
MCMC for Bayesian uncertainty
quantification from time-series data

Conference or Workshop Item

Accepted Version

Maybank, P. ORCID: https://orcid.org/0000-0001-8427-2449,
Peltzer, P., Naumann, U. and Bojak, I. ORCID:
https://orcid.org/0000-0003-1765-3502 (2020) MCMC for
Bayesian uncertainty quantification from time-series data. In:
International Conference on Computational Science 2020, 3-5
Jun 2020, Amsterdam, Netherlands, pp. 707-718. doi:
https://doi.org/10.1007/978-3-030-50436-6_52 Available at
http://centaur.reading.ac.uk/92142/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1007/978-3-030-50436-6_52

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/328707702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf

copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

MCMC for Bayesian Uncertainty
Quantification from Time-Series Data

Philip Maybank1(B) , Patrick Peltzer2, Uwe Naumann2, and Ingo Bojak3

1 Numerical Algorithms Group Ltd (NAG), Oxford, UK
philip.maybank@nag.co.uk

2 Software and Tools for Computational Engineering (STCE), RWTH Aachen
University, Aachen, Germany
info@stce.rwth-aachen.de

3 School of Psychology and Clinical Language Sciences, University of Reading,
Reading, UK

i.bojak@reading.ac.uk

Abstract. In computational neuroscience, Neural Population Models
(NPMs) are mechanistic models that describe brain physiology in a range
of different states. Within computational neuroscience there is growing
interest in the inverse problem of inferring NPM parameters from record-
ings such as the EEG (Electroencephalogram). Uncertainty quantifica-
tion is essential in this application area in order to infer the mechanistic
effect of interventions such as anaesthesia.

This paper presents C++ software for Bayesian uncertainty quantifi-
cation in the parameters of NPMs from approximately stationary data
using Markov Chain Monte Carlo (MCMC). Modern MCMC methods
require first order (and in some cases higher order) derivatives of the
posterior density. The software presented offers two distinct methods of
evaluating derivatives: finite differences and exact derivatives obtained
through Algorithmic Differentiation (AD). For AD, two different imple-
mentations are used: the open source Stan Math Library and the com-
mercially licenced dco/c++ tool distributed by NAG (Numerical Algo-
rithms Group). The use of derivative information in MCMC sampling is
demonstrated through a simple example, the noise-driven harmonic oscil-
lator. And different methods for computing derivatives are compared.
The software is written in a modular object-oriented way such that it
can be extended to derivative based MCMC for other scientific domains.

Keywords: Uncertainty quantification · Algorithmic Differentiation ·
Computational neuroscience

1 Introduction

Bayesian uncertainty quantification is useful for calibrating physical models to
observed data. As well as inferring the parameters that produce the best fit
between a model and observed data, Bayesian methods can also identify the
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12143, pp. 707–718, 2020.
https://doi.org/10.1007/978-3-030-50436-6_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50436-6_52&domain=pdf
http://orcid.org/0000-0001-8427-2449
http://orcid.org/0000-0003-1765-3502
https://doi.org/10.1007/978-3-030-50436-6_52

708 P. Maybank et al.

range of parameters that are consistent with observations and allow for prior
beliefs to be incorporated into inferences. This means that not only can pre-
dictions be made but also their uncertainty can be quantified. In demography,
Bayesian analysis is used to forecast the global population [7]. In defence sys-
tems, Bayesian analysis is used to track objects from radar signals [1]. And in
computational neuroscience Bayesian analysis is used to compare different mod-
els of brain connectivity and to estimate physiological parameters in mechanistic
models [13]. Many more examples can be found in the references of [2,6,15].

We focus here on problems which require the use of Markov Chain Monte
Carlo (MCMC), a widely applicable methodology for generating samples approx-
imately drawn from the posterior distribution of model parameters given
observed data. MCMC is useful for problems where a parametric closed form
solution for the posterior distribution cannot be found. MCMC became popular
in the statistical community with the re-discovery of Gibbs sampling [26], and
the development of the BUGS software [15]. More recently it has been found that
methods which use derivatives of the posterior distribution with respect to model
parameters, such as the Metropolis Adjusted Langevin Algorithm (MALA) and
Hamiltonian Monte Carlo (HMC) tend to generate samples more efficiently than
methods which do not require derivatives [12]. HMC is used in the popular Stan
software [4]. From the perspective of a C++ programmer, the limitations of
Stan are as follows: it may take a significant investment of effort to get started.
Either the C++ code has to be translated into the Stan modelling language. Or,
alternatively, C++ code can be called from Stan, but it may be challenging to
(efficiently) obtain the derivatives that Stan needs in order to sample efficiently.

