
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Bereczky, Péter and Horpácsi, Dániel and Thompson, Simon (2020) Machine-checked natural
semantics for Core Erlang: exceptions and side effects. In: Erlang 2020: Proceedings of the
19th ACM SIGPLAN International Workshop on Erlang. Erlang 2020: Proceedings of the 19th
ACM SIGPLAN International Workshop on Erlang. . pp. 1-13.

DOI

https://doi.org/10.1145/3406085.3409008

Link to record in KAR

https://kar.kent.ac.uk/82515/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/328714232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Machine-Checked Natural Semantics for Core Erlang:
Exceptions and Side Effects

Péter Bereczky

Dániel Horpácsi

berpeti@inf.elte.hu
daniel-h@elte.hu

Eötvös Loránd University

Budapest, Hungary

Simon J. Thompson

S.J.Thompson@kent.ac.uk
University of Kent

Canterbury, UK

Eötvös Loránd University

Budapest, Hungary

Abstract
This research is part of a wider project that aims to inves-

tigate and reason about the correctness of scheme-based

source code transformations of Erlang programs. In order

to formally reason about the definition of a programming

language and the software built using it, we need a mathe-

matically rigorous description of that language.

In this paper, we present an extended natural semantics

for Core Erlang based on our previous formalisation imple-

mentedwith the Coq Proof Assistant. This extension includes

the concepts of exceptions and side effects, moreover, some

modifications and updates are also discussed. Then we de-

scribe theorems about the properties of this formalisation

(e.g. determinism), formal expression evaluation and equiv-

alence examples. These equivalences can be interpreted as

simple local refactorings.

CCSConcepts: •Theory of computation→Operational
semantics;Programverification; Functional constructs.

Keywords: formal semantics, natural semantics, Erlang, Coq,

exceptions, side effects

ACM Reference Format:
Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson. 2020.

Machine-Checked Natural Semantics for Core Erlang: Exceptions

and Side Effects. In Proceedings of the 19th ACM SIGPLAN Inter-
national Workshop on Erlang (Erlang ’20), August 23, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3406085.3409008

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Erlang ’20, August 23, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8049-2/20/08. . . $15.00

https://doi.org/10.1145/3406085.3409008

1 Introduction
There are a number of language processors, development

and refactoring tools for programming languages, but most

of these tools are not theoretically well-founded: they lack a

formally precise description of how exactly the source code is

affected by them. In particular, refactoring tools are expected

to change programs without modifying their behaviour, but

in practice, usually only regression testing is used to verify

this property. Higher assurance can be achieved by making a

formal argument (i.e. a proof) about this property, but neither

programming languages nor program transformations are

easily formalised.

When arguing about behaviour-preservation of program

refactoring, program semantics and semantic equivalence

need to be considered. A formal, mathematical definition of

the programming language semantics in question is clearly

needed for formal verification. Since the project of which

this study is part of is dedicated to improve trustworthiness

of Erlang refactorings [15] via formal verification, effort has

been put in formalising Erlang and its functional core, i.e.

Core Erlang. Erlang (along with other functional languages,

e.g. Elixir [12]) translates to Core Erlang as part of the com-

pilation process; thus, a proper formalisation of Core Erlang

may contribute to the studies of all languages in the BEAM

family. It is worth noting that we do not limit our formal-

isation to the subset of Core Erlang emitted by the Erlang

compiler, but we aim at formalising the entire Core Erlang

programming language.

After completing the formalisation of the main features

of sequential Core Erlang (see [3]), we started to investigate

other language features, such as the concept of exceptions

and side effects. This required us to re-iterate each step of

our previous work, including surveying related work and

making design decisions on level of abstraction and encoding

in Coq. To test the semantics, a collection of examples have

been written, along with proofs about basic properties of this

formalisation, like determinism
1
. In order to demonstrate

the applicability of our semantics definition, some simple

1
In theory, Core Erlang is non-deterministic, but the reference imple-

mentation employs a leftmost-innermost evaluation strategy according to

Neuhäußer and Noll [24] which complies to the behaviour of the presented

formalisation.

1

https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1145/3406085.3409008

Erlang ’20, August 23, 2020, Virtual Event, USA Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson

expression pattern equivalences have also been formalised

and proved; these can be seen as simple local refactorings.

The main contributions of this paper are:

1. The extension of our former formal semantics [3] with

the concept of exceptions and side effects.

2. The implementation of this extension in the Coq Proof

Assistant (version 8.11.2).

3. Updated and new theorems that formalise a number

of properties of this extended formalisation, e.g. deter-

minism, with their machine-checked proofs.

4. Results on program evaluation and equivalence ver-

ification using the updated semantics definition, all

formalised in the Coq Proof Assistant.

2 Related Work
The ultimate goal of our project is to prove refactoring-

related theorems in Coq. This is supported by the formalisa-

tion of the semantics of Erlang in Coq in a way that enables

flawless verification of program and expression equivalence.

Core Erlang was chosen as a stepping stone towards this goal,

because not only a subset of Erlang, but Erlang and other

functional languages, such as Elixir [12] and LFE, translate to

it during compilation. While formalising our semantics, we

reviewed and compared extensive related work on both Er-

lang [10, 11, 17, 27] and Core Erlang [7, 13, 19–21, 24, 25] and

chose an approach that can be properly embedded into Coq.

For this goal, also the language specification [5] was consid-

ered along with the reference implementation (Erlang/OTP

version 22.3).

The abstract syntax definitions of Core Erlang were alike

in all papers about this language; however, there were slight

differences in the abstraction level. For example, in the work

of Neuhäußer and Noll [24] let expressions can handle mul-

tiple variable bindings simultaneously, while the semantics

of Nishida et. al. [25] abstracts over this attribute. Unfortu-

nately, in the syntax respect, papers about Erlang could not

really be considered, because there are significant differences

in the syntax of Core Erlang and that of Erlang.

However, we could borrow ideas from papers on Erlang

semantics when deciding on how we formalise values. There

were two main approaches to define expressions in normal

form: the work of Lanese et al. [19–21, 25] considers val-

ues as a subset of patterns (“ground patterns”), while other

papers [10, 11, 24, 27] define values as a subset of expres-

sions. In addition, the work of Neuhäußer and Noll [24] also

considers functions as values; however, according to the lan-

guage specification [5] closures are the values of function

expressions.

While formalising the dynamic semantics of Core Erlang,

the small-step semantics of a Core Erlang-like language de-

fined by Lanese et al. [19–21, 25] was fundamental for our

big-step semantics. In addition, some concepts were taken

from other papers, such as the recursive closure concept

from Reynolds research on definitional interpreters [26] and

match expressions from the work of Carlier et. al. [4].

Unfortunately, there were abstractions which were not

present in any of the discussed sources (e.g.map expressions).
For such constructs, we could only rely on the reference im-

plementation and the language specification [5]. Due to the

fact that the latter was written in 2004, it misses a number

of recent features of the language, including the aforemen-

tioned concept of map expressions, for which the reference

compiler remained as our only source for definition of be-

haviour. This is the reason why our formalisation follows the

behaviour of the Erlang/OTP compiler, rather than the lan-

guage specification (mostly in cases of unspecified behaviour

and evaluation order).

We have already written a paper [3] on the core semantics

of Core Erlang, which discusses the related work on the

formalisation of basic sequential language features in more

detail. In this current paper, we focus on the extensions of our

previous formalisation, including the definition of exceptions

and other side effects. In the rest of this section, we overview

the related work on these particular language features.

Like in other languages, exceptions in Core Erlang cause

side effects (they implement non-structured control), and

at the same time, they evaluate to special exception values.

Exceptions need to be propagated in the control flow until a

handler is found. This behaviour can be defined with natural

(big-step) semantics in general, by checking the values of

sub-expressions for exceptional values in the evaluation of

compound expressions. This technique is taught in univer-

sity courses [9], as well as it is employed in programming

language semantics research [16, 28]. It is worth noting that

there is another way to represent and propagate exceptions:

rather than treating them as exceptional values, one can

accumulate them as side effects in the program execution

and implement exception handling based on the side effect

list [14]. In our definition, we employ the former technique

and explicitly evaluate expressions to exceptional values.

While formalising side effects, two different approaches

were considered. The first is mentioned in the work of Hor-

pácsi et. al. [14], where side effects are represented as traces.

This approach, as mentioned before, handles exceptions and

side effects alike. The other option is to interpret and model

side effects faithfully with a number of semantics configu-

ration cells, like in the C semantics by Ellison and Rosu [8]

which uses over 60 cells. We concluded that for our current

proofs, it is enough to formalise side effects on a logging

level, and later on we may add more details.

