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Abstract 10 

Securing the long-term resilience of the world’s most speciose avifauna, that of the 11 

Neotropics, requires spatially and temporally explicit data to inform decisions. We examine 12 

gaps in our knowledge of the region’s avifauna through the lens of the biodiversity shortfall 13 

concept: the gaps between realized knowledge and complete knowledge. This framework 14 

serves as a useful tool to take stock of the last 25 years of Neotropical ornithological work 15 

since the untimely death of Ted Parker. Here, we highlight seven key shortfalls: taxonomy, 16 

distribution, abundance, evolutionary patterns, abiotic tolerances, species traits, and biotic 17 

interactions.  We then propose an eighth – and new – ‘Parkerian’ shortfall that reflects a lack 18 

of basic natural history knowledge key both to understanding how species might respond to 19 

environmental challenges. Bridging this shortfall will help reverse declines by informing  20 

reintroduction, recovery network, and habitat restoration efforts. We discuss the challenges 21 

imposed by each shortfall and how strategies such as citizen-science initiatives and 22 

technological advances can either remedy or mitigate the uncertainty they generate. 23 

“I saw with regret, that whilst the number of accurate instruments was daily increasing, we 24 

were still ignorant” 25 

mailto:alexander.lees@mmu.ac.uk
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― Alexander von Humboldt, Personal Narrative of Travels to the Equinoctial Regions of 26 

America, During the Year 1799-1804 - Volume 1 27 

"Everything Ted saw in the field, he wrote down or dictated onto a tape; recording even 28 

seemingly inconsequential details about birds was an obsession for him.  Ted wrote notes so 29 

that he would not forget what he had observed. ...  He was constantly searching for patterns, 30 

in distribution, foraging behavior, vocalizations, flock dynamics, in almost any aspect of 31 

birds that attracted his attention" 32 

―Murray Gell-Mann, Gell-Mann, M. 1994. The Quark and the Jaguar. WH Freeman, New 33 

York. 34 

Keywords: biodiversity shortfalls, tropical birds, taxonomy, distribution, abundance, 35 

evolutionary patterns, abiotic tolerance, species traits, biotic interactions 36 

Understanding the extent of our gaps in scientific knowledge requires identifying that which 37 

we do not know; recognizing these gaps also helps researchers ask questions that can best 38 

advance science. Birds may be the best known of all terrestrial biota, but data scarcity still 39 

plagues ornithology and Neotropical ornithology, in particular. The last 25 years, since Ted 40 

Parker’s untimely death, have seen unprecedented changes in data collection, analysis, and 41 

availability. While the application of big-data approaches across large spatial, taxonomic, and 42 

temporal scales can fuel discovery, further advances are likely to be constrained by our 43 

inability to identify and prioritize research needs, as well as by a lack of basic knowledge 44 

about Neotropical birds. Shortfalls in our knowledge of biodiversity represent the gaps 45 

between realized knowledge and sufficient knowledge at the present day. Hortal et al. (2015) 46 

grouped biodiversity shortfalls into seven major domains related to systematics, 47 

biogeography, population biology, evolution, functional ecology, abiotic tolerances, and 48 

ecological interactions, combinations of which are needed to support effective conservation 49 
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actions. Here, we discuss the importance and magnitude of each of these shortfalls relative to 50 

our knowledge of Neotropical birds, highlighting recent advances and proposing research 51 

priorities. In addition, we propose a new, eighth shortfall to specifically address the 52 

tremendous gap in basic natural history knowledge that still exists for a majority of 53 

Neotropical bird species—a gap that Ted Parker spent much of his life attempting to fill 54 

(Remsen 1997). 55 

Systematics Domain: The Linnaean shortfall 56 

Linnaean shortfalls (Lomolino 2004) represent the gap between the number of species 57 

formally described by scientists and the number of species that actually exist. In terms of 58 

taxonomic knowledge, ornithologists are fortunate relative to scientists working with other 59 

taxa, given that estimates suggest that more than 95% of avian species have been described 60 

(Mora et al. 2011, Scheffers et al. 2012). However, recent discoveries suggest that this 61 

estimate may have been too optimistic for the Neotropics. The race to describe the region’s 62 

bird species reached its greatest intensity in the late 19th and early 20th centuries, often based 63 

on patchy specimen data from a taxon’s geographic range and the methods were invariably 64 

pre-quantitative. A subsequent and largely unquestioned spate of ‘lumping’ of these forms, 65 

under the auspices of the polytypic ‘biological’ species concept (Mayr 1942, 1963,) has 66 

significantly impeded taxonomic progress (e.g., Sangster 2014 see the Darwinian shortfall 67 

and the revision of alpha taxonomy within polyphyletic species groups). A recent 68 

morphological and genetic assay by Barrowclough et al. (2016) contends that avian 69 

evolutionary diversity has been substantially underestimated, and that, under a phylogenetic 70 

species concept, we would recognize approximately 2 to 2.5 times the current number of 71 

biological species. In this vein, Navarro-SigüenzaI & Peterson (2004) proposed an alternative 72 

phylogenetic species taxonomy for the Mexican avifauna (which in the Neotropical realm 73 

includes the Yucatán Peninsula and southern lowlands, and most of the east and west 74 
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coastlines and tip of the Baja California Peninsula) that resulted in splits affecting 135 75 

‘biological species’, resulting in 323 new phylogenetic species of which 122 were new 76 

national endemics, increasing the national bird list by 18%. 77 

Taxonomy does impact conservation efforts; although populations tend to be their focus, 78 

taxonomic designations at the level of species can profoundly affect conservation agendas 79 

and priorities (Hazevoet 1996, Peterson and Navarro-Sigüenza 1999), such that achieving a 80 

consistent taxonomy is critical to bird conservation (Bates & Demos 2001). Rather than 81 

resolve the persistent discord about species limits, critics argue that the widespread adoption 82 

of more liberal and readily quantifiable definitions of species, such as the phylogenetic 83 

species concept, would result in both an unmanageable number of names (Zachos 2013) and 84 

issues of diagnosability that might vary greatly among taxonomists (Tobias et al. 2010). 85 

Others assert that doubling or even tripling the number of Neotropical birds might not be 86 

unmanageable given the numbers of species in most other groups of organisms 87 

(Barrowclough et al. 2016), and quantitative methods abound to define diagnosability at the 88 

morphological, signalling, and genetic levels (Sangster 2014). 89 

Despite an arguably conservative approach to taxonomy, new species continue to be 90 

described on an annual basis from the Neotropical region, even from relatively well-91 

inventoried areas (e.g., Fig. 1a). Between 1960 and 2016, 147 new species were described 92 

from South America and a further seven from Central America and Mexico (Brewer 2018). 93 