The software that we present includes (i) our own implementation of a
derivative-based MCMC sampler called simplified manifold MALA (smMALA).
This sampler can be easily be used in conjunction with C++ codes for Bayesian
data analysis, (ii) Stan’s MCMC sampler with derivatives computed using
dco/c++, an industrial standard tool for efficient derivative computation.

An alternative approach to the one presented in this paper would be simply
to use Stan as a stand-alone tool without the smMALA sampler and without
dco/c++. Determining the most efficient MCMC sampler for a given problem is
still an active area of research, but at least within computational neuroscience,
it has been found the smMALA performs better than HMC methods on cer-
tain problems [25]. Determining the most appropriate method for computing
derivatives will depend on both the user and the problem at hand. In many
applications Algorithmic Differentiation (AD) is needed for the reasons given in
Sect. 2.3. The Stan Math Library includes an open-source AD tool. Commercial
AD tools such as dco/c++ offer a richer set of features than open-source tools,
and these features may be needed in order to optimize derivative computations.
For example, the computations done using the Eigen linear algebra library [10]
can be differentiated either using the Stan Math Library or using dco/c++ but
there are cases where dco/c++ computes derivatives more efficiently than the
Stan Math Library [22]. The aim of the software we present is to offer a range
of options that both make it easy to get started and to tune performance.

MCMC for Bayesian Uncertainty Quantification from Time-Series Data 709

2 Methods for Spectral Time-Series Analysis

2.1 Whittle Likelihood

The software presented in this paper is targeted at differential equation models
with a stable equilibrium point and stochastic input. We refer to such models as
stable SDEs. The methods that are implemented assume that the system is oper-
ating in a regime where we can approximate the dynamics through linearization
around the stable fixed point. If the time-series data is stationary this is a reason-
able assumption. Note that the underlying model may be capable of operating
in nonlinear regimes such as limit cycles or chaos in addition to approximately
linear dynamics. However, parameter estimation using data in nonlinear regimes
quickly becomes intractable - see Chapter 2 of [16]. The stability and linearity
assumptions are commonly made in the computational neuroscience literature,
see for example [18].

In order to simplify the presentation we illustrate the software using a linear
state-space model, which is of the form,

dX(t) = AX(t)dt + P(t), (1)

where the term AX(t) represents the deterministic evolution of the system and
P(t) represents the noisy input. The example we analyze in this paper is the
noise-driven harmonic oscillator, which is a linear state-space model with

A =
(

0 1
−ω2

0 −2ζω0

)
, P (t) =

(
0

dW (t)

)
, (2)

and where dW (t) represents a white noise process with variance σ2
in. The obser-

vations are modelled as Yk = X0(k · Δt) + εk with εk ∼ N(0, σ2
obs).

Our aim is to infer model parameters (ω0, ζ, σin) from time-series data. This
could be done in the time-domain using a Kalman filter, but it is often more com-
putationally efficient to do inference in the frequency domain [3,17]. In the case
where we only have a single output (indexed by i) and a single input (indexed
by j), we can compute a likelihood of the parameters θ in the frequency domain
through the following steps.

1. Compute the (left and right) eigendecomposition of A, such that,

AR = ΛR, LA = LΛ, LR = diag(c) (3)

where diag(c) is a diagonal matrix, such that ci is the dot product of the ith
left eigenvector with the ith right eigenvector.

2. Compute ijth element of the transfer matrix for frequencies ω1, . . . , ωK ,

T (ω) = R diag
[

1
ck(iω − λk)

]
L. (4)

710 P. Maybank et al.

3. Evaluate the spectral density for component i of X(t), fXi
(ω), and the spec-

tral density for the observed time-series, fY (ω),

fXi
(ω) = |Tij(ω)|2 fPj

(ω), (5)

fY (ω) = fXi
(ω) + σ2

obsΔt, (6)

where fPj
(ω) is the spectral density for component j of P(t).