There is also a considerable body of work on formalisa-

tions of other sequential languages, both functional, as is the

case of CakeML [18], and imperative, as in CompCert [22],

and indeed the trend to formalising programming language

metatheory has been systematised in the POPLmark chal-

lenge [2].

2

Machine-Checked Natural Semantics for Core Erlang: Exceptions and Side Effects Erlang ’20, August 23, 2020, Virtual Event, USA

3 The Core Semantics
This section briefly summarises our previous work [3] on

defining natural semantics for Core Erlang. We repeat some

of the underlying abstractions we have introduced in the pre-

vious work in order to ease the comprehension of this paper,

whilst we also introduce some modifications that facilitate

the extension of the semantics definition.

Throughout the following sections, the Coq code is fre-

quently quoted in order to highlight the fact that this for-

malisation is machine-checked. Nevertheless, the inductive

constructors of the transition relation in the operational se-

mantics are presented in inference rule notation for better

readability.

3.1 Abstract Syntax
In our previous paper we covered the basic sequential lan-

guage features of Core Erlang, such as literals for simple and

compound types, function abstraction and application, let
and letrec. When defining the language in the Coq Proof

Assistant, we apply deep embedding of the abstract syntax.

Figure 1 presents the context-free syntax of literals and

patterns, while the syntax of the considered Core Erlang

expressions can be seen in Figure 2. Currently, value lists [5]

are only supported inside let expressions (to handlemultiple

simultaneous bindings), but case and try expressions can
be formalised similarly in this regard.

Inductive Literal : Type :=

| Atom (s : string)
| Integer (x : Z).

Inductive Pattern : Type :=
| PVar (v : Var)
| PLit (l : Literal)
| PCons (hd tl : Pattern)
| PTuple (t : list Pattern)
| PNil.

Figure 1. Syntax of literals and patterns

Here we note that apart from some technical changes, this

syntax definition is identical to the one presented in [3].

3.2 Values
While defining values (the normal form of expressions), we

have related them to expressions in a similar way as the au-

thors of the Erlang papers and Neuhäußer and Noll [10, 11,

24, 27]. Furthermore, in our approach function expressions

are evaluated to closures, which capture the expressions’ con-

text and properly implements EFun as a binder. The details

of this closure representation are described in our former

work [3], yet this paper proposes some modifications to the

idea which will be discussed in Section 7. Figure 3 shows the

definition of expression values.

Definition FunctionIdentifier : Type := string × nat.

Inductive Expression : Type :=

| ENil
| ELit (l : Literal)
| EVar (v : Var)
| EFunId (f : FunctionIdentifier)
| EFun (vl : list Var) (e : Expression)
| ECons (hd tl : Expression)
| ETuple (l : list Expression)
| ECall (f : string) (l : list Expression)
| EApp (exp : Expression) (l : list Expression)
| ECase (e : Expression) (patts : list Pattern)

(guards : list Expression) (bodies : list Expression)
| ELet (s : list Var) (el : list Expression) (e : Expression)
| ELetRec (fids : list FunctionIdentifier) (vls : list (list Var))

(bodies : list Expression) (e : Expression)
| EMap (kl vl : list Expression).

Figure 2. Syntax of expressions

Definition FunctionExpression := (list Var) × Expression.

Inductive Value : Type :=

| VNil
| VLit (l : Literal)
| VClos (ref : Environment) (ext : list (FunctionIdentifier ×

FunctionExpression)) (vl : list Var) (e : Expression)
| VCons (vhd vtl : Value)
| VTuple (vl : list Value)
| VMap (kl vl : list Value).

Figure 3. Semantic domain

The ext parameter of the closure constructor is called en-
vironmental extension, and is denoted by ⟨𝑓1 : fun(𝑝1) →
𝑏1, 𝑓2 : fun(𝑝2) → 𝑏2, .., 𝑓𝑛 : fun(𝑝𝑛) → 𝑏𝑛⟩ if only the

elements (𝑓1, (𝑝1, 𝑏1)), (𝑓2, (𝑝2, 𝑏2)), .., (𝑓𝑛, (𝑝𝑛, 𝑏𝑛)) are con-

tained in it. The use of closures will be discussed after intro-

ducing environments.

Note that this Value type is not strict enough, it includes
elements that cannot be values of expressions. In particular,

Core Erlang’s map values cannot contain duplicate keys,

and their elements are ordered based on their keys. In order

to comply with this, we add additional restrictions on the

elements of the Value type, by using the following helper

functions:

• The bValue eq dec v1 v2 function decides the equality

of v1 and v2. This helps us avoid key duplicates.

• value less v1 v2 decides whether v1 is less than v2,
yielding a Boolean value. There is a total order on

Core Erlang values [1], with the following ordering

between values of different types: numbers < atoms <

3

Erlang ’20, August 23, 2020, Virtual Event, USA Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson

closures < tuples < maps < lists. It is important to

note that the reference implementation, based on a

numeric encoding of functions, defines an opaque or-

dering between function closures. In our formalisa-

tion, we adopt this idea by associating closures with a

unique identifier and ordering closures based on the

order defined for the numeric identifiers. Technically,

this requires using an additional cell in the configura-

tion of the big-step semantics (on both sides of ⇓) to
numerate these identifiers, but for the sake of readabil-

ity, we omit this detail in the paper.

With these helper functions, the make value map function

creates an ordered valuemap from the lists of keys and values

(the exact definition can be found in the formalisation [23]).

3.3 Environment
Expressions can contain free variables and function refer-

ences, so we need an environment for the evaluation, which

maps identifiers to values. The environment has to capture

both variables and function identifiers, with the latter only

being associated with function closures. Having this repre-

sentation for environments, we can encode top-level func-

tions as letrec expressions, and use a single union type for

both local and global environments:

Definition Environment : Type :=

list ((Var + FunctionIdentifier) × Value).
The environment will be denoted by Γ in the rest of the

paper, while ∅ denotes the empty environment. If an envi-

ronment contains only the 𝑥1−𝑣1, 𝑥2−𝑣2, .., 𝑥𝑛 −𝑣𝑛 bindings,

the notation {𝑥1 : 𝑣1, 𝑥2 : 𝑣2, . . . , 𝑥𝑛 : 𝑣𝑛} will be used. To
manage environments, several helper functions have been

defined, most of these are described in our former work [3];

however, one has been significantly reworked in this paper:

append funs to env fids paramlists bodies Γ

This is used for letrec statements, adds function identifier

(from fids) - closure bindings to Γ. The bound closures are

constructed in the following way: the ith closure with the

ith parameter list (from paramlists), ith body (from bodies)
and Γ reference environment. Their environmental exten-

sions (collection of function identifier - parameter list - body

triples) are constructed from the same fids, paramlists and
bodies parameters (this is similar to zipping three lists).

Examples. Let us demonstrate how closures are created

and applied. Consider the following Core Erlang snippet:

let X = 42 in

let Y = fun() -> X in

let X = 5 in

apply Y()

While evaluating expressions, static binding should be

applied; that is, the X in the function Y should evaluate to the
value of the outer instance of X, not the one that is present

in the scope of the application. In particular, the above ex-

pression should evaluate to 42.

To simulate this behaviour, we store the current envi-

ronment in the closure value at the point of the function

definition, and use it later on when evaluating the function

body by applying the closure. In this particular example, the

closure value would be VClos {𝑋 : 42} ⟨⟩ [] 𝑋 .

However, in case of recursive functions, it is challenging to

describe an inherently recursive environment in Coq, where

all functions are required to always terminate. Let us consider

a recursive function defined with a letrec expression:

letrec 'x'/0 =

fun() -> apply 'x'/0()

in apply 'x'/0()

The evaluation environment of the application of this

function should be {′𝑥 ′/0 : VClos {′𝑥 ′/0 : VClos {′𝑥 ′/0 :

. . . } ⟨⟩ [] (apply ′𝑥 ′/0())} ⟨⟩ [] (apply ′𝑥 ′/0())} without
using the environmental extension. This environment is end-

lessly recursive, which cannot be explicitly represented and

defined as a function in Coq.

This problem was solved by the environmental extension.

This construct stores the possibly recursive functions (aside

the non-recursive current environment) defined at a time in

form of function identifier - parameter list - body triples (pair

of pairs in the implementation). These triples are used when

applying a function to extend the body’s evaluation envi-

ronment (the stored environment) with closures constructed

from the stored environmental extension. These closures use

the originally stored environment and environmental exten-

sion, because all of these functions were defined at a time,

so their contexts are the same. The get env helper function

is used for this process, it unfolds one level of the recur-

sive environment with every recursive invocation. With this

thought, the correct closure value for the previous recursive

function will be the following: VClos ∅ ⟨′𝑥 ′/0 : fun() →
(apply ′𝑥 ′/0())⟩ [] (apply ′𝑥 ′/0()).
This problem was addressed by our previous paper [3],

but the solution discussed there is not always applicable (see

Section 7 for details), however, the fundamental thought was

the same: the environment of the next evaluation step should

be defined by the current step in the big-step semantics.

