
Multi-fluids for representing sub-grid-scale  
convection 

Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open access 

Weller, H., McIntyre, W. and Shipley, D. (2020) Multi-fluids for 
representing sub-grid-scale convection. Journal of Advances 
in Modeling Earth Systems, 12 (8). e2019MS001966. ISSN 
1942-2466 doi: https://doi.org/10.1029/2019MS001966 
Available at http://centaur.reading.ac.uk/92358/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: https://doi.org/10.1029/2019MS001966 

To link to this article DOI: http://dx.doi.org/10.1029/2019MS001966 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



Multifluids for Representing Subgrid-Scale Convection

Hilary Weller1 , William McIntyre1, and Daniel Shipley1

1Meteorology, University of Reading, Reading, UK

Abstract Traditional parameterizations of convection are a large source of error in weather and
climate prediction models, and the assumptions behind them become worse as resolution increases.
Multifluid modeling is a promising new method of representing subgrid-scale and near-grid-scale
convection allowing for net mass transport by convection and nonequilibrium dynamics. The air is
partitioned into two or more fluids, which may represent, for example, updrafts and the nonupdraft
environment. Each fluid has its own velocity, temperature, and constituents with separate equations of
motion. This paper presents two-fluid Boussinesq equations for representing subgrid-scale dry convection
with sinking and w = 0 air in Fluid 0 and rising air in Fluid 1. Two vertical slice test cases are developed
to tune parameters and to evaluate the two-fluid equations: a buoyant rising bubble and radiative convective
equilibrium. These are first simulated at high resolution with a single-fluid model and conditionally
averaged based on the sign of the vertical velocity. The test cases are next simulated with the two-fluid
model in one column. A model for entrainment and detrainment based on divergence leads to excellent
representation of the convective area fraction. Previous multifluid modeling of convection has used the
same pressure for both fluids. This is shown to be a bad approximation, and a model for the pressure
difference between the fluids based on divergence is presented.

Plain Language Summary Clouds and buoyant convection are often smaller than
the grid size in weather and climate prediction models, but they are of central importance.
Therefore, their effects are parameterized—their interactions with the larger scales are esti-
mated based on properties of the larger scales. Convection parameterizations are a large source
of error in models of the atmosphere despite decades of effort to improve them. Some unreal-
istic assumptions remain such as that convection does not provide a net upward transport of
mass, convection is in equilibrium with the surroundings, and that the variations in the hor-
izontal direction are not relevant. These assumptions make it much simpler to incorporate
convection parameterizations into existing models. Multifluid modeling does not rely on these assumptions,
but the approach means a whole new atmospheric model rather than a stand-alone routine that can be
incorporated into an existing model. This paper provides some closures necessary for multifluid modeling
and evaluation of the technique for two-dimensional dry convection.

1. Introduction
Slow progress has been made improving the parameterization of subgrid-scale convection since Arakawa
and Schubert (1974), Tiedtke (1989), Gregory and Rowntree (1990), and Kain and Fritsch (1990). Convection
is still one of the weakest aspects of large-scale models of the atmosphere (Holloway et al., 2014; Sherwood
et al., 2013; Solomon et al., 2007). Improvements have been made by relaxing the quasi-equilibrium assump-
tion (Gerard & Geleyn, 2005; Pan & Randall, 1998; Park, 2014), including stochasticity (Plant & Craig, 2008)
and allowing net mass transport by convection (Kuell & Bott, 2008; Malardel & Bechtold, 2019). These devel-
opments have enabled limited simulation in the gray zone, where convection is partially resolved. However,
there are still systematic biases implying that improvements should still be possible.

Lappen and Randall (2001) introduced the “assumed-distribution higher-order closure” (ADHOC) param-
eterization of the boundary layer and convection, which solves prognostic equations for higher-order
moments of the subgrid-scale flow, such as the triple correlation of the vertical velocity anomalies, and
diagnoses updraft and downdraft means from the higher-order moments. Thus, all necessary statistics can
be calculated from the grid box-mean values that are predicted by the dynamical core. Net mass transport
by convection is included because it is part of the grid box mean. ADHOC was extended by Golaz et al.
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(2002) to use bi-Gaussian probability distribution functions rather than top-hat distributions to represent
subgrid-scale variability. This formed the basis of the “Cloud Layers Unified By Binormals” (CLUBB)
parameterization (Larson et al., 2012), which was first used at gray zone resolutions.

Thuburn et al. (2018) proposed multifluid modeling of convection in order to treat nonequilibrium and net
mass transport consistently. The multifluids approach has a potential advantage over ADHOC and CLUBB
in solving prognostic equations for first-order moments directly (mean properties of, e.g., updraft and envi-
ronment) rather than solving prognostic equations for higher-order moments of the whole fluid in order
to diagnose means of updrafts and the environment. Solving directly for first-order moments in each fluid
could be less sensitive to closure assumptions. The multifluids approach has an advantage over prognostic
plume models such as Gerard and Geleyn (2005) as multifluids enables the mass transported by convection
to feed back onto the continuity equation. Yano (2014) derived similar equations to Thuburn et al. (2018)
and showed how this is a generalization of the mass-flux formulation. The Tan et al. (2018) “extended eddy
diffusivity mass flux” or extended EDMF scheme uses similar equations, but Tan et al. (2018) only solve
the equations in a single column without mass transported by convection feeding back onto the continuity
equation.

The disadvantage of the multifluids approach is that it requires a dedicated model rather than being a
stand-alone parameterization for a dynamical core. Thuburn et al. (2019) and Weller and McIntyre (2019)
presented solutions of two-fluid equations using the same pressure for both fluids. Thuburn et al. (2019)
showed that these equations are in fact unstable and can be stabilized by diffusion of vertical velocity
whereas Weller and McIntyre (2019) stabilized the equations with diffusion and drag between fluids.
Neither of these stabilization techniques are acceptable; sufficient diffusion to stabilize the multifluid
equations may smooth out real features of the flow, and the diffusion between fluids and drag used by Weller
and McIntyre (2019) meant that both fluids tended to move together rather than through each other. In this
paper, it is shown that significant and sustained pressure differences between the fluids exist (section 4) and
that the use of separate pressures stabilizes the equations.

This paper presents the multifluid Boussinesq equations for representing subgrid-scale convection including
a parameterization of the pressure difference between fluids (section 2.2) and a new model of entrainment
and detrainment (section 2.3). The numerical method for solving the equations is described in section 3.
Results of two vertical slice test cases are presented in section 4. These are first simulated at high resolution
in a single fluid model, and then statistics of the flow are reproduced solving the two-fluid equations in one
column.