Ted Parker himself authored descriptions of three new bird species and seven subspecies, 94 

some of which may yet be elevated to species status in the future. Inspired by Parker, a 95 

number of his contemporaries have gone on to discover additional species. Most notable was 96 

a recent landmark volume in the Handbook of the Birds of the World series (de Hoyo et al. 97 

2013) which published the descriptions of 15 new species from Amazonia (Whitney & Cohn-98 

Haft 2013). This sudden rush of new Amazonian forms, not all of which have been formally 99 
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recognised by all taxonomic bodies, reflects a broader changing picture of our understanding 100 

of the importance of acoustic (Remsen and Schulenberg 1997) and molecular tools in 101 

informing avian taxonomy (Remsen 2005). In most cases this re-evaluation of species 102 

assemblages will be reflected by redefining species limits, resulting in a significant increase 103 

in taxonomic ‘splitting’, but a smaller fraction of this unrecognised diversity will likely stem 104 

from completely undescribed new taxa.  105 

Though visiting remote or inaccessible regions remains a priority for finding new species, the 106 

recent spate of discoveries in relatively well-visited regions reminds us that we must remain 107 

diligent everywhere, especially in megadiverse regions which have suffered extensive habitat 108 

loss. Hotspots for new species in recent years have included the Andean foothills and 109 

outlying ridges, Western Amazonian interfluvial regions ((Whitney & Cohn-Haft 2013: Fig 110 

1b), and remarkably still the Brazilian Atlantic Forest (Lees & Pimm 2015). That species 111 

could remain undetected in some of these regions given the relative ease of access and long 112 

history of ornithological fieldwork is more a reflection of the small population sizes and 113 

hyper-fragmented habitats of many of these new species that now stand on the brink of global 114 

extinction (Lees & Pimm 2015). Finding these last species is thus a critical task for 115 

conservation biologists.  116 

Sensational rediscoveries such as that of Kaempfer's Woodpecker (Celeus obrieni) in 2006 117 

(Fig. 1c), formerly known only from the type specimen collected in 1926, and now known to 118 

occur in bamboo groves over a huge swath of eastern Brazil, attests to the ease with which 119 

even charismatic species may elude ornithologists (Leite et al. 2013, Dornas et al. 2014). 120 

Major range extensions of difficult-to-detect species like owls, nightjars, and rails offer hope 121 

that these families may still harbour undescribed taxa. Some species may be forever lost to 122 

discovery, and we also need to redouble our effects to look for historic continental extinctions 123 

by searching carefully through museum drawers and hunting for subfossils. The Cryptic 124 
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Treehunter (Cichlocolaptes mazarbarnetti), for example, was described from museum 125 

specimens, seemingly after its global extinction (Mazar-Barnett and Buzzetti 2014, Lees & 126 

Pimm 2015). The marine realm may also continue to be a source of new taxa, especially 127 

among cryptic Procellariiformes (Harrison et al. 2013) which may again be spurred on by 128 

advances in the use of DNA and acoustic analyses.   129 

Filling the Linnaean shortfall will require increased financial support for alpha taxonomy 130 

work and associated, collaborative expeditions to inaccessible or previously unsampled 131 

Neotropical locations.  Underpinning these efforts must be stronger peer-recognition of the 132 

field of taxonomy, which is often viewed as ‘low impact’ in academic assessments 133 

(Agnarsson & Kuntner 2007), and also much greater support in general for the curation and 134 

use of museum collections associated with universities and other research institutions. 135 

Strengthening partnerships and increasing capacity for natural history collections within Latin 136 

America will be especially important as incoming generations of field ornithologists and 137 

students are well poised to discover the next wave of avian species. 138 

Biogeographic domain – The Wallacean shortfall 139 

Wallacean shortfalls represent gaps in our knowledge concerning geographic range limits and 140 

predicted distributions (Lomolino 2004), which remain a fundamental challenge to 141 

biogeographers and conservation biologists alike. Historically, in the absence of systematic 142 

surveys, general range maps were usually constructed from presence-only data from museum 143 

specimens and opportunistic citations of species in the technical and scientific literature 144 

(Anderson 2012). Wallacean shortfalls remain especially pervasive in the Neotropics given 145 

the inaccessibility of remote regions such as mountain ranges or corners of Amazonia that 146 

also sustain Linnaean shortfalls. Although ornithologists and birders are improving our 147 

understanding of coarse-scale ranges for many species – as evidenced by the relatively 148 
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frequent discovery of major range extensions – our knowledge of specific habitat associations 149 

and derived distributions remains poor for most species and regions (Engler et al. 2017) and 150 

especially in the tropics (Orihuela-Torres et al. 2020).   151 

Incomplete knowledge of physiognomic (e.g., elevation) and habitat associations results in 152 

general polygons as the only form of representing a species’ range and distribution, in 153 

contrast to the detailed products being generated for some North American species across the 154 

full annual cycle (Fink et al. 2018). Although efforts exist to update these maps using more 155 

recent observations (e.g., Map of Life https://mol.org/), these maps are likely to fail to 156 

represent the true geographic extent of occurrence and abundance across a species’ 157 

distributional range. Most species may also have disjunct or patchy distributions that are 158 

poorly depicted in current range maps (Diamond 1980). Because Wallacean shortfalls are 159 

exaggerated by spatio-temporal biases in data collection (e.g., between wet and dry seasons in 160 

Amazonia when regions can become difficult to access), they are more challenging to fill 161 

than Linnaean shortfalls. These seasonal biases make understanding phenomena such as 162 

migration particularly complicated and often reinforce the pervasive assumption of residency 163 

which may mask partial and altitudinal migration across the region (e.g., Lees & Martin 164 

2014, Lees 2016, Fig, 1c; but see also Areta and Juhant 2019). Indeed, the distribution of 165 

many common Nearctic–Neotropical migrants, such as the Black-billed Cuckoo (Coccyzus 166 

erythropthalmus) and Veery (Catharus fuscecens), remain poorly described during non-167 

breeding seasons, which not only can lead to overestimation of true range size (Remsen 168 

2001), but causes us to overlook inter-seasonal dynamics and the importance of multiple 169 

regions for migratory species (Heckscher et al. 2011, 2015, Renfrew et al. 2013).  Ultimately, 170 

these knowledge gaps can seriously undermine our ability to predict the impacts of potential 171 

threats and identify habitat needs for species through their annual life cycle, including 172 

migratory stop-over sites that might be critical to sustain populations (Bayly et al. 2018). 173 

https://mol.org/


8 
 

Cottee‐Jones et al. (2016) designated these issues with migratory species the ‘movement 174 

shortfall’.  175 

Wallacean shortfalls do not apply to individual species alone, rather they can extend to entire 176 

guilds. For example, pelagic avifauna in the Neotropics have been the subject of relatively 177 

few dedicated offshore surveys, though recent work has unearthed a number of biogeographic 178 

surprises (e.g., Klein et al. 2012; Lees et al. 2015). Data loggers and satellite tags hold 179 

promise to substantially improve our knowledge of the non-breeding distribution of many 180 

seabird species, as evidenced by the new discovery that both Desertas (Pterodroma deserta 181 