3.4 Core Dynamic Semantics
The biggest change between this update and our previous

semantics is the omitted closure environment. Instead of

closure environments, we use environmental extensions; ap-

parently, the evaluation rules for apply and letrec expres-

sions had to be adjusted to match this change. Another major

change was the ordered evaluation of maps. Fortunately, the

introduction of ordering on values and themake value map
function in the map evaluation rule was sufficient to fulfil

this goal.

4

Machine-Checked Natural Semantics for Core Erlang: Exceptions and Side Effects Erlang ’20, August 23, 2020, Virtual Event, USA

In the following figures, the result res could be either a value or an exception, so its type is Value + Exception.

⟨Γ, e⟩ ⇓ inl val’ ⟨append vars to env [v] [val’] Γ, e1⟩ ⇓ res

⟨Γ, ETry e e1 e2 v vex1 vex2 vex3⟩ ⇓ res
(Try

𝐸
)

⟨Γ, e⟩ ⇓ inr (ex1, ex2, ex3) ⟨append vars to env [vex1; vex2; vex3] [exclass to value ex1; ex2; ex3] Γ, e2⟩ ⇓ res

⟨Γ, ETry e e1 e2 v vex1 vex2 vex3⟩ ⇓ res
(Catch

𝐸
)

In the following rule no previous match 𝑖 Γ patts guards bodies v states, the first 𝑖 clause cannot be selected for the value v
(either v does not match the pattern or the guard evaluation fails).

⟨Γ, e⟩ ⇓ inl v |patts| = |guards| |patts| = |bodies| no previous match |patts| Γ patts guards bodies v

⟨Γ, ECase e patts guards bodies⟩ ⇓ inr (if clause v)
(CaseExc

𝐸
1
)

For the next rule, let us consider nonclosure v := ∀ Γ′, ext, var list, body, v ≠ VClos Γ′ ext var list body.

⟨Γ, exp⟩ ⇓ inl v eval all Γ params vals nonclosure v

⟨Γ, EApp exp params⟩ ⇓ inr (badfun v)
(AppExc

𝐸
1
)

eval all Γ params vals |var list| ≠ |vals| ⟨Γ, exp⟩ ⇓ inl (VClos ref ext var list body)
⟨Γ, EApp exp params⟩ ⇓ inr (badarity v)

(AppExc
𝐸
2
)

Figure 4. The big-step operational semantics of exception creation and try expressions

4 Exception Extension
In this section, the introduction of exceptions will be dis-

cussed. First, the syntax of expressions (Figure 2) is extended

with an additional constructor for error handling statements:

| ETry (e e1 e2 : Expression) (v vex1 vex2 vex3 : Var)

This corresponds to the following concrete syntax:

try 𝑒 of 𝑣 → 𝑒1 catch ⟨vex1, vex2, vex3⟩ → 𝑒2

In this form, try expressions handle one variable binding

in their main clause, and three in the catch clause (exception

class, reason, and additional data). This syntactic scheme

(and the associated behaviour) is based on the language spec-

ification [5], which states that in Erlang exceptions are pairs

of a reason term and an auxiliary data term. The latter con-

tains additional information about the fault, as well as it

encodes the class of the exception (error, exit or throw). In
our formalisation, three variables are bound upon an excep-

tion caught, capturing separately the exception class (vex1),
the reason value (vex2) and the additional information (vex3).
In Coq, exceptions can be formalised as triplets of an ex-

ception class and two values, with the exception class be-

ing a value of a simple enumeration type. Also, exception

classes can be converted back to a base values by using the

exclass to value helper function.

Inductive ExceptionClass : Type := Error | Throw | Exit.
Definition Exception : Type :=

ExceptionClass × Value × Value.

After introducing these abstractions, our former seman-

tics [3] can be refined and extended to accommodate excep-

tional values and exception handling. In the refined seman-

tics, the result of the evaluation of an expression is either a

value or an exception. We denote the length of lists with the

standard |.| notation for length and indexing operator (list[𝑖])
for nth build-in functions in Coq for better readability.

Semantics of previously defined language features need

to be tailored to handle exceptional values and propagate

exceptions in a bottom-up manner. For this, we use auxiliary

propositions to simplify the description of propagation. In

particular, we introduce properties stating that a prefix of a

list of expressions, or an entire expression list, can be evalu-

ated to values (i.e. not raising any exceptions). In the follow-

ing, (eval prefix Γ es vs i) denotes (𝑖 < |es|) ⇒ (|vs| = i) ⇒
(∀j < i, ⟨Γ, es[𝑗]⟩ ⇓ inl vs[𝑗]). Similarly, (eval all Γ es vs)
denotes |es| = |vs| ⇒ (∀j < |es|, ⟨Γ, es[𝑗]⟩ ⇓ inl vs[𝑗]).

Similarly to Erlang, we distinguish the common exception

types and define shortcuts for creating instances of these:

• badarith v: arithmetic operation failed for the v value;

• badarity v: parameter count mismatch for v;
• badfun v: v is not a closure;

• if clause v: no matching branch in a case expression.

Worth noting that Core Erlang specifies undefined be-

haviour if no clauses can be selected while evaluating a case
expression; however, according to the behaviour of the Er-

lang/OTP compiler, an if clause error is raised for such cases.

With these ideas, the semantics of exception creation and

propagation rules are defined in Figures 4 and 5, respectively.

5

Erlang ’20, August 23, 2020, Virtual Event, USA Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson

eval prefix Γ exps vals i ⟨Γ, exps[𝑖]⟩ ⇓ inr ex

⟨Γ, ETuple exps⟩ ⇓ inr ex
(TupleExc

𝐸
)

⟨Γ, tl⟩ ⇓ inr ex

⟨Γ, ECons hd tl⟩ ⇓ inr ex
(ConsExc

𝐸
1
)

⟨Γ, tl⟩ ⇓ inl tlv ⟨Γ, hd⟩ ⇓ inr ex

⟨Γ, ECons hd tl⟩ ⇓ inr 𝑒𝑥
(ConsExc

𝐸
2
)

eval prefix Γ params vals i ⟨Γ, params[𝑖]⟩ ⇓ inr ex

⟨Γ, ECall fname params⟩ ⇓ inr ex
(CallExc

𝐸
)

eval prefix Γ exps vals i ⟨Γ, exps[i]⟩ ⇓ inr ex

⟨Γ, ELet vars exps e⟩ ⇓ inr ex
(LetExc

𝐸
)

|patts| = |guards| |patts| = |bodies| ⟨Γ, e⟩ ⇓ inr ex

⟨Γ, ECase e patts guards bodies⟩ ⇓ inr ex
(CaseExc

𝐸
2
)

⟨Γ, exp⟩ ⇓ inr ex

⟨Γ, EApp exp params⟩ ⇓ inr ex
(AppExc

𝐸
3
)

⟨Γ, exp⟩ ⇓ inl v eval prefix Γ params vals i ⟨Γ, params[i]⟩ ⇓ inr ex

⟨Γ, EApp exp params⟩ ⇓ inr ex
(AppExc

𝐸
4
)

eval prefix Γ kl kvals i eval prefix Γ vl vvals i ⟨Γ, kl[i]⟩ ⇓ inr ex |kl| = |vl|
⟨Γ, EMap kl vl⟩ ⇓ inr ex

(MapExc
𝐸
1
)

eval prefix Γ kl kvals i eval prefix Γ vl vvals i ⟨Γ, kl[i]⟩ ⇓ inl val ⟨Γ, vl[i]⟩ ⇓ inr ex |kl| = |vl|
⟨Γ, EMap kl vl⟩ ⇓ inr ex

(MapExc
𝐸
2
)

Figure 5. The big-step operational semantics of exception propagation

5 Side Effect Extension
In this section, the formalisation of side effects, such as stan-

dard input and output, is discussed. Unlike exceptions, other

side effects are not captured in full detail in our semantics.

We propose a hybrid approach where exceptions are faith-

fully modeled, whilst other side effects are only collected

in an event log. This decision is based on the fact that the

refactoring steps we aim to verify are not allowed to alter

side effects, so the correctness in this respect is expressed as

the order-preservation of effects.

We do the formalisation by further extending the seman-

tics definition presented in the previous section; the adjust-

ment of the already presented semantics rules is partially

covered in this paper in Figure 6, but the rest of the rules

can be constructed similarly — the entire formalisation is

available on Github [23].

First, we need to introduce abstractions for representing

and aggregating side effects. Currently, only simple reading

and writing operations are supported, but this definition can

be extended easily to support other kinds of effects. Each

side effect is given a SideEffectId identifier, its type:

• Writing to standard output: Output;
• Reading from standard input: Input.

