
Parallelization and I/O performance
optimization of a global nonhydrostatic
dynamical core using MPI

Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Wang, T., Zhuang, L., Kunkel, J., Xiao, S. and Zhao, C. (2020)
Parallelization and I/O performance optimization of a global
nonhydrostatic dynamical core using MPI. Computers,
Materials & Continua, 63 (3). pp. 1399-1413. ISSN 1546-2226
doi: https://doi.org/10.32604/cmc.2020.09701 Available at
http://centaur.reading.ac.uk/92437/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.32604/cmc.2020.09701

Identification Number/DOI: https://doi.org/10.32604/cmc.2020.09701
<https://doi.org/10.32604/cmc.2020.09701>

Publisher: Tech Science Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/328707816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf

copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Computers, Materials & Continua CMC, vol.63, no.3, pp.1399-1413, 2020

CMC. doi:10.32604/cmc.2020.09701 www.techscience.com/journal/cmc

Parallelization and I/O Performance Optimization of a Global
Nonhydrostatic Dynamical Core Using MPI

Tiejun Wang1, Liu Zhuang2, Julian M. Kunkel3, Shu Xiao1 and Changming Zhao1, *

Abstract: The Global-Regional Integrated forecast System (GRIST) is the next-
generation weather and climate integrated model dynamic framework developed by
Chinese Academy of Meteorological Sciences. In this paper, we present several changes
made to the global nonhydrostatic dynamical (GND) core, which is part of the ongoing
prototype of GRIST. The changes leveraging MPI and PnetCDF techniques were targeted
at the parallelization and performance optimization to the original serial GND core.
Meanwhile, some sophisticated data structures and interfaces were designed to adjust
flexibly the size of boundary and halo domains according to the variable accuracy in
parallel context. In addition, the I/O performance of PnetCDF decreases as the number of
MPI processes increases in our experimental environment. Especially when the number
exceeds 6000, it caused system-wide outages (SWO). Thus, a grouping solution was
proposed to overcome that issue. Several experiments were carried out on the
supercomputing platform based on Intel x86 CPUs in the National Supercomputing
Center in Wuxi. The results demonstrated that the parallel GND core based on grouping
solution achieves good strong scalability and improves the performance significantly, as
well as avoiding the SWOs.

Keywords: MPI, parallelization, performance optimization, global nonhydrostatic
dynamical core.

1 Introduction
Nowadays, several dynamical core models, such as DYNAMICO [Dubos, Dubey, Tort et
al. (2015)], FVM [Smolarkiewicz, Kühnlein and Grabowski (2017)], GEM [Girard, Plante,
Desgagné et al. (2014)] and ICON [Zängl, Reinert, Rípodas et al. (2015)], have been
developed as a fundamental component of global atmospheric modeling systems. The study
of dynamical core models has become increasingly important for both numerical weather
prediction and climate studies. The Global-Regional Integrated forecast System (GRIST) is
the next-generation weather and climate integrated model dynamic framework and aiming

1 School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China.
2 National Supercomputing Center in Wuxi, Wuxi, 214072, China.
3 Department of Computer Science, University of Reading, Berkshire, RG6 6UR, UK.
*Corresponding Author: Changming Zhao. Email: zcm84@cuit.edu.cn.
Received: 18 January 2020; Accepted: 28 February 2020.

1400 CMC, vol.63, no.3, pp.1399-1413, 2020

to extend to be a fully-fledged atmospheric general circulation model [Yu, Zhang, Wang et
al. (2019)]. A prototype of GRIST is being developed by Chinese Academy of
Meteorological Sciences and composed of two parts: one part is a global shallow water
modeling (SWM) framework [Zhang (2018)], which was developed on an unstructured
Voronoi-Delaunay grid and tested against various two-dimensional (2D) benchmarks by
isolating most horizontal components of a 3D model; the other part is a new global
nonhydrostatic dynamical (GND) core [Zhang, Li, Yu et al. (2019)] for supporting
multiscale modeling of the atmosphere and enabling resolve more fine-scale fluid structures
without a uniform increase in the global resolution. The GND core is based on unstructured
mesh which allows a flexible switch between the quasi-uniform and VR configurations by
altering the underlying mesh descriptor information. In this paper, we focus on the
parallelization and performance optimization to GND core as the simulation to 3D model is
more significant than 2D model in a weather and climate system.
This paper is structured as follows: Section 2 discusses the background of our research
work, then Sections 3 and 4 describe the parallel GND core implementation, Section 5
shows the experiments environment and analyze the performance results. Finally, the
paper is summarized in Section 6.