Ramírez et al. 2013) and Zino’s (P. madeira; Zino et al. 2011) Petrels occur off the coast of 182 

Brazil. Movement technologies have also been employed for terrestrial guilds of species and 183 

have revealed, for example, the hitherto unknown wintering grounds of the Caribbean Martin 184 

(Progne dominicensis; Perlut et al. 2017) and a North American population of Black Swift 185 

(Cypseloides niger borealis; Beason et al. 2012), as well as new insights into migration routes 186 

and timing for the more common Purple Martin (Progne subis) (Fraser et al. 2013). Major 187 

shortfalls persist, however, for other closely related, yet difficult to identify, species in the 188 

aerial insectivore guild, such as Peruvian (Progne murphyi) and Sinaloa (P. sinaloae) 189 

Martins, as well as many species of Neotropical swifts.  190 

Lack of basic knowledge of where and when species occur is a major obstacle for effective 191 

design of biodiversity conservation strategies. Resolving all Wallacean shortfalls may be a 192 

mammoth task but solutions can be simple, such as requiring increased support for 193 

organizations in Neotropical countries who are interested in working in out-of-the-way 194 

places. Important shortfalls might be remedied in high-priority regions, for example, by 195 

schemes such as the Rapid Assessment Program (RAP) that Ted Parker designed and directed 196 

for Conservation International (Remsen and Schulenberg 1997) and which was continued in 197 

the  Field Museum of Natural History’s Rapid Biological Inventory program 198 
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(http://fm2.fieldmuseum.org/rbi/). Importantly, RAP expeditions are collaborations between 199 

North American and Neotropical experts and feed directly into capacity building and 200 

conservation planning within the host countries.  201 

Though tropical conservation efforts can benefit from rapid assessment programs at specific 202 

sites, they are unlikely to be a panacea to remedy large data gaps across vast areas. Large-203 

scale citizen science initiatives and publicly available data repositories are now in a position 204 

to fill many of these knowledge gaps on bird distributions by moving beyond collecting 205 

presence-only data to collect location-specific information on species presence-absence and 206 

even relative abundance. These programs vary from organically grown web resources such as 207 

the Brazilian WikiAves initiative (http://www.wikiaves.com.br/), which has amassed over 208 

2.9M bird images through 2020, to more science-driven, institutionally supported programs 209 

like eBird (www.eBird.org) that has amassed nearly a billion bird records worldwide 210 

(Sullivan et al. 2017), including more than 19 million media specimens available for 211 

scientific study. Participation in eBird is increasing rapidly in neotropical countries, with 212 

dedicated web portals (e.g., AverAves in Mexico), data fields needed to inform species 213 

distribution models (e.g., effort, location, presence-absence), embedded protocols for large-214 

scale monitoring programs (e.g., International Shorebird Survey, Latin America Program for 215 

Wild Birds - PROALAS), and a network of national and regional reviewers exchanging 216 

knowledge of bird distributions with a growing army of skilled observers. As an example of 217 

the power of this program to collect information that is useful to predict species distributions, 218 

34,000 people in 173 countries found 6,942 bird species and gathered more than 185 million 219 

records during a 24-hr birding period known as Global Big Day in 2019 220 

(https://ebird.org/globalbigday). The increased focus on data quality in citizen-science 221 

programs has improved the application of these data to inform species distribution models, 222 

http://fm2.fieldmuseum.org/rbi/
http://www.wikiaves.com.br/
http://www.ebird.org/
https://ebird.org/globalbigday
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improving our ability to accurately predict the extent of species occurrence at various spatial 223 

and temporal scales (Engler et al. 2017).  224 

Species distribution models (SDMs) using climate and topography are good at predicting the 225 

potential niche/distribution of a species. However, deeper information on habitat associations, 226 

effects of fragmentation, dispersal, harvesting and other factors are needed to properly predict 227 

the realised niche/distribution of the species - this relates to other shortfalls but is important 228 

for conservation (VanDerWal et al. 2009). In addition, the uncertainty around predicted 229 

occurrence probabilities can be used to identify areas of high uncertainty where more 230 

observations are needed (Guillera-Arroita 2017). Overall, the use of existing platforms for 231 

data collection and storage (e.g., eBird and Birdtrack for birds), especially those that can 232 

provide information on both presence and absence of species at specific locations and archive 233 

verifiable media specimens, will facilitate the ability of governments and other stakeholders 234 

to use observations collected from citizen scientists, as well as increase the value of expert-235 

led assessments such as RAP. 236 

Population biology domain: The Prestonian Shortfall 237 

The Prestonian shortfall reflects our lack of knowledge on spatial and temporal changes in 238 

abundance and related population dynamics (Cardoso et al. 2011). Data to estimate these 239 

state variables are more challenging to obtain than simple presence-absence data, largely due 240 

to low detection probabilities of many Neotropical bird species due to combinations of 241 

natural low population densities or sensitivity to disturbance, low vocalisation rates and 242 

structurally complex habitats which make visual detection difficult (Archaux et al. 2012, 243 

Robinson et al. 2018a). In addition, reaching survey locations may be prohibitively 244 

logistically challenging, especially in montane regions or in remote Amazonian interfluvial 245 

regions where and logistics cost may be prohibitive. These challenges are exacerbated by the 246 
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high costs of long-term data collection and the potential for high variability in species 247 

abundance patterns that may necessitate more intensive sampling. In these respects, 248 

Wallacean and Prestonian shortfalls are inextricably-linked – we often collect information not 249 

just on species presence and absence, but also on relative or absolute abundance, all in one 250 

survey. Sampling effort also needs to represent the full gradient of land cover classes where a 251 

species can be found, in order to increase the accuracy of both distribution models and 252 

abundance estimates (e.g., Moura et al 2013). In general, spatio-temporal bias and class 253 

imbalance issues (e.g., too many zeros associated with rare species) related to most survey 254 

data are difficult to mitigate without large sample sizes, leading to inaccurate, or at best 255 

imprecise, estimates of abundance needed for many conservation planning efforts (Gaston & 256 

Rodrigues 2003, Mace 2004, Robinson et al. 2018b). 257 

Estimating changes in abundance is one of the costliest monitoring objectives for any 258 

taxonomic group. Not surprisingly, then, estimating population size for most Neotropical 259 

birds remains out of reach except for extreme cases where species are so rare that each 260 

individual may be counted as, for example, the  Orange-bellied Antwren (Terenura sicki; 261 

Pereira et al. 2014, Fig 2b). The same may also be true for some colonial species restricted to 262 

a relatively small number of breeding sites which may be remotely detected by satellite 263 