Thereafter, we introduce side effect logs in form of lists

whose items couple side effect types with a list of values.

The value list represents the parameters of the encoded side

effect. Throughout this paper, side effect lists will be denoted

by standard list notation (e.g. [(Output, . . .), (Input, . . .)]).

Definition SideEffectList : Type :=

list (SideEffectId × list Value).

Next, we introduce a helper function to manage the con-

catenation of the first elements of a list containing side effect

logs. We remind the reader that app (denoted by ++), firstn
and concat are defined in Coq’s standard library [6].

Definition concatn (def : SideEffectList)
(l : list SideEffectList) (n : nat) : SideEffectList :=

def ++ concat (firstn n l).

With the help of these abstractions, we can modify the

eval all and eval prefix propositions, such that they addi-

tionally express how side effect lists are accumulated during

subsequent evaluation of expressions. This ensures that the

semantics defines leftmost-innermost evaluation order for

expressions and their side effects, which is in line with the

reference implementation (Neuhäußer and Noll [24]).

The definition of eval prefix is shown in Figure 7 (note that
𝑆 𝑖 denotes the successor of 𝑖). The refined version of eval all
can be obtained similarly from the side effect free variant.

We provide a short description about these propositions:

1. eff 1 is used as an initial side effect log;

2. The evaluation of expressions contained in exps list all
can have additional side effects which are stored in eff
list of logs;

3. During the evaluation of the first expression, the initial

side effect log is the eff 1 mentioned before, and the

result will be the concatenation of this log with the

first element of eff ;

4. For the general 𝑖th case: the starting log of the eval-

uation is the concatenation of the initial eff 1 log and

the first (𝑖 − 1) elements of eff whilst the result will

append the 𝑖th element of eff to this log.

6

Machine-Checked Natural Semantics for Core Erlang: Exceptions and Side Effects Erlang ’20, August 23, 2020, Virtual Event, USA

In the following rules, the result res could be either a value or an exception, so its type is Value + Exception.

⟨Γ, ELit l, eff
1
⟩ ⇓ {inl (VLit l), eff

1
} (Lit

𝑆𝐸
) ⟨Γ, EVar s, eff

1
⟩ ⇓ {Γ(inl s), eff

1
} (Var

𝑆𝐸
)

⟨Γ, EFunId fid, eff
1
⟩ ⇓ {Γ(inr fid), eff

1
} (FunId

𝑆𝐸
) ⟨Γ, EFun vl e, eff

1
⟩ ⇓ {inl (VClos Γ ⟨⟩ vl e), eff

1
} (Fun

𝑆𝐸
)

eval all Γ params vals eff
1
eff eval fname vals (concatn eff

1
eff |params|) = (res, eff

2
)

⟨Γ, ECall fname params, eff
1
⟩ ⇓ {res, eff

2
}

(Call
𝑆𝐸
)

eval all Γ exps vals eff
1
eff

⟨Γ, ETuple exps, eff
1
⟩ ⇓ {inl (VTuple vals), concatn eff

1
eff |exps|}

(Tuple
𝑆𝐸
)

⟨Γ, e, eff
1
⟩ ⇓ {inl v, eff

1
++ eff

2
} |patts| = |guards| |patts| = |bodies|

match clause v patts guards bodies i = Some (guard, exp, bindings)
⟨add bindings bindings Γ, eff

1
++ eff

2
, guard⟩ ⇓ {inl tt, eff

1
++ eff

2
}

⟨add bindings bindings Γ, exp, eff
1
++ eff

2
⟩ ⇓ {res, eff

1
++ eff

2
++ eff

3
}

no previous match i Γ patts guards bodies v (eff
1
++ eff

2
)

⟨Γ, ECase e patts guards bodies, eff
1
⟩ ⇓ {res, eff

1
++ eff

2
++ eff

3
}

(Case
𝑆𝐸
)

For simplicity, log
1
will denote concatn (eff

1
++ eff

2
) eff |params| and Γ′ will denote

append vars to env var list vals (get env ref ext) in the following rule.

⟨Γ, exp, eff
1
⟩ ⇓ {inl (VClos ref ext var list body), eff

1
++ eff

2
}

eval all Γ params vals (eff
1
++ eff

2
) eff

|var list| = |vals|
⟨Γ′, body, log

1
⟩ ⇓ {res, log

1
++ eff

2
}

⟨Γ, EApp exp params, eff
1
⟩ ⇓ {res, log

1
++ eff

3
}

(Apply
𝑆𝐸
)

For readability, log
2
will denote concatn eff

1
eff |exps| in the following rule.

eval all Γ exps vals eff
1
eff ⟨append vars to env vars vals Γ, 𝑒, log

2
⟩ ⇓ {res, log

2
++ eff

2
}

⟨Γ, ELet vars exps e, eff
1
⟩ ⇓ {res, log

2
++ eff

2
}

(Let
𝑆𝐸
)

|fids| = |bodies| |fids| = |parss| ⟨append funs to env fids parss bodies Γ, e, eff
1
⟩ ⇓ {res, eff

1
++ eff

2
}

⟨Γ, ELetRec fids parss bodies e, eff
1
⟩ ⇓ {res, eff

1
++ eff

2
}

(LetRec
𝑆𝐸
)

𝑒𝑣𝑎𝑙 𝑚𝑎𝑝 𝑎𝑙𝑙 Γ kl vl kvals vvals eff
1
eff make value map kvals vvals = (kl’, vl’)

⟨Γ, EMap kl vl, eff
1
⟩ ⇓ {inl (VMap kl’ vl’), concatn eff

1
eff (|kl| ∗ 2)}

(Map
𝑆𝐸
)

⟨Γ, tl, eff
1
⟩ ⇓ {inl tlv, eff

1
++ eff

2
} ⟨Γ, hd, eff

1
++ eff

2
⟩ ⇓ {inr ex, eff

1
++ eff

2
++ eff

3
}

⟨Γ, ECons hd tl, eff
1
⟩ ⇓ {inr ex, eff

1
++ eff

2
++ eff

3
}

(ConsExc
𝑆𝐸
2
)

Figure 6. The big-step operational semantics of a subset of Core Erlang expressions with side effects

Unfortunately, if leftmost innermost evaluation is used,

maps evaluate in pairs of key and value expressions, so the

property eval all cannot be used anymore. A new attribute

should be introduced, which uses a similar idea described

above (the definition is presented in Figure 8).

Here, the collection of logs (eff) contains the caused side

effects by keys and values too: the log in the (2∗𝑖)th position
is caused by the evaluation of the 𝑖th key expression while

(2 ∗ 𝑖 + 1)th position contains the additional side effects of

the evaluation of the 𝑖th value expression.

Obviously, the auxiliary eval function — which simulates

built-in function calls — could result now a modified side

effect log aside the value or exception of the represented

call. In addition, the no previous match property was also

extended with a SideEffectList parameter to evaluate guard

expressions. Note, that according to the specification [5],

guards cannot produce side effects, so during the evaluation

of guards, the side effect log does not expand. With these

modifications, we present the extended semantics of some

key rules in Figure 6.

7

Erlang ’20, August 23, 2020, Virtual Event, USA Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson

eval prefix (Γ : Environment) (exps : list Expression)
(vals : list Value) (eff

1
: SideEffectList)

(eff : list SideEffectList) (i : nat) :=
i < |exps| ⇒ |vals| = i ⇒ |eff| = i ⇒

(∀j < i, ⟨Γ, exps[𝑗], concatn eff
1
eff j⟩ ⇓

{inl vals[𝑗], concatn eff
1
eff (S j)})

Figure 7. The definition of eval prefix with side effects

eval map all (Γ : Environment) (kl, vl : list Expression)
(kvals, vvals : list Value) (eff

1
: SideEffectList)

(eff : list SideEffectList) :=
|kl| = |vl| ⇒ |kl| = |kvals| ⇒ |kl| = |vvals| ⇒
2 ∗ |kl| = |eff| ⇒
(∀𝑖 < |kl|, ⟨Γ, kl[𝑖], concatn eff

1
eff 𝑖⟩ ⇓

{inl kvals[𝑖], concatn eff
1
eff (𝑆 𝑖)}) ⇒

(∀𝑖 < |kl|, ⟨Γ, vl[𝑖], concatn eff
1
eff (S 𝑖)⟩ ⇓

{inl vvals[𝑖], concatn eff
1
eff (S (S 𝑖))})

Figure 8. Evaluation of expressions in maps

6 Application of the Semantics
In this section, first we present examples about the use of

this semantics for formal program evaluation, followed by

proofs about the properties of the semantics. Then we show

some expression pattern equivalences in the new side ef-

fect semantics. Throughout this section, the definition of

the auxiliary function eval will frequently be referred to,

which implements calls to built-in functions. Due to space

constraints, we omit the definition of this function, but it

can be retrieved from the project’s repository [23]. Moreover

we introduce a notation for the addition inter-module call:

𝑒1 + 𝑒2 := ECall "plus" [𝑒1, 𝑒2].

