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Abstract: 11 

1. Estimates of space use derived from animal tracking studies are often biased by where 12 

animals are tagged, with areas distant to the tagging site, in both space and time, being 13 

under-represented.  14 

2. We develop an approach to overcome this tagging bias by quantifying the likely movements 15 

of animals after tags have failed.  16 

3. We illustrate the approach using high accuracy Fastloc-GPS tracking data for 35 adult female 17 

green turtles (Chelonia mydas) equipped with satellite tags within one of the world’s largest 18 

marine protected areas (MPAs), the British Indian Ocean Territory MPA.  19 

4. Individuals migrated up to 5127 km from the tagging site, breaking migration distance 20 

records for this species. For 28 of 35 individuals travelling to foraging locations well outside 21 

the MPA, we estimated that they spent, on average, 9.8% of their adult lives within the 22 

British Indian Ocean Territory MPA.  23 

5. Synthesis and applications. The importance of the British Indian Ocean Territory MPA as a 24 

nesting sanctuary for individuals from across an ocean basin is highlighted. The general 25 

approach we outline can be applied to a broad range of taxa, including marine mammals, 26 
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fish and sea turtles and will allow unbiased estimates of how important areas, such as MPAs, 27 

are used. 28 

 29 

 30 
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1. INTRODUCTION 36 

It is now commonplace to track animals to assess their patterns of movement and space use 37 

(Costa et al. 2012; Hussey et al. 2015; Kays et al. 2015), with tracking data often providing 38 

information that has translated into conservation management and policy (Hays et al. 2019). In 39 

many studies, however, space use estimates are influenced by the tagging locations. Put simply, 40 

space use estimates will often show tagging sites as high use areas simply because all of the 41 

tracks radiate from that location and not because animals necessarily spend lots of time at that 42 

tagging site. So, for example, if an animal had instead been tagged in another part of its range, 43 

then a different pattern of space use would be generated. Examples of where animals tend to 44 

be tagged in only part of their range are widespread across studies and include tagging animals 45 

at breeding sites, e.g. turtles, seabirds and pinnipeds, or for fish where they are captured in 46 

commercial fisheries (e.g. McMahon et al. 2008; Bailey et al. 2012). Some studies across marine 47 

taxa, including sharks, fish, cetaceans, pinnipeds, sea birds and turtles, have tried to correct for 48 

tagging location biases, with tracking locations being inversely weighted by when they were 49 

recorded in relation to the tagging date, so that locations obtained a long time after tagging are 50 

given more weight and vice versa (Block et al. 2011; Queiroz et al. 2019). This elegant approach 51 

partly ameliorates tagging location biases, but is not a perfect solution to the problem since 52 

animals may continue to move far away from the tagging locations well after the tags fail. Given 53 

the widespread issue with tagging location bias, here we conceptualize a new approach to 54 



3 

 

tackle this issue. Our approach will be broadly applicable across taxa, allowing unbiased 55 

estimates of how species use key areas such as Marine Protected Areas (MPAs). As a case 56 

study, we implement the approach using long-term satellite tracking data obtained from a 57 

species that can migrate 1000s of km across an ocean basin between breeding and foraging 58 

sites.  59 

 60 

2. METHODS 61 

We first developed a conceptual framework for estimating space use in a way that is not biased 62 

by the release location of tagged animals. To develop this framework we used three examples 63 

from the literature of animals where empirical tracking results of individuals generally only 64 

cover part of an individual’s overall movements. For illustrative purposes, we selected one fish, 65 

one marine mammal and one sea turtle to show the broad applicability of our framework. In 66 

each example, we also show how the overall pattern of movements may be broadly known 67 

using a range of data-sets that supplement the information provided by tracks of individuals.  68 

We then develop this conceptual framework in a case study to estimate use of a large 69 

MPA by a long-distance ocean migrant. We use satellite tracking results for green sea turtles 70 

(Chelonia mydas) equipped while nesting on the island of Diego Garcia in the Chagos 71 