2. The Multifluid Boussinesq Equations
2.1. Derivation

Many of the challenges of representing convection with the multifluid Navier-Stokes equations (e.g., those
described in Weller & McIntyre, 2019) carry over to the Boussinesq equations because convection is buoy-
ancy dominated and close to incompressible. The resolved test cases presented in section 4 give very
similar results for Navier-Stokes and Boussinesq equations. Therefore, the Boussinesq equations without
background stratification are chosen for simplicity:

𝜕u
𝜕t

+ ∇ · (uu) + ∇P = bk + 𝜈∇2u, (1)

𝜕b
𝜕t

+ ∇ · (ub) = 𝛼∇2b, (2)

∇ · u = 0, (3)

where variables are defined in Table 1. Note that the Boussinesq pressure potential, P, is actually pressure
divided by a constant reference density and is referred to as just the pressure when considering the Boussi-
nesq equations. The pressure variations are determined up to a constant in order to ensure that the velocity
is divergence free.
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Table 1
Definitions of Variables (and Units) for the Single- and Multifluid Boussinesq equations

𝜎i (−) Volume fraction of fluid i so that
∑

i𝜎i = 1
u (m s−1) Velocity of the single-fluid equations and velocity averaged over all fluids of

the multifluid equations
ui (m s−1) Velocity of fluid i
wi (m s−1) Vertical component of ui

Sij (s−1) Rate of volume fraction transfer from fluid i to j

P (m2 s−2) Boussinesq pressure potential of the single-fluid equations = p′/𝜌r and
pressure potential averaged over all fluids of the multifluid equations

Pi (m2 s−2) Pressure potential of fluid i
pi (m2 s−2) Pi −P
𝜓T

i𝑗 Value of variable 𝜓 transferred from fluid i to j

b (m s−2) Buoyancy of single-fluid equations defined as -g𝜌′∕𝝆r , where 𝜌′ is departures
in density from a horizontally uniform reference, 𝜌r and buoyancy averaged
over all fluids of the multifluid equations

bi (m s−2) Buoyancy of fluid i
Di/Dt (s−1) Total derivative with respect to fluid i = 𝜕/𝜕t + ui · ∇
Dij (m s−2) Drag on fluid i from fluid j

𝛾 (m2 s−1) Volume viscosity for calculating pi

CD (−) Drag coefficient = 0 or 1
rc (m) Plume radius used for defining the drag between fluids (m)
𝛼 (m2 s−1) Diffusivity of buoyancy
𝜈 (m2 s−1) Viscosity
k (−) Unit vector in the z direction

The single-fluid Boussinesq equations will be conditionally averaged following Thuburn et al. (2018) to give
the multifluid Boussinesq equations. Lagrangian labels, Ii, pick out different fluid types or regions. Ii = 1 in
fluid i and 0 elsewhere. Ii satisfies Lagrangian conservation without transfers:

𝜕Ii

𝜕t
+ u · ∇Ii = 0. (4)

It is more straightforward to introduce transfers after volume averaging because the transfer terms for (4)
involve delta functions (this will be addressed in future publications). By applying a volume average (denoted
by the overbar), the fluid i volume fractions, velocities, and buoyancies are defined by

𝜎i = Ii, (5)

𝜎iui = Iiu, (6)

𝜎ibi = Iib, (7)

which implies ∑
i
𝜎i = 1. (8)

As the system is governed by the Boussinesq equations, it is assumed that variations in density only affect
the definition of the buoyancy terms (Table 1) so ui and bi are defined without density weighting.

To derive a transport equation for 𝜎i, (4) is combined with Ii times (3) and volume averaged. It is necessary
to assume that partial derivatives commute with the averaging (as described by Thuburn et al., 2018).The
equation for 𝜎i is then

𝜕𝜎i

𝜕t
+ ∇ · 𝜎iui =

∑
𝑗≠i

{
𝜎𝑗S𝑗i − 𝜎iSi𝑗

}
, (9)
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where 𝜎iSij is the transfer rate from fluid i to j, which must satisfy∑
i

∑
𝑗≠i

(
𝜎𝑗S𝑗i − 𝜎iSi𝑗

)
= 0. (10)

These transfer terms account for the fact that the labels Ii are not truly Lagrangian conserved (i.e., fluid can
transform from fluid i to fluid j).

Next the conditional averaging of terms in the momentum (1) and buoyancy (2) equations is considered.
The filter scale is assumed to be equal to the grid scale, but the derivation does not rely on this. Conditionally
averaging the advection terms leads to subfilter-scale fluxes, FSF , since the velocity and buoyancy are not
uniform within each fluid at the filter scale:

∇ · Iiuu = ∇ · (𝜎iuiui) + Fui
SF, (11)

∇ · Iiub = ∇ · (𝜎iuibi) + Fbi
SF. (12)

The subfilter-scale fluxes are represented by constant viscosity diffusion terms for each fluid. Molecular dif-
fusion is assumed to be of much smaller magnitude than this constant-viscosity turbulent diffusive mixing,
so molecular diffusion is neglected hereafter. The diffusion terms are written so that, in the absence of trans-
fers between fluids and if both fluids are initialized to be identical, the fluids remain identical and 𝜎i acts as
a passive tracer:

Fui
SF ≈ 𝜎i𝜈∇2ui, (13)

Fbi
SF ≈ 𝜎i𝛼∇2bi. (14)

The Boussinesq pressure potentials within each fluid are defined as

𝜎iPi = IiP. (15)

The pressure gradient can then be decomposed as

Ii∇P = 𝜎i∇Pi +
[

Pi∇𝜎i − P∇Ii

]
. (16)

The terms in square brackets are the difference between the pressure force pushing outward from the fluid
calculated using the filtered variables and the fully resolved version of the same force, both of which are
related to drag. They will be represented by a drag, Dij. However, this drag is likely to be smaller than the drag
that is used, for example, in multiphase modeling (e.g., Guelfi et al., 2007) as it is representing the difference
between two representations of drag, rather than the whole drag. Sensitivity to Dij will be investigated in
section 4.

Combining all terms gives the conditionally averaged momentum and buoyancy equations:

𝜕𝜎iui

𝜕t
+ ∇ · (𝜎iuiui) + 𝜎i∇Pi = 𝜎ibik + 𝜈𝜎i∇2ui +

∑
𝑗≠i

{
𝜎𝑗S𝑗iuT

𝑗i − 𝜎iSi𝑗uT
i𝑗 − 𝜎iDi𝑗

}
, (17)

𝜕𝜎ibi

𝜕t
+ ∇ · (𝜎iuibi) = 𝛼𝜎i∇2bi +

∑
𝑗≠i

{
𝜎𝑗S𝑗ibT

𝑗i − 𝜎iSi𝑗bT
i𝑗

}
. (18)

These equations include mass transfers between fluids with uT
i𝑗 being the velocity of the fluid transferred

from i to j and bT
i𝑗 being the buoyancy of the fluid transferred from i to j. Equations 17 and 18 are solved in

advective form in which the mass transfer terms are more complicated:

Diui

Dt
+ ∇Pi = bik + 𝜈∇2ui +

∑
𝑗≠i

{
𝜎𝑗

𝜎i
S𝑗i

(
uT
𝑗i − ui

)
− Si𝑗(uT

i𝑗 − ui) − Di𝑗

}
, (19)
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Dibi

Dt
= 𝛼∇2bi +

∑
𝑗≠i

{
𝜎𝑗

𝜎i
S𝑗i

(
bT
𝑗i − bi

)
− Si𝑗

(
bT

i𝑗 − bi

)}
, (20)

where Di ∕Dt = 𝜕∕ 𝜕t + ui · ∇ is the total derivative with respect to fluid i.