2 Background
2.1 The original serial GND core
Normally, running the original serial GND core is a sequence of three parts: reading,
computing and writing. Firstly, all the one-dimension and two-dimension data describing
the grid structure and other initial information stored in data files are read into the
memory of computing nodes to initialize the model. Then, the model is run step by step
according to the initial information to simulate the atmospheric motion to produce
predictions on the computing platform. Finally, all the predictions in memory are dumped
out to storage as data files which could be used to support further computing.

Table 1: Time consumption in serial running for different resolution G7 and G8

Resolution Average Reading
Time(s)

Average Writing
Time(s)

Average Computing
Time(s)

G7 1.1 6.8 5220.2
G8 2.4 27.1 31335.5

The main goal of optimization is to reduce the running time as well as ensuring results
correct. Analyzing the running procedure, massive I/O operations are involved in the first
and third parts where huge amount of data will be read from and write to data files with
parallel netCDF (PnetCDF) [Gao, Liao, Choudhary et al. (2009)], and considerable
computing operations are included in the second part to simulate the atmospheric motion
in 24 hours using the hydrostatic solver (HDC) or the nonhydrostatic solver (NDC). The
original serial model could be run in single node with 2 Intel CPUs and 128 G memory.
Analyzing the running results as shown in Tab. 1, the main body of time consumption is
the computing time where the reading and writing time for I/O operations only accounts
for a negligible proportion. Furthermore, the simulation for problem size greater than G8
is not runnable due to the memory limitation of single node. In order to reduce the total

Parallelization and I/O Performance Optimization of a Global 1401

running time and improve the ability to deal with high resolutions, we applied the
efficient large-scale parallel computing based on the latest high-performance computing
platform to optimize the GND core.

2.2 Unstructured mesh
The GND core is based on unstructured mesh which allows a flexible switch between the
quasi-uniform and variable-resolution (VR) configurations by altering the underlying
mesh descriptor information. Edge points, triangle points and hexagon points are three
kinds of points on the GND core mesh, where each point can perceive the nearest
neighbors. The mesh is essentially the unstructured Voronoi-Delaunay grid. At the
beginning, quasi-uniformly distributed points are generated on the sphere as the typical
icosahedral hexagonal-pentagonal (IHP) shape. Changing the mesh descriptor
information could modify the distribution of triangle and hexagon points on the
unstructured mesh to affect the mesh resolution.
One-level finer grids are generated by bisecting each triangular edge of the former
coarser grid. The generated resolution of this mesh is referred to as grid level Gn, where n
denotes the number of bisections. In the implement of GND core, the centroidal Voronoi
constraint method [Du, Gunzburger and Ju (2003); Ringler, Ju and Gunzburger (2008)] is
used to optimize the subdivided IHP mesh. As the scale of problem size increases, the
time and memory consumption will escalate so that the mesh resolution that could be
handled in single node is limited by the hardware resources. Fortunately, parallelization
can not only reduce the total running time, but also increase the scale of problems that
system could deal with.

2.3 NetCDF and PnetCDF
Network common data format (netCDF) is widely used in the field of meteorological
research and applications for storing and retrieving data in the form of arrays. Actually, it
is a library of data access functions which support a view of data as a collection of self-
describing and portable objects. Starting with version 4.0, the netCDF API supports the
use of the HDF5 data format [Folk, Heber, Koziol et al. (2011)], which allows netCDF
users to create HDF5 files with benefits that are not available with the netCDF format,
such as much larger files and multiple unlimited dimensions. Unfortunately, as lacking
parallel access mechanism in the original design of netCDF interface, the capability of
providing services to parallel applications is significantly limited. In particular,
concurrently writing to a netCDF file (NC file) is not supported. Therefore, serial
accessing to a NC file through only one of multiple processes could easily become a
performance bottleneck as show in Fig. 1(a).
Li et al. introduced a parallel interface for writing and reading data stored in NC files [Li,
Liao, Choudhary et al. (2003)], and PnetCDF interface improves the parallel I/O
performance significantly as well as keeps the convenience with minimal changes to
original netCDF interface as shown in Fig. 1(b). MPI-IO is used in PnetCDF interface to
achieve the parallel I/O features. Migrating the GND core implementation from netCDF
to PnetCDF could provide the capability of accessing single dataset with multiple
processes concurrently.