Archipelago, Indian Ocean (7.428° S, 72.458° E). This nesting area lies at the heart of one of the 72 

world’s largest protected areas: the British Indian Ocean Territory (BIOT) MPA, that extends 73 

generally 200 nautical miles seaward from the outermost atolls to the limit of the UK territorial 74 

waters. During the nesting seasons in 2012, 2015, 2017 and 2018, female turtles were located 75 

while they were nesting ashore at night. Once turtles were returning to the sea they were 76 

restrained in a large open-topped and bottomless wooden box and a Fastloc-GPS Argos tag 77 

attached using quick setting epoxy (see Esteban et al., 2017 for details). In 2012, we used two 78 

models of satellite tag (SPLASH10-BF, Wildlife Computers, Seattle, Washington (n = 4) and 79 

model F4G 291A, Sirtrack, Havelock North, New Zealand (n = 4). In other years we only used 80 

SPLASH10-BF units (n= 10, 5 and 12 in 2015, 2017 and 2018). Transmitters relayed data via the 81 

Argos system (http://www.argos-system.org/) that allowed Fastloc-GPS positions to be 82 



4 

 

determined. Only Fastloc-GPS positions obtained with a minimum of four satellites and a 83 

residual error value of less than 35 were used, producing locations that were generally within a 84 

few tens of meters of the true location (Dujon et al. 2014). 85 

To estimate the proportion of time adult female turtles spend within the BIOT MPA in a 86 

way that was free of bias introduced by where and when each animal was tagged or the 87 

behaviour of the animal, we supplemented the direct tracking data with other information 88 

about the scheduling of migration derived from other sources. The time an adult green turtle 89 

spends inside the BIOT MPA can be partitioned across: (i) time spent travelling from the edge of 90 

the MPA to and from the nesting beaches at the start and end of the breeding season 91 

respectively; (ii) time spent mating, which usually occurs close the nesting beaches; (iii) time 92 

spent laying several clutches of eggs. Each of these three periods can be estimated for both 93 

male and female turtles. We estimated “(i)” for male and female turtles using our tracking data 94 

for turtles leaving the MPA, assuming that the reciprocal journey from the boundary of the 95 

MPA to the nesting beaches took the same amount of time. (ii) The amount of time that 96 

females spend mating has been estimated at 30 days by using visual observations of green 97 

turtles at mating areas (Godley et al. 2002). Male turtles arrive to breed before females and 98 

their length of residency at the breeding grounds has been measured at 75 days (Schofield et al. 99 

2013). (iii) The length of time females spend laying clutches has been estimated from the 100 

attachment of satellite tags to females at the start of the nesting season (Esteban et al. 2017). 101 

Green turtles in the Chagos Archipelago lay a mean of 6 clutches with a modal inter-nesting 102 

interval of 13 days (Esteban et al. 2017), so that, on average, they spend a total of 65 days 103 

nesting.  104 

The interval between breeding seasons (remigration interval) has been recorded for 105 

female green turtles in the Indian Ocean using numbered flipper tags that allow a turtle to be 106 

identified when they are encountered nesting across different years. At the island of Mayotte, 107 

an isolated green turtle rookery in the SW Indian Ocean, the modal remigration interval for 108 

females is 3 years (Bourjea et al. 2007). Given differences in their breeding biology, the likely 109 

corresponding modal remigration interval for adult male turtles is 2 years (Hays et al 2014a).  110 

 111 
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 112 

3. RESULTS 113 

 114 

3.1 Conceptual framework  115 

The issue of tagging site bias is illustrated schematically in Figure 1, which shows the movement 116 

patterns that may potentially be performed by animals before and after tags fail, i.e. recorded 117 

tracks may only cover a fraction of an animal’s overall movements. To overcome tagging 118 

location biased estimates of space use, one approach is to augment individual tracking data 119 

with additional information on animal movement obtained by other means. For example, for 120 

some taxa, seasonal occurrence in certain locations may be known from visual direct 121 

observations (e.g. cetaceans); the scheduling of movement may be known from mark-recapture 122 

studies (e.g. seabirds, sea turtles, pinnipeds and some fish); different individuals may have been 123 

tracked in different parts of a species range. Blending these types of data, with the tracks of 124 

individuals tagged in focal areas, may help to complete the picture of an animal’s likely 125 

movements while it was not being directly tracked. 126 

The long-term patterns of movement of different taxa are shown schematically in Figure 127 