(Fretwell et al. 2017), drone (Hodgson et al. 2017) or even kite (Delord et al. 2015). Most of 264 

our information on changes in abundance comes from statistical models used to estimate 265 

relative abundance and these are few in number (Buckland et al. 2008, Denes et al. 2017, 266 

Gomez et al. 2017, Kuichi et al, 2018). Estimates of relative abundance can be modelled 267 

across time, and, although estimates of population size are likely to be far from perfect, the 268 

overall trajectory of the population can be highly informative (Robinson et al, 2018b). 269 

Traditionally, estimation of population trends required standardized and optimized sampling 270 

protocols, including by citizen scientists (Sauer et al, 2011), but more recent advances have 271 
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been made to use opportunistically collected citizen-science data to estimate trends in relative 272 

abundance that can go some way towards correcting for both spatial bias and class imbalance 273 

(Robinson et al. 2017). Advances in species distribution modelling have leveraged patchy and 274 

sparse data (Fink et al. 2010) to estimate relative abundance across the entire range of 275 

widespread species (Fig 2b) throughout their full annual cycle, and these new dynamic 276 

abundance models have been shown to improve the prioritization of areas for conservation 277 

(Johnston et al. 2019). Moreover, local occupancy probabilities derived from SDMs have 278 

been found to be positively correlated with local abundance in a range of animal and plant 279 

groups (Weber et al. 2017). Although low densities of data from many parts of the Neotropics 280 

result in poor predictive performance, newer SDMs still perform well in data-poor regions, 281 

such as Central America, even with relatively sparse spatial sampling coverage (Fink et al. 282 

2020a).  283 

Unlike the situation at temperate latitudes, there are relatively few structured, long-term 284 

ornithological studies to monitor changes in relative abundance across Neotropical species 285 

over time (Robinson and Curtis 2020). Such studies are necessary given that their duration 286 

gives a broader overview of the minimum timeframe needed to estimate trends in abundance 287 

(~ 10yrs), which can be used to make inferences on minimum viable population size (Reed et 288 

al. 2003). Despite being critical for national, regional, and global species assessments (e.g., 289 

IUCN Red List), our capacity to estimate total population size for most species remains 290 

constrained by a paucity of data. Museum specimens and historical data can be helpful for 291 

providing a broader context to understand historic local extinctions (Kattan et al. 1994, 292 

Moura et al. 2014), which may pre-date any type of monitoring efforts and provide a sense of 293 

the context for current population trend estimates.  294 

Although citizen science holds a great deal of promise in filling these shortfalls, 295 

participants will require careful guidance from experts in wildlife population monitoring to 296 



13 
 

make sure that we not only increase the quantity of information, but also its quality. The 297 

application of best practices for collecting information, as well as the use of established 298 

sampling protocols developed to inform a broad range of statistical models (e.g., PROALAS 299 

for bird counts; Ruiz-Gutiérrez et al. 2018), will make the best use of monitoring resources. 300 

Another field with considerable potential to fill the Prestonian shortfall is automated acoustic 301 

monitoring of bird vocalisations (Leach et al. 2016). Although still in its infancy, 302 

developments in automated song recognition, falling costs of hardware, and increased 303 

interest, both from ornithologists and from other biological disciplines, will see a rapid 304 

growth in our ability to collect information on species’ presence-absence, to express relative 305 

abundance as inferred from calling intensity and to detect shifts in distribution within entire 306 

bird communities across potentially vast areas (Priyadarshani et al. 2018).        307 

Beyond understanding abundance, data on population dynamics of Neotropical 308 

species are even more costly and difficult to obtain. Although there are some notable long-309 

term projects that have resulted in contributions of population vital rates for Neotropical 310 

species (Brawn et al, 1999, reviewed in Ruiz-Gutierrez et al. 2012), there are relatively few 311 

contributions relative to the number of long-term banding projects underway in various parts 312 

of the Neotropics. Since 2012, there have only been a handful of published studies that look 313 

at survival rates for adults (e.g., Thomson and Estades 2012), and even fewer exist overall 314 

that look at survival during other critical life stages (e.g. juvenile survival). Ruiz-Gutierrez et 315 

al. (2012) suggest that this is largely due to overall low capture probabilities of Neotropical 316 

residents, small sample sizes due to the low number of mist nets (e.g., 10-15 nets) commonly 317 

used to sample what are often low-density bird communities, and inconsistencies between 318 

field protocols and requirements of capture-recapture models used to estimate population 319 

vital rates. Ruiz-Gutiérrez et al. (2012) provide guidelines for sampling designs that facilitate 320 
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the estimation of avian vital rates from banding, as part of long-term research projects as well 321 

as larger, coordinated banding efforts.  322 

Evolution domain: The Darwinian shortfall  323 

Darwinian shortfalls reflect a lack of knowledge about the evolutionary tree of life. Diniz-324 

Filho et al. (2013) identified three aspects that contribute to this shortfall: (a) a lack of fully 325 

resolved phylogenies; (b) limited knowledge of edge lengths and problems with absolute time 326 

calibrations; and, (c) a lack of evolutionary models to link phylogenies to ecological traits 327 

and life-history variation. Attempts to reduce the impact of these knowledge gaps has to start 328 

with knowledge of the terminal tips of the phylogenies and understanding their topological 329 

relationships to the other tips. The tips may refer to species or subspecies, many of which, at 330 

a molecular level, may be insufficiently distinct to be called either phylogenetic species or 331 

‘evolutionary significant units’ (Barrowclough et al. 2016). This is nominally the domain of 332 

the Linnaean shortfall – understanding how many species there are – and this basic 333 

taxonomic work is needed to define the biodiversity units of greatest interest to conservation 334 

biologists (Rojas-Soto et al. 2010). 335 

In recent years, far more emphasis has been placed on clarifying species status for 336 

contentious taxa than investigating geographic variation within species that is critical for 337 

understanding evolutionary relationships. It has been argued that many avian subspecies are 338 

poorly supported and often arbitrarily demarcated subdivisions of geographic gradients in 339 

character variation (Zink 2004). The diagnoses for most subspecies have not been revisited in 340 

recent years and are typically weak, with only some poor qualitative descriptions of 341 

morphological characters without recourse to statistical analyses (Remsen 2005). For 342 

example, neither morphological (Handford 1985) nor mitochondrial phylogeographic 343 

structure analyses (Lougheed et al. 2013) support the subspecific taxonomy of the Rufous-344 
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collared Sparrow (Zonotrichia capensis). Conversely, some poorly described subspecies 345 

eventually prove to represent undescribed or cryptic new species, once geographic variation 346 

