

Zhang, Y, Ge, Y, Yu, P, Zhang, J, Zhang, Y and Baker, T

 A Novel Method to Prevent Misconfigurations of Industrial Automation and
Control Systems

http://researchonline.ljmu.ac.uk/id/eprint/13537/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Zhang, Y, Ge, Y, Yu, P, Zhang, J, Zhang, Y and Baker, T (2020) A Novel
Method to Prevent Misconfigurations of Industrial Automation and Control
Systems. IEEE Transactions on Industrial Informatics. ISSN 1551-3203

LJMU Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/328711084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 1

A Novel Method to Prevent Misconfigurations of
Industrial Automation and Control Systems

Yu Zhang, Yani Ge, Peiran Yu, Jianzhong Zhang, Yongzheng Zhang, and Thar Baker

Abstract—Configuration errors are among the dominant

causes of system faults for the industrial automation and control

systems (IACS). It is difficult to detect and correct such errors

of IACS as there are various kinds of systems and devices with

miscellaneous configuration specifications. In this paper, we first

propose a streaming algorithm to keep all the configuration

changes in the limited memory space. And, when making a

new configuration change, another novel streaming algorithm is

proposed to search and return all the similar historical changes

which can be used to validate this new one. So far, we are the first

to model the configuration changes of IACS as a data stream and

apply the streaming similarity search in correcting configuration

errors while overcoming the inherent unbounded-memory bot-

tleneck. The theoretical correctness and complexity analyses are

presented. Experiments with real and synthetic datasets confirm

the theoretical analyses and demonstrate the effectiveness of the

proposed method in preventing misconfigurations of IACS.

Index Terms—industrial automation and control systems,

configuration management, similarity search, data stream.

I. INTRODUCTION

I
NDUSTRIAL automation and control systems (IACS) are
typically used in industrial electric, water, oil, transporta-

tion, chemical, pharmaceutical, discrete manufacturing and so
on. These systems work mutually dependently based on a
wide variety of Industrial Internet of Things (IIoT) devices for
sensing and actuation. Nowdays, IACS are facing more and
more cybersecurity issues [1], [2], [3], [4]. In order to assure
that the systems can run exactly as expected, it is important
to guarantee the correctness of the configurations of IACS as
well as the massive IIoT devices.

However, the configuration management in IACS is much
more complicated as there are a variety of systems and IIoT
devices with different configuration specifications. In all the
misconfiguration errors, there is a significant percentage of
illegal configuration parameters and typos. As a result, it
is useful to propose an effective misconfiguration avoidance
method to reduce all these unnecessary mistakes.

Manuscript received April 18, 2020; revised July 10, 2020; accepted August
7, 2020. This work was supported by the National Key R&D Program of China
under Grant 2018YFB0804702, and by the Technology R&D Program of
Tianjin under Grant 18ZXZNGX00200 and Grant 18ZXZNGX00140. Paper
no. TII-20-1986. (Corresponding author: Yu Zhang.)

Y. Zhang, Y. Ge, P. Yu and J. Zhang are with the College of
Cyber Science, College of Computer Science, Tianjin Key Laboratory
of Network and Data Security Technology, Nankai University, Tianjin
300350, China. (e-mail:zhangyu1981@nankai.edu.cn; yanige@outlook.com;
peiranyu@outlook.com; zhangjz@nankai.edu.cn)

Y.Z. Zhang is with the Institute of Information Engineering, Chinese
Academy of Sciences and School of Cyber Security, University of Chinese
Academy of Sciences, Beijing, China. (e-mail:zhangyongzheng@iie.ac.cn)

T. Baker is with the Liverpool John Moores University, United Kingdom.
(e-mail:t.baker@ljmu.ac.uk)

The intuition of the proposed method is that all the con-
figuration files can be transformed into the format of key-value
pairs, where the key corresponds to a single configuration
directive consistently across different system instances. And
then for a specific configuration directive, its correct key-value
pairs will have high similarity obviously. For example, in the
Apache configuration file httpd.con f , in most cases the usual
value of the configuration directive LoadModule my_mod
is my_mod_ f ile.so, and the usual value of the configuration
directive Listen is 8080, while in the MySQL configuration
file my.cn f , in most cases the usual value of the configuration
directive mysqld datadir is /var/lib/mysql. However, when
encountering the misconfigurations, there would be miscella-
neous incorrect key-value pairs, therefore the similarity will
be very low apparently. As we can see, the key point of
the proposed misconfiguration avoidance method is the string
similarity search over data stream.

A. Related Work
For traditional information systems, there have been a

lot of related works in configuration management. Generally
speaking, related works can be classified into three categories:
helping the users to fix configuration problems, validating
the actions when changing configurations, automating the
configuration management. Some researches, such as [5], [6],
[7], use computers to troubleshoot the configuration problems.
The basic idea of Chronus [5] is searching for the historical
working state. Chronus logs every change to the disk. When
diagnosing a configuration problem, Chronus loads and runs
historical system snapshots, and tests whether the historical
system snapshots work correctly. Autobash in [6] helps a
user to locate existing solutions to configuration problems.
Autobash maintains a database of user actions to known
configuration problems and uses a trial-and-fail approach
to test candidate solutions. PeerPressure [7] uses Bayesian
statistical analysis to find the misconfiguration root causes.
PeerPressure keeps a database storing the system state of
many computers. When diagnosing the configuration problem,
PeerPressure first finds suspect registry entries that may cause
the problem. Then PeerPressure retrieves the same set of
entries from other computers. Finally, PeerPressure uses the
Bayesian statistical estimations to calculate the probabilities
for all these entries. Some other researches, as in [8], [9],
provide frameworks to validate configuration changes before
they are put in effect on production systems. Nagaraja et al.
[8] develop a validation framework which can detect operator
mistakes before deployment by comparing against the com-
parator functions provided by users. Oliveria et al. [9] validate

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 2

database system administrations. They introduce a new model-
based validation technique in its validation framework. Other
researches [10], [11] use computers to accomplish the error-
prone configuration management tasks. They propose some
high-level language directives or templates that define how the
configuration files should be generated. SmartFrog [10] uses
a declarative language to describe software components and
configuration parameters. Zheng et al. [11] leverage custom-
specified templates to automatically generate the correct con-
figuration for a system.