4. Evaluate the Whittle likelihood,

p(y0, . . . , yn−1|θ) = p(S0, . . . , Sn−1|θ) ≈
n/2−1∏
k=1

1
fY (ωk)

exp
[
− Sk

fY (ωk)

]
, (7)

where {Sk} is the Discrete Fourier Transform of {yk}. Note that θ represents
a parameter set (e.g. specific values of ω0, ζ, σin) that determines the spectral
density.

The matrix A that parameterizes a linear state-space model is typically non-
symmetric, which means that eigenvectors and eigenvalues will be complex-
valued. We use Eigen-AD [22], a fork of the C++ linear algebra library Eigen
[10]. Eigen is templated which facilitates the application of AD by overloading
tools and Eigen-AD provides further optimizations for such tools. The operations
above require an AD tool that supports differentiation of complex variables.
AD of complex variables is considered in [24]. It is currently available in the
feature/0123-complex-var branch of the Stan Math Library and in dco/c++
from release 3.4.3.

2.2 Markov Chain Monte Carlo

In the context of Bayesian uncertainty quantification, we are interested in gen-
erating samples from the following probability distribution,

p(θ|y0, . . . , yn−1) ∝ p(y|θ)p(θ), (8)

where p(y|θ) is the likelihood of the parameter set θ given observed data
y0, . . . , yn−1, and p(θ) is the prior distribution of the parameters. In many appli-
cation where the likelihood p(y|θ) is based on some physical model we cannot
derive a closed form expression for the posterior density p(θ|y). Markov Chain
Monte Carlo (MCMC) has emerged over the last 30 years as one of the most
generally applicable and widely used framework for generating samples from
the posterior distribution [6,9]. The software used in this paper makes use of
two MCMC algorithms: the No U-Turn Sampler (NUTS) [12] and the simpli-
fied manifold Metropolis Adjusted Langevin Algorithm (smMALA) [8]. NUTS
is called via the Stan environment [4]. It is a variant of Hamiltonian Monte
Carlo (HMC), which uses the gradient (first derivative) of the posterior density,

MCMC for Bayesian Uncertainty Quantification from Time-Series Data 711

whereas smMALA uses the gradient and Hessian (first and second derivatives)
of the posterior density, smMALA is described in Algorithm 1.

The error in estimates obtained from MCMC is approximately C/
√

N , where
N is the number of MCMC iterations and C is some problem-dependent con-
stant. In general it is not possible to demonstrate that MCMC has converged, but
there are several diagnostics that can indicate non-convergence, see Section 11.4
of [6] for more detail. Briefly, there are two phases of MCMC sampling: burn-in
and the stationary phase. Burn-in is finished when we are in the region of the
parameter space containing the true parameters. In this paper we restrict our-
selves to synthetic data examples. In this case it is straight-forward to assess
whether the sampler is burnt in by checking whether the true parameters used
to simulate the data are contained in the credible intervals obtained from the
generated samples. In real data applications, it is good practice to test MCMC
sampling on a synthetic data problem that is analogous to the real data prob-
lem. During the stationary phase we assess convergence rate using the effective
sample size, N Eff. If we were able to generate independent samples from the
posterior then the constant C is O(1). MCMC methods generate correlated sam-
ples, in which case C may be � 1. A small N Eff (relative to N) indicates that
this is the case.

If we are sampling from a multivariate target distribution, N Eff for the ith
component is equal to,

S

1 + 2
∑

k ρ̂i(k)
, (9)

where S is the number of samples obtained during the stationary period, and
ρ̂i(k), is an estimate of the autocorrelation at lag k for the ith component of
the samples. This expression can be derived from writing down the variance of
the average of a correlated sequence (Chapter 11 of [6]). The key point to note
is that if the autocorrelation decays slowly N Eff will be relatively small.