(especially behavioural/vocal) within widespread taxa is better understood e.g. the Black-347 

billed Thrush (Turdus ignobilis) complex (Cerqueira et al. 2016). Preliminary analyses 348 

indicate that others demand attention e.g. the Sooty- headed/Yungas Tyrannulet (Phyllomyias 349 

griseiceps/weedeni) complex (Harvey et al. 2014). Full genome analyses are challenging our 350 

concepts of how species should be defined, with some long-cherished biological species such 351 

as Blue-winged (Vermivora cyanoptera) and Golden-winged (V. chrysoptera) warblers 352 

shown to be minimally distinct (Toews et al. 2016), whilst deep and phylogenetically 353 

informative divisions have been uncovered in other species (e.g. Harvey & Brumfield 2015, 354 

Cadena et al. 2019, Fig 2c).  The public availability of large databases such as GENBANK 355 

(http://www.ncbi.nlm.nih.gov/genbank) has done much to facilitate this rapid rise in 356 

knowledge acquisition of the evolutionary relationships among birds.  357 

Nevertheless, avian phylogenies are far more complete than for any other major taxonomic 358 

group. For example, there is now a complete global phylogeny available for all birds (Jetz et 359 

al. 2012), albeit with remaining uncertainties about positions of deep branches in the tree and 360 

with inductive inference, rather than measurement, guiding some genetic placements. New 361 

family-level phylogenies for Neotropical bird families are appearing on a regular basis (e.g., 362 

Derryberry et al. 2011, McGuire et al. 2014) catalysed by rapid progress in DNA sequence 363 

technology, bioinformatics, molecular genetics, and phylogeny reconstruction. In fact, since 364 

1993, there has been an explosion of phylogenetic studies of Neotropical birds and a 365 

proliferation of molecular laboratories at universities and museums, including in several 366 

Neotropical countries facilitating major multi-taxon assessments (e.g., Silva et al. 2019). This 367 

explosion was made possible by the regular collection of tissue samples for genetic analysis 368 

as part of regular biodiversity collecting, as pioneered by Ted Parker and his colleagues 369 

http://www.ncbi.nlm.nih.gov/genbank
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during the 1980s. Despite this overall progress in understanding evolutionary relationships in 370 

recent decades, the phylogenetics and historic biogeography of many diverse Neotropical 371 

species groups remain unresolved, hampering our ability to identify and conserve biodiversity 372 

hotspots of greatest evolutionary significance.  373 

A community’s phylogenetic diversity (after Faith 1992), calculated as the sum of branch 374 

lengths between root and tips on a phylogenetic tree, is becoming an increasingly established 375 

metric to assess biological integrity alongside taxonomic diversity (species richness) and 376 

functional diversity (incorporating species trait information). Integrating information on the 377 

phylogenetic positions of species provides information about the legacy of evolutionary 378 

processes (e.g., speciation) into conservation assessments (e.g., Edwards et al. 2015, Lees et 379 

al. 2016) and may add more conservation value to more evolutionary distinct species 380 

regarded as having greater irreplaceability (Fig 3a, b). There is growing evidence that 381 

increased phylogenetic diversity predicts some measures of enhanced ecosystem functioning 382 

(Cadotte, et al. 2012, Cadotte 2013), and, if this proves to be a general rule, then phylogenetic 383 

diversity might well provide a powerful tool for evidence-based conservation strategies given 384 

that collecting phylogenetic data is often considerably easier than collecting detailed trait 385 

data.  386 

 387 

Functional ecology domain: The Raunkiæran shortfall 388 

A lack of knowledge about species-specific traits and their ecological functions has been 389 

termed the Raunkiæran shortfall (Hortal et al., 2015) after Christen C. Raunkiær the Danish 390 

botanist. The last few years have seen several heavily populated global databases that 391 

describe birds in terms of their functional traits, rather than their taxonomic or phylogenetic 392 

affiliations. These databases have built on the phenomenal legacy of the first comprehensive 393 
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trait database of Neotropical birds assembled by Parker et al. (1996). Subsequent databases 394 

have, for instance, covered fairly crude measures of body mass, diet, habitat, and foraging 395 

stratum data (Wilman et al. 2014) at a global level, but finer-tuned datasets are now 396 

becoming available extending to, for example, bill morphology of thousands of species 397 

(Cooney et al. 2017). Trait datasets previously available for certain clades and regions have 398 

now been published at global scales for almost all bird species, including morphological traits 399 

linked to trophic niches (Pigot et al. 2020) and dispersal ability (Sheard et al. 2020) and work 400 

on collecting data on plumage traits is ongoing 401 

(https://www.zooniverse.org/projects/ghthomas/project-plumage). Functional trait-based 402 

approaches are used in a wide range of applications in ecological and evolutionary research; 403 

traits are viewed as phenotypic attributes affecting their fitness, that of other organisms, and 404 

the ecosystems they inhabit (Violle et al. 2007). Quantitative trait values lend themselves to 405 

easy comparisons between and among populations, species, and communities subject to 406 

different environmental conditions.  407 

Quantitative trait data have been used, for example, in studies of the loss of ecosystem 408 

services such as seed dispersal and top-down control of herbivory (Bregman et al. 2016). 409 

Such studies can then provide insight into the relative contribution of different species in 410 

providing such services. In the latter case species that contributed most to network 411 

organization were at higher risk of extinction. Use of species traits and deeper information on 412 

how individual species interact with each other within an ecological network analysis 413 

framework has shown particular promise in identifying the key role of particular bird species 414 

in maintaining forest ‘health’ (e.g., Sebastian-Gonzalez et al. 2017), and what likely happens 415 

when such species are lost. For example, Vidal et al. (2014) found that the species that 416 

contributed most to plant–frugivore interaction network organization in an Atlantic Forest 417 

system were at higher risk of extinction. The loss of such species has impacts that cascade to 418 

https://www.zooniverse.org/projects/ghthomas/project-plumage
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communities, driving for example, rapid evolutionary changes in seed size (Galetti et al. 419 

2013) with knock-on effects on other ecosystem services such as carbon storage (Bello et al. 420 

2015). 421 

This recent accumulation of knowledge of traits derived from specimen data suggests, at least 422 

for those species for which sufficient museum specimens exist, that we are making progress 423 

in making up this shortfall. However, a major characteristic of the Raunkiæran shortfall is 424 

that the traits that are typically measured are often the simplest, rather than the most 425 

functional (Hortal et al., 2015). There is an urgent need to use informative functional traits - 426 

those linked to species’ tolerance of abiotic and biotic conditions or to the effects of species 427 

on ecosystems (Hortal et al., 2015). As such, more effort needs to be concentrated on 428 

behavioral, physiological, and life history traits (Kingsolver et al. 2001) instead of simply 429 

morphological ones.  430 

Abiotic tolerance domain: The Hutchinsonian shortfall  431 

The Hutchinsonian shortfall represents a lack of understanding of the responses and 432 

tolerances of species to varying abiotic conditions. Rosado et al. (2016) argued that this needs 433 

to be subdivided into the Grinnellian shortfall, which reflects a lack of knowledge about 434 

responses of species to a given environmental driver, and the true Hutchinsonian shortfall, 435 

reflecting uncertainty about the functional roles of species. Nuances aside, the shortfall is 436 

itself directly influenced by the Wallacean shortfall; in order to understand environmental 437 

tolerance we must first have a clear idea of where species are in time and space. If 438 

observations of any given taxon cover a representative sample of environmental gradients 439 

within their range, then data collection bias may not be too troubling for modelling efforts 440 