As a well-known problem in data mining, the purpose of
string similarity search is to find all strings within a given edit
distance from the query string in a set of strings [12], [13],
[14], [15], [16], [17]. However, most related researches focus
on building the index of a fixed size set of strings to improve
the performance of query [14], [15], [16], [17]. Only a few
works have been done on data stream, and most of them focus
on time series [18], [19], and most use the sliding window
model [12] which is apparently different from the landmark
model used in this paper.

B. Identified Challenges
String similarity search over the landmark data stream

model brings the following challenges:
• The first is how the arriving strings should be stored.

At present, in most data stream problems, the Bloom
Filter(BF) structure is used to store data [20]. However,
only using BF will limit the edit distance threshold and
waste a lot of available memory space in the computer.

• The second is how the deleted strings should be recov-
ered. In the data stream environment, it is inevitable
to remove some arrived strings to save more memory
space for newly arriving ones. However, when a new
query arrives, we need to find a method to recover the
historically deleted strings.

C. Contributions
The above challenges are solved in this paper and the

contributions of this paper can be summarized as:
• Two clustering-based string compression algorithms are

proposed to solve the problem of continuous stream
arrival vs. the insufficient memory space.

• A historical string recovery algorithm based on Bloom
Filter is proposed so that the deleted strings can be
recovered without omission when a query arrives.

• A brand new misconfiguration avoidance method based
on streaming similarity search is proposed to aid diag-
nosing configuration changes of IACS.

D. Organization
The remainder of this paper is organized as follows. In

Section II, we introduce some preliminaries, including some
definitions and theorems. Then, we illustrate the details of the
proposed streaming similarity search method as well as the
misconfiguration avoidance method in Section III. In Section
IV, we present the experiment results and evaluation. Finally,
the conclusion is given in Section V.

II. PRELIMINARIES

A. Problem Definition
Given N configuration directives of all systems and IIoT

devices, and let D be the set of such directives denoted as
D = {d1, d2, d3, · · · , dN�1, dN }, where each di (1 i N) is
a configuration directive name. We model the configuration
changes as a data stream S = (s1, s2, · · · , sn, · · ·), where
sn = d | |vd,n is a string concatenation of d and vd,n. Usually,
d 2 D is a configuration directive name. However, there might
be some typos or spelling errors. In this case, although d < D,
d is very similar to the correctly typed configuration directive
in D. n is the index of the change, vd,n is the value set
for d at the n-th change. The string d | |vd,n means the n-th
change is made to the configuration directive d with value vd,n.
The basic idea of the proposed misconfiguration avoidance
method is described as follows. Assume that from the very
beginning there have been n changes in the configurations of
all systems and IIoT devices. The proposed method keeps
all n changes (i.e., S = (s1, s2, · · · , sn)) in memory. When
comes a new change sn+1, the misconfiguration avoidance
method first searches the configuration data stream S and then
returns all the similar changes to sn+1. Generally speaking,
in a well-performed system, the vast majority of changes to
the configurations should be correct, therefore the returned
similar changes will be of great reference value for the new
change sn+1, e.g., they can be used to check whether there exist
typos in sn+1 or not. In other words, if there are no similar
changes returned, then the new change sn+1 demands careful
consideration, i.e., there might be some errors in sn+1.

Let ⌃ denote a finite alphabet and s is a string made up
of a sequence of letters from ⌃. In this paper, we use edit
distance to quantify the similarity between two strings. Edit
distance ED(s1, s2) is the minimum number of edit operations
(insertion, deletion and substitution) required to change from
s1 to s2. By using dynamic programming, the edit distance
can be computed in O(n2) time with O(n) space [21].

Definition 1 (Similarity Search). Given a set of strings S,
a query string q, a threshold of edit distance ⌧, Similarity
Search is to find all s from S, the edit distance between s and
q is less than or equal to ⌧.

Definition 2 (String Stream). A String Stream is a specific
type of data stream of which the dynamic and infinite arrivals
are in the form of strings.

In this paper, we adopt a landmark window model for
the string stream which starts at a fixed time and never ends,
which means the beginning of the string stream is fixed but
the end grows.

Definition 3 (Similarity Search over a String Stream).
Given a string stream S starting at a certain time, when
comes a query string q and gives a threshold of edit distance
⌧(⌧ � 1), the goal of similarity search over a string stream is
to find all s 2 S similar to q till now, i.e., ED(q, s) ⌧.

B. Theorems
Given strings q, s, c consisting of letters in ⌃ and edit

distance thresholds ⌧, let S = {s |ED(s, c) r 0} denote the
strings clustered by c with radius r 0.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 3

c
s

q

(a) Lemma 1

r'

c

q

s

(b) Lemma 2

r'

τ

q

c
s

(c) Lemma 3

Fig. 1. Illustration of theorems. (a) illustrates the situation that satisfies the
condition ED(q, c) > ⌧ + r0, ED(c, s) r0; (b) illustrates the situation that
satisfies the condition ED(q, c) ⌧ � r0, 0 ED(c, s) r0; (c) illustrates
the situation that meets the condition |ED(c, s) � ED(c, q) | < ED(q, s),
|ED(c, s) � ED(c, q) | > ⌧.

Theorem 1: Given an edit distance function ED
and strings s1, s2, s3, there is |ED(s1, s2) � ED(s2, s3)|
ED(s1, s3) ED(s1, s2) + ED(s2, s3).

Lemma 1: When ED(q, c) > r 0 + ⌧, it must be true that
ED(q, s) > ⌧, s 2 S.

Proof: As Fig.1(a) shows, ED(q, c) > r 0 + ⌧,
ED(c, s) r 0. Therefore, we have |ED(q, c) � ED(c, s)| > ⌧.
Since |ED(q, c)� ED(c, s)| ED(q, s) ED(q, c)+ ED(c, s),
we have ED(q, s) > ⌧.

