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Robust Subspace Predictive Control based on Integral Sliding Mode for a
Pressurized Water Reactor

Vineet Vajpayee, Victor Becerra, Nils Bausch, Shohan Banerjee, Jiamei Deng, S. R. Shimjith, A. John Arul

Abstract— This work combines the subspace predictive con-
trol technique with the integral sliding mode control strategy
to formulate a novel robust subspace predictive control scheme.
The subspace predictive controller provides the nominal control
whereas the integral sliding mode controller gives the discon-
tinuous control action. The aim is to improve the capability
of subspace predictive controller in handling uncertainties
and external disturbances. The proposed control scheme is
evaluated with a simulated pressurized water nuclear reactor.
The effectiveness of the proposed technique is demonstrated
for two different load-following operations in the presence of
uncertainties.

I. INTRODUCTION

Model predictive control (MPC) is extensively employed
in the process industries because of its capability to han-
dle constraints, adaptability to new operating conditions,
and its optimal performance. Predictive controllers solve an
optimization problem at each sampling instant to calculate
future control input over a time period [1]. The effective
implementation of a MPC requires an accurate mathematical
model of the underlying process. Since a nuclear power plant
is a highly-constrained complex non-linear system which is
usually subject to parameter variations due to fuel burn-
up, internal reactivity feedbacks, and other uncertainties,
the traditional MPC design techniques yield sub-optimal
performance [2]. Moreover, the requirement of an accurate
model is quite stringent especially when retrofitting new
controllers in an aged nuclear power plant. These condi-
tions may further increase the complexity of the controller
due to conservative nature of constraints. Thus, the control
algorithm in a nuclear power plant should be designed in
such a way that it tackles these problems and provides
a near-optimal control performance without increasing the
computational complexity significantly.

Subspace predictive control (SPC) is a recently developed
predictive control strategy based on subspace matrix structure
[3]–[6]. It combines the estimation of linear predictor using
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subspace identification with the formulation of receding
horizon control design. In contrast to the traditional MPC,
which first models the process and then estimates the con-
troller parameters, the SPC combines these two steps into
one, thereby reducing the computation time, complexity, and
errors arising due to model-plant mismatch. SPC directly de-
signs the controller from the recorded measurement data. The
formulation of SPC neither requires the solution of a non-
linear Riccati equation, as is the case with linear quadratic
control, nor the solution of a recursive Diophantine equation,
as with generalised predictive control. The realization of SPC
is through singular value and QR decompositions, which
make the algorithm numerically stable and computationally
efficient.

Although predictive controller design approaches optimize
the performance of constrained systems, they lack uncer-
tainty or disturbance handling capabilities. Over the last
few decades, different robust predictive controller design
techniques have been suggested to resolve these problems.
For instance, min-max approach [7], open loop nominal ap-
proach [8], constraint tightening approach [9], etc. However,
these methods have limited applicability in case of large
complex systems such as a nuclear power plant as they are
effective for systems with few states or systems with slow
dynamics [10]. Moreover, these methods carry a very high
computational burden [11].

In another approach, a predictive controller is fused with
sliding mode control (SMC) to form a new hybrid con-
trol strategy. SMC is a well-known robust control design
technique which guarantees robustness towards matched un-
certainties, that is, uncertainties entering through the input
channel, once the system reaches the sliding surface [12].
The idea of SMC is to devise a discontinuous control action
which steers the system towards a stable sliding surface
and then maintains the system on this surface [13]. SMC
possesses very low computational complexity and assures
finite time convergence to the sliding surface. In the liter-
ature, these techniques have been combined to incorporate
the complementary strengths of predictive control and SMC
in two different ways. In the first strategy, referred to as
predictive sliding mode control, the predictive controllers
are employed to update sliding surface parameters [14]–[16].
It is indicated that incorporation of a predictive controller
improves the performance during reaching phase. A different
way of integrating predictive control with SMC is proposed
by [17]–[19]. In these techniques the control action consists
of two components, the first component is the nominal con-
trol which is generated by the predictive control technique



and the second component is the discontinuous control which
is generated by the integral sliding mode control (ISMC).
One of the main advantages of ISMC over traditional SMC
is that the former avoids the reaching phase by enforcing
the system trajectories to lie on the sliding surface from the
very beginning [13], [20]. Nevertheless, the above mentioned
approaches rely on the accuracy of the nominal model of the
system.