(Oliveira et al. 2016). Interpolated surfaces of predicted species distributions can be 441 

extremely important tools for seeking out relictual populations of rare species (Marini et al. 442 
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2010). However, consideration of recent habitat loss is important as current distributions for 443 

many species may reflect habitat availability in the Anthropocene that may be constrained 444 

given that humans tend to settle in biological hotspots (Cincotta et al. 2000). Some species 445 

may even be observed in suboptimal habitat types, which, if considered in isolation in a 446 

modelling framework, may result in misleading habitat suitability models and lead to 447 

perverse conservation decisions (Pulliam & Danielson 1991).     448 

Understanding abiotic tolerance and the interaction between topography and climate will be 449 

crucial to predicting Neotropical bird responses to climate change coupled with other global 450 

change drivers, such as habitat loss, fragmentation and degradation, the invasion of exotic 451 

species, and parasites or pathogens that cause disease (Ehrlich & Pringle, 2008, Frishkoff et 452 

al. 2016). Threats from climate change to Neotropical birds are myriad and range from the 453 

collapse of montane climate envelopes as distributions are forced to move upslope 454 

(Sekercioglu et al. 2008, Freeman et al, 2018) to potential wholesale Amazonian die-back and 455 

switch to alternative stable ecosystem states (Malhi et al. 2008). Clearly, our ability to 456 

understand tolerances and threats is dependent on knowledge of species-specific physical and 457 

functional traits, highlighting a direct link between Raunkiaeran and Hutchinsonian shortfalls. 458 

Work on understanding climate change responses has focussed on modelling expected 459 

changes in species-specific distributions (Elith & Leathwick, 2009) based on observed 460 

changes in species distributions under past or future climate change scenarios. These have 461 

often focussed on altitudinal range shifts (Forero-Medina et al. 2011, Freeman et al. 2018). 462 

Other studies have drawn attention to the role of slope, aspect and soil composition in 463 

mediating community composition (e.g., Cintra & Naka 2011) which in turn mediate 464 

microhabitats used by birds (Stratford and Stouffer 2015). SDMs have become a key tool for 465 

ecologists to build quantitative models of climate change impacts on the spatial distribution 466 

of individual species (Thuiller, 2003). Mokany and Ferrier (2011) made a case for the 467 
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development of semi-mechanistic models at the community level to model climate change 468 

impacts on biodiversity. Such a conceptual integrated modelling framework approach 469 

(Mokany et al. 2015) would retain the features of existing correlative community-level 470 

models to deal with shortfalls, while including mechanistic processes in predicting how 471 

diversity will change over time as environmental conditions vary.  472 

 473 

Biotic interactions domain: The Eltonian shortfall 474 

The Eltonian shortfall is arguably the widest of all of the biodiversity shortfalls. It 475 

encompasses the gaps in our knowledge of species’ interactions and their effects on 476 

individual survival and fitness. The complexity of biotic interactions likely peaks in the 477 

humid tropics (Schemske et al. 2009), and the web of potential interactions that characterize 478 

hyperdiverse tropical biotas are legion. They obviously do not stop at just those between one 479 

bird species and the next but reflect the whole gamut of interactions between predators and 480 

prey, mutualisms, transmission of parasites and pathogens, and even ecosystem engineering. 481 

Bridging this shortfall by necessity requires knowledge of the basic ecology and natural 482 

history of Neotropical birds, highlighted in the next shortfall; one cannot understand species 483 

interactions and interdependence without this baseline knowledge. The slow drip of 484 

publication of papers on natural history and community dynamics is iteratively chipping 485 

away at the Eltonian shortfall. Exciting recent examples include the discovery that mixed 486 

species flocks change their habitat use when flock-leading Thamnomanes antshrikes are 487 

temporarily removed (Martínez et al. 2018) and the discovery that holes made by Diglossa 488 

flowerpiercers facilitate nectar access for hummingbirds which are also ‘illegitimate’ 489 

accessors of nectar resources (Gonzalez and Loiselle 2016). 490 
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Interactions between species have been shown to be highly sensitive to anthropogenic 491 

change. Neotropical birds exhibit some of the most complex social mutualisms known to 492 

science, including those observed between members of avian mixed-species flocks (Munn 493 

1986)—interactions that may be highly sensitive to environmental change (Mokross et al. 494 

2014). These changes must reach back further than recent land-use change with many 495 

interspecies interactions likely having been lost following the extinction loss of almost the 496 

entire Neotropical megafauna (Galetti et al. 2018). Large mammals and birds, for example, 497 

may be extremely important for ecosystem function, and loss of co-occurring biodiversity 498 

maintenance via trophic cascades and propagation of consumer impacts through food webs 499 

may lead to trophic downgrading (Svenning et al. 2016). This loss can be reversed by re‐500 

introducing key species in defaunated or restored forests, a process of trophic rewilding that 501 

is likely to become a key conservation tool in the tropics as well as the temperate zone 502 

(Galetti et al. 2017).  503 

One of the most striking examples of species interactions of conservation concern involves 504 

the recent discovery that survival of the insular endemic Golden Lancehead (Bothrops 505 

insularis) snake relies on the seasonal arrival of its prey – migrant Elaenia flycatchers, drifted 506 

off course to the snake’s tiny island redoubt - the Ilha da Queimada Grande off the coast of 507 

SE Brazil (Marques, et al. 2012). At a broader scale, knowledge of the keystone role of army 508 

ants in Neotropical forests is nothing new, but only recently has the magnitude of these 509 

interactions started to become better documented—for instance over 300 species of animals 510 

are thought to be dependent on single army ant species: Eciton burchellii (Rettenmeyer et al. 511 

2011). In the case of many bird species, this relationship amounts to parasitism of the ants, 512 

rather than the long-thought mutualism (Wrege et al. 2005). Knowing the critical importance 513 

of these interspecies interactions, both local and widespread, we must wonder at how many 514 

additional examples await discovery within Neotropical bird communities. Work on parasites 515 
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and their impacts on Neotropical bird populations, especially in the context of global change 516 

are even more limited but are now known to be potentially extremely important at least in 517 

insular systems (Bulgarella et al. 2018). 518 

New analytical techniques and statistical frameworks are shedding light on interspecific 519 

behaviors and associations, and ways to estimate species interactions (Rota, 2016). Joint-520 

species distribution models can now accommodate species traits and interactions and can 521 

include habitat-associations at multiple levels, including detection probability (Ovaskainen et 522 

al, 2019). This last point can be an important factor when the detection probability of species 523 

is influenced both by density-dependent call rates and by the presence of the other species. 524 