Lemma 2: When ED(q, c) ⌧ � r 0, it must be true that
ED(q, s) ⌧, s 2 S.

Proof: As Fig.1(b) shows, ED(q, c) ⌧ � r 0, 0
ED(c, s) r 0. Therefore, we have ED(q, c) + ED(c, s) ⌧.
Since |ED(q, c)� ED(c, s)| ED(q, s) ED(q, c)+ ED(c, s),
we have ED(q, s) ⌧.

Lemma 3: When |ED(c, s) � ED(c,q)| > ⌧, it must be
true that ED(q, s) > ⌧, s 2 S.

Proof: As Fig.1(c) shows, |ED(c, s) � ED(c,q)| <
ED(q, s), |ED(c, s) � ED(c,q)| > ⌧. Therefore, we have
ED(q, s) > ⌧.

C. Bloom Filter

Bloom Filter (BF) [20], [22] is a data structure based
on hash, which stores data in a fixed number of bits. A BF
contains m0 bits, represented by BF[0],BF[1]...BF[m0 � 1],
each bit is initialized to 0. It is used to represent a set S0 that
includes n elements. There are k independent hash functions
h1, h2...hk , the value of each hash function ranges in [0,m0�1].
Assume that these hash functions independently and uniformly
map each element to a random number in the entire range.
For a 2 S0, set BF[hi(a)] to 1 for 1 i k. For b, check
each BF[hi(b)](1 i k) whether it is 1 or not. If every
BF[hi(b)](1 i k) is 1, then b may belong to S0. As the
bit can be set to 1 by any other strings, so we cannot ensure
it is certainly set by b. But finding one bit BF[hi(b)] = 0
implies certainly b < S0, since if b belongs to the set, every
bit BF[hi(b)](1 i k) will be set to 1. This explains why
Bloom Filter scheme has false positive. Let n be the number
of strings in set S0. The hash function maps string randomly
and uniformly in [0,m0 � 1]. Let p denote the probability that
a random bit of BF is 0, the false positive rate is denoted as:

f = (1 � p)k ⇡ (1 � e�kn/m
0)k (1)

We can reduce the value of f by choosing an appropriate
m0 when the number of set n is known.

ĂĂ

ĂĂ ĂĂCluster

Query

BloomFilter

Remain
String

Center
String

Recover
Stream

Data Stream

Fig. 2. The overall process of streaming similarity search algorithm. First, all
the strings coming through will be recorded in a BF and stored in memory.
Then, when the number of strings reaches an upper limit, do clustering and
only the centroids and outliers will be remained. Finally, do an approximate
query on the string stream.

III. SIMILARITY SEARCH OVER A STRING STREAM

A. Basic Idea
Current string similarity search algorithms are suitable

for processing static strings. When comes a dynamic string
stream, the major problem becomes how to store the infinite
strings as well as how to process the query efficiently. In
this paper, we propose an approach to overcome the inherent
unbounded-memory bottleneck. The basic idea is to use a
BF maintained in memory to record all the strings coming
through. At the very beginning, all the arrived strings are
stored in memory as many as possible. When the number
of preserved strings reaches an upper limit, a batch approach
is adopted to delete some strings by utilizing the clustering-
based string compression algorithms. As a result, only the
centroids and outliers (i.e., the uncompressed strings) will be
kept in memory. And an approximate query on the string
stream will be performed based on the BF as well as the
preserved strings (i.e., the centroids and outliers). The overall
process is illustrated in Fig.2. In this way, the dynamic string
stream is converted to a static string set.

Given a query string q, a threshold of edit distance ⌧,
the basic idea of querying similar strings over the data stream
(Algorithm 1) is described as follows.

1) If ⌧ r 0 , find every string similar to q till now by
the BF-based string recovery algorithm recoverBF(q,0,⌧,BF)
(Algorithm 5) and add them to the result set, where BF refers
to the Bloom Filter, r 0 is the radius of clustering, determined
by the processing power of the computing platform. Otherwise
(⌧ > r 0), turn to step 2.

2) Use existing string similarity search algorithms (e.g.,
Pass-Join [21]) to find every outlier preserved in memory
satisfying the condition ED(q,outlier) ⌧, and add them
to the result set. Go to step 3.

3) For each centroid preserved in memory, if
ED(q, centroid) > r 0 + ⌧, meaning strings compressed by
this centroid with radius r 0 will not overlap with the strings
meeting the query condition according to Lemma 1. Therefore,
we do not need to recover strings compressed by this centroid.
Go to step 4.

4) If ED(q, centroid) ⌧ � r 0, meaning each string
compressed by this centroid is similar to q accord-
ing to Lemma 2, we need to recover the strings using

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 4

Algorithm 1: Query(q, ⌧)
Input: The query string q, edit distance threshold ⌧
Output: The result string set R

1 if ⌧ r 0 then

2 //BF denotes the Bloom Filter
3 R recoverBF(q,0,⌧,BF);
4 else

5 for each outlier in Outliers do

6 if ED(q,outlier) ⌧ then

7 Add outlier into R;

8 for each centroid in Centroids do

9 if ED(q, centroid) > ⌧ + r 0 then

10 //Lemma1
11 continue;
12 else if ED(q, centroid) ⌧ � r 0 then

13 //Lemma2
14 R R [recoverBF(centroid, 0, r 0, BF);
15 else

16 l Max(0, ED(q, centroid) � ⌧);
17 for each str returned by

recoverBF(centroid, l, r 0, BF) do

18 if ED(q, str) ⌧ then

19 Add str into R;

recoverBF(centroid, 0, r 0, BF), but need not to calculate
the edit distance. Go to step 5.

5) Other than that, it’s impossible to judge the relationship
between strings compressed by this centroid and the query
string q. Firstly, we need to recover all strings compressed
by this centroid using recoverBF(centroid, l,r 0,BF), where
l = ED(q, centroid)� ⌧ if ED(q, centroid)� ⌧ � 0, otherwise
l = 0. And then calculate the edit distances between recovered
strings and the query string q. Add the similar strings to the
result set.