In this work, a robust subspace predictive control (RSPC)
approach is proposed by integrating SPC with ISMC to
enhance robustness and reduce the computational burden.
The proposed control scheme is able to overcome the un-
certainties and disturbances present in the system without
affecting the nominal system performance. The efficacy of
the proposed RSPC is validated during two different load-
following transients of a pressurized water reactor (PWR).
The control performance of the proposed RSPC is further
compared with that of the classical SPC.

The rest of the paper is organized as follows: Section II
formulates the problem. Section III presents the proposed
control scheme. Section IV evaluates the proposed technique
on a simulated PWR-type nuclear reactor and discusses
its effectiveness through simulation results. Conclusions are
drawn in section V indicating main contributions.

II. PROBLEM FORMULATION

Let us consider a linear uncertain system, represented in
state-space form as

ẋ(t) = Ax(t) +B(u(t) + ξ(t)), (1)
y(t) = Cx(t),

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, and ξ(t) ∈
Rm respectively represent state vector, control input, system
output, and matched uncertainty. A, B, and C are system
matrices. It is assumed that (A,B) is controllable and that
the system uncertainties are unknown and bounded, so that

‖ξ(t)‖ ≤ ξ∗, ξ∗ > 0. (2)

The control aim is to force the system output y(t) to follow
the desired reference r(t) with minimal control effort in the
presence of uncertainty ξ(t). To achieve this objective the
control scheme, depicted in Fig. 1, is proposed in this work,
where the ISMC reduces the effect of uncertainties and the
SPC guarantees minimum control effort.

III. PROPOSED CONTROL APPROACH

For the proposed control strategy, the control law u(t),
according to Fig. 1, is formed of two parts, i.e.,

u(t) = un(t) + ud(t), (3)

where the nominal control (un(t)) is produced using SPC
to obtain nominal system performance in an optimal way
whereas the discontinuous control (ud(t)) is generated by
ISMC to compensate for uncertainties. Thus, (1) can be
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Fig. 1. Block diagram of the proposed RSPC algorithm.

written as

ẋ(t) = Ax(t) +B(un(t) + ud(t) + ξ(t)), (4)
y(t) = Cx(t).

A. Design of Nominal Control by SPC

The nominal system is given by

ẋn(t) = Axn(t) +Bun(t) +Ke(t), (5)
yn(t) = Cxn(t) + e(t),

where xn(t) represent the system states due to nominal
control. The objective of SPC is to find un(t) by minimizing
the following cost function,

J = (ŷf − rf )
T
Qf (ŷf − rf ) + ∆uf

TRf∆uf , (6)

where
ŷf =

[
ŷT [t+ 1] ŷT [t+ 2] · · · ŷT [t+Np]

]T
,

rf =
[
rT [t+ 1] rT [t+ 2] · · · rT [t+Np]

]T
,

uf =
[
uTn [t+ 1] uTn [t+ 2] · · · uTn [t+Nc]

]T
respectively represent predicted output, desired reference,
and future input sequence. The difference operator is
∆ = 1− z−1, where z−1 is backward shift operator.
Nc (≤ Np) and Np are control and prediction horizons
respectively. Rf = INc ⊗ R penalizes the rate of change of
input, where R ∈ Rm×m is a positive definite matrix, INc

is an Nc×Nc identity matrix, and ⊗ denotes the Kronecker
product. Similarly, Qf = INp

⊗Q penalizes the error between
desired reference and output, where Q ∈ Rl×l is a positive
semi-definite matrix. The formulation of SPC requires the
design of a predictor to provide the control law. This is
discussed as follows:

The block Hankel matrices can be formed from the col-
lected measurement data as

YP =


y[1] y[2] · · · y[N − 2f + 1]
y[2] y[3] · · · y[N − 2f + 2]

...
...

. . .
...

y[f ] y[f + 1] · · · y[N − f ]

 ; (7)

YF =


y[f + 1] u[f + 2] · · · y[N − f + 1]
y[f + 2] u[f + 3] · · · y[N − f + 2]

...
...

