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Abstract—Permanent magnet spherical motors (PMSMs) 

operate on the principle of the DC excitation of stator coils 

and three freedom of motion in the rotor. Each coil 

generates the torque in a specific direction, collectively 

they move the rotor to a direction of motion. Modeling and 

analysis of the output torque are of critical importance for 

in precise position control applications. The control of 

these motors requires precise output torques by all coils at 

a specific rotor position. It is difficult to achieve in the 

three-dimension space. This paper is the first to apply the 

Gaussian process to establish the relationship of the rotor 

position and the output torque for PMSMs. Traditional 

methods are difficult to resolve such a complex 3D 

problem with a reasonable computational accuracy and 

time. This paper utilizes a data-driven method using only 

input and output data validated by experiments. The 

multi-task Gaussian process (MTGP) is developed to 

calculate the total torque produced by multiple coils at the 

full operational range. The training data and test data are 

obtained by the finite element method. The effectiveness of 

the proposed method is validated and compared with 

existing data-driven approaches. The results exhibit 

superior performance of accuracy. 
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I. INTRODUCTION 

PHERICAL motors are a new type of motor which can 

perform multi-degree of freedom (DOF) of motion. In 

recent years, spherical motor has attracted much attention from 

academics and practitioners all over the world, as an expected 

substitute for traditional single-axis motor used in manipulators, 

satellites, and other multi-DOF devices [1-3]. Similar to 

traditional electric motors, spherical motors are based on 

induction motors [4], reluctant motors [5], magnetic levitation 

motors [6], and permanent magnet motors [7]. Among them, 

permanent magnet spherical motors (PMSMs) has prevailed 

owing to their simple structure and compact size.  

A wealth of research work has focused on structure 

optimization [8, 9], attitude detection [10, 11], and position 

tracking control [12, 13]. Output torque calculation and 

modeling of PMSMs of different configurations have been 

extensively studied as the foundation for positon tracking 

control. The commonly used method is by means of the finite 

element method (FEM) based on the virtual displacement 

method, Maxwell stress tensor method, and Lorentz force 

method. Its analysis and simplification mainly depend on the 

structure parameters. [14] designed a multiphase surface-mount 

PMSM with 112 permanent magnets mounted on the surface of 

the rotor and 96 electromagnetic coils embedded in the stator. It 

analyzed the torque characteristics of each coils and derived the 

output torque equation of the motor by FEM simulations [15, 

16]. On one hand, it is difficult to represent by an expression 

and have to be stored in look-up tables, because the torque 

characteristic equation are highly nonlinear functions. On the 

other hand, as the PMs of different layers have different shapes, 

it is necessary to separately analyze the torque characteristics of 

every coil on different layers, which greatly increases the 

computing burden. [17] presented a stepper permanent magnet 

spherical motor. Its permanent magnets are cylindrical with 

same size distributed on the rotor evenly, as well as its coils are 

designed as hollow cylinders with same size and are fixed on 

the stator uniformly. The clever design of the structure and 
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shape of permanents and coils brings an important advantage 

that the output torque calculation is simplified. The 

complicated analysis and superposition of total torque 

characteristics equation is reduced to that of a single coil [18, 

19]. This method greatly reduces computational complexity. 

The torque characteristics of one single coil can be obtained by 

the polynomial fitting method, instead of being stored in the 

table. However, this kind of PMSM must be designed in a 

completely symmetrical structure, which limits the magnetic 

field distribution and motion continuity. [20] proposed a torque 

calculation method using a torque map. In the work of [20], a 

torque generating method for the spherical motor with different 

permanent magnet arrangements and coil arrangements is 

discussed. This method has some generality and is a solution of 

torque nonlinearity caused by the iron-core coils. [21] 

developed a PMSM based on Halbach array. The air gap 

magnetic field is closer to a sinusoidal waveform, so that the 

output torque is larger under the same volume. They used 

equivalent 2D model to analyze the torque characteristics of a 

single coil, which brought errors and also had influence on 

control precision compared with the 3D model [22, 23]. 