The BF-based string recovery algorithm recoverBF ex-
hibits an exponential time complexity (see subsection III-C).
Considering the processing power of current computers, the
radius r 0 cannot be too large. In our experiment environment,
r 0 5. To increase the query scope, we need to expand the
query edit distance threshold. As a result, two clustering-based
compression algorithms are proposed to keep historical strings
in memory as many as possible. When exceeding a certain
number, it does clustering, only the centroids and outliers are
remained, and an approximate query on the string stream is
performed based on these reserved strings.

B. Clustering-based String Compression Algorithm
Given a string set S = {s1, s2 · · · sn}, the outputs of the

clustering-based compression algorithm are the centroid set C
and the outlier set O, where C = {(c1,r1), (c2,r2) · · · (ct,rt)},
ci 2 S is a centroid, ri is its respective clustering radius (1
i t, t n), O = {o1,o2 · · · ol}, oj 2 S is an outlier (1 j
l, l n). In general, t and l are far less than n.

In this paper, two clustering-based compression algo-
rithms are proposed: one is the set cover based clustering
algorithm, and the other is the VP-Tree based clustering
algorithm. The former has better clustering effect, and the
latter has a lower time complexity.

1) Set Cover Based Clustering Algorithm: The minimum
set cover problem is described as below: Given a universal set
U, and the finite subset of U: S1,S2...Sw , the problem is to find
out the minimum number of subsets that the union of them is
U, which means to find the smallest I ✓ {1,2...w} makes
[i2ISi = U.

The minimum set cover problem has been proved to be an
NP-hard problem [23], [24]. An approximate solution is ob-
tained with the greedy algorithm [25]. The basic idea is choos-
ing the subset that includes the maximum uncovered elements
every time till all elements are covered. This algorithm has
been proved to be a polynomial time complexity approximate
algorithm of the set cover problem. The minimum coverage
found by this greedy algorithm may be H(s) times as large as
the real minimum coverage, where H(s) = Õs

k�1
1
k ln(s+1),

s is the size of the set to be covered.

Algorithm 2: SetCover Clustering
Input: String set S, clustering radius r 0
Output: Centroid set C, outlier set O

1 for i = 0! S.size do

2 Add S[i] to distSet[i] ;
3 for each S[j] 2 S and ED(S[i],S[j]) r 0, i , j do

4 Add each S[j] to distSet[i];

5 //see SetCover in Algorithm 3
6 covSet = SetCover(distSet);
7 for j = 0! covSet.size do

8 k covSet[j].maxIndex;
9 subset covSet[j].maxSet;

10 if subset .size = 1 then

11 Add the only string in subset into O;

12 else

13 Add (S[k], r 0) into C;

The SetCover clustering algorithm is depicted in Al-
gorithm 2. At first, there are the string set S =
{s1, s2...sn} and the clustering radius r 0. Given the distSet =
{distSet[1], distSet[2] · · · distSet[n]}, where distSet[i] is
made up of si with all its similar strings, i.e., distSet[i] =
{si}

–{sj |ED(sj, si) r 0, i , j}(1 i n), the SetCover
algorithm (depicted in Algorithm 3) takes distSet as input, and
produces covSet which is composed of the resulting subsets.
For each subset in covSet, if this subset has only one string,
then add this string to the set of outliers, i.e., the set of
unclustered strings O. If not, which means there are strings
that can be clustered by sk which is a centroid, then add sk
to the set of centroids C, where k is the corresponding index
of this subset in distSet.

For example, S = {a,aaa, b, ccc, ddddd}, r 0 = 3,
distSet = {distSet1 : {a,aaa, b, ccc}, distSet2 : {aaa,a, b, ccc},
distSet3 : {b,a,aaa, ccc}, distSet4 : {ccc,a,aaa, b}, distSet5 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 5

{ddddd}}. After calculation, we can get C = {(a,3)},
O = {ddddd}.

Algorithm 3: SetCover
Input: distSet
Output: covSet

1 while non-empty subsets left in distSet do

2 maxNum = 0 ;
3 for i = 0! distSet .size do

4 if distSet[i].size > maxNum then

5 maxNum distSet[i].size ;
6 maxSet distSet[i] ;
7 maxIndex i;

8 distSet[maxIndex] ú;
9 for j = 0! distSet .size do

10 delete all s in distSet[j] , s 2 maxSet ;

11 Add (maxSet, maxIndex) into covSet;

The basic idea of SetCover depicted in Algorithm 3 is as
follows: choose the subset in distSet that includes the most
strings as maxSet; empty this chosen subset in distSet; for
each s 2 maxSet, delete s from each subset in distSet; repeat
this process till all the subsets in distSet are empty.

For example, distSet = {distSet1 : {a,aaa, b, ccc},
distSet2 : {aaa,a, b, ccc}, distSet3 : {b,a,aaa, ccc}, distSet4 :
{ccc,a,aaa, b}, distSet5 : {ddddd}}. At first, choose maxSet
= distSet1 : {a,aaa, b, ccc}, after deleting all elements within
maxSet from distSet, we get distSet = {distSet1 : ú,
distSet2 : ú, distSet3 : ú, distSet4 : ú, distSet5 : {ddddd}},
and covSet = {({a,aaa, b, ccc},1)}. And then, choose
maxSet = distSet5 : {ddddd}, after deletion, distSet =
{distSet1 : ú, distSet2 : ú, distSet3 : ú, distSet4 : ú, distSet5 :
ú}, covSet = {({a,aaa, b, ccc},1), ({ddddd},5)}.

Complexity: Given a string set S = {s1, s2 · · · sn}, there
are n subsets in distSet, and each subset is composed of at
most n strings. Apparently, the time complexity to get the
distSet is O(n2⇥ted), where ted is the time needed to compute
the edit distance of a pair of strings. That is, it needs to
compute the edit distances of at most n2 string pairs, we can
utilize Pass-Join Algorithm [21] to optimize the calculation
process. After the compution of distSet, the time complexity
to get the approximate minimum set cover according to the
SetCover algorithm (Algorithm 3) is O(n2). As a result, the
total time complexity of the SetCover clustering algorithm
(Algorithm 2) is O(n2⇥ted+n2). The original distSet contains
a total of n subsets, and each subset has a maximum of n
strings, so the space complexity is O(n2).