. . .
...

y[2f ] u[2f + 1] · · · f [N ]

 ,(8)

where f is the order of predictor matrix. YP ∈



Rfl×(N−2f+1) and YF ∈ Rfl×(N−2f+1) are called past and
future output data Hankel matrices respectively. In a similar
fashion, UP ∈ Rfm×(N−2f+1) and XP ∈ Rn×(N−2f+1) are
defined as past input and past state matrices respectively. The
same notation holds with subscript F terms to define future
Hankel matrices. Using these definition one can write,

YP = ΓfXP +Hd
fUP +Hs

fEP ,

YF = ΓfXF +Hd
fUF +Hs

fEF , (9)

XF = AfXP + ∆d
fUP + ∆s

fEP ,

where Γf ∈ Rfl×n is the extended observability matrix.
Hd

f ∈ Rfl×fm and Hs
f ∈ Rfl×fl are deterministic and

stochastic lower block-triangular Toeplitz matrix. ∆d
f ∈

Rn×fm and ∆s
f ∈ Rn×fl are deterministic and stochastic

reverse extended controllability matrix. Thus, from (10), the
predictor is given by

ŶF = LwWP + LuUF , (10)

where WP =
[
Y T
P UT

P

]T ∈ Rf(m+l)×(N−2f+1). Lw ∈
Rfl×f(m+l) and Lu ∈ Rfl×fm are predictor matrices.

Now, in order to incorporate the above-defined predictor
in SPC, it is sufficient to consider only the leftmost column
of Ŷf . Thus, (10) can be rewritten as

ŷf = Lwwp + Luuf , (11)

or simply in terms of input increments as,

ŷf = Īly[t] +OlLw∆wp +OlLu∆uf , (12)

where

Ol =


Il 0 · · · 0
Il Il · · · 0
...

...
. . .

...
Il Il · · · Il

 ∈ RNpl×Npl, Il =


Il
Il
...
Il

 ∈ RNpl×l,

(13)
and Il is an l×l identity matrix. Rewriting (12), using ȳ[t] =
Īly [t], L̄w = OlLw, and L̄u = OlLu, as

ŷf = ȳ[t] + L̄w∆wp + L̄u∆uf . (14)

Thus, the input increment is computed by

∆uf = −
((
L̄u

)T
Qf L̄u +Rf

)−1(
L̄u

)T
Qf

(
ȳ[t]− rf + L̄w∆wp

)
,

(15)
or simply,

∆uf = −Ku (ȳ[t]− rf )−Kw∆wp (16)

where the gain matrices (Ku and Kw) are defined as

Ku =
((
L̄u

)T
Qf L̄u +Rf

)−1(
L̄u

)T
Qf ,

Kw =
((
L̄u

)T
Qf L̄u +Rf

)−1(
L̄u

)T
Qf L̄w.

(17)

Finally, the nominal control signal is updated using only the
first element of the nominal control move

un (t+ 1) = ∆uf (1) + un (t) . (18)

B. Design of Discontinuous Control by ISMC

The ISMC works by designing first an integral sliding
surface followed by the design of a discontinuous control
law. The sliding motion occurs on the integral sliding surface
whereas the control law drives the system trajectories onto
the sliding surface and maintained on it. To preserve the
nominal closed loop system performance, an integral sliding
surface φ(t) ∈ Rm can be designed as [13]

φ(t) = B†
[
x(t)− x(0)−

∫ t

0

ẋn(τ) dτ

]
, (19)

where B† = (B>B)−1B> is left-pseudo inverse of input
distribution matrix B. The term −x(0) assures that the
system starts from the sliding surface by eliminating the
reaching phase and enforcing φ(0) = 0. Thus, the closed-
loop system turns out to be robust towards matched uncer-
tainties from the initial time instant.
In this work, the discontinuous control ud(t) is formulated
based on the reachability condition [12], [20]

ud(t) = −µ sign(φ(t)), (20)

where µ is an appropriately designed positive constant and
sign(.) is the standard signum function.