In general, the mentioned methods of torque calculation 

depend on the complex electromagnetic analysis and special 

structure, which are lack of generality for different type of the 

spherical motors and have some restrictions on motor 

construction. In order to reduce the complexity of torque 

calculation, this paper proposes a new torque calculation 

method based on a Gaussian process for PMSMs. The Gaussian 

process is a Bayesian modeling approach based on data driven 

and have widely applied to various machine learning tasks. It is 

a key merit that Gaussian process is a non-parametric method, 

which means it allows a model expressivity that naturally 

calibrated to the requirements of the data [24, 25]. In the field of 

electrical engineering, Gaussian processes are commonly 

applied to regression and forecasting, such as short-term solar 

power forecasting [26], state-of-charge estimations of battery 

for electric vehicle [27], and power load probability density 

predictions [28]. In general, Gaussian processes are used to 

handle with single-output tasks with one or more inputs. 

However, the torque calculation of a PMSM is a typical 

multi-output task and the conventional Gaussian processes do 

not work. To solve this problem, a multi-task Gaussian process 

is introduced to make an alternative for the torque calculation 

of the PMSM in this paper. Different from other multi-task 

models, the multi-task Gaussian process focuses on the 

correlations between and within tasks and improve the overall 

accuracy [29]. 

The major contributions of this work lie in the following 

three points: 

1) It is the first time that the Gaussian process method is utilized 

for torque calculation of PMSMs. By developing a 

data-driven method, the complex 3D electromagnetic 

problem is simplified as a non-parametric regression 

problem. Once the training set is obtained, the output 

torque can be calculated by the Gaussian process method 

without electromagnetic calculation. Moreover, this 

method can be applied for the spherical motors of different 

structure in theory, for the calculation of torque is only 

related to the training set. Therefore, the complexity of 

torque calculation is reduced significantly without a 

compromise on accuracy. 

2) In order to overcome the problem that the conventional 

Gaussian process can only generate one output at a time, 

the proposed multi-task Gaussian process is improved with 

a multiple output feature, which can generate 24 signals 

simultaneous for this PMSM. 

3) The developed method is compared with existing numerical 

method (FEM), and two data-driven methods (random 

forests and k-nearest neighbors) to justify the accuracy and 

robustness. 

II.  STRUCTURE AND MODEL OF A PMSM 

A. Structure of a PMSM 

The overall structure of the PMSM is shown in Fig. 1(a) and 

the internal structure of the rotor is shown in Fig. 1(b). The 

PMSM consists of a ball-shaped rotor, a stator composed of two 

hemispherical shells, and an output shaft fixed on the rotor. 

There are four layers of 10 equally spaced cylindrical 

permanent magnets embedded in the rotor and the rotor is 

supported by several low-friction ball bearings. The N and S of 

permanent magnets in the rotor are arranged in alternation 

parallel to the equatorial plane. The stator houses two layers of 

12 equally spaced electromagnetic coils, through which the 

currents serve as controlling input to the PMSM. The major 

specification of the PMSM is shown in Table I. 

B. Coordinate Frame and Torque Model 
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(a)                                                      (b) 

Fig. 1.  Structure of the PMSM: (a) Overall structure of the PMSM; (b) 
Structure of the rotor with permanent magnets. 

TABLE I 
SPECIFICATIONS OF THE PMSM 

Components Values 

Radius of the stator 115 mm 
Outer radius of coils 14 mm 

Inner radius of coils 4 mm 

Height of coils 25 mm 
Ampere-turns of the coil 1200 A 

Radius of the rotor 64 mm 

Material of permanent magnets NdFeB 
Radius of permanent magnets 10 mm 

Height of permanent magnets 12 mm 

Length of air gap 1 mm 
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When a coil is energized by suppling the DC current, a 

magnetic force is generated by interaction between permanent 

magnets and electromagnetic field, which propels the rotor to 

move in a particular direction. Considering that the rotor 

operates unconstrained in all axes of a rectangular coordinate 

frame, it is essential to establish a suitable coordinate frame to 

describe the rotor motion. The rotor coordinate frame dqp and 

the stator coordinate frame XYZ (inertia frame) are regulated as 

shown in Fig. 2. The vector of Euler angles 
T 3[ , , ]   q  is selected to describe the transformation 

relationship of two coordinate systems and the homogenous 

transformation (3)sr SOR  between is shown in (1). 

c c s s c s c c s c s c

c s c s s c c s s s c

s s c c c

rs c

           

           

    

   
 

     
  

R  (1) 

where s and c are the abbreviation of sin and cos, respectively. 

Thus, the attitude of the rotor can be described by rsR . 