2) VP-Tree Based Clustering Algorithm: The VP-Tree
(Vantage Point Tree) structure [26] aims to solve the nearest
neighbor problem in metric space. It is basically a binary tree.
To construct it, every time we choose a point as a "vantage
point", then calculate the edit distances between this "vantage
point" and other points, and divide all other points to the left
or right subtree according to the median of all the calculated
edit distances. The edit distances between the "vantage point"

and the points in the left subtree are no larger than the median,
and the points in right are larger than the median.

Algorithm 4: VP-Tree Clustering
Input: String set S, clustering radius r 0
Output: Centroid set C, outlier set O

1 vpTree=buildVpTree(S);
2 //preorder traversing the vpTree
3 while vpTree != NULL do

4 Get the root vantage point vp in vpTree;
5 if vp.distance r 0 then

6 if vp.le f tsubtree != NULL then

7 Add (vp.string, vp.distance) into C;

8 else

9 Add vp.string into O;

10 Recursive search in vp.rightsubtree;

11 else

12 Add vp.string into O;
13 Recursive search in vp.le f tsubtree;
14 Recursive search in vp.rightsubtree;

When strings stored in memory reach a maximum ca-
pacity, they are built into a VP-Tree. And then we can utilize
the VP-Tree clustering algorithm (Algorithm 4) to compress
the strings and save more memory for new coming ones. The
whole clustering process is depcited as follows. Firstly, we
build the string set S into a VP-Tree. Each vantage point in
the VP-Tree saves a median distance, and all nodes in its left
subtree have edit distances less than or equal to the median,
while all nodes in its right subtree have edit distances larger
than the median. As long as the median distance is no larger
than the clustering radius r 0 and the left subtree is not empty,
then this vantage point will be regarded as a centroid, and the
string corresponding to this vantage point as well as its median
distance will be saved in the centroid set C (in this case, all the
strings in its left subtree will be compressed), and recursive
search will be performed in its right subtree only. Otherwise
(median distance is larger than r 0), the vantage point string
will be saved in the outlier set O. Recursive search will be
performed in its left subtree and right subtree respectively.

In fact, in order to compress more strings in the resulting
outlier set O, we can rerun the VP-Tree clustering algorithm
many times with the resulting outlier set O as the new input
string set S. This process can be repeated till enough memory
space is saved. The compression ratio rto is defined as the
number of remaining strings (including centroids and outliers)
divided by the total number of original strings:

rto =
| Ok | +

kÕ
i=1

| Ci |

| S | , i = 1,2 · · · k (2)

Notes: where k is the number of times the VP-Tree
clustering algorithm reruns (i.e., the number of clustering
times), | Ci | is the number of centroids in the i-th clustering,
| Ok | is the number of outliers in the k-th (last) clustering,
| S | is the number of strings in the original string set S.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 6

TABLE I
PARAMETERS AND DESCRIPTION

Notation Description
⌃ Alphabet
m Number of alphabet letters
s String
|s | The length of the string s
q Query string
r Recovered string
⌧ Edit distance threshold

ED(q, r) Editing distance of strings q and r
x, y, z Number of insertions, deletions and substitutions

Complexity: When building a VP-Tree, since all strings
are saved in a list in the beginning, only one position operation
is required for each random selection. And then we compute
the edit distances between this chosen string and all other
strings, and find the median by the binary search. Therefore,
given a string set S composed of n strings, the time complexity
of constructing a VP-Tree is O(nlog(n)⇥ ted), where ted is the
time needed to compute the edit distance of a pair of strings.
After building the VP-Tree, we need to traverse the entire tree.
Specifically speaking, we need to check whether each vantage
point in the VP-Tree can be regarded as a centroid or not, of
which the time complexity is O(n). Therefore, the total time
complexity of the VP-Tree clustering algorithm (Algorithm 4)
is about O(nlog(n)⇥ted+n). The space required is proportional
to the number of strings, and the space complexity is O(n).

C. Bloom Filter Based String Recovery Algorithm
This section mainly introduces the string recovery algo-

rithm that satisfies the edit distance condition. The parameters
required below are shown in the TABLE I.

Definition 4 (String Recovery). Given a string q, a thresh-
old of edit distance ⌧, and an alphabet ⌃, the string recovery
is to get the string set R = {r 2 Õn |ED(q,r) ⌧},
n 2 [|q | � ⌧, |q | + ⌧].

Algorithm 5: recoverBF(q,l,u,BF)
Input: The query string q, lower l, upper u, Bloom

Filter BF
Output: A string set

R ◆ {r |r 2 BF && l ED(q,r) u}
1 R ú ;
2 for i = l; i u; i + + do

3 //x,y,z denote number of insertions, deletions
4 //and substitutions respectively
5 for each combination of x,y,z (x + y + z = i) do

6 Ri EditOperate(q, x, y, z,BF) ;
7 R R [Ri ;

Because the deletions and substitutions are performed
on the original string, the insertion operations should be
performed at last. And in order to cover all cases and get
the full string set, we need to do the substitutions at first.
Therefore, the order of these three editing operations is:
substitution, deletion and insertion.

The basic idea of the BF-based string recovery algorithm
recoverBF (Algorithm 5) is described as follows: operate on
the query string q in the order of substitution, deletion and
insertion, and then check each candidate string in the BF. If
the BF returns true, then add this string to the result string
set R. If not, ignore this string. Note that in the final result
set R, there might be some additional strings of which the
edit distances with the query string q are less than the lower
bound l. This is because that the EditOperate(q, x, y, z,BF)
might return a string set R0 including some additional strings
of which the edit distances are less than x + y + z. However,
this will not affect the correctness of our proposed streaming
similarity search algorithm (Algorithm 1), as we will verify the
real edit distance of each string returned by recoverBF with
the query string. Note that the definition of string recovery
problem is the special case when l = 0 and u = ⌧ in recoverBF.