C. Stability Analysis

1) SPC: In this section the asymptotic stability of the SPC
is analysed. If f →∞, the gain matrices can be rewritten as

Ku =

((
H̄d

f

)T
Qf H̄

d
f +Rf

)−1(
H̄d

f

)T
Qf ,

Kw =

((
H̄d

f

)T
Qf H̄

d
f +Rf

)−1(
H̄d

f

)T
QfOlΓf x̂(t).

(21)
where H̄d

f = OlH
d
f and x̂(t) represent the state estimated

by the Kalman filter,

x̂(q+ 1) = Axn(q) +Bun(q) +K (yn(q)− Cx̂n(q)) (22)

where q = t− 1, t− 2, · · · t− f . Since f →∞, the Kalman
filter is at steady state with steady state gain. Thus, the
unconstrained SPC is asymptotically stable.

2) ISMC: In this subsection, the reachability of the inte-
gral sliding surface φ(t) is analysed. Choosing a Luapunov
function V (t) as

V (t) =
1

2
φ2(t). (23)

Differentiating V (t) with respect to time, we obtain

V̇ (t) = φ>(t)φ̇(t)

= φ>(t)
(
B†ẋ(t)−B†ẋn(t)

)
= φ>(t)

(
B†Ax(t) + un(t) + ud(t) + ξ(t) (24)

−B†Axn(t)− un(t)
)

= φ>(t)
(
B†A (x(t)− xn(t))− µ sign(φ(t)) + ξ(t)

)
.



During sliding mode the system trajectories follow the nomi-
nal system trajectories i.e., x(t) = xn(t). Thus, (24) becomes

V̇ (t) = φ>(t)
(
ξ(t)− µ sign(φ(t))

)
= φ>(t)ξ(t)− µφ>(t) sign(φ(t)) (25)
≤ ‖φ(t)‖‖ξ(t)‖ − µ‖φ(t)‖
≤ ‖φ(t)‖

(
ξ∗ − µ

)
.

Thus, for any choice of µ ≥ ξ∗ + δ, (25) becomes

V̇ (t) = φ>(t)φ̇(t) ≤ −δ‖φ(t)‖, (26)

where δ is a small positive constant.
It is apparent from (26) that the trajectories of uncertain

system (1) will be maintained on the sliding surface φ(t) =
0 and drive towards the specified equilibrium point despite
the uncertainties in finite time. The boundary layer approach
can be used to restraint the effect of chattering due to the
presence of signum function in (20). The signum function
can be approximated as,

sign (φ (t)) =
φ (t)

‖φ (t)‖+ ε
(27)

where ε is a small positive constant.

IV. CASE STUDY: APPLICATION TO A SIMULATED
PWR-TYPE NUCLEAR REACTOR

For the purposes of identification and control, the dy-
namical model of a PWR can be suitably defined using the
point kinetics equation with six groups of delayed neutrons
precursors’ concentration coupled with thermal hydraulics.
The model is based on the following assumptions: The
primary loop is characterized by a lumped model. The
pressure and mass flow rate are constants. The heat generated
in the core is transferred using single phase coolant. The
primary loop model equations are as follows:

dP

dt
=

ρT −
6∑

i=1

βi

Λ
P +

6∑
i=1

βiCi

Λ
, (28)

dCi

dt
= λi (P − Ci) , i = 1, 2, . . . , 6, (29)

dTf
dt

= HfP − γf (Tf − Tc) , (30)

dTc
dt

= −Hc (Tout − Tin) + γc (Tf − Tc) , (31)

Tc =
Tout + Tin

2
, (32)

ρT = ρ+ αfTf + αcTc. (33)

where P is normalized neutronic power; βi, λi, and Ci

denote fraction of delayed neutrons, decay constant, and
normalized delayed neutron precursors’ concentration of ith

group respectively; Λ represents prompt neutron life time;
ρ and ρT denote reactivity contributed by control input and
the total reactivity respectively; Tf and Tc are temperatures
of fuel and coolant respectively; αf and αc are temperature
coefficients of reactivity of fuel and coolant respectively; Hf ,

TABLE I
NEUTRONIC AND THERMAL-HYDRAULIC PARAMETERS

Group, i 1 2 3 4 5 6
λi(s

−1) 0.0125 0.0308 0.1152 0.3109 1.240 3.3287
βi 0.000216 0.001416 0.001349 0.00218 0.00095 0.000322