6.1 Tests
The presented examples here also served as test cases: com-

parison between their formal evaluation result and the be-

haviour of the reference implementation has been carried

out.

Even though we have formalised all the test cases in the

extended semantics, for the sake of simplicity, we discuss the

first examples (6.1-6.5) in the side effect free semantics. The

simplified rules (Var
𝐸
, Lit

𝐸
, Fun

𝐸
, Funid

𝐸
, Tuple

𝐸
, Case

𝐸
,

Call
𝐸
, App

𝐸
, Let

𝐸
and LetRec

𝐸
) are not included in this

paper, but they can be obtained from the side effect sensitive

rules by omitting the irrelevant elements. For instance, we

get Lit
𝐸
from Lit

𝑆𝐸
by dropping the eff

1
variables and the

containing configuration cell, and similarly, we get Call
𝐸

from Call
𝑆𝐸

by omitting the side effect related parts and

using the former version of eval:

eval all Γ params vals eval fname vals = res

⟨Γ, ECall fname params⟩ ⇓ res
(Call

𝐸
)

In general, the simplified rules can be obtained with carrying

out the following steps:

1. Omit the side effect log cells in the semantics.

2. Replace eval all with its side effect free version.

3. In the case of Case
𝐸
, use the no previous match prop-

erty described in Figure 4.

4. In the case of Call
𝐸
, use the former version of the

auxiliary function eval.
When presenting examples, we use concrete syntax and

omit the inl and inr prefixes in the derivation trees for better

readability. The first example shows the formal evaluation

of the non-recursive example mentioned in Section 3.3.

Example 6.1 (Non-recursive application evaluation). In this

example the expression let 𝑌 = fun() → 𝑋 in let 𝑋 =

5 in apply 𝑌 () will be denoted by exp, and cl will be used
to abbreviate the closure value VClos {𝑋 : 42} ⟨⟩ [] 𝑋 .

{𝑋 : 5, 𝑌 : cl}(𝑌) = cl
Var

𝐸

⟨{𝑋 : 5, 𝑌 : cl}, 𝑌 ⟩ ⇓ cl

{𝑋 : 42}(𝑋) = 42

Var
𝐸

⟨{𝑋 : 42}, 𝑋 ⟩ ⇓ 42

App
𝐸

⟨{𝑋 : 5, 𝑌 : cl}, apply 𝑌 ()⟩ ⇓ 42

Let
𝐸

⟨{𝑋 : 42, 𝑌 : cl}, let 𝑋 = 5 in apply 𝑌 ()⟩ ⇓ 42

Let
𝐸

⟨{𝑋 : 42}, exp⟩ ⇓ 42

Let
𝐸

⟨∅, let 𝑋 = 42 in exp⟩ ⇓ 42

Example 6.2 (Recursive application evaluation). This exam-

ple describes an endless recursion using the environmental

extension. Similarly to the previous example, we introduce

some notations to simplify the formalism:

exp := letrec ′𝑥 ′/0 = fun() → apply ′𝑥 ′/0() in
apply ′𝑥 ′/0()

cl := VClos ∅ ⟨′𝑥 ′/0 : fun() → apply ′𝑥 ′/0()⟩ []
apply ′𝑥 ′/0()

Γ := {′𝑥 ′/0 : cl}
Since the evaluation is divergent due to the infinitely re-

cursive function, in the proof tree the subgoal 𝑔 (subproof)

is recurring and thus the proof search is divergent.

Funid
𝐸

⟨Γ, ′𝑥 ′/0⟩ ⇓ cl

Funid
𝐸

⟨Γ, ′𝑥 ′/0⟩ ⇓ cl g
App

𝐸

g: ⟨Γ, apply ′𝑥 ′/0()⟩ ⇓ ??

App
𝐸

g: ⟨Γ, apply ′𝑥 ′/0()⟩ ⇓ ??

LetRec
𝐸

⟨∅, exp⟩ ⇓ ??

8

Machine-Checked Natural Semantics for Core Erlang: Exceptions and Side Effects Erlang ’20, August 23, 2020, Virtual Event, USA

The following examples demonstrate the use of exception

propagation semantics.

Example 6.3 (Exception occurs during calls). This example

shows how a faulty addition is evaluated to an exception.

Also, to be able to reuse this example, it is generalised for

any Γ environment.

Lit
𝐸

⟨Γ, 5⟩ ⇓ 5

Tuple
𝐸

⟨Γ, {}⟩ ⇓ {} eval def
eval “plus” [5, {}] = badarith [5, {}]

Call
𝐸

⟨Γ, 5 + {}⟩ ⇓ badarith [5, {}]
Example 6.4 (Application defining expression evaluates to

an exception). This example shows faulty evaluation of ap-

plication, if its defining expression evaluated to an exception.

Ex. 6.3

⟨∅, 5 + {}⟩ ⇓ badarith [5, {}]
AppExc

𝐸
3⟨∅, apply (5 + {})(5, 5)⟩ ⇓ badarith [5, {}]

Example 6.5 (Application parameter mismatch). In the case

of this example, the applied function received more actual pa-

rameters than formal ones. We denote the function fun() →
4 with fun and its closure value of VClos ∅ ⟨⟩ [] 4 with cl.

⟨∅, fun() → 4⟩ ⇓ cl
⟨{𝑋 : cl}, apply 𝑋 (2)⟩ ⇓ badarity cl

LetExc
𝐸

⟨∅, let 𝑋 = fun in apply 𝑋 (2)⟩ ⇓ badarity cl

The first statement can be proven by Fun
𝐸
and the second

one is detailed below:

Var
𝐸
, Lit

𝐸

⟨{𝑋 : cl}, 𝑋 ⟩ ⇓ cl
⟨{𝑋 : cl}, 2⟩ ⇓ 2 0 ≠ 1

AppExc
𝐸
2⟨{𝑋 : cl}, apply 𝑋 (2)⟩ ⇓ badarity cl

The following three examples explain the use of side effect

semantics, along with the update evaluation of maps. First,

we introduce some notations:

wr(se) : Expression := ECall “fwrite” [se]
out(sv) : SideEffectId × list Value := (Output, [sv])

First, a simple writing expression evaluation is formalised

and proved to reuse it later.

Example 6.6 (Writing expression evaluation). We assume

here, that se evaluates to sv without producing any side

effects. In addition, this example is generalised for any Γ
environment and log side effect log.

hypothesis
⟨Γ, se, log⟩ ⇓ {sv, log}

eval def
eval “fwrite” [sv] log = (′𝑜𝑘 ′, log ++ [out(sv)])

Call
𝑆𝐸

⟨Γ,wr(se), log⟩ ⇓ {′𝑜𝑘 ′, log ++ [out(sv)]}
The next example shows the evaluation of applications,

where potentially all steps create additional side effects.

Example 6.7 (Evaluation of applications with side effects).
It is important to note that we used an environment ini-

tially, where 𝑌 had been bound to cl, which is used to de-

note VClos ∅ ⟨⟩ [𝑍] wr(′𝑐 ′). In addition, log
2
denotes the

[out(′𝑎′), out(′𝑏 ′)] side effect log while log
3
is used to abbre-

viate [out(′𝑎′), out(′𝑏 ′), out(′𝑐 ′)]. The expression let 𝑋 =

wr(′𝑎′) in 𝑌 will be denoted by exp.

⟨{𝑌 : cl}, exp, []⟩ ⇓ {cl, [out(′𝑎′)]}
⟨{𝑌 : cl},wr(′𝑏 ′), [out(′𝑎′)]⟩ ⇓ {′𝑜𝑘 ′, log

2
}

⟨{𝑍 :
′𝑜𝑘 ′},wr(′𝑐 ′), log

2
⟩ ⇓ {′𝑜𝑘 ′, log

3
}

Apply
𝑆𝐸

⟨{𝑌 : cl}, apply exp(wr(′𝑏 ′)), []⟩ ⇓ {′𝑜𝑘 ′, log
3
}

From the proof tree, the second and the third statements

can be proved by the Example 6.6. Only the first statement

is left to be discussed.

Ex. 6.6, Var
𝑆𝐸

⟨{𝑌 : cl},wr(′𝑎′), []⟩ ⇓ {′𝑜𝑘 ′, [out(′𝑎′)]}
⟨{𝑌 : cl}, 𝑌 , [out(’a’)]⟩ ⇓ {cl, [out(′𝑎′)]}

Let
𝑆𝐸

⟨{𝑌 : cl}, exp, []⟩ ⇓ {cl, [out(′𝑎′)]}
The first statement can be proven with Example 6.6 and

the variable evaluation with Var
𝑆𝐸
.