Network analyses also offer a useful conceptual framework to understand the complexity of 525 

biological systems in providing metrics to assess the strengths of interactions at the species 526 

level (Bascompte et al. 2006). Understanding the consequences for communities of the 527 

gradual erosion of species from ecological networks is crucial to determine their resilience to 528 

environmental change. The existence of any thresholds, after which community collapses are 529 

precipitated, will be depend on both the degree of ecological redundancy for species within 530 

the system and the responses of keystone species to habitat loss (Guimarães et al. 2011). 531 

Combining community-level data with life-history traits permits investigation of the role of 532 

inter-specific competition to be explored across environmental gradients (e.g. Bregman et al. 533 

2015) to understand the consequences for ecosystem function.  534 

Natural History domain: The new Parkerian shortfall 535 

In addition to formal approaches to understanding physical and functional traits of species, a 536 

lack of basic natural history knowledge for most Neotropical bird species greatly impedes our 537 

ability to fill the Raunkiaerian and other shortfalls. We hereby term this specific knowledge 538 

gap the Parkerian shortall. This shortfall reflects the fundamental importance of basic natural 539 
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history in underpinning our understanding of species’ limits and phylogenetic relationships, 540 

geographic distributions, and ecological requirements. During his relatively short career, Ted 541 

Parker used his singular skills of observation and meticulous record-keeping to reveal how 542 

behavioural and microhabitat specializations contribute to avian biodiversity (e.g., Remsen 543 

and Parker 1983), as well as the relationship between foraging behaviour and habitat 544 

selection in understanding a species' biogeography and phylogenetic position (Remsen and 545 

Schulenberg 1997).  546 

One example of how natural history studies, inspired by Ted Parker, led to cascading 547 

knowledge gains in other domains began with the recognition that a diverse foraging guild of 548 

species in several families were extreme specialists on aerial leaf litter in tropical forests 549 

(Remsen and Parker 1984, Gradwohl and Greenberg 1984). Subsequent behavioral and 550 

ecological studies of this guild (Rosenberg 1997) increased our knowledge of mixed-species 551 

flock dynamics and generated a new hypothesis of relationships within the speciose antbird 552 

genus Myrmotherula (Hackett and Rosenberg 1990), which eventually led to the recognition 553 

of a distinct new genus (Isler et al. 2006). Similarly, careful attention to microhabitat 554 

differences among similar species, first noted by Parker, led to discovery of major range 555 

extensions among Amazonian bamboo specialists (Parker et al. 1997) and the recognition of 556 

many species, cryptic or otherwise, that are restricted to white sand forests (Alonso and 557 

Whitney 2003, Adeney et al. 2016). Finally, there are numerous cases in which understanding 558 

the subtle variation in vocalizations among species across barriers or habitats has led to major 559 

taxonomic and biogeographic revisions within several Neotropical families, including, for 560 

example, antbirds (Isler et al. 1998), tapaculos (Krabbe and Schulenberg 1997, Cadena et al. 561 

2020), and woodcreepers (Rodrigues et al. 2013). 562 

A lack of knowledge of the foraging behaviour and diet of individual species continues to 563 

impede our ability to understand ecological processes such as seed dispersal and pollination, 564 
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and to understand habitat requirements and the degree of threats from anthropogenic change 565 

with basic biological information lacking for many species (see gaps in the new Birds of the 566 

World platform https://birdsoftheworld.org/). For example, as of 1 May 2020, 110 Neotropical 567 

species were missing from the Macaulay Library archive, and 96 New World species missing 568 

from xeno-canto (hence their vocal behaviour is unknown or unavailable for study) and even 569 

basic nest descriptions are not listed for 328 of a sample of 1018 Neotropical species across 570 

nine families (Table 1). Continuing to populate these data resources will be a major step 571 

towards filling the Parkerian shortfall and providing the raw material for filling shortfalls in 572 

other domains. 573 

Tackling the Parkerian shortfall requires greater valuation of basic natural history information 574 

(Bartholomew 1986, Cotterill and Foissner 2010). This valuation needs to extend not just to 575 

biodiversity inventories and taxonomy that fall in the broader natural history remit that we 576 

earlier champion, but also of careful quantitative and qualitative observations of the ecology 577 

of species that do not need to be hypothesis driven to be of merit. Such data has found 578 

champions in the Neotropics across the decades, natural historians like Helmet Sick, 579 

Alexander Skutch, and Edwin Willis,  have paved the way for subsequent ornithologists by 580 

filling in the gaps about life histories so fundamental to blockbuster global analyses of avian 581 

traits. Of the contemporary cohort of field ornithologists, Harold Greeney stands out as an 582 

author of several hundred ornithological papers that detailed the breeding biology of over 500 583 

Neotropical bird species (e.g., Greeney et al. 2004, 2007, 2013). New technologies such as 584 

camera traps and nest cams can help bridge this gap and further plug other shortfalls. The 585 

discovery of interspecific nesting associations involving Plumbeous Kites (Ictinia plumbea) 586 

and becards (Pachyramphus spp.) by Bodrati and Cockle (2017) is just one great example of 587 

such work. 588 

 Conclusions 589 

https://birdsoftheworld.org/
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Our review reveals that, despite progress in plugging knowledge gaps in Neotropical 590 

ornithology, some shortfalls, such as the Eltonian domain of biotic interactions, may persist 591 

for decades to come. Moving forward, one of the most important steps is to encourage, 592 

support, and value both basic science and natural history descriptions of Neotropical birds. 593 

The ‘pervasive denigration of natural history’ (sensu Cotterill and Foissner 2010) includes 594 

both the failure to appreciate and support biodiversity inventories and the failure of 595 

scientometrics to quantify the importance of taxonomic and natural history publications. 596 

Instead, we challenge the scientific community to better fund and recognize the contributions 597 

of ornithologists working to fill the shortfalls that we have highlighted.  In addition, increased 598 

attention should be directed towards building capacity and cultivating partnerships with local 599 

scientists and universities in Neotropical countries to mobilize the capacity that is needed to 600 

adequately fill the many knowledge gaps that still exist across the various shortfalls described 601 

in this paper.  602 

Another factor to consider is that interest in birds stretches far beyond professional 603 

ornithologists and includes a diverse group of amateur ornithologists, birdwatchers, 604 

naturalists, and outdoor recreationists. Therefore, prospects for addressing shortfalls are 605 

better than for other taxonomic groups. For example, much of the progress of the last two 606 

decades in filling in shortfalls have come from non-scientists, a large cohort of whom are bird 607 

tour guides with exceptional field expertise. For example, the Red de Monitoreo Comunitario 608 

de Aves in Mexico, led by NABCI and CONABIO, has trained over 660 members across 15 609 