1402 CMC, vol.63, no.3, pp.1399-1413, 2020

Figure 1: Accessing single NC file through netCDF interface and PnetCDF interface in
parallel applications

3 Parallel implement of GND core
3.1 Domain decomposition
The main objective of parallelization is to allow multiple processes to compute
simultaneously while ensuring the results correct. Many applications in parallel
computing use domain decomposition to distribute the computing tasks among different
processing elements.
In this paper, we adopted METIS [LaSalle, Patwary, Satish et al. (2015)] for graph
partitioning to obtain a domain decomposition leading to a good balancing of both the size
of domain interiors and the size of interfaces, which was a key point for load balancing and
efficiency in a parallel context. The result of partitioning was that the whole computing
tasks with associated data were split into multiple cells adjacent to each other. We used
home cells (see Fig. 2(b)) to refer the cells those associated with specific MPI processes to
perform computing. A local stencil was composed of a home cell and other cells
surrounding it as shown in Fig. 2(a). Those home cells, also known as computation
domains, were composed of an inner domain (light gray region) and a boundary domain
(dark gray regions). The halo domain essentially referred to the overlapping regions (the
stippled regions in Fig. 2(a)), which referred to the boundary domains of other cells in local
stencils. Combining computation domain and halo domain formed a full domain (see Fig.
2(c)). In fact, when the partitioning using METIS was complete, computation domains were
already known to specific MPI processes, but halo domains not. Therefore, only after
obtaining the full domain could an MPI process start the computing task, which meant that
the halo domain had to be updated from neighbor cells in the local stencil. The operation
that a home cell exchanged its boundary domains with neighbors was called the neighbor
exchange or halo exchange. As shown in Fig. 2(c), halo (1) and halo (2) regions would
exchange data with boundary (1) and boundary (2) regions, respectively.

Parallelization and I/O Performance Optimization of a Global 1403

Figure 2: An illustration of a local stencil on the hexagonal mesh of GND core

3.2 Computing performance improvement
Increasing the numbers of halo and boundary regions could improve the calculation
accuracy, but at the same time it will also increase the load of communication and
calculation. To isolate the implement of communication module, a new structure linked
list was designed as shown in Fig. 3(a), which allows to flexibly adjust the numbers of
halo and boundary regions according to accuracy requirements without changing to the
communication module. In order to balance the calculation accuracy with communication
and calculation load, the numbers of halo and boundary regions are all set to 2 as shown
in Fig. 2(c).
In fact, there were two mature techniques, OpenMP and MPI, used to improve computing
performance, and MPI was chosen finally. On the one hand, MPI was required for the
purpose of the GND core running on a cluster platform. On the other hand,
reprogramming of the hotspot functions using OpenMP only obtained little improvement.
Furthermore, according to the computing logic, the whole computing task for
computation domain was split into two separate parts: inner domain computing and
boundary domain computing. The asynchronous communication functions of MPI were
adopted to synchronize the computing for inner domain with the halo exchange between
boundary domains and halo domains, and which further increased parallel scalability. In
order to facilitate the separation of computing and communication, a set of
communication interfaces was also designed as shown in Fig. 3(b), where interface
exchange_data encapsulated MPI_Isend and MPI_Irecv functions to exchange data with
other processes. Combining multiple data fragments data_i into an exchange_field_list

1404 CMC, vol.63, no.3, pp.1399-1413, 2020

typed linked list field_head could not only reduce the numbers of communication
requests, but also improve the communication efficiency.