Example 6.8 (Evaluation ofmapswith side effects). The last

test case shows the evaluation of maps. We denote an initial

map expression ∼{𝑤𝑟 (′𝑎′) ⇒ 𝑤𝑟 (′𝑏 ′),𝑤𝑟 (′𝑐 ′) ⇒ 5}∼ with

map, and the caused side effects [out(’a’), out(’b’), out(’c’)]
will be denoted with log. As mentioned before, the duplicate

keys are replaced in the value map.

Lit
𝑆𝐸
, Ex. 6.6

⟨Γ,wr(′𝑎′), []⟩ ⇓ {′𝑜𝑘 ′, [out(′𝑎′)]}
⟨Γ,wr(′𝑏 ′), [out(′𝑎′)]⟩ ⇓ {′𝑜𝑘 ′, [out(′𝑎′), out(′𝑏 ′)]}

⟨Γ,wr(’c’), [out(′𝑎′), out(′𝑏 ′)]⟩ ⇓ {′𝑜𝑘 ′, log}
⟨∅, 5, log⟩ ⇓ {5, log}

Map
𝑆𝐸

⟨∅,map, []⟩ ⇓ {∼{′𝑜𝑘 ′ ⇒ 5}∼, log}

6.2 Proofs
In this section, we describe two properties of the seman-

tics. The machine-checked proofs of these are available on

Github [23], and only a short summary is provided here.

Theorem 6.9 (Extended commutativity of addition).

∀(𝑣1 𝑣2 : Value), (𝑡 : Value), (eff eff
2
: SideEffectList),

eval “plus” [𝑣1; 𝑣2] eff = (inl 𝑡, eff) ⇒
eval “plus” [𝑣2; 𝑣1] eff2 = (inl 𝑡, eff

2
).

This theorem states that the addition is commutative using

the auxiliary eval function, provided that it is applied on

appropriate values (integer literals). Furthermore, it states

that the built-in call to addition does not create any side

effects (the logs are unmodified). Clearly, this theorem would

not hold if the results were exceptions since the exceptional

values would contain local information about the exception.

9

Erlang ’20, August 23, 2020, Virtual Event, USA Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson

Theorem 6.10 (Determinism).

∀(Γ : Environment), (e : Expression),
(v1 : Value + Exception), (eff eff

1
: SideEffectList),

⟨Γ, e, eff⟩ ⇓ {𝑣1, eff ++ eff
1
} ⇒

(∀(v2 : Value + Exception), (eff
2
: SideEffectList),

⟨Γ, e, eff⟩ ⇓ {𝑣2, eff ++ eff
2
} ⇒ v1 = v2 ∧ eff

1
= eff

2
).

Determinism is a very important attribute of the current

formalisation. In theory, Core Erlang is not deterministic,

however, the reference implementation also uses a leftmost-

innermost evaluation strategy [24], and we followed the

footsteps of the compiler. In our case, determinism states,

that not only an expression can be evaluated to a single value

(from an initial environment and side effect log), but also

the created side effects are unique. We considered side effect

logs as part of the environment, because some side effects

could have effect on the evaluation.

6.3 Equivalences
In this section the equivalences shown in our previous work

are discussed in the updated semantics. Exceptions and side

effects make these somewhat more complex, but the proof

ideas described in our former work [3] can be applied here.

We define two types of equivalences:

• Weak equivalence: The evaluation result of the equiv-

alent expressions is the same (either a value or an

exception), but the side effects were different or were

emitted in different order.

• Strong equivalence: The evaluation result of the equiv-

alent expressions is the same and the same side effects

have been caused in the same order.

In the first equivalence, we swap two expressions in two

let bindings. It is important to note that after swapping the

expressions, their side effects also swap in the result, thus this

is considered a weak (conditional) equivalence. In addition,

in this example, exceptional evaluation is not considered

(the result is a Value), because the result exceptions are not
necessarily the same after swapping the two expressions.

The four assumptions capture that the evaluation of the

expressions are independent of the X and Y variables and

each other’s side effects as well.

Equivalence 1 (Swapping variable expressions). If

⟨Γ, 𝑒1, eff0⟩ ⇓ {inl 𝑣1, eff0 ++ eff
1
}

⟨Γ + {𝑋 : 𝑣2}, 𝑒1, eff0 ++ eff
2
⟩ ⇓ {inl 𝑣1, eff0 ++ eff

2
++ eff

1
}

⟨Γ, 𝑒2, eff0⟩ ⇓ {inl 𝑣2, eff0 ++ eff
2
}

⟨Γ + {𝑋 : 𝑣1}, 𝑒2, eff0 ++ eff
1
⟩ ⇓ {inl 𝑣2, eff0 ++ eff

1
++ eff

2
}

then

let 𝑋 = 𝑒1 in let 𝑌 = 𝑒2 in 𝑋 + 𝑌

is equivalent to

let 𝑋 = 𝑒2 in let 𝑌 = 𝑒1 in 𝑋 + 𝑌

With a similar chain of thought, we managed to formalise

and prove another weak equivalence about swapping the

variable binding order in a function application. However,

currently we have not considered additional side effects in

this conditional equivalence yet. Naturally, we also assumed,

that the defining expression of the application evaluates to

the same value regardless of the order of the elements in the

environment (in the future we plan to prove this property as

a generalised theorem). On the other hand, we only assumed

here, that the parameters evaluate correctly (without causing

exceptions), and the application can cause any errors, thus

the result potentially can be an exception too.

Equivalence 2 (Swapping binding order in application). If

⟨Γ, 𝑒1, eff⟩ ⇓ {inl 𝑣1, eff}
⟨Γ + {𝑌 : 𝑣2}, 𝑒1, eff⟩ ⇓ {inl 𝑣1, eff}
⟨Γ, 𝑒2, eff⟩ ⇓ {inl 𝑣2, eff}
⟨Γ + {𝑋 : 𝑣1}, 𝑒2, eff⟩ ⇓ {inl 𝑣2, eff}
⟨Γ + {𝑋 : 𝑣1, 𝑌 : 𝑣2}, exp, eff⟩ ⇓ {𝑣0, eff}
⟨Γ + {𝑌 : 𝑣2, 𝑋 : 𝑣1}, exp, eff⟩ ⇓ {𝑣0, eff}

then

let 𝑋 = 𝑒1 in let 𝑌 = 𝑒2 in apply exp(𝑋, 𝑌)

is equivalent to

let 𝑌 = 𝑒2 in let 𝑋 = 𝑒1 in apply exp(𝑋, 𝑌)

The final equivalence is a strong one about expression

extraction to a function. Here there is no need to assume

anything; during the evaluation exceptions and side effects

can be caused, but the result will remain the same after the

extraction, vica versa.

Equivalence 3 (Extraction of an expression into a function).

𝑒

is equivalent to

let 𝑋 = fun() -> 𝑒 in apply 𝑋()

We proved both directions in all of the mentioned ex-

amples using the same basic idea: first the given complex

assumption has to be deconstructed that yields more infor-

mation about the parts of it, then the deconstruction can be

continued with these parts. We used determinism (Theorem

6.10) in some steps of this process, in order to fit the assump-

tions on the same expressions together. Thereafter, a proof

tree can be built to prove the conclusion. The full machine-

checked proofs are available on our Github repository [23]

along with other quite similar equivalences and alternative

proofs.

The proof of these expression pattern equivalences is an

important result of our project, because these ones can be

interpreted as simple local refactorings, and our ultimate goal

is to argue about the behaviour-preservation of refactorings.

10

Machine-Checked Natural Semantics for Core Erlang: Exceptions and Side Effects Erlang ’20, August 23, 2020, Virtual Event, USA

7 Discussion
In this section, we summarise the modifications and differ-

ences between the presented, the former and some other

approaches. In terms of syntax, there are notable differences

between our approach and related work (e.g. the Erlang for-

malisations [10, 11, 27]). In particular, we have removed the

empty tuple and map literals, because they caused ambiguity

and redundancy. They can be expressed using the empty

list in the appropriate constructors. In the abovementioned

sources the authors solved this problem by constraining the

length of the mentioned lists (it should be over 0), but such

constraints generate additional statements and cause unde-

sired complexity in Coq proofs.

Moreover, we did not consider the ordering and equality

of values in our former work [3]; however, these concepts

were needed to formalise maps correctly, so it was necessary

to introduce them in this semantics.

While formalising side effects we used an intermediate ap-

proach between modeling [8] or just logging everything [14],

which models exceptions in a similar way as values during

evaluation as mentioned before, but every other side effect

is just logged. Compared to our former equivalence proofs,

we had to introduce some extra assumptions in some cases.