Mexican states, contributed over 26,300 complete eBird checklists, playing a significant role 610 

in generating critical information on the distribution and abundance of Neotropical birds 611 

(CONABIO 2020). Encouraging the growing legions of birders to contribute to citizen-612 

science “big data” databases and archives is essential. Regional programs such as WikiAves 613 

and global ones like xeno-canto have been invaluable in capturing would-be citizen scientists 614 
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and archiving rich media specimens. While these individual efforts should be supported, there 615 

is also a growing need to connect across efforts such that data can effectively be combined 616 

and synthesized. The eBird enterprise (Sullivan et al. 2017) has become a benchmark in 617 

combining real-time information on distribution and abundance, with key data on natural 618 

history (e.g., breeding codes) and the ability to link field observations with specimen archives 619 

for photographs, video, and sound recordings. The continuing exponential growth of data 620 

submitted to this platform will undoubtedly reveal additional insights into species 621 

distributions, geographic variation, and behaviors that will lead to new taxonomic changes 622 

and knowledge of ecological relationships. Promoting eBird as a unified platform for natural 623 

history information on Neotropical birds could lead to major advances in filling knowledge 624 

shortfalls. 625 

As knowledge is amassed and published in an ever-expanding number of data repositories 626 

and journals, we also must continue to synthesize information in standardized accounts, such 627 

as the Birds of the World platform. These accounts are vital for tracking the boundaries of 628 

our knowledge, and for inspiring new exploration and research to continue to fill knowledge 629 

shortfalls. Until recently many of the scientific studies within the Neotropics were driven by 630 

North Americans and Europeans visiting the Neotropical frontier. Fortunately, the past two 631 

decades has observed an increase in ornithological research at universities across the 632 

Neotropics, with dedicated lab groups and university programs equipped with modern field 633 

and lab methods driving progress forward. These networks are both expanding and recruiting 634 

a new generation of young ornithologists through the work of Professional organisations, 635 

NGOs and birding clubs. Funding and supporting all of these efforts and programs is 636 

essential. 637 

Finally, we stand to gain much from new technologies and modelling applications to more 638 

quickly assimilate knowledge in all domains. As just one example, radio-tracking arrays (e.g., 639 
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Motus) may prove to be an excellent investment for tracking both local bird movements and 640 

those at hemispheric scales, opening new frontiers in understanding dynamic avian 641 

distributions and ecological relationships (Gomez et al, 2018). Similarly, advances in genetic 642 

techniques and analyses are catalysts for rapid changes in our understanding of taxonomic 643 

relationships – within species as well as across newly recognized bird families. Our greatest 644 

progress in filling knowledge shortfalls will come from coordinating and synthesizing such 645 

advances in order to increase our understanding of Neotropical avian diversity, patterns of 646 

endemism, and especially threats that need to be addressed in conservation strategies. Even as 647 

our scientific knowledge of Neotropical birds advances, however, an additional shortfall 648 

looms—our ability to link the importance of birds for ecosystem functioning to issues of 649 

broader conservation concern, such as improving food security. This is crucial given that 650 

public support is fundamental in leveraging both the policy and human behavioural change 651 

that are necessary to reduce current extinction rates. 652 
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Table 1. Lack of data on nest descriptions among Neotropical bird species as an example of 1066 

the Parkerian shortfall in ornithological knowledge. Data collated from a random sample of 1067 

1067 Neotropical species across nine families species accounts in Birds of the World 1068 

(https://birdsoftheworld.org).  1069 

 1070 

Family  Neotropical breeding species  Nest undescribed 

Cracidae 54 8 (15%) 

Odontophoridae 29 8 (28%) 

Columbidae 70 13 (19%) 

Trochilidae 337 102 (30%) 

Rallidae 51 9 (18%) 

Accipitridae 61 6 (10%) 

Falconidae 26 6 (23%) 

Psittacidae 156 42 (27%) 

Thamnophilidae 234 134 (43%) 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

https://birdsoftheworld.org/
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Figure 1. Linnaean shortfalls may persist in areas that are remarkably well surveyed: a) an 1078 

undescribed Myornis pygmy-tyrant which had evaded detection in historically well 1079 

inventoried areas of north-east Brazil (Ciro Albano). Google Earth imagery has proven to be 1080 

vital in planning surveys to plug Linnaean and Wallacean shortfalls in addition to many other 1081 

conservation applications. Image b) depicts a view of the Cordillera Azul in Peru, a pre-1082 

Andean range that has been the scene of several new species discoveries  in recent years, the 1083 

process of finding suitable habitat is now greatly facilitated by open access high quality 1084 

satellite data (imagery ©Google Earth) and c) Kaempfer's Woodpecker Celeus obrieni which 1085 

was rediscovered in north-eastern Brazil in 2006 after 80 years as an enigma, it is now known 1086 

to occupy a huge  861,000 km2 range and suggests that even striking species may elude 1087 

detection at sub-continental scales if they have high habitat specificity (A. C. Lees). 1088 

Figure 2. a) Orange-bellied Antwren Terenura sicki a Critically Endangered endemic of 1089 

northeast Brazil which is rare enough that all individuals within the population could easily 1090 

be surveyed (A. C. Lees), b) seasonally-averaged estimated relative abundance map for Fork-1091 

tailed Flycatcher Tyrannus savanna (Fink et al. 2020b) derived from eBird data and a suite of 1092 

environmental variables (Tyrannus illustration by Ian Lewington, used with permission from 1093 

Birds of the World) and c) Bayesian tree showing phylogenetic relationships within the 1094 

Tropical Andes clade of Scytalopus tapaculos revealing populations which likely merit 1095 

additional study to clarify their taxonomic status (Cadena et al. 2020). 1096 

Figure 3 a) Specimens of scythebills in the Campylorhamphus procurvoides complex (A. C. 1097 

Lees) used in the description of a new Amazonian taxon – cardosoi (Portes et al. 2013); 1098 

museum specimens like these can provide a wealth of morphological data and b) genetic data 1099 

– here Mark Adams takes a toe-pad sample from a specimen of Variegated Antpitta Grallaria 1100 

varia at the Natural History Museum at Tring (A. C. Lees). The widespread online 1101 

availability of abiotic data facilitates modelling work that may result in significant 1102 
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distributional discoveries here, c) the relationship between rainfall and the seasonal 1103 

distribution of the Ash-throated Casiornis Casiornis fuscus found by Lees (2015) to be a 1104 

partial longitudinal migrant to Amazonia during the dry season (Casiornis illustration by 1105 

Hilary Burn used with permission from Birds of the World).     1106 
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