Finally, the multifluid version of incompressibility is∑
i
∇ · 𝜎iui = ∇ ·

∑
i
𝜎iui = 0. (21)

2.2. Pressure of Each Fluid

Thuburn et al. (2019) and Weller and McIntyre (2019) used the same pressure for both fluids. This led to
unstable equations that Thuburn et al. (2019) stabilized using diffusion of vertical velocity and Weller and
McIntyre (2019) stabilized using mass exchanges or drag between the fluids. Thuburn et al. (2019) achieved
realistic results in one-column experiments of the convective boundary layer, but the amount of diffusion
needed would spoil simulations in the free troposphere by diffusing real features as well as spurious artifacts.
The stabilization used by Weller and McIntyre (2019) meant that the two fluids tended to move as one, which
defeats the purpose of using multifluid modeling.

The instabilities reported by Weller and McIntyre (2019) showed growing divergence in a fluid with vanish-
ing volume fraction. For single-fluid equations, divergence would lead to pressure anomalies, which would
act as a negative feedback on the divergence. In the multifluid case with just one pressure, fluids with a suf-
ficiently small volume fraction cannot force pressure anomalies big enough to stabilize the divergence. Use
of a separate pressure for each fluid is therefore proposed to ensure stability.

It is assumed that the Boussinesq pressure potential in each fluid is given by a perturbation, pi, from the
total, P:

Pi = P + pi. (22)

For stability and to respect
∑

i∇ · 𝜎iui = 0, we propose four constraints on the pressure perturbations, pi:

1.
∑

i𝜎ipi = 0.
2. pi = 0 when ui = u so that pressure perturbations do not force individual fluid anomalies away from the

mean.
3. pi ↛ 0 when 𝜎i → 0 so that pressure perturbations control divergence in vanishing fluids.
4. pi ↛∞ as 𝜎j → 0 for any combination of i, j.

In order to derive a suitable model for pi, we will first consider the Baer and Nunziato (1986) model of
multiphase flow.
2.2.1. The Baer and Nunziato (1986) Model
Baer and Nunziato (1986) proposed a multiphase explosion model that has been widely used in mathematics
and engineering for simulating, for example, fluidized beds of granular material (e.g., Embid et al., 1992) and
two compressible fluids (e.g., Saurel & Abgrall, 1999). This model has a separate pressure for each phase, Pi,
and provides a transport equation for the phase fraction (equivalent of 𝜎i), which closes the system enabling
diagnosis of Pi. This model is not used here but is examined in order to derive a parameterization of pressure
differences between fluids suitable for atmospheric convection. Saurel and Abgrall (1999) wrote the Baer
and Nunziato (1986) model using transport equations for both the volume fraction, 𝜎i, and for the mass
fraction, 𝜎i𝜌i, without transfers between fluids, which in our notation are

𝜕𝜎i

𝜕t
+ V · ∇𝜎i = 𝜇

(
Pi − P𝑗

)
, (23)

𝜕𝜎i𝜌i

𝜕t
+ ∇ ·

(
𝜎i𝜌iui

)
= 0, (24)

where V is the velocity of the interface between fluids; 𝜇 is the compaction viscosity, which controls how
quickly the pressure of each fluid relaxes to the mean pressure; and index j refers to the other fluid in a
two-fluid system.

Different authors make different assumptions about the interface velocity. Assuming uniform density, the
combination of Equations 23 and 24 (to eliminate 𝜕𝜎i/𝜕t) shows that the pressure difference between fluids
is related to divergence.
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2.2.2. Proposed Model for Pressure Differences between Fluids
Thuburn et al. (2019) stabilized the multifluid equations by adding a diffusion term 𝜈𝜕w2/𝜕z2 to the RHS of
the w equation. If a fluid perturbation pressure is set to pi =−𝜈𝜕w/𝜕z, then this is equivalent to the diffusion
term in one dimension. However, adding an artificial diffusion term will harm three-dimensional simula-
tions of resolved convection in the free troposphere, whereas adding a fluid perturbation pressure will not.
Inspired by both Baer and Nunziato (1986) and Thuburn et al. (2019) and obeying the constraints given
above, the pressure in each fluid is chosen to be

pi = − 𝛾∇ · ui
⏟⏟⏟

stabilization

+ 𝛾
∑
𝑗

𝜎𝑗∇ · u𝑗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
correction

, (25)

where 𝛾 is a volume viscosity with units m2 s−1. The “stabilization” term reduces to that of Thuburn et al.
(2019) in one dimension and the “correction” term ensures that

∑
i𝜎ipi = 0. It should be noted that this

parameterization destroys exact energy conservation. In future work solving the compressible equations,
the energy lost due to this stabilization will be reinserted as turbulent kinetic energy or heat.

Scale analysis in section 2.6 will inform the choice of 𝛾 , and sensitivity to 𝛾 will be evaluated in section 4.

2.3. Entrainment and Detrainment

It is useful to compare the transfer terms, Sij, with models of entrainment, 𝜀, and detrainment, 𝛿 used in
convection parameterizations. If Fluid 0 is the environment and Fluid 1 is updrafts, then the relationship is

S01 = w1𝜀, S10 = w0𝛿. (26)

Results using two formulations of entrainment are presented in section 4. The first is similar to the dynamic
entrainment described by Houghton and Cramer (1951), Asai and Kasahara (1967), and de Rooy et al. (2013):

Si𝑗 =
{

−∇ · ui if ∇ · ui < 0
0 otherwise.

(27)

This formulation prevents one fluid from accumulating when a fluid decelerates (at the top of a rising plume
or at the bottom of descending air). A common form of lateral entrainment (e.g., de Rooy et al., 2013) is also
tested in section 4:

𝜀 = 0.2
rc
, (28)

where rc is the cloud or plume radius.

2.4. Drag in the Momentum Equation

Pressure differences between the fluids can lead to form drag, which is parameterized following Simpson
and Wiggert (1969), Romps and Charn (2015), and Weller and McIntyre (2019) as

Di𝑗 =
𝜎𝑗CD

rc
|ui − u𝑗 | (ui − u𝑗

)
, (29)

where CD is a drag coefficient and rc is a cloud radius. Sensitivity to CD/rc is explored in section 4.