There is no magnetic iron used in the stator or rotor to 

transfer magnetic field on their surface. Therefore, the 

magnetic field saturation effect is ignored. The overall output 

torque model can be expressed as 

(1) (2) (24) 1

2(1) (2) (24)

(1) (2) (24)

24

x x xx

y y y y

z z z z

i
f f fT

i
T f f f
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where T 3[ , , ]x y zT T T Τ  is the overall output torque with 

respect to the stator coordinate XYZ. 24I  is the current 

vector, and 
ji  is the current in the j-th coil. 3 24F  is the 

torque matrix by the unit current (1 A), and ( )j
xf , ( )j

yf , and 

( )j
zf  are the torque contribution coefficients generated by the 

j-th coil around X-, Y-, Z- axis, respectively. These coefficients 

have nonlinear complexity related to the vector of Euler angles 

q  and structure parameters of the PMSM. Considering the 

vector of Euler angles q  as the input, the torque contribution 

coefficients ( )j
xf  as the output, so as ( )j

yf  and ( )j
zf , the 

calculation of the torque matrix F  can be transformed into 

several regression problems. Defining xf , 
yf , 24

z f , and 

(1) (2) (24) T[ , ,..., ]x x x xf f ff , (1) (2) (24) T[ , ,..., ]y y y yf f ff , 

(1) (2) (24) T[ , ,..., ]z z z zf f ff , the output torque model in (2) can 

be rewritten as 

1

T 2

24
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T
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T f f f FI  (3) 

where 
xf , 

yf , and 
zf  are column vectors of the torque 

contribution coefficients of all the coils with respect to X-, Y-, 

Z-axis in the stator coordinate frame. If one considers 
xf , 

yf , 

and zf  as regression models with multiple outputs related to 

the Euler angles, the torque matrix F  can be described by three 

regression models. In this paper, the multi-task Gaussian 

process is utilized to illustrate these models. 

III. MODELING METHOD USING MULTI-TASK GAUSSIAN 

PROCESS 

The goal of a regression model is to learn the mapping from 

inputs x to outputs y, given a labelled training set of 

input-output pairs. In this case, define three training set 

  , | 1,...,x i xi Di n x y ,   , | 1,...,y i yi Di n x y , and 

  , | 1,...,z i zi Di n x y , where 3
i x  denotes the vector of 

Euler angles q . 24
xi y , 24

yi y , and 24
zi y denotes 

the target vectors of the torque contribution coefficients with 

respect to X-axis, Y-axis, and Z-axis, respectively.  

A. Multi-task Gaussian Process Regression Model 
under Function-space View 

Because x , y , and z  are learned in a similar way, the 

multi-task Gaussian process regression model for x  is 

illustrated in detail in this section as an example. When given a 

training set   , | 1,...,i xi Di nx y , it can be assumed that 

( )xi iy f x  is a multivariate Gaussian process, which is 

denoted as 

( , , )ck f u  (4) 

where u  is a mean function, ck  and   are covariance 

functions. Assume u  is 0 as commonly done in the Gaussian 

process regression in practice, then, the collection of functions 

1 2[ ( ), ( ),..., ( )]
Dnf x f x f x  have a joint matrix-variate 

Gaussian distribution as (5) according to the definition of 

multivariate Gaussian process (see Appendix A) described in as 
T

T T T
1 2( ) , ( ) ,..., ( ) (0, , )

Dn c
 
 

f x f x f x K   (5) 

where cK  is a column covariance matrix, of which the (i, j)-th 

element [ ] ( , )c ij c i jkK x x , and   is a row covariance matrix. 

The joint distribution of the training observations Y  at the 

training locations X  and the computed targets *f  at the test 

locations *X  are described as 
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Fig. 2.  Coordinate frame. 
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where T T T T
1 2[ , ,..., ]

DnY y y y , T
1 2[ , ,..., ]

DnX x x x , T
* *1 *2 *[ , ,..., ]

Tnf f f f , 

and T
* *1 *2 *[ , ,..., ]

TnX x x x . 

According to the conditional distribution properties of 

multivariate Gaussian process, the distribution of *f  is 

* *
ˆ ˆˆ( | , , ) ( , , )p f X Y X M    (7) 

where the mean function matrix M̂ , and the covariance 

function matrices ̂ , ̂  are given as 
T 1

*
ˆ ( , ) ( , )c c

M K X X K X X Y  (8) 
T 1

* * * *
ˆ ( , ) ( , ) ( , ) ( , )c c c c

 K X X K X X K X X K X X  (9) 

̂    (10) 

Furthermore, the expectation and the covariance of *f  are 

derived as 

*
ˆ[ ] f M  (11) 

T
*

ˆˆcov( )  f    (12) 

where   is the Kronecker product. 