1. In each case, the overall scheduling of their movements may be broadly known, but only 128 

sections of their breeding journeys are recorded by direct tracking.  For example, for southern 129 

right whales (Eubalaena australis), some individuals have been equipped with satellite tags in 130 

calving areas in southern Australia and New Zealand that, from photo-id records, they are 131 

known to return to seasonally, while their seasonal occurrence at foraging areas in the 132 

Southern Ocean has been recorded through whaling records (Mackay et al. 2020) (Figure 1a). 133 

Northern bluefin tuna (Thunnus thynnus thynnus) have been equipped with either satellite tags 134 

or archival loggers in different parts of their range, allowing their overall extent of movement to 135 

be pieced together (Block et al. 2005) (Figure 1b). For adult green turtles that nest on Ascension 136 

Island in the central Atlantic, both long-term fidelity to nesting beaches and breeding 137 

periodicity have been documented by mark-recapture studies (Mortimer and Carr 1987), while 138 

elements of their post-nesting migration routes have been recorded by satellite tracking (Luschi 139 
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et al. 1998) (Figure 1c). Viewed in these ways, direct tracking of individuals can be viewed as 140 

just one component of the information that can be used to assess their likely patterns of space 141 

use, including periods both before and after they were directly tracked. 142 

 143 

 144 

3.2 Case Study: green turtles in the Indian Ocean 145 

For none of the tracked turtles was the round-trip migration from the nesting beaches to the 146 

breeding area and back to the nesting beaches recorded, i.e. tracks only covered part of the 147 

expected movements of individuals across a breeding cycle. This result is akin to those 148 

examples shown in Figure 1. For 33 of the 35 tags, individuals were tracked to their foraging 149 

grounds, as indicated by individuals traveling to localized, relatively shallow areas where they 150 

remained for several months before tags failed. In two cases tags failed while individuals were 151 

still travelling in the open ocean and had not reached their destination. Turtles travelled to a 152 

broad range of destinations after the nesting season, with foraging sites identified across the 153 

western Indian Ocean (Figure 2). For seven of the 35 tracked turtles (20% of all tracked 154 

individuals) the post-nesting migration was relatively short, with these individuals travelling 155 

around 100 km northwards to their foraging grounds on the Great Chagos Bank and hence 156 

these individuals did not leave the BIOT MPA. The other 28 tracked turtles travelled beyond the 157 

MPA boundary and for the 26 of these 28 individuals whose foraging area was identified, two 158 

travelled to the Maldives, 17 travelled to islands and submerged banks in parts of the 159 

Seychelles and Mascarene Plateau, three travelled to Somalia, two to Kenya, one to 160 

Madagascar and one to Mozambique (Figure 2a). The maximum migration distance was for an 161 

individual that travelled 5127 km to foraging grounds in southern Mozambique, but long 162 

migrations were widespread with 11 individuals travelling >3000 km to reach their foraging 163 

grounds and 20 travelling >2000 km. The earliest tag failure occurred 89 days after deployment 164 

and the longest lasting tag functioned for 554 days. After 230 days, 50% of the tags were still 165 

functioning. 166 
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For turtles that travelled beyond the boundary of the MPA, the mean time to travel 167 

from Diego Garcia to the limit of the MPA was 6.0 days (n=28, range = 3.8-9.6 days, SD = 1.5 168 

days). So for female green turtles migrating to foraging grounds outside the BIOT MPA, over a 169 

3-year (1095 days) breeding cycle they would be expected to spend on average, (i) 12 days 170 

travelling from the edge of the MPA to and from the nesting beaches, (ii) 30 days mating, (iii) 65 171 

days nesting. So the mean proportion of time spent in the MPA is 107d/1095d = 0.098 or 9.8% 172 