2.5. The Buoyancy and the Momentum of the Mass That Is Transferred

Each fluid may not be well mixed, so the fluid transferred may not have the mean properties of the fluid it
is leaving (as was assumed by Weller & McIntyre, 2019). A realistic estimate of the properties of the fluid
transferred can only be based on knowledge of the subfilter-scale variability (i.e., the variability within each
fluid). Modeling of subfilter-scale variability is beyond the scope of this paper. However, since conditional
averaging in this study is based on the vertical velocity, it is possible to say something about the vertical veloc-
ity transfer. The subset of Fluid 0 that is about to rise (i.e., within the next time step) should be transferred
from Fluids 0 to 1, and vice versa for the fluid about to fall in Fluid 1. The fluid transferred will therefore
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have a vertical velocity of w = 0. For three-dimensional multifluid simulations one could assume that the
horizontal velocity transferred is equal to the mean horizontal velocity of the fluid transferred from

uT
i𝑗 =

⎛⎜⎜⎝
ui
vi
0

⎞⎟⎟⎠ . (30)

However, only one-dimensional multifluid simulations are presented in this paper.

The assumption that wT
i𝑗 = 0 does not imply anything about bT

i𝑗 . In the absence of knowledge of the
subfilter-scale variability, the buoyancy transferred follows Thuburn et al. (2019)

bT
i𝑗 = 𝜃bbi + (1 − 𝜃b)b𝑗 . (31)

Results are presented using 𝜃b = 1
2

and 𝜃b = 1.

𝜃b = 1 is described as an upstream approximation by Yano (2014) and is widely used for entrainment
(e.g., Asai & Kasahara, 1967; Arakawa & Schubert, 1974).

Note that 𝜃b ≠ 1 implies that the buoyancy of the fluid transferred depends on the properties of the receiv-
ing fluid, which is not logical and can lead to unbounded values of bi in the fluid that is losing mass (as
demonstrated in section 4).

The model bT
i𝑗 = 0 is also tested. The rationale is that if fluid zero contains negatively buoyant air and fluid

one contains positively buoyant air, then the air that is transferred has zero buoyancy.

2.6. Scale Analysis

Scale analysis can guide our choice of 𝛾 for the parameterization of the pressure difference between. The
scaling presented can be derived using fewer assumptions than those below, but these assumptions simplify
the analysis:

1. The flow is buoyancy dominated.
2. The flow is close to inviscid.
3. The flow is slowly varying.
4. Fluid i properties are anomalies from a neutrally stable resting mean state implying that the average

over all fluids of bi, ui, and Pi are zero.
5. Only the vertical direction is considered where wT

i𝑗 = 0.
6. Pi = P + 𝛾

∑
𝑗𝜎𝑗∇ · u𝑗 − 𝛾∇ · ui ≈ −𝛾∇ · ui = −𝛾 𝜕wi

𝜕z
.

7. 𝜕𝜎i
𝜕z

≈ 0.
8. There are two fluids.
9. Without loss of generality, the transfers Si𝑗 = − 𝜕wi

𝜕z
> 0 and Sji = 0 are used.

10. The drag term, Dij, is zero.

These assumptions can be used to simplify the multifluid w equation, (19):

𝜕w2
i

𝜕z
− 𝛾

𝜕2wi

𝜕z2 = bi. (32)

This is nondimensionalized using a length scale L, a buoyancy scale B, and a time scale T to get the
nondimensional variables:

w̃ = wiT∕L,
b̃ = bi∕B,
z̃ = z∕L.

The nondimensional version of (32) is then

L
T2

𝜕w̃2

𝜕z̃
⏟⏟⏟
advection

− 𝛾

TL
𝜕2w̃
𝜕z̃2

⏟⏟⏟
stabilization

= Bb̃
⏟⏟⏟
buoyancy

. (33)
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The flow is buoyancy dominated, so the buoyancy term should be O(1), which implies the scaling B =
L∕T2 ⇒ T = (L∕B)

1
2 . Therefore, the nondimensional momentum equation becomes

𝜕w̃2

𝜕z̃
⏟⏟⏟
advection

− 𝛾

B
1
2 L

3
2

𝜕2w̃
𝜕z̃2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
stabilization

= b̃
⏟⏟⏟
buoyancy

. (34)

The stabilization term must be large enough to smooth out oscillations in w̃ due to advection and buoyancy
but not too large to remove all variability in w̃. Therefore, the stabilization term should be O(1), which
implies that

𝛾 ∼ B
1
2 L

3
2 . (35)

This will be used to guide the choice of 𝛾 in section 4.

3. Numerical Method
The spatial discretization follows exactly Weller and McIntyre (2019), solving advective form equations using
monotonic, finite volume advection and C-grid, Lorenz staggering. The time stepping is Crank-Nicolson
with no off-centering and with deferred correction of explicitly solved variables. The method for calculating
a separate pressure for each fluid is new because Weller and McIntyre (2019) solved the Euler equations
with a single pressure. Two outer iterations per time step are used to update explicitly solved variables. For
the first outer iteration, predicted values for time n + 1 are set to those from time level n and are given the
superscript 𝓁. For the second iteration, values at 𝓁 are set to those from the end of the first iteration. The
implicit numerical method for applying the transfers between fluids is specific for two fluids because it
involves the inversion of 2× 2 matrices.

The prognostic variables are bi in cell centers, 𝜎i in cell centers, and the velocity flux at cell faces, ui = ui · S,
which is the velocity at cell faces dotted with the area vector for each face (normal to the face). The pressures,
P and pi, are diagnostic and are located at cell centers.

The first calculation of each outer iteration is for the transfer terms, Sij using (27) or (28). Next, (9) is solved
for each 𝜎i, operator split: first applying advection, then correcting

∑
i𝜎i = 1, and finally applying mass

transfers:

𝜎′i = 𝜎n
i − Δt

2
∇ ·

{(
un

i + u𝓁
i
) (
𝜎n

i
)

vL

}
, (36)

𝜎′′i = 𝜎′i∕
∑

i
𝜎′i , (37)

𝜎n+1
i = 𝜎′′i + Δt

∑
𝑗≠i
𝜎′′
𝑗

S𝑗i − 𝜎′′i Si𝑗 , (38)

where Δt is the time step and the superscripts ′ and ′′ denote intermediate values. 𝜎n
i is interpolated from

cell centers onto cell faces using monotonic van Leer advection (operator (𝜎n
i )vL) as in Weller and McIntyre

(2019) and values exclusively at time level n for best accuracy and guaranteed monotonicity. For calculating
the divergence, the normal component of ui is needed at cell faces, which are prognostic variables of the C
grid. The Sij is limited to ensure 0<𝜎i < 1 ∀i.