Algorithm 6: EditOperate(q,x,y,z,BF)
Input: The original string q, number of

insertions/deletions/substitutions x/y/z, Bloom
Filter BF

Output: A string set R0 ◆ {r |r 2 BF && ED(q,r) =
x(insertions)+y(deletions)+z(substitutions)}

1 R
0
= ú;

2 for each string q0 returned by Substitute(q, z) do

3 for each string q00 returned by Delete(q0 , y) do

4 for each string q000 returned by Insert(q00 , x) do

5 if BF(q000) = True then

6 Add q
000 to R

0 ;

The detailed editing operation is depicted in EditOper-
ate (Algorithm 6). The number of insertions, deletions and
substitutions are x, y, z respectively. For substitution operation,
z positions are selected from the original string q, and each
position has m (number of alphabet letters in ⌃) possibilities.
Therefore, it is actually a combination problem and we can
know the string q is replaced by z times to get mzCz

|q |
cases. Similar to substitution, deletion is also a combination
problem. There are Cy

|q | cases when we select y positions from
the original string q to delete. The situation of insertion is
relatively complicated. x insertions are equivalent to inserting
different combinations of a string l of length x. The detailed
operation is described as below: divide string l into different
groups, for example, abc can be divided into four groups:
a b c,ab c,a bc,abc. Obviously, there are 2 |l |�1 groups.
Suppose the number of elements in the i-th group is xi ,
(i 2 |l |�1), it is transformed to a combination problem of
selecting xi positions from the original string q. Finally, insert
each group element at its corresponding position. The number
of cases of x insertions to q is:

mx
2x�1’
i=0

Cxi
|q |+1 (3)

By the above analysis, in EditOperate, the number of
strings generated from a string q after x insertions, y deletions

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 7

TABLE II
DATA SET DETAILS

Dataset Cardinality AvgLen MaxLen MinLen
Word 122823 8.722 29 5
Name 1957046 6.171 12 2
Pwd 1000000 7.529 39 1

and z substitutions is:

nedit (q, x, y, z) = mzCz
|q |C

y
|q |m

x
2x�1’
i=0

Cxi
|q |�y+1 (4)

When the edit distance is k = x+ y+ z, the number of all
combinations of insertion, deletion, and substitution operations

is
kÕ
i=0

(k � i + 1) = (k+1)(k+2)
2 . Therefore, in recoverBF the

maximum possible number of strings returned (i.e., in case
all strings are in the Bloom Filter) is : nrecover (q, l,u) =
uÕ
k=l

(k+1)(k+2)
2 ⇥ nedit (q, x, y, z).

Obviously, the total time complexity of the recoverBF al-
gorithm (Algorithm 5) is O(nrecover (q, l,u)). Since recoverBF
does not store every string it recovers, instead it searches
directly in the BF structure, and returns the strings which
are stored in BF only (see Algorithm 6), the memory space
required by recoverBF is relatively small. It can be seen
that the string recovery is an NP-hard problem, and the
proposed method recoverBF is an exhaustive algorithm with
high time complexity. In addition, since the completeness of
the recovered strings must be guaranteed (no historical string
omitted), no approximation algorithm can be used.

D. Misconfiguration Avoidance Method
Finally, the misconfiguration of IACS can be avoided in

this way:
• First of all, employ the proposed string clustering algo-

rithms to keep all the configuration changes of IACS in
memory.

• When comes a new configuration change, we can check
its correctness with the following steps: 1) Employ the
proposed streaming similarity search algorithm to query
its similar changes from all the historical configuration
changes. 2) If returning some similar changes, we then
can use them to evaluate the correctness of this new
change. Generally speaking, if there are a lot of similar
configuration changes returned, then this new change is
believed to be correct with high probability. 3) Otherwise,
if there are no similar changes returned, then this new
change requires more attention and there might be some
errors.

IV. EXPERIMENT

We first test our method with three public datasets as
shown in Table II. The entire Word [21] and Name⇤ datasets
as well as part of the Pwd† (1 million strings) dataset are

⇤https://www.kaggle.com/datagov/usa-names
†http://datashaping.com/passwords.txt

adopted in the experiments. So far as we know, we are the
first to address the streaming similarity search problem, which
means that there are no comparable related works. Therefore,
we mainly evaluate the performance of the proposed method,
including the clustering based compression algorithms, and
the Bloom Filter based string recovery algorithm. After that,
the effectiveness of the proposed method in misconfiguration
avoidance will be evaluated with real and synthetic configura-
tion files. All algorithms are implemented in C++ and tested on
Ubuntu 16.04.6 LTS with Intel(R) Core(TM) i7-6850K CPU
@ 3.60GHz processor and 16GB memory.

A. String Clustering Evaluation
The experimental results of the set cover based and VP-

Tree based clustering algorithms are shown in Table III and
IV respectively. In these two tables, the time refers to the
time required to process all strings in each dataset, and the
compression ratio is defined as the number of uncompressed
strings (including centroids and outliers) divided by the total
number of original strings. And the clustering radius r 0 is set
to 5, which is the maximum value allowed in the experiment
computer (otherwise, it will take too much time for recoverBF
to recover the compressed strings). From the results we can
see that the compression ratio of set cover based algorithm
is much less than that of VP-Tree based algorithm. However,
it takes much more time for the set cover based algorithm to
cluster all strings in each dataset than that of VP-Tree based
algorithm. It is worth noting that almost all strings in the Name
dataset is compressed by the set cover based algorithm, only
0.10% of all strings are left. However, the major disadvantage
is it takes too much time (29370 seconds, more than 8 hours).
In comparison, the VP-Tree based algorithm delivers a low
enough compression ratio (3.93%), while the processing time
is relatively acceptable, only 118 seconds. Generally speaking,
set cover based algorithm delivers a better compression ratio,
while the VP-Tree based algorithm takes much shorter pro-
cessing time which is consistent with the theoretical analysis.