Hf (◦Cs−1) Hc(s
−1) γf (s−1) γc(s

−1) αf

(◦C−1) αc

(◦C−1) Λ(s)
102.7 0.2401 0.1792 0.0124 −2× 10−5 −5× 10−5 5× 10−4

τcold(s) τhot(s) τsg(s) D1(◦Cs−1) D2 D3

7.0 5.0 11.3 3.746 0.7005 −0.2995

Hc, γf , and γc are proportionality constants; The dynamic
equations governing the secondary side are given by

dTin
dt

=
1

τcold
(D2Tsg −D3Thot − Tin) , (34)

dThot
dt

=
1

τhot
(Tout − Thot) , (35)

dTsg
dt

= − 1

τsg
(Tsg − Thot)−D1LT , (36)

where Tout, Tin, Thot, and Tsg are temperatures of core-
outlet, core-inlet, hot leg and steam generator respectively.
τcold, τhot, and τsg are time constants; D1, D2, and D3 are
constants; LT is turbine load. Values of various parameters
used in (28)–(36) are listed in Table I [6].

It is assumed that initially the reactor is operating at 50%
full power (FP). The system given by (28)–(36) is perturbed
by a reactivity transient to obtain the corresponding variation
in reactor power. The reactivity and power are considered
as input and output of the reactor system respectively and
thus form the estimation dataset for designing the nominal
control. The values of nominal control design parameters are
taken as NP = 5, NC = 5, Q = 0.1, and R = 20.

A case study is carried out to examine the robustness
of the proposed controller in the presence of parametric
uncertainties. A time varying parametric uncertainty in the
form of ξ (t) = 0.01 sin(0.05πt) is assumed to be present
during the load-following transient. Initially, the reference
power is kept at 50% FP for 36 s; then it is varied at a rate
of 5%/min for 108 s; kept at 59% FP for the next 108 s; bring
back to 50% FP at the same rate and held at 50% FP for 108
s; a 5% step increment applied at 468th s; kept at 55% FP
for 108 s; a 5% step decrement applied at 576th s and kept
at 50% FP afterwards. The desired reference variation and
the performance of the proposed RSPC controller and that
of the classical SPC controller for tracking the reference are
shown in Fig. 2. It can be observed that the proposed RSPC
is able to track the variation smoothly as envisaged in spite
of uncertainties, while the SPC fails in tracking the demand
variation. Variations of control signal and rate of change of
control signal are shown in Figs. 3 and 4, respectively. The
variation of the sliding surface is shown in Fig. 5.

Another case study is performed to investigate the effect
of unmodelled reactivity feedback due to xenon poisoning.
Xenon concentration significantly affects a nuclear power
plant behaviour because of very large thermal neutron ab-
sorption cross section. To study the effect of xenon build
up, the simulations are carried out for a period of 16 hours.
Initially, the reference power is kept at 50% FP for 0.5 h; then
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it is reduced from 50% to 40% FP at a rate of 5%/min ; kept
at 40% FP for the next 4.47 h; then it is raised to 50% FP
at the same rate and held at 50% FP for rest of the duration.
It can be seen from Fig. 6 that the proposed RSPC tracks
the demand power variation better than that of the SPC in
spite of the uncertainties due to internal reactivity feedback.
The time variations of control input and rate of change of
control input are shown in Figs. 7 and 8, respectively. The
variation of the sliding surface is shown in Fig. 9. Thus, the
proposed RSPC controller is found to be robust in the face
of uncertainty presented in the input channel.

V. CONCLUSIONS

A robust subspace predictive control approach based on
integral sliding mode control is designed to control a PWR-
type nuclear reactor. The proposed controller is realized
by integrating a nominal control scheme designed using
SPC with a discontinuous control scheme designed using
ISMC. The proposed RSPC methodology consolidates the
advantages of SPC and ISMC and, tries to alleviate their
respective drawbacks. The controller is implemented to
study two different load-following operations in a PWR.

Simulation results demonstrate that the proposed control
strategy maintains the desired performance effectively in the
presence of uncertainties. The future work is to generalize
the framework to be able to handle unmatched uncertainties.
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