(Figure 2b). The corresponding values for male turtles leaving the MPA, is that over a 2-year 173 

breeding cycle (730 days) they spend, (i) 12 days travelling from the edge of the MPA to and 174 

from the nesting beaches, (ii) 75 days at the breeding grounds and so 87d/730d = 11.9% of their 175 

time inside the MPA per 2-year breeding cycle.  176 

 177 

 178 

4. DISCUSSION 179 

The extent of tagging bias varies across taxa. For some groups this issue may be less of a 180 

problem. For example, for some birds small light-based geolocator tags as well as satellite tags 181 

have allowed annual roundtrip migrations to be recorded for many species in both marine and 182 

terrestrial species (e.g. Shaffer et al. 2006; Clay et al. 2017; Vardanis et al. 2016); while in some 183 

studies with fish, individuals have been tracked across multiple years (Lea et al. 2015), so that 184 

movement networks can be estimated to define space use (Jacoby et al. 2020). However in 185 

many studies, across multiple taxa, tagging bias issues will be important because tags fail before 186 

the full extent of an individual’s movement has been captured. For example, often fish 187 

including sharks, rays and bony fish, are still travelling to new areas when tags fail (Queiroz et 188 

al. 2016; Sousa et al. 2016); keeping tags attached to cetaceans for long periods remains 189 

challenging (Fossette et al. 2014); pinnipeds shed external tags when they molt so that multi-190 

year tracks are very difficult to obtain (McMahon et al. 2008); sea turtles generally only breed 191 

every few years so it is very difficult to track individuals throughout a complete breeding-192 

foraging-breeding cycle (Hays & Hawkes 2018). For all of these taxa the challenge of our 193 

approach is to piece together where animals are most likely moving after tags fail. With sea 194 
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turtles, we have shown how the likely pattern of movement can be estimated by combining 195 

direct tracking with data derived from other techniques. Likewise for other taxa, including some 196 

fish and marine mammals, this same conceptual approach may be applicable, piecing together 197 

the likely overall pattern of movement from direct tracking used in conjunction with other 198 

sources of information that shed light on the extent and scheduling of movements.  199 

In some cases, such as with pelagic fish, tagging individuals in different parts of their 200 

range as well as researchers sharing data from across tracking studies, offers great promise for 201 

assessing the overall pattern of species movements (Queiroz et al. 2019). For example, ocean 202 

sunfish (Mola mola) in the NE Atlantic have been satellite tagged at their more northerly 203 

summer feeding grounds off Ireland as well as more southerly feeding locations off Portugal 204 

(Sims et al. 2009, Sousa et al. 2016). So while individual tracks do not record the full extent of 205 

their north-south seasonal movements, these seasonal movements can be pieced together 206 

from the range of tracks obtained. For some taxa, tracking data can be supplemented with 207 

observations that show locations of seasonal residence, such as sightings data for many 208 

cetaceans or catch data for many fish. The likely movement of some taxa might also sometimes 209 

be assessed if the drivers of their movement patterns can be accurately described. For example, 210 

for wide-ranging oceanic foragers, movement models can now include a thermal constraint on 211 

movement (e.g. sea surface temperature for marine animals including seabirds) which may 212 

underpin seasonal north-south migrations, as well as the likelihood of animals stopping to feed 213 

in prey-rich oceanic patches (Lalire & Gaspar 2019, Pinaud et al. 2005). Empirical tracking data 214 

will allow such movement models to be better parameterized allowing, for example, thermal 215 

constraints on seasonal poleward movements to be better quantified (e.g. McMahon & Hays 216 

2006) as well as the probability of straight-line travel versus localized foraging (Bailey et al. 217 

2012; Humphries et al. 2012). In this way, if the pattern of movement can be accurately 218 

modelled, then individual space use can be projected across many years (Lalire & Gaspar 2019).  219 