B. Covariance Matrix 

In the above regression model, the overall covariance matrix 

is consisted of the column covariance ̂  and the row 

covariance ̂ . The covariance ̂  depends on cK , which is 

considered as the kernel matrix associated with training and test 

inputs. 

In order to learn and define the closeness and similarity 

between data points, the squared exponential (SE) kernel is 

chosen for its generality and great efficiency in engineering 

applications [26]. This kernel is infinitely differentiable, which 

implies that Gaussian process with this kernel have mean 

square derivatives of all orders, and are thus very smooth [24]. 

It is suitable for our case because the distribution of torque is 

theoretically smooth and has no abrupt changes. Considering 

that the inputs ix  is multidimensional, the SE kernel defined 

by automatic relevance determination (ARD) is adopted. This 

kernel is commonly called as SEard kernel and is suitable for 

multidimensional input [24]. The SEard kernel is defined as  

   
T2 21

( , ) exp
2

c i j f i j i j ij nk   
 

     
 

x x x x P x x  (13) 

where 2
f  represents the variance of the signal; 1ij   if i j , 

otherwise 0ij  ; P  is the distance matrix and defined as 

2diag( , , )  
P .  ,  , and   are 

hyper-parameters which play the role of characteristic 

length-scales in input space. By using SEard kernel, if the 

length-scale has a very large value, the covariance will become 

almost independent of that input, effectively removing it from 

the inference, so that the Gaussian process is capable of feature 

selection which is of great importance for model learning. 

The remaining challenge is to construct the row covariance 

̂ . As ̂    and   is positive-definite, it can be denoted as 
T  , where   is a lower triangular matrix such as 

11

21 22

1 2

0 0

0

d d dd



 

  

 
 
 

   
 
  

 (14) 

To guarantee the uniqueness of  , the diagonal elements ii  

for 1,2,...,i d  are restricted to be positive. In our case, d  is set 

as the total number of coils. Considering ln( )ii ii  , the 

matrix   can be reparameterized by T
11 22[ , ,..., ]dd   . 

C. Hyper-parameter Optimization 

The free hyper-parameters of the multi-task Gaussian 

process regression model containing  ,  ,  , 2
f , 2

n  of 

cK  and 
ij , ii  of  . These hyper-parameters can be 

estimated by minimizing the negative log marginal likelihood 

function from the training data [30, 31]. According to the 

matrix-variate distribution, the negative log marginal 

likelihood function is 

 1 11
ln(2 ) ln ln tr

2 2 2 2

TD D
c c

n d nd
     K K Y Y   (15) 

In order to derive derivatives of  with respect to 

hyper-parameters, the column covariance matrix cK  of the 

matrix-variate Gaussian distribution in (5) is rewritten as 
2

0=c c nK K E , where E  is an identity matrix and 0cK  is 

defined as a non-noisy column covariance matrix. The element 

0[ ]c ijK  is the same as the [ ]c ijK  but without the noisy term 

2
ij n  . It should be noted that the hyper-meter set of 0cK  is 

defined as 1 2{ , ,...}   . In our case, the elements of the 

hyper-meter set   are 2
f ,  ,  , and  , which are 

denoted as { | 1, 2,3, 4}i i   . Then, the hyper-parameters 

can be classified as 2
n  of cK , i  of 0cK , and 

ij , ii  of 

 . 

The derivatives of the negative log marginal likelihood 

function  in (15) with respect to hyper-parameters 2
n , i , 

ij , and ii  are respectively shown as follows 
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where 1= c


Η K Y , 1= T
S Y . 

ijQ  and 
jiQ  are square matrices 

with unities in the (i, j)-th and (j, i)-th elements, respectively, 

and zeros elsewhere; iiG  is a square matrices with exp( )ii  in 
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the (i, i)-th element and zeros elsewhere. In this paper, the 

Conjugate Gradient method is used to minimize the negative 

log marginal likelihood function to obtain the estimations of the 

hyper-parameters. 