Algorithm 1: smMALA
Input: Data, y; Initial value for θ = (θ1, . . . , θN);

Likelihood l(y|θ); Prior distribution p(θ).
Parameters : Step size, h; Number of iterations, I
for i = 2, . . . , I do

Evaluate gradient and Hessian of the unnormalized log posterior,

gθ = ∇
[

log[l(y|θ) p(θ)]

]
and Hθ;

Set C = h2H−1
θ , and m = θ + 1

2
C gθ;

Propose θ∗ ∼ q(θ∗|θ) = N(m, C);

Evaluate acceptance ratio, α(θ, θ∗) = min

[
1,

l(y|θ∗)p(θ∗)q(θ|θ∗)
l(y|θ)p(θ)q(θ∗|θ)

]
;

Draw u ∼ Uniform(0, 1);
if u < α(θ, θ∗) then Set θ = θ∗

end

712 P. Maybank et al.

2.3 Derivative Computation

A finite difference approximation to the first and second derivatives of the func-
tion F (θ) : RN → R

M can be computed as,

∂F

∂θi
=

F (θ + hei) − F (θ)
h

,
∂2F

∂θi∂θj
=

∂F

∂θi

(
θ + hej

)
− ∂F

∂θi

(
θ
)

h
,

where ei is the ith Cartesian basis vector, and h is a user-defined step-size.
For first-order derivatives the default value we use is

√
ε|θi|, where ε is machine

epsilon for double types, i.e., if θi is O(1), h ≈ 10−8. For second derivatives the
default value is ε1/3|θi|, so that h ≈ 5 · 10−6. More details on the optimal step
size in finite difference approximations can be found in [20]. First derivatives
computed using finite differences require O(N) function evaluations, where N
is the number of input variables. Second derivatives require O(N2) function
evaluations.

Derivatives that are accurate to machine precision can be computed using
AD tools. AD tools generally use one of two modes: tangent (forward) or adjoint
(reverse). For a function with N inputs and M outputs, tangent mode requires
O(N) function evaluations and adjoint mode requires O(M) function evalua-
tions. In statistical applications our output is often a scalar probability density,
so adjoint AD will scale better with N than either tangent mode or finite differ-
ences in terms of total computation time. Adjoint AD is implemented as follows
using the Stan Math Library, [5].

// Define and init matrix with Stan’s adjoint type
Matrix<stan::math::var,Dynamic,1> theta = input_values;

// Compute primal and gradient
stan::math::var lp = computation(theta);
lp.grad();

// Extract gradient
Matrix<double,Dynamic,1> grad_vec(theta.size());
for(int j=0; j<theta.size(); j++) grad_vec(j) = theta(j).adj();

In the code above the function is evaluated using the stan::math:var scalar
type rather than double. During function evaluation, derivative information
is recorded. When the grad() function is called this derivative information is
interpreted and derivative information is then accessed by calling adj() on the
input variables. Similarly to the Stan Math Library, exact derivatives can be
computed using the NAG dco/c++ tool developed in collaborations with RWTH
Aachen University’s STCE group, [14].

// Define and init matrix with dco’s adjoint type
typedef dco::ga1s<double> DCO_MODE;

MCMC for Bayesian Uncertainty Quantification from Time-Series Data 713

typedef DCO_MODE::type Scalar;
Matrix<Scalar,Dynamic,1> theta = input_values;

// Enable dynamic activity analysis
for(int j=0; j<theta.size(); j++)

DCO_MODE::global_tape->register_variable(theta(j));

// Compute primal and gradient
Scalar lp = computation(theta);
dco::derivative(lp) = 1.0;
DCO_MODE::global_tape->interpret_adjoint();

// Extract gradient
Matrix<double,Dynamic,1> grad_vec(theta.size());
for(int j=0; j<theta.size(); j++)

grad_vec(j) = dco::derivative(theta(j));

dco/c++ provides its adjoint type using the dco::ga1s<T>::type typedef,
where T s the corresponding primal type (e.g. double). Higher order adjoints
can be achieved by recursively nesting the adjoint type. Using this type, the
program is first executed in the augmented forward run, where derivative infor-
mation is stored in the global tape data structure. The register variable
function initialises recording of the tape and facilitates dynamic varied analy-
sis [11]. Derivative information recorded during the augmented primal run is then
interpreted using the interpret adjoint() function and dco::derivative is
used to access the propagated adjoints.