Figure 3: Data structure and interfaces designed for halo exchanges

Moreover, according to the principle of data locality, the data was stored in two-
dimensional K×M mode, where K was the layer number of the mesh in the vertical
direction and M was the points number in computation domain. That data storage mode
guaranteed that the data in the vertical direction was continuously arranged in the
memory, which could take full advantage of the vectorization of CPU, improve the cache
utilization and reduce time consumption of data processing.
Meanwhile, we reconstructed some data structures of GND core to improve the
performance. For example, halo, inner and boundary domains were abstracted into
global_domain struct to store pointers to other parts and information of triangle and
polygon (hexagon in this paper) together with those vertices and edges. As shown in Fig.
4, original source (left part) adopted vertice_structure struct variable vtx to calculate
divergence where variable vtx belonging to global_domain struct variable mesh included
two members: nnb (number of neighbor nodes) and ed (edges). We converted the indirect
access to the members nnb and ed of struct vtx to the direct access to a one-dimension
array vtx_nnb and a two-dimension array vtx_ed (right part), which reduced the overhead
of indirect indexing.

Figure 4: Reconstructing hotspot code

4 Parallel I/O optimization
In terms of parallel I/O performance, we replaced original netCDF with PnetCDF library.
Then, all the MPI processes could read and write the same NC file simultaneously, which
improved the read and write efficiency as well as reducing memory usage. Unfortunately,

Parallelization and I/O Performance Optimization of a Global 1405

current PnetCDF does not provide functionality for reading or writing multiple array
variables in a single call, so this limitation may reduce the I/O performance for accessing
a large number of small-sized array variables [Gao, Liao, Choudhary et al. (2009)]. The
following experiment confirmed the speculation about that issue. We designed two data
reading solutions: the non-grouping solution and the grouping solution. In the non-
grouping solution, all the MPI processes accessed the same NC file of size 2 G directly
through the PnetCDF interface. In the grouping solution, only the host process (process
number is 0 in the group) was allowed to read the NC file through PnetCDF interface,
and all the other guest processes sent requests to and got data from the host process. The
experimental results shown in Tab. 2 revealed the fact that the time consumption of the
grouping solution was much less than that of the non-grouping solution.

Table 2: Comparation of experimental results

Number of Processes 1 24 48 72 96 110 150

Number of Nodes 1 1 2 3 4 5 7

Time consumption of
non-grouping (s) 1.96

9.80 17.85 21.12 21.80 21.33 23.95

Time consumption of
grouping (s) 1.80 3.02 3.35 3.42 3.43 3.45

Furthermore, according to our experimental results, the reading and writing performance
dropped dramatically when the number of processes exceeded 600. In particular, system-
wide outages (SWO) occurred as calling two functions nfmpi_iget_vara_double and
nfmpi_iput_vara_double with PnetCDF running in non-blocking mode when the number
of MPI processes was more than 6000. In order to overcome SWOs, a grouping parallel
I/O solution was proposed in this paper. Although some overhead would be added and
thereby increasing the running time, the overhead could be negligible when the scale of
the problem reached a certain level. The grouping solution and associated concepts could
be described as follows.

Figure 5: Reconstructing hotspot code

P 0 P 1 P 2 P 3 P 4 P 5 group 1

P 6 P 7 P 8 P 9 P 10 P 11 group 2

P 12 P 13 P 14 P 15 P 16 P 17 group 3

P 18 P 19 P 20 P 21 P 22 P 23 group 4

G RO U P _CO M M

m a s t e r proc e s s

P n hos t proc e s s

P m gue s t proc e s s

P 0

M P I_CO M M _W O RL D

1406 CMC, vol.63, no.3, pp.1399-1413, 2020

Let c be the group size and i be the index of MPI process Pi in global communication
group MPI_COMM_WORLD, then the index j of MPI process Pi in group g could be
defined as Eq. (1) and the process with an index equal to 0 in group would be the host
process of that group.

/
mod

g i c
j i c
=
=

 (1)

Fig. 5 shows an illustration of the grouping solution where there are 24 MPI processes in
communication group MPI_COMM_WORLD and P0 is the master process. In addition,
there are 6 MPI processes in each communication group and P0, P6, P12 and P18 is the host
process of groups 1, 2, 3 and 4, respectively. In the grouping solution, only 4 host process
of each group accesses the NC file and other guest processes would send the access
requests to and get requested data from host process. Although this grouping solution
could effectively reduce the concurrent access to NC file, it introduces the overhead to
gather requests and scatter data obtained from NC files.