To sum up, the flow chart of the output torque contribution 

coefficients calculation process is shown in Fig. 3. 

IV. DATA ACQUISITION BY FINITE ELEMENT METHOD 

The training data are collected by the finite element method. 

Combining the structural characteristics of the PMSM (see Fig. 

1), a 3D finite element model is established in ANSYS and are 

shown in Fig. 4. The coils are numbered in anticlockwise order 

to facilitate further description. The analysis is conducted in 

steady-state. The rotating angles around X-, Y-, and Z-axis are 

assigned to the stator as the variable parameters. They are in 

correspondence with the Euler angles  ,  , and  . Thus, the 

position of the rotor after motion can be simulated by 

modifying these parameters. The DC current is added to the 

cross-section of each coil as an excitation. Then, the output 

torque around three axes generated by 24 coils at different 

rotating angles can be analyzed. In order to obtain data 

efficiently, a simulation method based on Python and ANSYS 

are used. The diagram of data acquisition and processing is 

show in Fig. 5. A python-based script sends commands to 

ANSYS for starting the simulation, modifying the simulation 

parameters (rotating angles and DC currents), and stopping the 

simulation. When the script runs, unmanned supervision of 

simulations can be achieved. This method improves the 

time-consuming manned method which requires manually 

modifying parameters and avoids possible manual operation 

errors. 

In this model, the rotating angles corresponding to   and 

  are set in the range of 0 to 37 degrees, and the rotating 
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Fig. 4.  The 3D model in ANSYS. 
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Fig. 5.  The diagram of the simulation method based on Python and 
ANSYS. 
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Fig. 6.  The distribution of training data: (a) The 1st coil; (b) The 13th 
coil. 
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Fig. 3. The flow chart of the output torque contribution coefficients 
calculation process. 
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angle corresponding to   is set in the range of 0 to 360 degrees. 

By such the setting, the output shaft of the rotor can move in a 

maximum range which is limited by the structure of the motor. 

The dc current through each coil is set as a unit. Then, the 

torque generated by each coil under the unit current are 

analyzed by the FEM. For the MTGP learning model, 800 pairs 

of training date are obtained. Taking the 1st coil of upper layer 

and the 13th coil of lower layer for examples, their training data 

of the output torque around X-axis are represented as colored 

spots distributed on the sphere as shown in Fig. 6. In this figure, 

the sphere represents the rotor of the PMSM. The position of 

the colored spot reflects the points on the rotor facing the coil as 

the rotor rotates at Euler angles and the color of the spot reflects 

the value of the torque. The color bar on the right illustrates the 

mapping between colors and values.  

V. EXPERIMENTS 

A. Experimental Setup 

A test bench is established for the validation purpose. It 

consists of a prototype of the PMSM, a host computer, a current 

controller, and a torque measurement device mounted on the 

top of the shaft. The test bench and its hardware 

implementation are shown in Fig. 7. Due to the 3D motion 

characteristics of the PMSM, traditional single-axis torque 

measurement methods using torque transducers are not suitable. 

Instead, a MEMS gyro sensor is adopted to measure the motion 

dynamics at starting time, then calculate the output torque with 

the rotor kinematic equations [32]. Conventionally, the 

magnetic field may affect the accuracy of the MESM gyro 

sensor, thus, the MPU-6050 is chosen, which is an integrated 

sensor combining a 3-axis gyroscope and a 3-axis 

accelerometer together with an onboard digital motion 

processor. 

The measuring principle of output torque is briefly illustrated 

in the followings. When the rotor of the PMSM moves around 

the constant axis, its dynamics can be expressed according to 

Lagrange's Equations of second kind, and its output torque is 

derived as 

T Jq           (20) 

where ( , , )x y zdiag J J JJ  is the inertia matrix and xJ , 

yJ , zJ  are the moments of inertia with respect to X-,Y-,Z-axis, 

respectively. T[ , , ]  q  is the vector of Euler angular 

accelerations. The moments of inertia are obtained by the 

Automatic Dynamic Analysis of Mechanical Systems 

(ADAMS). The angular acceleration vector is measured by the 

MESM gyro sensor. Therefore, the output torque can be 

calculated by experiments. 