TABLE III
RESULTS OF CLUSTERING ALGORITHM BASED ON SET COVER

Dataset Time/seconds Compression ratio
Word 115 4.02%
Name 29370 0.10%
Pwd 1962 2.68%

TABLE IV
RESULTS OF CLUSTERING ALGORITHM BASED ON VP-TREE

Dataset Time/seconds Compression ratio
Word 14 35.99%
Name 118 3.93%
Pwd 163 36.00%

B. String Recovery Evaluation
The string recovery algorithm delivers an exponential

time complexity. Here we mainly check whether or not it
can be used to recover all the strings compressed by the

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 8

TABLE V
CONFIGURATION FILE DETAILS

Configuration Total configuration pairs Error configuration pairs
IACS 30000 3000

Apache 20000 2000
MySQL 10000 1000
CentOS 50000 5000

TABLE VI
QUERY RESULT

Configuration Total queries Successful queries
(⌧ = 5)

Successful queries
(⌧ = 10)

IACS 3000 2410 3000
Apache 2000 1685 2000
MySQL 1000 812 1000
CentOS 5000 4122 5000

clustering algorithms in subsection IV-A. To be precise, the
recovery algorithm takes the centroids returned by the cluster-
ing algorithm as the query strings. And then we check each
string generated by the recovery algorithm whether it is in
the respective dataset (Word, Name and Pwd) or not. After
throughout verifying all the generated strings, we find that
there are no omissions for all three datasets, i.e., all the strings
compressed by the clustering algorithms can be recovered.

C. Misconfiguration Avoidance Evaluation
In this subsection, we use the real configuration files

from IACS as well as some famous open source systems
(Apache, MySQL and CentOS) to check whether the pro-
posed method can be used to avoid the misconfiguration
effectively. The IACS dataset consists of the configuration files
from multiple systems including distributed control system
(DCS), supervisory control and data acquisition (SCADA),
and various IIoT devices. CentOS is an enterprise-class Linux
distribution, MySQL is a database server, Apache is a web
server. The CentOS, MySQL and Apache datasets contain
the configuration files from the respective system. For the
convenience of evaluation, all the configuration files of IACS
are combined into one, referred as "IACS configuration files".
The numbers of pairs of <configuration directive, value> in
these configuration files are very small, e.g., no more than 500
in the original Apache configuration file. In order to simulate
the real configuration changing scenario, we generate much
more configuration pairs (i.e., configuration directive with its
value) with the following method: 1) for each configuration
directive, change its respective values; 2) for each pair of
<configuration directive, value>, make some typos (less than
10 characters) in the configuration directive as well as its
value. As a result, the details of the configuration files are
illustrated in Table V, where the error configuration pair means
the pair has unacceptable values or typos.

Followed that, the effectiveness of the proposed method
in aiding the configuration management will be evaluated with
the following steps. First of all, all the configuration pairs in
each configuration file are processed by the proposed method.
And then, for each error configuration pair, a query is carried
out to find all the similar pairs within the edit distance 5 and

10 respectively. If returning some correct configuration pairs
which can be used to correct the error configuration, then
this query is believed to be successful. Otherwise, this query
is considered to be unsuccessful. The experiment results are
depicted in Table VI. From this table we can see that since we
limit the maximum misspelled characters (less than 10), all the
queries are successful when the edit distance ⌧ = 10. There
really exist some unsuccessful queries when ⌧ = 5, this is be-
cause that there are some error configuration pairs which have
more than 5 misspelled characters. In summary, the proposed
method can effectively help correcting the misconfiguration.

V. CONCLUSION

This paper proposes a misconfiguration avoidance method
for IACS based on streaming string similarity search. Two
clustering-based string compression algorithms are proposed
to keep the strings stored in memory as many as possible. The
set cover based clustering algorithm delivers higher compres-
sion efficiency, while the VP-Tree based clustering algorithm
exhibits a higher compression speed. At the same time, a
historical string recovery algorithm based on Bloom Filter is
proposed, so that the deleted historical strings can be recovered
without omission when a query arrives. The major drawback is
the low string recovery speed which can be further improved
by parallelization. The experiments show that the proposed
method can effectively help correcting the misconfigurations
of IACS. In the future work we plan to accelerate the string
recovery algorithm on the GPU using CUDA.

REFERENCES

[1] Q. Zhang, C. Zhou, Y.-C. Tian, N. Xiong, Y. Qin, and B. Hu, “A
fuzzy probability bayesian network approach for dynamic cybersecurity
risk assessment in industrial control systems,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 6, pp. 2497–2506, 2017.

[2] X. Li, C. Zhou, Y.-C. Tian, and Y. Qin, “A dynamic decision-making
approach for intrusion response in industrial control systems,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2544–2554,
2018.

[3] F. Zhang, H. A. D. E. Kodituwakku, J. W. Hines, and J. Coble, “Mul-
tilayer data-driven cyber-attack detection system for industrial control
systems based on network, system, and process data,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 4362–4369, 2019.

[4] C. Zhou, X. Li, S.-H. Yang, and Y.-C. Tian, “Risk-based scheduling of
security tasks in industrial control systems with consideration of safety,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3112–
3123, 2020.

[5] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration debugging
as search: Finding the needle in the haystack,” in Proceedings of
the 6th conference on Symposium on Operating Systems Design &
Implementation, vol. 6, 2004, pp. 77–90.

[6] Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving configuration
management with operating system causality analysis,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 6, pp. 237–250, 2007.

[7] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
misconfiguration troubleshooting with peerpressure.” in Proceedings of
the 6th conference on Symposium on Operating Systems Design &
Implementation, vol. 4, 2004, pp. 245–257.

[8] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen,
“Understanding and dealing with operator mistakes in internet services.”
in Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation, vol. 4, 2004, pp. 61–76.