Next, (20) is solved for the buoyancy in each fluid, first transporting buoyancy and then applying the transfer
terms. The advection term, ui · ∇bi, is split into ∇ · (uibi)− bi ∇ ·ui for better conservation as calculated by
the finite volume method. The transfer terms can be very large due to the presence of 𝜎𝑗

𝜎i
Si𝑗 in the transfer

term for bi, so they are treated operator split and implicitly:

b′
i = bn

i − Δt
2

((
∇ ·

(
ui(bi)vL

)
+ bi∇ · ui + 𝛼∇2bi

)n
, (39)

+
(
∇ ·

(
ui(bi)vL

)
+ bi∇ · ui + 𝛼∇2bi

)𝓁)
, (40)
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bn+1
0 = b′

0 + Δt
{(

𝜎1

𝜎0

)′′

S10
(

bn+1
1 + bt

10 − bn+1
0

)
− S01bt

01

}
, (41)

bn+1
1 = b′

1 + Δt
{(

𝜎0

𝜎1

)′′

S01
(

bn+1
0 + bt

01 − bn+1
1

)
− S10bt

10

}
, (42)

where bt
i𝑗 = bT

i𝑗 − bi. The use of (𝜎0/𝜎1)′ ′ from before the mass transfers is necessary to ensure bounded and
conservative transfers, as described by McIntyre et al. (2020). Simultaneous solutions of (41) and (42) give

bn+1
0 =

(
1 + T01

) (
b′

0 − ΔtS01bt
01 + T10bt

10
)
+ T10

(
b′

1 + T01bt
01 − ΔtS10bt

10
)

1 + T01 + T10
, (43)

bn+1
1 =

b′
1 + T01bn+1

0 + T01bt
01 − ΔtS10bt

10

1 + T01
, (44)

where Ti𝑗 = Δt
(
𝜎i
𝜎𝑗

)′′
Si𝑗 .

Next, a Poisson equation is solved to calculate the total pressure, P, to ensure that the total velocity is diver-
gence free. This is the standard approach for ensuring divergence constraints (e.g., Smolarkiewicz et al.,
2014). The pressure equation also provides updates for the velocity flux, ui. First, an intermediate velocity
flux is calculated with partial updates and updates from a previous value of pi but without updates from
∇Pn + 1:

u′
i = un

i + Δt
2

((
−∇ · (uiui) + ui∇ · ui + bik

)𝓁
𝑓
· S − ∇𝑓p𝓁

i , (45)

+
(
−∇ · (uiui) + ui∇ · ui + bik

)n
𝑓
· S − ∇𝑓 (P + pi)n

)
, (46)

where operator ()f means linear interpolation from cell centers onto cell faces and ∇f P is a compact dis-
cretization of (∇P)f · S: that is, the normal component of the pressure gradient calculated from just the values
of pressure either side of the face. Once Pn + 1 is calculated, the velocity flux (without momentum transfers)
is updated from the back-substitution:

u′′
i = u′

i −
Δt
2
∇𝑓Pn+1. (47)

The Poisson equation for Pn + 1 is found by multiplying (47) by 𝜎i, summing over all fluids and taking the
divergence. Knowing that ∇ ·

∑
i𝜎iui = 0,

∑
i𝜎i = 1 and

∑
i𝜎ipi = 0 gives

∇ ·
∑

i
𝜎iu′

i −
Δt
2
∇2Pn+1 = 0, (48)

which is solved to find Pn + 1.

Next, the momentum transfers due to mass transfer and due to drag are calculated implicitly, similar to the
implicit transfers of buoyancy, calculating un+1

i from u′′
i . These do not influence the total P or total divergence

because momentum is transferred conservatively. However, they do influence pi, which is why they are
calculated before pi. The next step is to solve Helmholtz equations implicitly for each pn+1

i :

pn+1
i = 𝛾

∑
𝑗

(
𝜎n+1
𝑗

∇ · un+1
𝑗

)
− 𝛾∇ ·

(
un+1

i − Δt
2
∇𝑓

(
pn+1

i − p𝓁
i
))
. (49)

Both pn+1
i and p𝓁

i appear in (49) because un+1
i already contains contributions from p𝓁

i so these are removed
before updating pn+1

i . No back substitution for ui is done after calculating pn+1
i because this would destroy

the divergence free constraint. Therefore, pn+1
i only satisfies (25) exactly if the outer iterations converge,

when p𝓁
i = pn+1

i .

The final stage of the time step iteration is to reconstruct ui from ui following Weller and McIntyre (2019).
The stages calculating P, pi, and ui are repeated twice per time step iteration. The Poisson and Helmholtz
equations are solved to a tolerance of 10−6 using the OpenFOAM conjugate gradient solver with incomplete
Cholesky preconditioning.
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3.1. Discrete Conditional Averaging

The multifluid equations will be evaluated in section 4 by comparison with high-resolution single fluid solu-
tions. This has to be done carefully as even these reference solutions exist on a discrete grid. A single-fluid
solution is conditionally averaged by

i =
{

0 if w ≤ 0
1 otherwise.

(50)

If an entire grid box is assigned to be either in Fluid 0 or 1 based on w at the cell center, then 𝜎 can only take
a small number of discrete values depending on the resolution of the conditional averaging. For example, if
conditional averaging goes from n columns to one column with vertical resolution staying the same, then
𝜎 can only take values k

n
where k is an integer between zero and n. This means that 𝜎 is either uniform

(for small n) or has jumps in the vertical (for larger n). An alternative is therefore proposed in order to
approximate 𝜎 based on w and ∇w at cell centers. This is based on the intersection between a grid box and
the surface of w = 0. Given a grid box with center xc, the surface of points, xw of w = 0, satisfies

∇w ·
(
xc − xw

)
= 0. (51)

Rather than the expense of calculating exact grid box volume fractions either side of this surface, the signed
distance of each grid box vertex, xv, to the surface is calculated:

dv =
(

xv − xc +
w∇w|∇w|2

)
· ∇w|∇w| . (52)

The volume fraction either side of the w = 0 surface is approximated by the average distance to vertices in
one side of the surface divided by the average distance to vertices on both sides:

𝜎0 =
−mean

(
all dv with dv ≤ 0

)
mean

(
all |dv|) 𝜎1 =

mean
(
all dv with dv > 0

)
mean

(
all |dv|) . (53)

This gives smooth 𝜎 fields that will be shown in section 4.

4. Evaluation Test Cases
Two test cases are developed to tune parameters and to evaluate the use of two-fluid equations to represent
dry, two-dimensional, subgrid-scale convection. The first is transient; the standard rising bubble of Bryan
and Fritsch (2002). The second is steady state with heat transfer at the ground and uniform radiative cooling
(radiative convective equilibrium [RCE]). For both test cases, the reference solution is a single-fluid solu-
tion of the two-dimensional Boussinesq equations at high horizontal and vertical resolution. These will be
compared with the two-fluid model run using one column. The aim is to reproduce the vertical heat trans-
port, the mean velocity of the rising air, the buoyancy of the rising air, and the pressure differences between
fluids in one column of the two-fluid model.