B. Validation of FEM Results 

Because the finite element results are utilized to establish the 

multi-task Gaussian process model, which is then used to 

compute the output torque, experiments are conducted to verify 

the feasibility of the finite element results. Considering the 

output consist of three components around X-, Y-, Z-axis, the 

amplitude of the output torque vector | |T  is compared in the 

following verification experiments. Tilt and rotation, which are 

typical motion cases of the PMSM are considered in the 

experiments. In the first case, the rotor is initially stationary and 

will tilt when the 1st coil and 19th coil are energized by the DC 

currents with the same magnitude and in the same direction at 

the same time. Under this condition, the rotor will tilt towards 

the X-axis. The current through each coil is at 0.2A intervals 

from 0.5 to 3A. In the second case, the rotor is initially 

stationary and will rotate when the 1st coil and the 7th coil are 

energized by the DC currents with the same magnitude but in 

opposite direction at the same time. Under this condition, the 

rotor will rotate around Z-axis. The current through each coil is 

the unit and the output torque is measured at 5-degree intervals 

from 0 to 180 degrees. In order to compare with the FEM 

results analyzed in steady-state, the output torque measured at 

the starting time is adopted. These two motions cases can be 

analyzed by the FEM when the currents and rotating angles are 

set. Thus, the analyzed output torque by the FEM can be 

compared to the experimental results. The results by FEM and 

experiments are compared as shown in Fig. 8. The red lines 
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Fig. 8.  The torque by FEM and experiments: (a) The first case; (b) The 
second case. 
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Fig. 7. The test bench: (a) The diagram; (b) the hardware 
implementation. 
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present the output torque analyzed by FEM, and the blue lines 

present that obtained by experiments. The blue spots present 

the measurement points. In order to evaluate the comparison on 

the results by experiments and FEM, the relative error   is 

defined as  

ex fem

fem


 

T T

T
 

where exT  is the measured torque by experiments and 
femT  is 

the analytical torque by FEM. In these figures, there are 

1.33%-21.88% relative errors between the experimental and the 

finite element results. The errors are mainly caused by the 

implementation of experiments and the friction compensations, 

which is detailed discussed in [32]. Although the experimental 

and the finite element results are not perfectly matched with 

each other, it is clear that the they agree with each other, 

indicating that that the torque calculated by the finite element 

method is acceptable. In the following section, the torque 

analyzed by FEM is used as the training data for the proposed 

multi-task Gaussian process model. 

C. Validation of the Multi-task Gaussian Process Results 

In the experiments, 800 pairs of the attitude Euler angels and 

its corresponding output torque around the X-axis generated by 

all the coils energized by a unit current are randomly selected as 

a training set (see Fig. 6). The proposed multi-task Gaussian 

process model is used to calculate the overall torque at the full 

operational range of the output shaft by learning the training 

data. Taking the 1st coil and the 13th coil as examples, their 

entire distributions of torque around X-axis calculated by the 

MTGP method are shown in Fig. 9. In order to verify the 

effectiveness of the MTGP, 50 pairs of the attitude Euler angle 

and output torque are selected as a test set to compare with the 

results by the MTGP method. In addition, commonly used 

data-based learning approaches, random forests (RF) and 

k-nearest neighbors (KNN), are also used to compared with the 

proposed method for the 1st coil, the 2nd coil, the 13th coil, and 

the 14th coil. These results are shown in Fig. 10. The abscissa is 

the number of the test data, and the output torque in the test set 

is considered as the reference. It can be found that the torque 

calculated by the MTGP method matches the reference well. To 

fully evaluate the performance of these methods, several 

common performance indicators are adopted and the 

expressions of these are given in Appendix B. Fig. 11 shows the 

R-squared score of the MTGP, RF, and KNN method for the 1st 

coil, the 2nd coil, the 13th coil, and the 14th coil. It can be seen 

that the fitting quality for the four coils is the highest by the 

MTGP method. The lowest R-square score is 0.969 of the 

proposed method. However, the highest R-square score of the 

RF and KNN method are 0.850 and 0.856, respectively, which 

are even lower than the above value. 

0 10 20 30 40 50

-80

-40

0

40

80

T
o
rq

u
e
 (

m
N
m

)

Index

 Reference  MTGP  RF  KNN

 
(a) 

0 10 20 30 40 50

-130

-65

0

65

130

T
o
rq

u
e
 (

m
N
m

)

Index

 Reference  MTGP  RF  KNN

 
(b) 

0 10 20 30 40 50

-80

-40

0

40

80

T
o
rq

u
e
 (

m
N
m

)

Index

 Reference  MTGP  RF  KNN

 
(c) 

0 10 20 30 40 50

-120

-60

0

60

120

T
o
rq

u
e
 (

m
N
m

)

Index

 Reference  MTGP  RF  KNN

 
(d) 

Fig. 10.  Comparisons of MTGP, RF, KNN method: (a) The 1st coil; (b) 
The 2nd coil; (c) The 13rd coil; (d) The 14th coil. 