5 Performance evaluation
To evaluate the performance and scalability of our parallel GND core, we designed some
experiments and compared the results with the original serial GND core. We also
designed a group of experiments with different group sizes in term of the influence of the
group size on the performance. The original GND core was developed in Fortran 90
language and compiled by Intel Fortran Composer XE for Linux 2013 update 4 with -O2
optimization option.
The experiments were run on the commercial auxiliary computing system of national
supercomputing center in Wuxi. This system is a petaflop-scale cluster with 980 compute
nodes. Each compute node has 128 GB of memory shared among its two 2.5 GHz Intel
Xeon E5-2680 v3 processors and each CPU has 12 cores. All the compute nodes are
interconnected by switches and also connected via switches to the multiple I/O nodes
running the GPFS parallel file system. The aggregate disk space is 15 PB and the peak
I/O bandwidth is 14 GB/s. In all the experiments, each MPI process was mapped into a
physical CPU core at runtime, which meant the fact that the maximum number of
processes a single computing node allowed to run is 24. The resolutions in this paper
include G7 (~60 km; 163,842 cells), G8 (~30 km; 655,362 cells) and G9 (~15 km;
2,621,442 cells) as shown in Tab. 3.

Table 3: The parameters and resolution used in different grid levels

Grid Level G7 G8 G9

Cells Number 163,842 655,362 2,621,442

Iteration Steps 288 432 864

Resolution ~60 km ~30 km ~15 km

NC File Size 289.7 MB 1.16 GB 4.63 GB

Parallelization and I/O Performance Optimization of a Global 1407

5.1 Strong scaling analysis of non-grouping GND core
We applied all the methods mentioned in Sections 3 and 4 to implement an optimized
GND core supporting parallelization developed in Fortran 90 language. In order to
distinguish from the system obtained by only using the methods descripted in Section 3 to
optimize I/O performance, parallel GND core is used here to refer to the former and non-
grouping GND core refers to the latter.
Due to the limitation of the memory size (128 GB) in computing nodes, original serial
GND core could not handle the problem with resolution higher than G8. Therefore, we
ran the serial GND core for three times to deal with the same data set stored in NC files
for different resolutions G7 and G8, respectively. For comparison purpose, we ran the
parallel GND core for three times to handle the same NC files as well.
Fig. 6 (left) shows the strong scaling test for our optimized non-grouping GND core with
two different resolution G7 and G8. What can be clearly seen in this figure is that the
parallel efficiency gradually decreases as the increasing of the computing resources,
which is caused by the communication overhead. Meanwhile, the strong scaling gets
better as the increasing of problem size. The strong speedup of G8 reaches nearly 256 and
is twice that of G7 at 1024 cores. Specially, there is a sudden drop in parallel efficiency
from 4 cores to 16 cores, and which is driven by the performance bottleneck of a single
computing node where all the tasks (less than 24) were assigned to. In addition, there is
an inflection point on the both speedup curves when the number of processors is 32,
which can be attributed to the additional network communication as the 32 cores have to
be split into two computing nodes. It reveals that reducing unnecessary inter-host
communication is necessary. Therefore, we adjusted the test plan so that the number of
processors participating in the computing is an integer multiple of 24 (the number of CPU
cores in each computing nodes).

Figure 6: Strong scaling test of non-grouping GND core with G7 and G8 (left) and comparison
of average running time under different process numbers with G7, G8 and G9 (right)

5.2 Average running time analysis of non-grouping GND core
In terms of the relationship between the problem size and the number of processors, we
conducted the following experiments. For three kinds of problem size G7, G8 and G9, we

1408 CMC, vol.63, no.3, pp.1399-1413, 2020

ran the non-grouping GND core for three times with 240, 480, 720, 960, 1200 and 1440
processors, respectively.
As shown in Tab. 3, if the resolution accuracy increases by one level, the problem size is
expanded by four times. In the vertical direction, the approximate relationship between
the resolution accuracy and the average running time can be seen in Fig. 6 (right). In the
horizontal direction, what we expected is that the average time consumption could be
decrease with the addition of the number of processors. However, the results shown in
Fig. 6 (right) are slightly different. Following the addition of the number of processors,
there has been a slight increase in the average time consumption for G7. Such increasing
in time stems from the fact that too many processors were involved in the small problem
and the extra inter-process communication increased the running time instead. For
resolution G8, the average running times of 1200 and 1440 processors are little higher
than those of less processors. Likewise, the average running time reached a low point of
1200 processors for resolution G9. The reason for rebound at the end of the curve stems
from the communication overhead. Comparing the curves (regardless of rebound part) of
G8 and G9, the slope increases obviously with scaling up the problem size, and which
means that the larger the problem size, the more obvious the performance improvement
with the addition of the number of processors.