3 Results for Noise Driven Harmonic Oscillator

We now present the results of MCMC sampling using smMALA to estimate
parameters of the noise driven harmonic oscillator. Then we demonstrate that,
for this particular model, MCMC sampling can be accelerated by using NUTS.
We also compare run times and sampling efficiency when AD is used to evaluate
derivatives. Here we estimate parameters using synthetic data (i.e. data gener-
ated from the model). This is a useful check that the MCMC sampler is working
correctly: we should be able to recover the parameters that were used to simulate
the data. We generate a pair of datasets representing different conditions (which
we label c1 and c2). In Table 1 we show that the 95% credible intervals for each
parameter include the actual parameter values for all 5 parameters. These results
came from one MCMC run of 10, 000 iterations. Figure 1 shows 95% confidence
intervals for the spectral density obtained using the Welch method alongside
95% credible intervals for the spectral density estimated from 10, 000 MCMC
iterations. This is another useful check: the spectral density predictions gener-
ated by sampled parameter sets are consistent with non-parametric estimates of
the spectral density.

714 P. Maybank et al.

Table 1. Estimated quantiles of posterior distribution for noise driven harmonic oscil-
lator. Synthetic data was generated by simulating from the model: duration = 20.0,
time-step = 0.01. Two datasets (c1 and c2) were generated with different parameter
values for ω0 and σin in each dataset (values are given in ‘actual’ column). The quan-
tiles are estimated from a sequence of 10, 000 MCMC samples from the joint (posterior)
distribution of all the parameters given all of the data. For example, 2.5% of the MCMC
samples had ω0(c1) values less than 77.3.

Actual Quantile

0.025 0.50 0.975

ω0(c1) 80 77.3 80.3 81.9

ω0(c2) 40 36.8 38.8 41.3

σin(c1) 100 92 101 111

σin(c2) 10 9.81 10.8 12.4

ζ 0.2 0.164 0.193 0.223

Table 2 uses the same model and the same datasets as above to compare
smMALA with NUTS, and finite differences with AD. The AD implementation
used in smMALA was dco’s tangent over adjoint mode (i.e. dco::gt1s combined
with dco::ga1s). In NUTS we used the dco’s tangent mode for computing the
derivatives of the spectral density and Stan’s adjoint mode (stan::math::var)
for the rest of the computation. Given the most recent developments in the
feature/0123-complex-var branch of the Stan Math Library it would likely
be possible to use Stan’s adjoint mode for the whole computation. However this
was not the case when we started writing the code. In general users may find
that they need the more advanced functionality of dco/c++ for part of their
computation in order to obtain good performance.

The MCMC samplers were each run for 1,000 iterations. The results were
analyzed using Stan’s stansummary command-line tool. To account for correla-
tion between MCMC samples we use the N Eff diagnostic defined in Sect. 2.2
to measure sampling efficiency, min N Eff is the minimum over the 5 model
parameters. Table 2 shows that, for the noise driven harmonic oscillator, we can
accelerate MCMC sampling by a factor of around 3–5 by using NUTS rather
than smMALA. We also see that the N Eff/s is higher for finite differences than
for AD, because of the small number of input variables. However, even for this
simple model the NUTS min N Eff is higher for AD than for finite differences
suggesting that the extra accuracy in the derivatives results in more efficient
sampling per MCMC iteration.

In the context of Bayesian uncertainty quantification what we are interested
in is whether the MCMC samples are an accurate representation of the true
posterior distribution. A necessary condition for posterior accuracy is that the
true parameters are (on average) contained in the credible intervals derived from
the MCMC samples. This is the case for all the different variants of MCMC that
we tested. The main differences we found between the different variants was

MCMC for Bayesian Uncertainty Quantification from Time-Series Data 715

0 5 10 15 20
frequency [Hz]

-20

-15

-10

-5

0

5
c1 MCMC estimates
c2 MCMC estimates
c1 Welch estimates
c2 Welch estimates

Fig. 1. Spectral density estimates for noise driven harmonic oscillator for the datasets
described in Table 1.

the sampling efficiency. As discussed in Sect. 2.2, a sampling efficiency that is
3–5 time greater means a reduction in the value of C in the Monte Carlo error
(C/

√
N) by that factor. Another way of interpreting this is that we could reduce

the number of MCMC iterations by a factor of 3–5 and expect to obtain the same
level of accuracy in the estimated posterior distribution.