 
(a) 

 
(b) 

Fig. 9.  The entire distribution of the output torques calculated by the 
MTGP method: (a) The 1st coil; (b) The 13th coil. 
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Furthermore, other performance indicators for all the coils, 

including mean absolute error (MAE), root mean squared error 

(RMSE), and normalized root mean squared error (nRMSE%), 

are calculated for MTGP, RF and KNN. Fig. 12 shows the 

distributions of performance indicators for all 24 coils by these 

methods. The upper and lower bar represent the maximum and 

the minimum, respectively, and the red line presents the median. 

It can be seen that the average level of MAEs, RMSEs, and 

nRMSEs of the MTGP method are lowest compared to other 

two approaches. The width of the box reflects the volatility 

level of the indicators. From this figure, the width of the boxes 

by MTGP are narrower than other two approaches, which 

indicates better results. The average R-square, MAE, RMSE, 

nRMES% are computed to verify the MTGP, RF, KNN methods 

as listed in Table II. The running time of the program for the 

MTGP, RF, KNN methods are listed, too. In terms of the 

accuracy of the results, it is clear that the MTGP method is 

superior than the RF and KNN methods. However, in terms of 

the running time of programs, the MTGP method does not have 

advantages. With the same size of training set, the MTGP 

method runs longer than the other two methods. Nevertheless, 

since the accuracy is of primary importance, the MTGP method 

is considered to be more appropriate in this case. In fact, the 

most time-consuming part of this case is obtaining training data 

by the FEM. Therefore, the size of the training set is one of the 

factors to be taken into account under the same computational 

accuracy. Table III shows the comparison on the size of the 

training set among the MTGP, RF, and KNN methods. The 

average R-square is considered as the performance metric to 

evaluation these three methods and it is acceptable that the 

R-squared is greater than 0.95. From the Table III, it can be 

found that the size of the training set under the MTGP method 

is the smallest, indicating that the MTGP method is time-saving 

in getting training set. 

 

VI. CONCLUSION 

This paper has presented a multi-task Gaussian process 

method to compute the output torques of PMSMs. Test results 

have validated the numerical method (FEM), which is used to 

provide training data for the multi-task Gaussian process 

method. Among data-driven methods, the proposed method has 

superior performance for PMSMs. The proposed method can be 

generalized in PMSMs and serves as a guideline for computing 

output torque using data driven methods. This helps reduce the 

computation time and promotes the widespread of PMSMs in 

precise position control applications. 

APPENDIX 

A. Matrix-variate Gaussian Distribution 

The random matrix 
n dΧ  is said to have a matrix-variate 

Gaussian distribution with mean matrix 
n dM  and 

covariance matrix 
n nΣ , 

n n  if and only if its 

probability density function is given by 
/2 /2 /2

1 T 1

( | , , ) (2 ) det( ) det( )

1
  etr( ( ) ( ))

2

dn d np    

 



   

X M

X M X M

   

 
 (16) 

where etr(·) is exponential of matrix trace,  and   are 

positive semi-definite. It is denoted 
, ( , , )d nΧ M Σ . 

B. Performance Indicators 
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Fig. 11.  R-squared scores of the MGP, RF, and KNN methods. 
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Fig. 12.  Distributions of performance indicators for all 24 coils. 

TABLE II 
THE AVERAGE PERFORMANCE INDICATORS 

 MTGP RF KNN 

R-square 0.980 0.805 0.832 

MAE 4.952 17.949 16.833 
RMSE 7.632 23.267 22.126 

nRMSE% 7.815 23.545 22.022 

Running time (s) 28.14 9.02 7.96 

 

TABLE III 
THE SIZE OF TRAINING SET 

 MTGP RF KNN 

Size of training 
set 

600 5000 4200 

R-square 0.9541 0.9503 0.9539 
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In Table IV, 
,r iy  refers to the i-th reference value, and 

,p iy  

refers to the i-th predictive value. 
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