5.3 Performance analysis of parallel GND core
In order to optimize I/O performance, a grouping method was proposed in Section 4, and
that grouping method could introduce additional communication overhead in local groups.
Therefore, we carried out a series of experiments to examine the impact of grouping
method and group size on the performance.
Firstly, most experimental results show that introducing grouping method will increase
the average running time. However, as shown in Fig. 7, there are still some exceptions
where grouping method can significantly reduce average running time or is basically the
same as non-grouping, such as running with 480, 720 and 960 processors for G7, 960 and
1200 processors for G8 and 1440 processors for G9. In particular, for running parallel
GND core with 1440 cores for resolution G9, average time consumption is reduced to
one third of non-grouping method as shown in Fig. 7(c). These results show that grouping
method can definitely improve the performance when suitable processors number was
chosen according the problem size.
In addition to the running time, the reading and writing time used to perform I/O
operations are the focus in our experiments. Actually, the reading time and writing time
mainly refer the execution time of function pull_element_types_full and gcm_output_file,
respectively. For reading data from NC files, the host process gathered all the read
requests from other guest processes in local communication group firstly. After got all the
read requests, those requests were sorted and then combined into one request and that
was sent to underlying PnetCDF interfaces to perform real reading operations. Finally,
the host process scattered the obtained data to other guest processes according to their
requests. For writing data to NC file, a similar process was performed as well.

Parallelization and I/O Performance Optimization of a Global 1409

Figure 7: Comparison of average running time of parallel GND core with different number
of processors for non-grouping (NG) and different number of processors of each group

Therefore, the average reading and writing time are mainly composed of execution time
(T1) of PnetCDF interfaces and communication time (T2) of gathering and scattering. To
the smaller problem size G7 and G8, the reduction of time T1 caused by combining
multiple small data requests into bigger data blocks is greater than the increase of T2 with
the increasing problem size, and so the average reading and writing time of parallel GND
core is less than those of non-grouping one as shown in Figs. 8 (a)-8(d). In contrast, the
results are just opposite with increasing problem size to G9 as shown in Figs. 8 (e) and
8(f). However, it is also obvious that the reading and writing time can be reduced by
increasing the group size, especially for the writing time with group size 36 and 48 in
Figs. 8(b), 8(d) and 8(f).

6 Related work
Generally, the process of running an application on a computing system can be abstracted
as obtaining instructions and data from a storage hierarchy, processing the data by
executing instructions in the CPU and writing the results back to the storage. In order to

1410 CMC, vol.63, no.3, pp.1399-1413, 2020

run massive scientific applications effectively, distributed HPC architectures, shared
memory parallelism (SMP) and distributed big data architectures were deployed to
undertake the workload [Tavara (2019)]. In terms of performance, massive scientific
applications could be divided into computing-sensitive applications and I/O-sensitive
applications. Therefore, optimizing computing efficiency and improving I/O performance
are two main approaches.

Figure 8: Comparison of average reading and writing time of parallel GND core with
different number of processors and different number of processors of each group
To speed up the computing, several parallel algorithms and data structures have been
developed to make full use of the underlying hardware resources to solve problems in
different fields. Codreanu et al. [Codreanu, Dröge, Williams et al. (2016)] show that 10-
fold speedups could be achieved by modifying the input data structure and combining
memory access in the implement of support vector machine, which could match the