[9] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. P. Martin,
and T. D. Nguyen, “Understanding and validating database system ad-
ministration.” in USENIX Annual Technical Conference, General Track.
Boston, MA, 2006, pp. 213–228.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2020 9

[10] P. Anderson, P. Goldsack, and J. Paterson, “Smartfrog meets lcfg:
Autonomous reconfiguration with central policy control.” in LISA, vol. 3,
2003, pp. 213–222.

[11] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic configuration
of internet services,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems, 2007, pp. 219–229.

[12] Y. Jiang, G. Li, J. Feng, and W.-S. Li, “String similarity joins: An
experimental evaluation,” Proc. VLDB Endow., vol. 7, no. 8, p. 625–636,
Apr. 2014.

[13] S. Wandelt, D. Deng, S. Gerdjikov, S. Mishra, P. Mitankin, M. Patil,
E. Siragusa, A. Tiskin, W. Wang, J. Wang et al., “State-of-the-art in
string similarity search and join,” ACM SIGMOD Record, vol. 43, no. 1,
pp. 64–76, 2014.

[14] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, “Efficient metric
indexing for similarity search and similarity joins,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 3, pp. 556–571, March
2017.

[15] W.-K. Hon, R. Shah, and J. S. Vitter, “Compression, indexing, and
retrieval for massive string data,” in Proceedings of the 21st Annual
Conference on Combinatorial Pattern Matching. Berlin, Heidelberg:
Springer-Verlag, 2010, p. 260–274.

[16] L. Chen, Y. Gao, B. Zheng, C. S. Jensen, H. Yang, and K. Yang,
“Pivot-based metric indexing,” Proc. VLDB Endow., vol. 10, no. 10,
p. 1058–1069, Jun. 2017.

[17] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, “Efficient metric
indexing for similarity search,” in 2015 IEEE 31st International Con-
ference on Data Engineering, 2015, pp. 591–602.

[18] J. Cui, W. Wang, D. Meng, and Z. Liu, “Continuous similarity join on
data streams,” in 2014 20th IEEE International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 2014, pp. 552–559.

[19] G. D. F. Morales and A. Gionis, “Streaming similarity self-join,” arXiv
preprint arXiv:1601.04814, 2016.

[20] S. Geravand and M. Ahmadi, “Bloom filter applications in network
security: A state-of-the-art survey,” Computer Networks, vol. 57, no. 18,
pp. 4047 – 4064, 2013.

[21] G. Li, D. Deng, J. Wang, and J. Feng, “Pass-join: A partition-based
method for similarity joins,” Proc. VLDB Endow., vol. 5, no. 3, p.
253–264, 2011.

[22] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom fil-
ters,” IEEE Transactions on Knowledge and Data Engineering, vol. 22,
no. 1, pp. 120–133, 2010.

[23] N. Alon, B. Awerbuch, and Y. Azar, “The online set cover problem,” in
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, 2003, p. 100–105.

[24] P. Slavík, “A tight analysis of the greedy algorithm for set cover,” in
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, 1996, p. 435–441.

[25] G. Cormode, H. Karloff, and A. Wirth, “Set cover algorithms for very
large datasets,” in Proceedings of the 19th ACM International Confer-
ence on Information and Knowledge Management, 2010, p. 479–488.

[26] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in Soda, vol. 93, no. 194, 1993, pp.
311–321.

Yu Zhang received the B.E. degree in computer
science and the Ph.D. degree in computer system
architecture from the Harbin Institute of Technol-
ogy, Harbin, China, in 2004 and 2010, respectively.
After graduation, he joined the College of Computer
and Control Engineering, Nankai University, Tianjin,
China. He is currently an Associate Professor with
the College of Cyber Science, Nankai University. He
has authored or coauthored more than 30 academic
papers in international conferences and journals. His
research interests include machine learning, data

mining, artificial intelligence security and network security, particularly cy-
berspace security situational awareness.

Yani Ge received the B.E. degree in information
security, in 2019, from the China University of
Geosciences, Wuhan, China. She is currently work-
ing toward the M.E. degree in computer science
at Nankai University, Tianjin, China. Her research
interests include network security and data mining.

Peiran Yu received the B.E. degree in information
security, in 2019, from the Nankai University, Tian-
jin, China. She is currently working toward the M.E.
degree in computer science at Nankai University,
Tianjin, China. Her research interests include net-
work security and data mining.

Jianzhong Zhang received the Ph.D. degree in com-
puter science from the Nankai University, Tianjin,
China, in 2008. He is currently a Professor and
Ph.D. Supervisor with the College of Cyber Science,
Nankai University. In recent years, he has authored
or coauthored more than 50 academic papers in
international conferences and journals. He has culti-
vated more than 30 graduate students and 6 doctoral
students, published 11 textbooks related to computer
networks. He won the first prize of Tianjin Teaching
Achievement in 2009 and the first prize of Nankai

University Teaching Achievement in 2009 and 2017 respectively. His research
interests include mobile computing, activity recognition, and network security.

Yongzheng Zhang (M’13) received the B.S. and
Ph.D. degrees in computer science from the Harbin
Institute of Technology, Harbin, China, in 2001 and
2006, respectively. He is a Professor and Ph.D.
Supervisor with the Institute of Information Engi-
neering, Chinese Academy of Sciences (CAS), Bei-
jing, China. His research interests include network
security, particularly cyberspace security situational
awareness. Prof. Zhang was honored with the first
prize of the Chinese National Award for Science and
Technology Progress in 2011.

Thar Baker is a Senior Lecturer in Software Sys-
tems in the Department of Computer Science at
the Faculty of Engineering and Technology. He has
received his Ph.D. in Autonomic Cloud Applications
from LJMU in 2010. His research interests include:
Cloud Computing, Distributed Software Systems,
Big Data, Algorithm Design, Green and Sustainable
Computing, and Autonomic Web Science. He has
been actively involved as member of editorial board
and review committee for a number peer reviewed
international journals, and is on programme com-

mittee for a number of international conferences. Dr. Baker was appointed
as Expert Evaluater in the European FP7 Connected Communities CONFINE
project (2012-2015). He worked as Lecturer in the Department of Computer
Science at Manchester Metropolitan University (MMU) in 2011.