This is due to the fact that side effects are not interpreted,

only logged, and there could be side effects that alter the

evaluation of some expressions (i.e. the side effect log can

be interpreted as an evaluation context too).

Closures of recursive functions
In this updated semantics, we have dropped the closure envi-

ronment introduced in our previous work [3], because that

concept is not always correct. For example, we can define a

recursive function which takes three iterations to terminate:

letrec 'f'/1 = fun(X) ->

case X of

<0> when 'true ' -> 5

<1> when 'true ' -> apply 'f '/1(0)

<A> when 'true ' -> apply 'f '/1(1)

end in

let X = fun(F) ->

letrec 'f'/1 = fun(X) -> 0

in apply F(2)

in

apply X('f'/1)

body
1

body𝑋
let𝑋

In the body of let, the binding of 'f'/1 is overwritten

locally, however, this action replaces the existing binding in

the closure environment. We present the formal evaluation

of this example in our former approach [3] in Figure 9. In

order to enhance readability, we use the following notations:

• Beside the notations on the code snippet, exp will de-
note the whole letrec expression;

|Γ𝐹 + {𝑋 : 1}, {′𝑓 ′/1 : Γ𝐹 }, 0| ⇓ 5 E
3.9

|Γ𝐹 + {𝑋 : 2, 𝐴 : 2}, {′𝑓 ′/1 : {Γ𝐹 }}, apply ′𝑓 ′/1(1) | ⇓ 5

3.7

|Γ𝐹 + {𝑋 : 2}, {′𝑓 ′/1 : Γ𝐹 }, body1 | ⇓ 5

3.9

|Γ𝐹 , {′𝑓 ′/1 : Γ𝐹 }, apply 𝐹 (2) | ⇓ 5

3.11

|Γ + {𝐹 : 𝑐𝑙1}, {′𝑓 ′/1 : Γ}, body𝑋 | ⇓ 5

3.9

|Γ + {𝑋 : 𝑐𝑙𝑋 }, {′𝑓 ′/1 : Γ}, apply 𝑋 (′𝑓 ′/1) | ⇓ 5

3.10

|Γ, {′𝑓 ′/1 : Γ}, let𝑋 | ⇓ 5

3.11

|∅,∅, exp| ⇓ 5

Figure 9. Closures as parameters using closure environ-

ments

• cl1 will denote the closure of the first recursive func-
tion: VClos (inr ′𝑓 ′/1) [𝑋] body

1

• cl2 will denote the closure of the second recursive func-
tion: VClos (inr ′𝑓 ′/1) [𝑋] 0

• cl𝑋 will denote the closure of the function bound to X:
VClos (inl {′𝑓 ′/1 : cl1}) [𝐹] body𝑋
At the point of application of Rule 3.10, it is omitted,

that fun() → body𝑋 evaluates to this closure. This

function is not recursive, so it will not be added to the

closure environment.

• Γ will denote: {′𝑓 ′/1 : cl1};
• Γ𝐹 will denote {′𝑓 ′/1 : cl2, 𝐹 : cl1};
• The operator + will be used to denote the addition of

some bindings to some environment.

Now, we present the evaluation in the updated semantics.

For simplicity, we use the side effect free semantics (see

Figure 10). First, we modify the previous notations slightly:

• cl1 := VClos ∅ ⟨′𝑓 ′/1 : fun(𝑋) → 𝑏𝑜𝑑𝑦1⟩ [𝑋] 𝑏𝑜𝑑𝑦1
• cl2 := VClos {′𝑓 ′/1 : cl1, 𝐹 : cl1} ⟨′𝑓 ′/1 : fun(𝑋) →
0⟩ [𝑋] 0. Apparently — because of the environmental

extension, and the insert value’s replacing behaviour

— if this closure had been applied, then its body would

have been evaluated inside the environment where

′𝑓 ′/1 is bound to cl2.
• cl𝑋 will denote the closure of the function bound to

X: VClos {′𝑓 ′/1 : cl1} ⟨⟩ [𝐹] body𝑋 . At the point of

application of Let
𝐸
, it is omitted that fun() → body𝑋

evaluates to this closure. In this case, because this

function is not recursive, no environmental extension

is needed.

In the updated closure representation and semantics, the

biggest changes have been made in App
𝐸
and LetRec

𝐸
. In

App
𝐸
, the evaluation environment of the body had to be

constructed from the local environment, the actual and for-

mal parameter bindings, and the addition of function clo-

sures stored in the environmental extension. In LetRec
𝐸

the construction of the environmental extension had to be

introduced for the defined recursive function closures.

11

Erlang ’20, August 23, 2020, Virtual Event, USA Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson

Lit
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : 0}, 5⟩ ⇓ 5

Case
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : 0}, body
1
⟩ ⇓ 5

App
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : 1}, apply ′𝑓 ′/1(0)⟩ ⇓ 5

Case
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : 1}, body
1
⟩ ⇓ 5

App
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : 2, 𝐴 : 2}, apply ′𝑓 ′/1(1)⟩ ⇓ 5

Case
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : 2}, body
1
⟩ ⇓ 5

App
𝐸

⟨{′𝑓 ′/1 : cl2, 𝐹 : cl1}, apply 𝐹 (2)⟩ ⇓ 5

LetRec
𝐸

⟨{′𝑓 ′/1 : cl1, 𝐹 : cl1}, body𝑋 ⟩ ⇓ 5

App
𝐸

⟨{′𝑓 ′/1 : cl1, 𝑋 : cl𝑋 }, apply 𝑋 (′𝑓 ′/1)⟩ ⇓ 5

Let
𝐸

⟨{′𝑓 ′/1 : cl1}, let𝑥 ⟩ ⇓ 5

LetRec
𝐸

⟨∅, exp⟩ ⇓ 5

Figure 10. Closures as parameters using environmental ex-

tension

8 Conclusion and Future Work
In this paper, we briefly explainedwhy having a formal defini-

tion is important for a programming language, and presented

a formalisation of a subset of sequential Core Erlang that

can be used to argue about behaviour preservation of local

refactorings on Core Erlang programs. Core Erlang is just a

stepping stone to our ultimate goal which is arguing about

refactorings on Erlang programs. This language is suitable

for us, because it is not merely a subset of Erlang, but also Er-

lang (along with other languages, like Elixir [12]) translates

to Core Erlang during compilation. Thereafter, we briefly

discussed the related work and our previous results [3].

Thereafter, we extended this semantics with the concepts

of exceptions and side effects. After finishing this extension,

we updated the former examples, proofs and expression pat-

tern equivalences and added new ones. These equivalences

can be interpreted as simple local refactorings. Some of these

fully preserve the behaviour (strong equivalences) while oth-

ers evaluate to the same the results. All of our work has been

formalised in the Coq Proof Assistant and can be accessed

on Github [23]. Next, we compared the semantics to our

former approach. In the future we plan to implement the

advancement to Erlang, the addition of other expressions

(e.g. binaries, bitstrings) and the simplification of current

proofs with the help of Coq’s tactic language.

Evaluation. The work has shown that the semantics is

suitable for formalising proofs of various properties of Core

Erlang, including reasoning about expression equivalence,

which will support proofs of correctness for program refac-

torings. We have formalised a representative subset of se-

quential Core Erlang, but others (e.g. bitstrings, binaries)

could be formalised using similar techniques to those used

here.

Formal reasoning is a rigorous discipline, as we remarked

in [3]; with the introduction of exceptions and side effects

this has become no less true. On the other hand, additional

tactics can be developed to reduce the size of such complex

machine-checked proofs, and indeed include some level of

automation.

Future Work. As noted before, there are various ways to

enhance our formalisation. Our short term goals include:

• Proving the correctness of additional local refactor-

ings (e.g. renaming variables, functions, expression

extraction to top-level function, and so on).

• Shortening the proofs by means of custom tactics (e.g.

unfolding tactics based on the length of the list in

question).

• Extending the coverage of side effects and their se-

mantics with more type of effects (e.g. global variable

modifications);

• Simplifying some expressions (case, let, letrec and

map) which contain several lists of the same length to

one list of tuples;

• Investigation of delayed writing side effects during

list evaluation: if list expressions contain nested write

expressions (for example the call for the write function

is inside a let expression) then the order of the output

values is from front to back, however, according to

the tests about evaluating lists to exceptions or read

expressions, list evaluation order is from back to front;

• Formalising the module system and inter-module calls.

Our longer-term goals include formalising divergence,

extending the work to Erlang itself (semantics and syntax),

formalising primitive operations and inter-module calls, and

formalising the concurrent semantics of Core Erlang.