4.1. Rising Bubble

The two-dimensional test case of Bryan and Fritsch (2002) was designed for fully compressible inviscid mod-
els but similar solutions are obtained solving inviscid Boussinesq equations (𝜈 = 0, 𝛼= 0). The Boussinesq
version has no background stratification in a domain of height 10 km and width 20 km initially at rest. The
buoyant perturbation is given by

b = 1
15

cos2
(
𝜋L
2

)
(54)

for L< 1, where L =
√(

x−xc
xr

)2
+
(

z−zc
zr

)2
, xc = 10 km, zc = 2 km, and xr = zr = 2 km. The 100 m grid spacing

is used in the x and z directions for the two-dimensional reference simulation, and Δz = 100 m is used in
the vertical for the one-column simulations. All simulations use a time step of 2 s.
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Figure 1. The single-fluid, resolved 2-D rising bubble after 0, 500, and 1,000 s. Buoyancy is colored, and pressure is
contoured every 10 m2 s−2, negative contours dashed. The w = 0 contour is dotted. At t = 0, w = 0 everywhere so the
dotted contour shows 𝜕w/𝜕t = 0 for the top panel.
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4.1.1. Single-Fluid Solutions
The solution of the Boussinesq equations in two dimensions for the rising bubble at high resolution is shown
in Figure 1, at the initial time, 500 and 1,000 s, with buoyancy colored, pressure contoured, and the w = 0
contour dotted. The solution is very similar to the fully compressible solution (Bryan & Fritsch, 2002). The
pressure gradients accelerate the flow beneath the bubble, decelerate the flow above the bubble, and pull in
air horizontally. The w = 0 contour at the initial time shows the initial tendency of w, which demonstrates
that there is no straightforward relationship between buoyancy and w; w is the solution of an elliptic problem
involving the momentum equation and the divergence-free constraint. After 500 s the center of the bubble
has risen further than the edges, and after 1,000 s there is a complex region of entrainment inside the bubble
consisting of both buoyant and neutral rising air and buoyant and neutral sinking air. It is unlikely that the
simple parameterizations proposed here will be able to reproduce statistics of this complex behavior.

Thuburn et al. (2019) and Weller and McIntyre (2019) used the same pressure for both fluids with differ-
ences parameterized as drag. The high pressure above and low pressure below the bubble in Figure 1 are a
manifestation of form drag and will act to slow the ascent. However, the pressure patterns in Figure 1 also
show the limitations of this approach; the low pressure region at the bottom of the bubble will also act to
accelerate the rising flow into the bubble, which is not accounted for by drag, and there are also widespread
pressure anomalies in the sinking fluid, which will accelerate the descent whereas drag will always act to
slow the fluid.

Large-scale models of the atmosphere often have coarse horizontal resolution and relatively fine vertical
resolution. The high-resolution solution is horizontally averaged, conditioned based on the sign of w, to give
the vertical profiles that coarse resolution models or parameterizations should reproduce. Sinking air and
air with w = 0 are assigned to Fluid 0 and rising air to Fluid 1, and an average is taken over the x direction
at time t = 1,000 s to give the profiles shown in the top row of Figure 2. 𝜎1 is the volume fraction of rising
fluid at every height and b0 and b1, w0 and w1, and P0 and P1 are the average buoyancy, vertical velocity,
and pressure of the rising and falling fluids. 𝜎1 varies little with height. The complex shape of the bubble is
evident in b0, which has two peaks; the lower peak associated with re-entrained air. The fastest ascent is at
the bottom of the bubble, colocated with a large drop in pressure.

In order to see what happens in a single fluid atmospheric model at modest horizontal resolution without a
parameterization of convection, the bubble is simulated at coarser horizontal resolutions, using 9, 5, 3, and
1 columns instead of the 200 columns of the fine resolution to cover the 20 km wide domain and a vertical
space of Δz = 100 m. The conditional and horizontal averages of these simulations are shown in Figure 2.

These simulations are initialized by conservative horizontal averaging from the full-resolution solution. As
the horizontal resolution is reduced, the vertical transport reduces until there is no movement at all for the
one-column simulation: There is no possibility of fluid rising because in one column with a single-fluid there
can be no compensating subsidence. The lack of vertical transport at coarse resolution motivates convection
parameterization.
4.1.2. Results of the Two-Fluid, One-Column Simulations
Two-fluid, one-column simulations are initialized by horizontally and conditionally averaging the
high-resolution single-fluid initial conditions. Sinking air is put into fluid zero and rising air into fluid one.
The velocity field after one time step is used for initialization as the air is stationary at t = 0. Results after 500
s are shown in Figures 3 and 4 for various assumptions about transfers between fluids and various parameter
values.

The solutions in the top row of Figure 3 have no drag between fluids, almost no transfers, no diffusion, and
the pressures of both fluids are assumed equal meaning that the multifluid equations should be unstable
(Thuburn et al., 2019). Small transfers are applied to prevent either 𝜎i from becoming negative. This is suf-
ficient to stabilize the solution but does not prevent oscillations from developing in all fields. The buoyant
fluid has risen little from the initial conditions. 𝜎1 oscillates between zero and one meaning that only one
fluid is present at some locations, so there is no possibility for the fluids to move past each other. The two
fluids have mixed due to the two-way stabilizing transfers, which have reduced the buoyancy in the rising
fluid and increased the buoyancy in the sinking fluid.

Including entrainment and detrainment as Sij =−∇ ·ui stabilizes the solution and leads to a realistic ris-
ing volume fraction (second row of Figure 3). The fluids move a little further past each other even without
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Figure 2. The rising bubble after 1,000 s simulated with varying horizontal resolution and a single-fluid. Horizontal averages are conditioned based on w.

pressure differences between the fluids. However, there is too much mixing between the fluids and a dis-
continuity arises at the bubble leading edge; the buoyancy force is producing vertical motion, but there is
no pressure to make it smooth.

Using entrainment and detrainment set by divergence (Sij =−∇ ·ui) and pressure difference between the
fluids controlled by divergence ( Pi = P − 𝛾∇ ·ui + 𝛾

∑
𝑗𝜎𝑗∇ ·u𝑗 ), the simulations are more realistic (bottom

three rows of Figure 3). The first value, 𝛾 = 2.3× 104 m2 s−1, is set from Equation 35 using length scale equal
to the initial bubble radius and a buoyancy scale equal to the initial maximum buoyancy. This makes the
velocity profile too smooth and the updraft too weak, so the bubble does not rise enough. It is reasonable
to consider smaller values of 𝛾 because the buoyancy does not retain its initial maximum for very long.
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Figure 3. Results of the rising bubble at t = 500 s. Solid lines are the multifluid, one-column solutions of the rising
bubble. Dashed lines are the single-fluid, resolved solutions.
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Figure 4. As Figure 3 but different parameterization options.
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Using 𝛾 = 104 m2 s−1 gives more accurate solutions whereas using 𝛾 = 4× 103 m2 s−1 leads to the leading
edge of the bubble rising too quickly and does not fully remove the discontinuity in the updraft velocity at
the leading edge of the bubble. The pressure differences between the fluids have some similarity with the
resolved simulation, but none of the values of 𝛾 reproduce the pressure dip at the trailing edge of the bubble.
𝛾 = 104 m2 s−1 gives the closest approximation to the resolved simulation.

