector machines and some ensemble
methods.

Overall, when the runtime limit is increased from 1,000s to 10,000s, Auto-WEKA benefits
more from the extra search time than HEAD-DT. This seems due to the fact that Auto-WEKA
has to explore a much more diverse space of classification algorithms, so it probably requires
more time to find the best type of classification algorithm to be recommended for a given input
dataset.

In addition, we observed that Auto-WEKA exhibited meta-overfitting, where the GMean
values on the training set were substantially lower than the GMean values on the test set, for
the best algorithm found by Auto-WEKA. As noted earlier, this meta-overfitting is a form of
overfitting at the meta-learning level, due to evaluating many different (base-level) classifica-
tion algorithms during Auto-WEKA’s search for the best algorithm. This is in contrast to the
standard overfitting at the base level, due to evaluating many different models built by the
same classification algorithm.

5.1 Future Work

It would be interesting to enhance the search process of the EAs by first performing a global
search to optimise the candidate algorithms’ (procedural) components, followed by a second
(global or local) search to optimise the continuous parameters of the best algorithm generated
by the first search. Another future research direction is to extend the EAs to produce an en-
semble of evolved classification algorithms in a post-processing phase, after the EAs have com-
pleted their search.

Besides, since Auto-WEKA showed a clear sign of meta-overfitting, another research di-
rection consists of developing new meta-overfitting-avoidance methods that could potentially
improve the predictive performance of Auto-WEKA. Finally, it would be interesting to compare
the three EAs and Auto-WEKA to other AutoML methods, such as Auto-sklearn and those de-
scribed in Section 2.2.4. This would give us a more detailed assessment about which AutoML
method recommends the best classification algorithm, taking into account different datasets.
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