Table 2. Noise-driven harmonic oscillator benchmarking results.

MCMC sampler Derivative
implementation

CPU time (s) min N Eff min N Eff /s

smMALA Finite differences 3.3 152 46

smMALA dco/c++ 5.2 152 29

NUTS Finite differences 3.2 485 153

NUTS Stan and dco/c++ 3.9 506 130

4 Discussion

The Whittle likelihood function is written to be polymorphic over classes derived
from the a base class called Stable sde. The function signature includes a ref-
erence to the base class.

template<typename SCALAR_T>
SCALAR_T log_whittle_like(Stable_sde<SCALAR_T> & m, ...);

716 P. Maybank et al.

Classes that are derived from the Stable sde base class must define the
following pure virtual function.

virtual Matrix<SCALAR_T, Dynamic, Dynamic> sde_jacobian(...) = 0;

The spectral density evaluation (Eq. (5)) is implemented in the base class,
reducing the effort required to do spectral data analysis for other stable SDEs.
The smMALA sampler is written to be polymorphic over classes derived from a
base class called Computation. Classes that are derived from the Computation
base class must define the following pure virtual function.

virtual SCALAR_T eval(Matrix<SCALAR_T,Dynamic,1>& theta,...) = 0;

This function should evaluate the posterior density in the user’s model.
The gradient and Hessian of the posterior density are implemented in the
Computation class. This reduces the effort required to use NUTS or smMALA
for other computational models. Classes derived from Stable sde or from
Computation can be instantiated with several different scalar types including
double, stan::math::var, and a number of dco/c++ types. This enables auto-
matic evaluation of first and second derivatives. The gradient and Hessian func-
tions need a template specialization to be defined in the base class for each
different scalar type that is instantiated.

We conclude with some comments regarding the choice of MCMC sam-
pler and the method for evaluating derivatives. Our software only implements
derivative-based MCMC as this tends to be more computationally efficient than
other MCMC methods [12,23]. Derivative-based MCMC samplers can be further
subdivided into methods that use higher-order derivatives, such as smMALA
(sometimes referred to as Riemannian) and methods that only require first-
order derivatives (such as NUTS). Riemannian methods tend to be more robust
to complexity in the posterior distribution, but first-order methods tend to be
more computationally efficient for problems where the posterior geometry is rela-
tively simple. We recommend using smMALA in the first instance, then NUTS as
a method that may provide acceleration in MCMC sampling, in terms of effective
samples per second, N Eff/s. Regarding the derivative method, finite differences
often results in adequate performance for problems with moderate input dimen-
sion (e.g. 10–20), at least with smMALA. But for higher-dimensional problems
(e.g. Partial Differential Equations or Monte Carlo simulation) we recommend
accelerating derivative computation using adjoint AD [19,21]. The software pre-
sented enables users to implement and benchmark all these alternatives so that
the most appropriate methods for a given problem can be chosen.

MCMC for Bayesian Uncertainty Quantification from Time-Series Data 717

References

1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal
Process. 50(2), 174–188 (2002)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

3. Bojak, I., Liley, D.: Modeling the effects of anesthesia on the electroencephalogram.
Phys. Rev. E 71(4), 041902 (2005)

4. Carpenter, B., et al.: Stan: A probabilistic programming language. J. Stat. Softw.
76(1), 1–32 (2017)

5. Carpenter, B., Hoffman, M.D., Brubaker, M., Lee, D., Li, P., Betancourt, M.: The
Stan math library: reverse-mode automatic differentiation in C++. arXiv preprint
arXiv:1509.07164 (2015)

6. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.:
Bayesian Data Analysis. CRC Press, Boca Raton (2013)

7. Gerland, P., et al.: World population stabilization unlikely this century. Science
346(6206), 234–237 (2014)

8. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 73(2), 123–214 (2011)