When formalising concurrent parts of a language, big-

step semantics is usually not expressive enough. To extend

to concurrency we would expect to devise a small-step se-

mantics that us compatible with the big-step one, so that

results proved for the big-step version would carry over to

the small step case.

Acknowledgments
The project has been supported by the European Union,

co-financed by the European Social Fund (EFOP-3.6.2-16-

2017-00013, “Thematic Fundamental Research Collabora-

tions Grounding Innovation in Informatics and Infocom-

munications (3IN)”).

Project no. ED 18-1-2019-0030 (Application domain spe-

cific highly reliable IT solutions subprogramme) has been

implemented with the support provided from the National

Research, Development and Innovation Fund of Hungary,

financed under the Thematic Excellence Programme funding

scheme.

12

Machine-Checked Natural Semantics for Core Erlang: Exceptions and Side Effects Erlang ’20, August 23, 2020, Virtual Event, USA

References
[1] Joe Armstrong. 2013. Programming Erlang: Software for a Concurrent

World. Pragmatic Bookshelf.

[2] Brian E. Aydemir et al. 2005. Mechanized metatheory for the masses:

The POPLmark challenge. In Theorem Proving in Higher Order Logics,
18th International Conference, TPHOLs 2005 (LNCS, Vol. 3603). Springer.
https://doi.org/10.1007/11541868_4

[3] Péter Bereczky, Dániel Horpácsi, and Simon Thompson. 2020. A Proof

Assistant Based Formalisation of Core Erlang. (2020). arXiv:2005.11821

[4] Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. 2012. A first

step in the design of a formally verified constraint-based testing tool:

FocalTest. In International Conference on Tests and Proofs. Springer,
35–50. https://doi.org/10.1007/978-3-642-30473-6_5

[5] Richard Carlsson, BjörnGustavsson, Erik Johansson, Thomas Lindgren,

Sven-Olof Nyström, Mikael Pettersson, and Robert Virding. 2004. Core
Erlang 1.0.3 language specification. Technical Report. https://www.it.
uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

[6] Coq documentation 2020. The Coq Proof Assistant Documentation.
Retrieved July 2st, 2020 from https://coq.inria.fr/documentation

[7] Emanuele De Angelis, Fabio Fioravanti, Adrián Palacios, Alberto Pet-

torossi, and Maurizio Proietti. 2018. Bounded Symbolic Execution for

Runtime Error Detection of Erlang Programs. (2018). arXiv:1809.04770

[8] Chucky Ellison and Grigore Rosu. 2012. An Executable Formal Se-

mantics of C with Applications. ACM SIGPLAN Notices 47, 1 (2012),
533–544. https://doi.org/10.1145/2103621.2103719

[9] Exceptions 2015. Course Notes: Formalising exceptions. Retrieved

May 4th, 2020 from https://www.scss.tcd.ie/Matthew.Hennessy/
splexternal2015/LectureNotes/Exceptionscopy.pdf

[10] Lars-Åke Fredlund. 2001. A framework for reasoning about Erlang code.
Ph.D. Dissertation. Mikroelektronik och informationsteknik.

[11] Lars-Åke Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas

Arts, and Gennady Chugunov. 2003. A verification tool for Erlang.

International Journal on Software Tools for Technology Transfer 4, 4
(2003), 405–420. https://doi.org/10.1007/s100090100071

[12] Kofi Gumbs. 2017. The Core of Erlang. Retrieved 11th May, 2020 from

https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
[13] Joseph R. Harrison. 2017. Towards an Isabelle/HOL Formalisation of

Core Erlang. In Proceedings of the 16th ACM SIGPLAN International
Workshop on Erlang (Oxford, UK) (Erlang 2017). Association for Com-

puting Machinery, New York, NY, USA, 55–63. https://doi.org/10.
1145/3123569.3123576

[14] Dániel Horpácsi, Judit Kőszegi, and Zoltán Horváth. 2017. Trustworthy

Refactoring via Decomposition and Schemes: A Complex Case Study.

(2017). arXiv:1708.07225

[15] Dániel Horpácsi, Judit Kőszegi, and Simon Thompson. 2016. Towards

Trustworthy Refactoring in Erlang. (2016). arXiv:1607.02228

[16] Ruud Koot and Jurriaan Hage. 2015. Type-Based Exception Analysis

for Non-Strict Higher-Order Functional Languages with Imprecise

Exception Semantics. In Proceedings of the 2015 Workshop on Partial

Evaluation and Program Manipulation (Mumbai, India) (PEPM ’15).
Association for Computing Machinery, New York, NY, USA, 127–138.

https://doi.org/10.1145/2678015.2682542
[17] Judit Kőszegi. 2018. KErl: Executable semantics for Erlang. CEUR

Workshop Proceedings 2046 (2018), 144–160. http://ceur-ws.org/Vol-
2046/koszegi.pdf

[18] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.

2014. CakeML: A Verified Implementation of ML. In Principles of
Programming Languages (POPL). ACM Press. https://doi.org/10.1145/
2535838.2535841

[19] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. 2018.

CauDEr: a causal-consistent reversible debugger for Erlang. In Inter-
national Symposium on Functional and Logic Programming, John P.

Gallagher and Martin Sulzmann (Eds.). Springer, Springer Interna-

tional Publishing, Cham, 247–263. https://doi.org/10.1007/978-3-319-
90686-7_16

[20] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. 2018.

A theory of reversibility for Erlang. Journal of Logical and Algebraic
Methods in Programming 100 (2018), 71–97. https://doi.org/10.1016/j.
jlamp.2018.06.004

[21] Ivan Lanese, Davide Sangiorgi, and Gianluigi Zavattaro. 2019. Play-

ing with Bisimulation in Erlang. In Models, Languages, and Tools for
Concurrent and Distributed Programming, Michele Boreale, Flavio Cor-

radini, Michele Loreti, and Rosario Pugliese (Eds.). Springer, Cham,

71–91. https://doi.org/10.1007/978-3-030-21485-2_6
[22] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.

ACM 52 (2009). Issue 7. https://doi.org/10.1145/1538788.1538814
[23] Natural Semantics for Core Erlang 2020. Core Erlang Formalization.

Retrieved July 5th, 2020 from https://github.com/harp-project/Core-
Erlang-Formalization

[24] Martin Neuhäußer and Thomas Noll. 2007. Abstraction and model

checking of Core Erlang programs in Maude. Electronic Notes in Theo-
retical Computer Science 176, 4 (2007), 147–163. https://doi.org/10.1016/
j.entcs.2007.06.013 Proceedings of the 6th International Workshop on

Rewriting Logic and its Applications (WRLA 2006).

[25] Naoki Nishida, Adrián Palacios, and Germán Vidal. 2017. A reversible

semantics for Erlang. In International Symposium on Logic-Based Pro-
gram Synthesis and Transformation, Manuel V Hermenegildo and Pe-

dro Lopez-Garcia (Eds.). Springer, Springer International Publishing,

Cham, 259–274. https://doi.org/10.1007/978-3-319-63139-4_15
[26] John C Reynolds. 1998. Definitional interpreters for higher-order

programming languages. Higher-order and symbolic computation 11, 4

(1998), 363–397. https://doi.org/10.1023/A:1010027404223
[27] Germán Vidal. 2015. Towards Symbolic Execution in Erlang. In

International Andrei Ershov Memorial Conference on Perspectives of
System Informatics, Andrei Voronkov and Irina Virbitskaite (Eds.).

Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 351–360.

https://doi.org/10.1007/978-3-662-46823-4_28
[28] Joel J Wright. 2005. Compiling and reasoning about exceptions and

interrupts. Ph.D. Dissertation. University of Nottingham.

13

https://doi.org/10.1007/11541868_4
https://arxiv.org/abs/2005.11821
https://doi.org/10.1007/978-3-642-30473-6_5
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://coq.inria.fr/documentation
https://arxiv.org/abs/1809.04770
https://doi.org/10.1145/2103621.2103719
https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/LectureNotes/Exceptionscopy.pdf
https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/LectureNotes/Exceptionscopy.pdf
https://doi.org/10.1007/s100090100071
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://doi.org/10.1145/3123569.3123576
https://doi.org/10.1145/3123569.3123576
https://arxiv.org/abs/1708.07225
https://arxiv.org/abs/1607.02228
https://doi.org/10.1145/2678015.2682542
http://ceur-ws.org/Vol-2046/koszegi.pdf
http://ceur-ws.org/Vol-2046/koszegi.pdf
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1007/978-3-030-21485-2_6
https://doi.org/10.1145/1538788.1538814
https://github.com/harp-project/Core-Erlang-Formalization
https://github.com/harp-project/Core-Erlang-Formalization
https://doi.org/10.1016/j.entcs.2007.06.013
https://doi.org/10.1016/j.entcs.2007.06.013
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1007/978-3-662-46823-4_28