Parallelization and I/O Performance Optimization of a Global 1411

memory access pattern on the platform and provide more the memory throughput.
Moreover, with the rapid development of GPU technology in recent years, GPU
platforms have been gradually adopted to run computing-sensitive applications, thereby
improving operating efficiency. He et al. [He, Bai, Ouyang et al. (2019)] proposed a
parallel cloud-derived wind inversion algorithm based on GPU framework, which takes
advantage of GPU cores to run each iteration and the acceleration ratio of that algorithm
is up to 112.
To improve the performance of I/O intensive applications, reducing the data moving
between CPUs and memory by designing new data structures and optimizing data access
strategies is one of the most common methods. Sarje et al. [Sarje, Song, Jacobsen et al.
(2015)] utilized reducing communication approaches to minimize the data movement
both inter- and intra-nodes, as well as improving cache efficiency by predictive ordering
techniques, which optimized the unstructured mesh-based MPAS-Ocean platform. In
addition, coalescing multiple small non-contiguous I/O requests into fewer large
contiguous ones is another popular technique, known as collective I/O or two-phase I/O
[Rosario, Bordawekar and Choudhary (1993)], which is a well-known parallel I/O
strategy for shared file access. In the collective I/O approach, all the I/O requests
producing from the processes running simultaneously are sent to few processes that were
selected as “aggregators” instead of the underlying parallel file systems, such as Lustre,
PVFS, GPFS. In the communication phase, aggregators collective all the requests,
coalesce them into few sorted ones. In the I/O phase, aggregators wait for the finishing of
real I/O operations and send responses back to all the other processes. Kumar et al.
[Kumar, Vishwanath, Carns et al. (2012)] presented an algorithm to enable a three-phase
scheme, which restructures simulation data into large blocks to further improve the I/O
performance. TAPIOCA [Tessier, Vishwanath and Jeannot (2017)] is an I/O library
based on MPI-IO, which implements an efficient topology-aware two-phase I/O scheme
and effectively reduce the idle time during the communication phase. PnetCDF [Li, Liao,
Choudhary et al. (2003)] is an enhanced netCDF library, which takes advantage of the
underlying MPI-IO to support efficient data storage and access as well as a new parallel
interface for reading and writing netCDF dataset directly.

7 Conclusion
This study has presented the parallel implementation and optimization to a new global
nonhydrostatic dynamical (GND) core running on the commercial auxiliary computing
system of national supercomputing center in Wuxi, which is a supercomputing platform
based on Intel x86 CPUs. The GND core is part of the prototype of a Global‐Regional
Integrated forecast System (GRIST), and the purpose of which is to develop a new fully-
fledged atmospheric general circulation model.
Utilizing MPI technique, parallelization of the GND core was implemented by
introducing boundary and halo domains, and meanwhile some sophisticated data
structures and interfaces were designed to improve the performance as well as supporting
modification to the size of boundary and halo domains according to the variable accuracy.
Moreover, a grouping solution was proposed in this paper to improve the I/O
performance and to avoid resulting SWOs when the number of MPI processes is more

1412 CMC, vol.63, no.3, pp.1399-1413, 2020

than 6000. The results demonstrate our approach has a better strong scaling and improves
the performance of GND core significantly.