9. Green, P.J., �Latuszyński, K., Pereyra, M., Robert, C.P.: Bayesian computation: a
summary of the current state, and samples backwards and forwards. Stat. Comput.
25(4), 835–862 (2015)

10. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
11. Hascoët, L., Naumann, U., Pascual, V.: ”To be recorded” analysis in reverse-mode

automatic differentiation. Future Gen. Comput. Syst. 21(8), 1401–1417 (2005)
12. Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path

lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)
13. Kiebel, S.J., Garrido, M.I., Moran, R.J., Friston, K.J.: Dynamic causal modelling

for EEG and MEG. Cogn. Neurodyn. 2(2), 121 (2008)
14. Leppkes, K., Lotz, J., Naumann, U.: Derivative code by overloading in C++

(dco/c++): introduction and summary of features. Technical report AIB-2016-08,
RWTH Aachen University, September 2016. http://aib.informatik.rwth-aachen.
de/2016/2016-08.pdf

15. Lunn, D., Jackson, C., Best, N., Thomas, A., Spiegelhalter, D.: The BUGS Book:
A Practical Introduction to Bayesian Analysis. CRC Press, Boca Raton (2012)

16. Maybank, P.: Bayesian inference for stable differential equation models with appli-
cations in computational neuroscience. Ph.D. thesis, University of Reading (2019)

17. Maybank, P., Bojak, I., Everitt, R.G.: Fast approximate Bayesian inference for
stable differential equation models. arXiv preprint arXiv:1706.00689 (2017)

18. Moran, R.J., Stephan, K.E., Seidenbecher, T., Pape, H.C., Dolan, R.J., Friston,
K.J.: Dynamic causal models of steady-state responses. NeuroImage 44(3), 796–
811 (2009)

19. NAG: NAG algorithmic differentiation software. https://www.nag.com/content/
algorithmic-differentiation-software. Accessed 27 Jan 2020

20. NAG: OptCorner: the price of derivatives - using finite differences. https://www.
nag.co.uk/content/optcorner-price-derivatives-using-finite-differences. Accessed
27 Jan 2020

21. Naumann, U., du Toit, J.: Adjoint algorithmic differentiation tool support for
typical numerical patterns in computational finance. J. Comput. Finan. 21(4),
23–57 (2018)

http://arxiv.org/abs/1509.07164
http://eigen.tuxfamily.org
http://aib.informatik.rwth-aachen.de/2016/2016-08.pdf
http://aib.informatik.rwth-aachen.de/2016/2016-08.pdf
http://arxiv.org/abs/1706.00689
https://www.nag.com/content/algorithmic-differentiation-software
https://www.nag.com/content/algorithmic-differentiation-software
https://www.nag.co.uk/content/optcorner-price-derivatives-using-finite-differences
https://www.nag.co.uk/content/optcorner-price-derivatives-using-finite-differences

718 P. Maybank et al.

22. Peltzer, P., Lotz, J., Naumann, U.: Eigen-AD: Algorithmic differentiation of the
Eigen library. arXiv preprint arXiv:1911.12604 (2019)

23. Penny, W., Sengupta, B.: Annealed importance sampling for neural mass models.
PLoS Comput. Biol. 12(3), e1004797 (2016)

24. Pusch, G., Bischof, C., Carle, A.: On Automatic Differentiation of Codes with
Complex Arithmetic with Respect to Real Variables, September 1995

25. Sengupta, B., Friston, K.J., Penny, W.D.: Gradient-based MCMC samplers for
dynamic causal modelling. NeuroImage 125, 1107–1118 (2016)

26. Smith, A.F., Roberts, G.O.: Bayesian computation via the Gibbs sampler and
related Markov chain Monte Carlo methods. J. Roy. Stat. Soc.: Ser. B (Methodol.)
55(1), 3–23 (1993)

http://arxiv.org/abs/1911.12604

	MCMC for Bayesian Uncertainty Quantification from Time-Series Data
	1 Introduction
	2 Methods for Spectral Time-Series Analysis
	2.1 Whittle Likelihood
	2.2 Markov Chain Monte Carlo
	2.3 Derivative Computation

	3 Results for Noise Driven Harmonic Oscillator
	4 Discussion
	References