Our approach for estimating how green turtles use a large MPA may have broad 220 

conservation relevance. While the exact values for time spent in the BIOT MPA will not apply to 221 

other MPAs, the approach we used will still be applicable, i.e. combining direct tracking with 222 

other sources of information to estimate how much time individuals spend in protected areas. 223 
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Given that many 1000s of sea turtles have been satellite tracked around the world (Hays & 224 

Hawkes, 2018) and often there is good information on breeding intervals derived from mark-225 

recapture tagging, our approach will have very broad utility across sea turtle species and 226 

populations. With regards to the BIOT MPA, since this protected area was declared in 2010 by 227 

the UK Government, there has been clear evidence of the conservation benefits for a range of 228 

taxa (D'agata et al. 2016). Nevertheless, the legality of the MPA has been challenged (e.g. 229 

Appleby 2015 but also recent media articles such as https://www.bbc.com/news/uk-230 

48371388). Our results greatly extend previous preliminary observations from seven tracked 231 

green turtles (Hays et al 2014b). We show that most of breeding female green turtles spend the 232 

majority of their adult lives outside the BIOT MPA. In other words, the MPA provides a nesting 233 

sanctuary for turtles that spend most of their adult lives at foraging sites across the entire 234 

western Indian Ocean. This nesting sanctuary is important, as turtles are particularly susceptible 235 

to poaching when ashore nesting, as are their eggs in nests. Therefore, the protection of turtles 236 

and their nests in the BIOT MPA has likely been a major contributor to the large increases in 237 

nesting numbers observed inside the MPA in recent years (Mortimer et al. 2020). Further, the 238 

pan-oceanic migrations of green turtles highlight the value of the conservation efforts that are 239 

being implemented across very broad spatial scales such as the western Indian Ocean (e.g., . 240 

Likewise, the approach we outline could allow unbiased estimates of how a range of marine 241 

mammals and fish use important areas such as MPAs, territorial waters of specific countries or 242 

important fishing zones. In summary, we suggest that by using tracking data synergistically with 243 

other information about the pattern and scheduling of animal movement, space-use estimates 244 

that are free of tag bias impacts may be made. Where this approach can be implemented it will 245 

allow improved estimates of how animals use protected areas and are exposed to various 246 

threats such as fishing activities. 247 

 248 
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 419 

 420 

FIGURE 1. Schematic representation of how tagging bias may impact estimates of space use in 421 

tracking studies. In each case the star represents an assumed tagging site, the solid line the 422 

track recorded by a tag and dashed line the possible animal movements after the tag has failed 423 

or detached. Icons represent example taxa. Overall patterns of movement, i.e. encompassing 424 

the time before, during and after individuals were directly tracked, may be informed by known 425 

patterns of seasonal occurrence (e.g. derived from visual observations), mark-recapture studies  426 

or by equipping individuals with tracking tags in different parts of a species range. (a) bluefin 427 

tuna in the North Atlantic, (b) green turtles nesting on Ascension Island, (c) southern right 428 

whales calving off southern Australia. See text for further details. 429 
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 431 

 432 

FIGURE 2. Case study of estimated space use by migrating green turtles. (a) The tracks of 35 433 

green turtles equipped with satellite tags while they were ashore nesting on Diego Garcia in the 434 

Chagos Archipelago. The extent of the BIOT MPA is indicated by red shading. Of the 35 tracks, 435 

seven travelled to foraging areas inside the MPA on the Great Chagos Bank, 28 travelled outside 436 

the MPA of which 26 individuals were tracked all the way to their foraging area. (b) Breeding 437 

migration cycle of a female green turtle tracked from a nesting beach on Diego Garcia (black 438 

star) to foraging grounds on the coast of Kenya (green circle) from August to November 2015. 439 

Fastloc GPS track (solid red line) shows the 105 day, 4835 km post-nesting migration, and the 3-440 

yearly (1095 days) return migration inferred from flipper tagging studies is represented by a 441 

dashed blue line. Female green turtles spent on average 9.8% (107 days) of the breeding 442 

migration cycle within the BIOT MPA. 443 
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