The results in the top row of Figure 4 use divergence transfer and pressure differences between fluids but,
different from previous simulations, also use drag with a coefficient satisfying CD/rc = 1/2,000 m−1. The drag
slows the updrafts without increasing the mixing between the fluids, which makes the solutions less like the
resolved simulations. Although drag is known to be an important term in the momentum equations for buoy-
ant thermals and plumes (e.g., Romps & Charn, 2015), the drag is related to pressure differences caused by
the relative motion and to mixing with downdraft air. The mixing with downdraft air is already accounted for
in the entrainment, and the pressure differences are already accounted for in the pressure parameterization.
Therefore, the drag parameterization is not a useful contribution to the multifluid Boussinesq equations.

If pressure differences between fluids are included with 𝛾 = 104 m2 s−1 without entrainment (Sij ≈ 0) (second
row of Figure 4), the fluids move past each other, but there is a buildup of Fluid 1 at the leading edge of
the bubble and very little Fluid 1 below the bubble. With one column and two fluids, all air must rise in
one fluid and sink in the other. Continuity does not allow for any other solution. Pressure gradients can
accelerate or decelerate this flow, but as the model is set up, with no transfers between fluids, no fluid can
change direction. It is therefore essential to have transfers between fluids.

The other entrainment option is the commonly used fractional entrainment rate, 𝜀= 0.2/rc. This is used in
combination with pressure differences between fluids in the third row of Figure 4. The solutions are smooth,
but the rising volume fraction is not right with a buildup of Fluid 1 at the bubble leading edge, the updraft is
too weak, and too much is entrained into Fluid 1 above the bubble. Using this entrainment, the updraft will
entrain more and more air until 𝜎1 = 1. The Sij =−∇ ·ui model gives results closer to the reference solution.

Two alternative models for estimating the buoyancy of the fluid transferred between updraft and downdraft
have been tested. The results in the fourth row of Figure 4 assume that the fluid transferred has zero buoy-
ancy in order to keep the positively buoyant air in fluid one and the negatively buoyant air in Fluid 0. Thus,
when zero buoyancy air leaves fluid one (the updraft), the mean buoyancy of fluid one increases. This leads
to higher buoyancy in fluid one than when using bT

i𝑗 = bi and gives results close to the reference solution.
The results in the bottom row of Figure 4 use bT

i𝑗 =
1
2

(
b0 + b1

)
following Thuburn et al. (2019) so that the

fluid transferred is influenced by the fluid it is moving toward as well as where it has come from. These
solutions are also similar to the resolved solutions.

From the results at 500 s, we can conclude the following:

• Divergence transfer (entrainment and detrainment) leads to realistic updraft area fractions.
• Pressure differences between fluids are usefully modeled by divergence, with a coefficient close to the

derived value from scale analysis.
• Drag terms are not useful.
• Entrainment calculated as the reciprocal of plume width is not useful.

In order to examine further the effects of different assumptions about the buoyancy of the fluid transferred,
a selection of results at 1,000 s is presented in Figure 5. None of the simulations reproduce the complex
buoyancy pattern at the trailing edge of the bubble associated with a deep low pressure. The rising air fraction
(𝜎1) at and below the bubble is too low in all simulations. The top row, which uses bT

i𝑗 = bi (transferring
the mean buoyancy), shows too much mixing between the fluids—too much of the most buoyant air has
been transferred out of Fluid 1, but the leading edge of the bubble has risen about the right amount. In the
other two simulations, the air that is transferred out of Fluid 1 has lower buoyancy than the mean in Fluid
1 (bT

10 < b1), so the remaining rising fluid stays very buoyant and rises too far. The assumption that the
buoyancy transferred is zero (middle row of Figure 5) means that the buoyant fluid increases its buoyancy
above the initial conditions, which would not be possible in the resolved single-fluid solution.

It might be possible to improve aspects of this simulation by optimizing 𝛾 and 𝜃b (the coefficient from (31)
for calculating bT

i𝑗), but it is probably not helpful to over fit the two-fluid model to this dry, two-dimensional
test case. There are clearly discrepancies between the single-fluid resolved rising bubble and the two-fluid
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Figure 5. Results of the rising bubble at t = 1,000 s. Solid lines are the multifluid, one-column solutions of the rising
bubble. Dashed lines are the single-fluid, resolved solutions.

one-column rising bubble but rather than trying to fit this test case closely, cases with multiple plumes in
each column should be considered. Using the lessons learned from modeling the rising bubble, a statistically
stationary case with many plumes is simulated next.

4.2. Radiative-Convective Equilibrium

A two-dimensional, dry RCE test case is devised to mimic some properties of atmospheric convection, in par-
ticular the difficulty resolving the flow at coarse resolution. The domain is 160 km wide and 10 km tall and
is resolved by 640 cells in the horizontal and 40 in the vertical (Δx =Δz = 250m). The top and bottom bound-
aries are zero velocity, and the lateral boundaries are periodic. A heat flux of h = 10−3 m2 s−3 is imposed at
the bottom boundary leading to a boundary condition of 𝜕b/𝜕z =−h/𝛼, where 𝛼= 100 m2 s−1 is the buoy-
ancy diffusivity. The top boundary has 𝜕b/𝜕z = 0. Diffusion is applied to the momentum equation with a
coefficient 𝜈 = 70.7 m2 s−1 so as to give a Prandtl number of 0.707, the value for dry air. Uniform cooling of
−1× 10−7m s−3 is applied to the domain to maintain equilibrium.

The fluid is initially stationary with b = 0. In order to quickly and reproducibly initialize instability, b = 10−4

m2 s−1 is imposed in a square of side length 2,000 m at the center in the x direction and at the ground. The
simulation is run using a time step of 5 s. A quasi-steady, chaotic state is reached after about 3× 104 s; the
simulation is run for 2× 105 s, and conditional averages are calculated over the final 105 s.

This test case is designed to have strong updrafts in narrow plumes and weak descent elsewhere to
mimic atmospheric convection but without the complication of moisture, phase changes, and three spatial
dimensions.
4.2.1. Single-Fluid Solutions
A snapshot of the buoyancy, vertical velocity, and pressure of the RCE test case at 2× 105 s are shown
in Figure 6 showing intense, narrow updrafts. The buoyant air at the ground rises in narrow plumes,
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Figure 6. Buoyancy, vertical velocity, and pressure at t = 2× 105 s of the resolved radiative-convective equilibrium test
case. Vertical velocity contours are black every 0.5 m/s with negative contours dashed and the zero contour dotted. The
domain is 10 km high and 160 km wide and the z direction is stretched a factor of 2 in the plots.

accelerating due to buoyancy and pressure gradients then decelerating due to pressure gradients before
reaching the top. The plumes spread out, and the sinking air is a mixture of warm and cold with similar
pressure gradients in the rising and falling air, accelerating then decelerating the flow so as to maintain
continuity.