Acknowledgement: This work was supported by the National Key Research and
Development Program of China under Grant No. 2017YFC1502203.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Codreanu, V.; Dröge, B.; Williams, D.; Yasar, B.; Yang, P. et al. (2016): Evaluating
automatically parallelized versions of the support vector machine. Concurrency and
Computation: Practice and Experience, vol. 28, no. 7, pp. 2274-2294.
Du, Q.; Gunzburger, M. D.; Ju, L. (2003): Constrained centroidal voronoi tessellations
for surfaces. SIAM Journal on Scientific Computing, vol. 24, no. 5, pp. 1488-1506.
Dubos, T.; Dubey, S.; Tort, M.; Mittal, R.; Meurdesoif, Y. et al. (2015): Dynamico-
1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility.
Geoscientific Model Development, vol. 8, no. 10, pp. 3131-3150.
Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; Robinson, D. (2011): An overview of
the hdf5 technology suite and its applications. Proceedings of the EDBT/ICDT Workshop
on Array Databases, pp. 36-47.
Gao, K.; Liao, W.; Choudhary, A.; Ross, R.; Latham, R. (2009): Combining i/o
operations for multiple array variables in parallel netcdf. IEEE International Conference
on Cluster Computing and Workshops, pp. 1-10.
Girard, C.; Plante, A.; Desgagné, M.; Cowan, R. M.; Côté, J. et al. (2014): Staggered
vertical discretization of the canadian environmental multiscale (gem) model using a
coordinate of the log-hydrostatic-pressure type. Monthly Weather Review, vol. 142, no. 3,
pp. 1183-1196.
He, L.; Bai, H.; Ouyang, D.; Wang, C.; Wang, C. et al. (2019): Satellite cloud-derived
wind inversion algorithm using GPU. Computers, Materials & Continua, vol. 60, no. 2,
pp. 599-613.
Kumar, S.; Vishwanath, V.; Carns, P.; Levine, J. A.; Latham, R. et al. (2012):
Efficient data restructuring and aggregation for i/o acceleration in pidx. SC’12:
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 1-11.
LaSalle, D.; Patwary, M. M. A.; Satish, N.; Sundaram, N.; Dubey, P. et al. (2015):
Improving graph partitioning for modern graphs and architectures. Proceedings of the
5th Workshop on Irregular Applications: Architectures and Algorithms, pp. 1-4.
Li, J.; Liao, W. K.; Choudhary, A.; Ross, R.; Thakur, R. et al. (2003): Parallel netcdf:
a high-performance scientific i/o interface. SC’ 03: Proceedings of the ACM/IEEE
Conference on Supercomputing, pp. 39-39.

Parallelization and I/O Performance Optimization of a Global 1413

Ringler, T.; Ju, L.; Gunzburger, M. (2008): A multiresolution method for climate
system modeling: application of spherical centroidal voronoi tessellations. Ocean
Dynamics, vol. 58, no. 5, pp. 475-498.
Rosario, J. M. D.; Bordawekar, R.; Choudhary, A. (1993): Improved parallel i/o via a
two-phase run-time access strategy. SIGARCH Computer Architecture News, vol. 21, no. 5,
pp. 31-38.
Sarje, A.; Song, S.; Jacobsen, D.; Huck, K.; Hollingsworth, J. et al. (2015): Parallel
performance optimizations on unstructured mesh-based simulations. Procedia Computer
Science, vol. 51, no. C, pp. 2016-2025.
Smolarkiewicz, P. K.; Kühnlein, C.; Grabowski, W. W. (2017): A finite-volume
module for cloud-resolving simulations of global atmospheric flows. Journal of
Computational Physics, vol. 341, pp. 208-229.
Tavara, S. (2019): Parallel computing of support vector machines: a survey. ACM
Computing Surveys, vol. 51, no. 6, pp. 1-38.
Tessier, F.; Vishwanath, V.; Jeannot, E. (2017): Tapioca: an i/o library for optimized
topology-aware data aggregation on large-scale supercomputers. IEEE International
Conference on Cluster Computing, pp. 70-80.
Yu, R.; Zhang, Y.; Wang, J.; Li, J.; Chen, H. et al. (2019): Recent progress in
numerical atmospheric modeling in china. Advances in Atmospheric Sciences, vol. 36, no.
9, pp. 938-960.
Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. (2015): The icon (icosahedral non-
hydrostatic) modelling framework of dwd and mpi-m: description of the non-hydrostatic
dynamical core. Quarterly Journal of the Royal Meteorological Society, vol. 141, no. 687,
pp. 563-579.
Zhang, Y. (2018): Extending high-order flux operators on spherical icosahedral grids and
their applications in the framework of a shallow water model. Journal of Advances in
Modeling Earth Systems, vol. 10, no. 1, pp. 145-164.
Zhang, Y.; Li, J.; Yu, R.; Zhang, S.; Liu, Z. et al. (2019): A layer-averaged
nonhydrostatic dynamical framework on an unstructured mesh for global and regional
atmospheric modeling: model description, baseline evaluation, and sensitivity exploration.
Journal of Advances in Modeling Earth Systems, vol. 11, no. 6, pp. 1685-1714.

	Parallelization and I/O Performance Optimization of a Global Nonhydrostatic Dynamical Core Using MPI
	Tiejun Wang0F , Liu Zhuang1F , Julian M. Kunkel2F , Shu Xiao1 and Changming Zhao1, *

	References