Horizontal averages conditioned on w and time averaged every 1,000 s between 105 s and 2× 105 s are shown
as dashed lines in Figure 7. The rising and falling volume fractions, 𝜎1 and 𝜎0, remain close to 1

2
throughout

the depth. The rising plumes look narrow in Figure 6, but there are wide regions of slowly rising air around
the plume cores. The entrained rising cool air and warm air sinking that has hit the model top mean that
the rising and falling air have similar average buoyancy away from the ground. The ascending air gradually
accelerates toward the middle of the domain and then decelerates toward the model top. At the ground the
acceleration is forced by buoyancy, and away from the ground the acceleration is controlled by pressure
gradients. The descending air mean velocity is close to equal and opposite to the ascending air, as expected
since 𝜎1 = 0.5.

Figure 7. Results of the RCE simulations. Dashed lines show horizontal averages of the resolved case between t = 105 s
and 2× 105 s. Solid lines show results of the one-column multifluid model after 104 s.
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4.2.2. Results of the Two-fluid, One-Column Simulations
The two-fluid model is used to simulate the RCE test case in one column of 40 cells with zero buoyancy
gradient at the top and a buoyancy gradient of 10−5 s−2 at the ground for both fluids and uniform radia-
tive cooling. The two fluids are initialized using the time mean conditional horizontal averages from the
single-fluid resolved simulation. The entrainment model Sij =−∇ ·ui is used for all simulations to account
for transfers throughout the domain to represent cloud base mass flux (at the bottom boundary), cloud top
detrainment, and lateral entrainment. 𝛾 is set from Equation 35 using the depth of the high-resolution solu-
tion super adiabatic layer as the length scale (L = 800 m) and the buoyancy scale B = L 𝜕b/𝜕z = 8× 10−3 m s−2

giving 𝛾 = 2,000 m2 s−1. A simulation using Sij =−∇ ·ui, no drag, and bT
i𝑗 = bi is shown in the top row of

Figure 7. The entrainment model Sij =−∇ ·ui keeps 𝜎i at about 0.5 throughout the depth, as in the resolved
simulation, with entrainment in the lower half of the domain (S01 > 0) and detrainment in the upper half
(S10 > 0), where the air decelerates toward the top. The one-column model reproduces the superadiabatic
layer near the ground and the near uniform buoyancy away from the ground, but the buoyancy difference
between the fluids is too large. The updraft and downdraft velocities are captured well. The pressure differ-
ences between fluids are too large, which is consistent with the over estimated buoyancy difference between
fluids.

Results of a simulation using bT
i𝑗 = 1

2
(b0 + b1) is shown in the bottom row of Figure 7. This model of the

buoyancy of the transferred fluid is not helpful; it leads to strong cooling in fluid zero near the ground due
to the large transfers. It is more accurate to assume that fluids take their mean properties when transferred,
bT

i𝑗 = bi.

The two-fluid, one-column model of RCE gave results closer to the reference solution than for the rising
bubble. This is likely to be because the rising and falling fluids in the RCE test case are averaged over a large
area with plumes at different stages of development rather than trying to simulate the complex entrainment
pattern behind a single bubble. The RCE test case is horizontally homogeneous and in equilibrium making
it more straightforward.

5. Summary, Conclusions, and Further Work
This paper demonstrates the plausible utility of using multifluid equations to represent subgrid-scale con-
vection. Solutions of the two-fluid Boussinesq equations using coarse horizontal resolution (one column)
reproduce aspects of highly resolved single-fluid simulations of dry, two-dimensional convection. Two
test cases are used to evaluate the multifluid model. The first is a Boussinesq version of the well-known
two-dimensional dry rising bubble of Bryan and Fritsch (2002), and the second is a dry, two-dimensional
version of RCE with heating at the ground and uniform radiative cooling. High-resolution single-fluid simu-
lations are conditionally averaged based on the sign of vertical velocity (w) in order to define rising and falling
fluids, which each have their own buoyancy, velocity, and pressure. The two-fluid, one-column Boussinesq
model reproduces mean vertical heat and mass transport of these test cases.

The RCE test case complies with the assumptions of a traditional mass-flux convection scheme—an ensem-
ble of plumes per column, horizontal homogeneity, and equilibrium. The rising bubble test does not satisfy
these constraints. The multifluid model gives good solutions for the RCE test case and good solutions for the
bubble for the first part of the simulation but does not represent the complex re-entrainment as the bubble
continues to rise.

The multifluid Boussinesq equations can have divergence in each fluid while the divergence averaged over
all fluids is constrained to be zero by the single-fluid Boussinesq equations. A model is proposed and evalu-
ated for the pressure difference between the rising and falling fluids based on the divergence of each fluid.
The use of a different pressure for each fluid is not only realistic but also leads to stable solutions of the
multifluid equations.

Conditionally, averaging the high-resolution solutions based on w leads to rising and falling fluids with area
fractions, 𝜎i, which are approximately uniform with height. Models for entrainment and detrainment into
and out of these regions need to be consistent with the definition of the convecting region. A model for
entrainment and detrainment based on divergence is proposed that leads to excellent agreement with 𝜎 from
the high-resolution solutions. A more conventional fractional entrainment rate based on the reciprocal of
the plume width is also tested, which leads to unrealistic rising area fractions.
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The properties of the fluid that are transferred from one fluid to another are unknown in the multifluid
equations, and these require closure. An obvious first guess is that fluid takes its mean buoyancy and velocity
with it when it is transferred. Improvements on this assumption will depend on knowledge of subfilter-scale
variability. However, since conditional averaging is based on the sign of w, it is consistent to assume that the
fluid transferred has zero vertical velocity (wT

i𝑗 = 0). Three models for the buoyancy of the fluid transferred
are tested. The most successful is to assume that the fluid takes its mean buoyancy with it (bT

i𝑗 = bi). Assum-

ing that the buoyancy of the transferred fluid is an average of the buoyancy of both fluids
(

bT
i𝑗 =

1
2
(bi + b𝑗)

)
can lead to unrealistically large or small, unbounded buoyancies. Assuming that one fluid has negative
buoyancy and the other positive buoyancy and fluid of zero buoyancy is transferred (bT

i𝑗 = 0) also leads to
unbounded buoyancy.

One-column multifluid modeling with moisture has already been demonstrated by Thuburn et al. (2019) and
two-dimensional simulations of the multifluid Euler equations by Weller and McIntyre (2019). Next steps
are to simulate convection in the gray zone (where it is partially resolved) and to represent subfilter-scale
variability within each fluid, further extending the EDMF scheme (Tan et al., 2018). Cloud base mass flux
could then be estimated based on higher-order moments of the vertical velocity and buoyancy within the
environment fluid and vertical transport of turbulence by plumes can inform estimates of entrainment. This
will lead to a unified parameterization of turbulence and convection and will take multifluid modeling of
convection beyond existing paradigms.

Data Availability Statement

The code is built using OpenFOAM (https://openfoam.org/version/7/) and is part of AtmosFOAM (https://
github.com/AtmosFOAM/). The code releases can be found online (at https://doi.org/10.5281/zenodo.
3828474 and https://doi.org/10.5281/zenodo.3832130).
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